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Abstract. We study inversions of the jump operator on Π0
1 classes, combined

with certain basis theorems. These jump inversions have implications for the

study of the jump operator on the random degrees—for various notions of
randomness. For example, we characterize the jumps of the weakly 2-random

sets which are not 2-random, and the jumps of the weakly 1-random relative to
0′ sets which are not 2-random. Both of the classes coincide with the degrees

above 0′ which are not 0′-dominated. A further application is the complete

solution of [Nie09, Problem 3.6.9]: one direction of van Lambalgen’s theorem
holds for weak 2-randomness, while the other fails.

Finally we discuss various techniques for coding information into incomplete

randoms. Using these techniques we give a negative answer to [Nie09, Problem
8.2.14]: not all weakly 2-random sets are array computable. In fact, given any

oracle X, there is a weakly 2-random which is not array computable relative to

X. This contrasts with the fact that all 2-random sets are array computable.

1. Introduction

One of the fundamental notions of algorithmic information theory is the notion
of a Martin-Löf random real.1 Here we recall that a computable sequence of Σ0

1

classes {Ve | e ∈ ω} with (measure) µ(Ve) ≤ 2−e for all e, is called a Martin-Löf
test and a real A passes this test if A 6∈ ∩eVe. The real is Martin-Löf random iff it
passes all such tests. Recall that we say that A is n-random iff it passes all such
tests where now the Ve can be Σ0

n classes in place of Σ0
1 classes.

However many would argue that the most natural concept of algorithmic ran-
domness is the notion of a weakly 2-random real. A weakly 2-random real is one
that avoids all null Π0

2 classes; whereas Martin-Löf randomness only asks that a
real avoid all null Π0

2 classes where, as defined above, we have some effective con-
vergence criteria for the nullness. That is, we now ask that A passes all generalized
Martin-Löf tests, where this is a computable sequence of Σ0

1 classes {Ve : e ∈ ω}
with µ(Ve) → 0. The first mention in print of weak 2-randomness can be found in
Gaifman and Snir [GS82], but the class of such reals can be traced earlier, such as
in Solovay’s notes, where it is shown that weakly 2-random reals are not ∆0

2, an
observation of Martin.

One good reason we might regard weakly 2-random reals as a natural concept
of randomness is that they cannot have very high computational power (as we
would expect of a random real) in the sense that they are not of PA degree and,

Supported by the Marsden Foundation of New Zealand. We would like to thank Adam Day
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also grateful to the referees for many corrections.
1Hereby “real” we mean a member of Cantor space. We equip this with the standard uniform

measure, µ([σ]) = 2−|σ|, where [σ] = {σα | α ∈ 2ω}, for any σ ∈ 2<ω .
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in particular, they cannot code the halting problem. Somehow a lot of the more
typical behavior of random reals seems to begin at weak 2-randomness. Moreover,
they seem to share properties with the Martin-Löf random reals in a way that we do
not yet understand. For instance, Downey, Nies, Weber and Yu [DNWY06] proved
that the class of the reals low for this randomness concept coincide with the class
of reals low for Martin-Löf randomness. Thus, this class seems highly worthy of
being studied both for its own sake and for the insight it gives into other better
understood classes such as the Martin-Löf random reals and the 2-random reals.

On the other hand, little is really known about weakly 2-random reals, perhaps
because Martin-Löf randomness suffices for many applications. This seems also
because we lack techniques for dealing with the class of weakly 2-random reals.

This paper was motivated by two natural questions (soon to be discussed) in
algorithmic randomness concerning weakly 2-random reals. Both questions are
concerned with the computational power of such reals. However, before we discuss
those questions, we wish to mention the larger goals of the present paper.

The larger programme of the present paper concerns basis theorems for Π0
1 classes

combined with various degree theoretical restrictions. The study of Π0
1 classes has

a long and rich history. These natural effectively closed sets code a wide variety
of algorithmic behavior such as degrees of theories, ideals in rings, etc (see, for
instance, Cenzer and Remmel [CR98]), as well as things like reverse mathematics,
and, as was first realized by Kučera (e.g. [Kuč85, Kuč86]), algorithmic randomness.
Notable here are the various basis theorems such as the Kreisel Basis Theorem which
asserts that every nonempty Π0

1 class has a member of computably enumerable
degree, and the famous Low Basis Theorem of Jockusch and Soare [JS72] which
asserts that every Π0

1 class has a member of low degree, and from the same paper, the
Jockusch-Soare hyperimmune-free basis theorem which asserts that every nonempty
Π0

1 class has a member of hyperimmune-free degree2. Perhaps less well known are
extensions of these basis results in the situation that the class is somehow fatter.
The point being that a class might be finite or have all members being computable,
in which case little else can be said. As an illustration, a Π0

1 class is called special iff
it has no computable members. One can use the method of the Low Basis Theorem
to show that for any degree a ≥ 0′, if P is a special Π0

1 class then P has a member
whose jump is a. Moreover, in the case where the Π0

1 class has positive measure,
as suggested by Kučera [Kuč85] and proven by Downey and Miller [DM06], it has
∆0

2 members of all Σ0
2 degree above 0′.

As we mentioned earlier, the original impetus for the present paper was consid-
eration of two open problems concerning weakly 2-random reals from Nies [Nie09].

Problem 3.6.9 in [Nie09]. To what extent does van Lambalgen’s Theorem hold
for weak 2-randomness?

2Recall that a real A has hyperimmune free degree iff for all functions f ≤T A, there is a

computable function g such that g dominates f , meaning that f(x) ≤ g(x) for all x. It has
become fashionable by some authors, notably Soare and Nies to refer to these as computably

dominated, or 0-dominated. This lends itself to a (partially) relativized version: a real (or degree)

A is b-dominated or b-hyperimmune free iff for functions f ≤T A are dominated by b-computable
functions. The opposite will be b-hyperimmune. We will use both notations choosing the one

which best emphasizes the point we are trying to make.
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Problem 8.2.14 in [Nie09]. Does every weakly 2-random have array computable
degree?

Van Lambalgen’s Theorem is one of the fundamental and important results in
algorithmic randomness. It asserts that A⊕B is n-random iff A is n-random and B
is n-random relative to A (and hence A is n-random relative to B). In particular,
A ⊕ B is Martin-Löf random iff A is B-random and B is A-random. This result
is known to have myriad implications since it neatly ties the notion of relative
randomness to the well-understood join operator.

Given the overall importance of van Lambalgen’s Theorem, it is natural to ask
whether it holds for other notions of algorithmic randomness besides Martin-Löf
randomness and higher level versions. At the time of writing the present pa-
per, it was known that van Lambalgen’s Theorem failed for notions of random-
ness weaker than Martin-Löf such as Schnorr and computable randomness (see
[MMN+06, Yu07]). The reader might recall that Schnorr randomness is obtained
by asking that µ(Ve) = 2−e in the definition of Martin-Löf randomness, and that
computable randomness is a variation using martingales. It is not really important
for this paper what they are, but that they give weaker notions: every Martin-Löf
random real is computably random and every computably random real is Schnorr
random with all inclusions proper (see [DH10, Section 6.1] or [Nie09, Chapter 7] for
details). It seemed reasonable that the reason that van Lambalgen’s Theorem fails
for these concepts was their weakness. In Problem 3.6.9 in [Nie09], Nies articulates
this intuition by asking whether either direction of van Lambalgen’s Theorem holds
if we replace 1-randomness with weak 2-randomness.

In Section 2.3 we answer [Nie09, Problem 3.6.9] by showing that one direction
of van Lambalgen’s theorem holds for weak 2-randomness while the other fails. As
we mentioned earlier, our result turned out to be a corollary of a more general
programme concerning theorems about the jump operator on Π0

1 classes. These
theorems are given in Sections 2 and 3. The work presented there pointed to a
somewhat unexplored yet very interesting area, and a number of further questions
about the jumps of members of Π0

1 classes with additional properties. One such
property that we study (in connection with jump inversion within a Π0

1 class) is
‘forming a minimal pair with 0′’. The salient point here is that Downey, Nies,
Weber and Yu [DNWY06] proved that a 1-random real is weakly 2-random iff
it forms a minimal pair with 0′. (The hard direction of this result follows from
an ingenious theorem of Hirschfeldt and independently Miller, on Σ0

3 null classes.
Here we refer to Downey and Hirschfeldt [DH10, Theorem 6.2.11] and Nies [Nie09,
Theorem 5.3.16]). Applying this result in relativized form, if van Lambalgen’s
Theorem were to hold then if A ⊕ B is weakly 2-random we would need that A is
B-random (by the original van Lambalgen’s Theorem) and forms a minimal pair
with B′ over B. Now of course A and B must both be weakly 2-random, but it is
the weak 2-B-randomness which seems problematical.

The solution that suggests itself is the following. We need to build B and A but
additionally control the jump and also avoid cones. However nothing so far seems
known about such questions. Moreover, nothing is really known about the cases
where the classes are special and the classes are of positive measure as above, and
this is the gist of our new programme. For instance, two prototypical results we
will prove are the following.
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Theorem. Given a special non-empty Π0
1 class P and C ≥T ∅′′ there is A ∈ P

which forms a minimal pair with ∅′ and A′ ≡T A⊕ ∅′ ≡T C.

Theorem. Given C ≥T ∅′′ and a Π0
1 class P of positive measure, there is a path

A⊕B of P which forms a minimal pair with ∅′, such that A′ ≡T A⊕∅′ ≡T C and
B′ ≡T B ⊕ ∅′ ≡T C.

The latter result easily allows for a proof of the failure of van Lambalgen’s
Theorem. In subsequent work we look at weakening the hypothesis that C ≥T ∅′′
using weaker oracle hypotheses. As an example, we establish the following.

Theorem. If C ≥T ∅′ is 0′-hyperimmune and P is a special non-empty Π0
1 class,

then there is A ∈ P which forms a minimal pair with ∅′ and A′ ≡T A⊕ ∅′ ≡T C.

Of course the result we would like to have proven is that if a > 0′ then a is the
jump of some weakly 2-random set. Unfortunately this attractive conjecture is not
true. However, we are able to completely classify the jumps of weakly 2-random
reals which are not 2-random.

Theorem. A degree above 0′ is the jump of a weakly 2-random but not 2-random
degree iff it is 0′-hyperimmune.

The complete classification of the jumps of weakly 2-random degrees remains
open, but we show that it must be a subclass of the 0′-hyperimmune degrees to-
gether with those that are 0′-dominated and relative to ∅′, both diagonally non-
computable and not PA.

In the introductory Section 1.1, we recall and give short motivational proofs of
the main known jump-inversion theorems inside Π0

1 classes and present an overview
of our contributions. In Sections 2 and 3 we discuss this direction of research and
the implications it has to the study of the jumps of the random degrees (for various
randomness notions).

The second question answered by our methods, [Nie09, Problem 8.2.14], concerns
the fine delineation of the computational power of weakly 2-random reals. From
Downey, Jockusch and Stob [DJS96], we recall that a degree a is called array
computable if there is a function f ≤wtt 0′ which dominates all functions computable
from a. Array non-computability is known to code a certain computational power.
For example, by Downey, Jockusch and Stob [DJS96], we know that every array non-
computable degree bounds a 1-generic degree, and below it we can embed any finite
lattice in the degrees preserving least and greatest element. Moreover, recent work
by Downey and Greenberg [DG08] shows that every array non-computable degree
has positive effective packing dimension, and hence there are many constructions
which such degrees have enough computational power to carry out.

On the other hand, it is well known (and easy to see) that every 2-random degree
is array computable. In fact, there is a randomness notion significantly weaker than
2-randomness which implies array computability. The original almost everywhere
dominating function in [Kur81] is a function ≤wtt ∅′ which dominates ΦX for all
Turing functionals and all X which do not belong to a certain null set S. The
set S is in fact what we now call a Demuth test3. Hence all Demuth random sets
are array computable. For the definition, see [Nie09, Definition 3.6.24], or [DH10,
Section 6.6.1].

3It is not important for the present paper what a Demuth test is, but simply that it gives rise
to a notion of randomness which is weaker than 2-randomness.
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Randomness notions that are stronger than 1-randomness tend to have certain
computational weaknesses. Also incomplete 1-random sets (here, and henceforth,
“incomplete” refers to those not above 0′) are considered to be quite ‘weak’ from a
computational point of view. For example, Frank Stephan [Ste06] proved that the
only 1-random reals that can compute a complete extension of Peano arithmetic are
those above 0′. Hence all weakly 2-random reals are not sufficiently computationally
powerful to be able to compute a {0, 1} valued fixed point free function.

The difficulty of coding information into incomplete 1-random sets had already
been discussed in the seminal work of Kučera [Kuč85]. This difficulty has been
associated with a number of central problems in randomness since (for example see
[MN06, Questions 4.6–4.8]).

In this context, [Nie09, Problem 8.2.14] is particularly interesting since weakly 2-
random sets form a natural class of incomplete random sets. Can they be sufficiently
computationally powerful to be array noncomputable? In Section 5, we show that
the answer is (remarkably) yes. Again we do this by proving a much stronger
statement: for every function f , we can code enough information into a weakly
2-random X such that some function g ≤T X is not dominated by f . The method
we use is based on the classic methods of Kučera for coding into random sets, but
has novel features which are likely to have further applications.

In Section 1.2 we give a brief introduction to coding methods for (incomplete)
random sets. This is not only helpful in making this paper reasonably self-contained,
but the main methods that we sketch (all due to Kučera) have not been adequately
discussed in the literature (nor are they widely known). For example, the jump
inversion theorem for ∆0

2 random sets (Theorem 1.2 below) was only stated in
[Kuč85] (not proved) and the first proof appeared in Downey and Miller [DM06].
This theorem combined with upper cone avoidance (Theorem 1.4 below) was also
mentioned in [Kuč85] but no hint of the proof has appeared in the literature. We
briefly discuss these arguments in Section 1.2 in order to prepare the reader for the
proof of Section 5.

1.1. Jump inversions inside Π0
1 classes. As we mentioned above, a special Π0

1

class is one that contains no computable paths. The basic jump inversion theorem
for such classes is the following. A proof can be found in [DH10, Theorem 1.18.16],
and is a slight modification of the Low Basis Theorem with a little coding thrown
in. The hypothesis that the Π0

1 class is special is used to show that the induction
hypothesis can be continued after coding.

Theorem 1.1 (Folklore). The range of the jump operator on any special Π0
1 class

is the upper cone of degrees above 0′.

By the Shoenfield jump Inversion theorem [Sho59], the range of the jump opera-
tor on the ∆0

2 sets is the class of Σ0
2 degrees above 0′. However the obvious analog of

Shoenfield’s Theorem does not hold restricted to special Π0
1 classes. Indeed, there

is a special Π0
1 class consisting of GL1 paths [Cen99]4. The following theorem states

that it is enough to require that the Π0
1 class has positive measure.

Theorem 1.2 (Kučera [Kuč85], and Downey and Miller [DM06]). The range of
the jump operator on the ∆0

2 paths of any Π0
1 class of positive measure is the class

of Σ0
2 degrees above 0′.

4For example, take a perfect thin Π0
1 class
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In Section 2 we study the range of the jump operator on the paths of a special
Π0

1 class whose degrees form a minimal pair with 0′. In Section 2.1 we show that
given a Π0

1 class P without computable paths, every degree above 0′′ is the jump
of a member of P which forms a minimal pair with 0′. In Section 2.2 we present
a version of this result for Π0

1 classes of positive measure. In that case we are able
to construct a path A⊕B in the class, while controlling the jumps of both A and
B. This last result is used in Section 2.3 in order to answer [Nie09, Problem 3.6.9]:
one direction of van Lambalgen’s theorem holds for weak 2-randomness while the
other fails.

In Section 3 we generalize the above jump inversion theorems by replacing the
condition ‘above 0′′’ with the much weaker ‘above 0′ and 0′-hyperimmune’.

In Section 4, we combine the results of Section 3 with various results from the
literature in order to study the jumps of random sets—for various randomness
notions. We ultimately seek a full characterization of these classes and we do get
one such for the class of weakly 2-random sets which are not 2-random. All the other
cases are interesting open questions. The randomness notions that we consider are
displayed in Table 1 along with the symbols used to denote them.5

Martin-Löf randomness ML

weak randomness relative to 0′ Kurtz[∅′]
weak 2-randomness W2R

2-randomness ML[∅′]

Table 1. Randomness notions and the symbols used to denote them.

Here, the reader should recall that a set is weakly 1-random or Kurtz random if
it is not a member of any null Π0

1 class, or equivalently is in every Σ0
1 class of

measure 1. The reader should remember that whilst 2-randomness is 1-randomness
relative to ∅′, weak 2-randomness is not weak 1-randomness relative to ∅′. Certainly
weak 2-randomness implies weak 1-randomness relative to ∅′, but every 2-generic is
weakly 1-random relative to ∅′, but surely not weakly 2-random (see Downey and
Hirschfeldt [DH10]).

As we explain in this section, it seems useful to study the jumps of all these
classes simultaneously. Indeed, one class gives information about the others. The
main results of Section 4 are displayed in Table 2. Here DOM denotes the class
of 0-dominated degrees and DOM[∅′] is the class of 0′-dominated degrees. Recall
that, given an effective enumeration {ϕe} of all partial computable functions, a
function f is diagonally non-computable if f(e) is different than ϕe(e) for all e such
that ϕe(e) ↓. A degree is diagonally non-computable if it computes a diagonally
non-computable function. The collection of these degrees is denoted by DNC. This
notion relativizes naturally to any oracle X, giving the class of degrees DNC[X].
Finally PA is the collection of degrees that compute a complete extension of Peano
arithmetic. These are known to coincide with the degrees that compute a diagonally
non-computable function with binary values.

We use D to denote the set of all degrees. Given a class X of sets/degrees we
denote the collection of the jumps of these the sets/degrees by X ′. By the Friedberg

5We borrow this notation from [BMN].
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completeness criterion [Fri57], D′ is the sets of degrees which are greater or equal
to 0′. Note that (a), (b) of Table 2 are the known Theorems 1.1, 1.2.

Class X Jump class X ′

(a) ML X ′ = D′

(b) ML ∩∆0
2 X ′ = D′ ∩ Σ0

2

(c) W2R,Kurtz[∅′],ML[∅′] X ′ ∩ DOM[∅′] ⊆ DNC[∅′]− PA[∅′]

(d) W2R,Kurtz[∅′] D′ − DOM[∅′] ⊂ X ′

(e) W2R−ML[∅′],Kurtz[∅′]−ML[∅′] X ′ = D′ − DOM[∅′]

(f) ML[∅′′] X ′ ⊂ D′ − DOM[∅′]

Table 2. Classes of the jumps of sets that possess various ran-
domness properties.

1.2. Coding into random sets. Coding into Martin-Löf random sets was first
demonstrated in the Kučera-Gács theorem [Gác86, Kuč85], which says that every
set is computable from a random set. According to this method, the bits of the
given set A are coded into segments of the random sequence X, that are determined
by a computable function f . Let P be a Π0

1 class containing only random paths, for
example a member of the standard universal Martin-Löf test. Recall that the nth
member of this test is ∪i>e+n+2V

e
i where V ei is the ith member of the eth Martin-

Löf test according to an effective enumeration of all Martin-Löf tests. Typically, X �
f(n+ 1) will be the leftmost or rightmost path (according to whether A(n+ 1) = 0
or A(n+ 1) = 1 respectively) of P extending X � f(n). The following basic lemma
ensures that for every path Y ∈ P and n ∈ N there exist at least two P -extendible
nodes of length f(n+ 1) with common prefix Y � f(n).

Lemma 1.3 (Kučera [Kuč85]). Let P be the complement of a member of the stan-
dard universal Martin-Löf test. Also let (Pe) be an effective enumeration of all Π0

1

classes. There exists a computable function g of two arguments, such that for all
P -extendible strings σ and all e ∈ N, if P ∩ Pe ∩ [σ] 6= ∅ there exist at least two
P ∩ Pe-extendible strings of length g(|σ|, e) with common prefix σ.

Another formulation of Lemma 1.3 is in terms of a lower bound on the measure
of P ∩ Pe ∩ [σ], in case this is non-empty. In other words there exists a computable
function g of two arguments, such that for all P -extendible strings σ and all e ∈ N,
if P ∩ Pe ∩ [σ] 6= ∅ then µ(P ∩ Pe ∩ [σ]) > 2−g(|σ|,e).6

Already from [Kuč85] it was demonstrated that this kind of coding can be used
in a forcing construction with Π0

1 classes, e.g. for the construction of incomplete
Martin-Löf random sets. One such result in [Kuč85] is the existence of an incomplete

6The original version of Lemma 1.3 that appears in [Kuč85] refers to a particular class P which

is specially constructed. However it is not hard to see that this holds for the complement of any
member of the standard Martin-Löf test. Indeed, by the recursion theorem we can embed into it

any desirable Σ0
1 class of suitably small measure.
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∆0
2 high random set A. Let us recall and discuss the ideas used in the proof of this

theorem (especially since only a sketch is provided in [Kuč85]).

1.2.1. High random strictly below 0′. To make A high we need to code ∅′′ into A′

via the familiar Kučera-Gács coding. The construction will be an oracle argument
relative to ∅′. Suppose that P is the complement of a member of the standard
universal Martin-Löf test, and g is the computable function of Lemma 1.3. Notice
that P contains only Martin-Löf random sets. Later we will define a computable
function f (based on g) which will be the basis of our coding (in the sense that the
segments of A from bit f(i) to f(i+ 1) will be used to encode various events). The
levels of P from bit f(〈e, i〉) to bit f(〈e, i〉 + 1), i ∈ N will be devoted to coding
whether e ∈ ∅′′. This is the e-th “column” and the strategy is a‘thickness’ method
which works as follows.7 At the beginning of stage s of the construction A � f(s−1)
will be already be defined (and P -extendible). By the end of stage s, A � f(s) will
be defined. As long as 0 6∈ ∅′′ (with respect to an enumeration of ∅′′ relative to ∅′)
we keep on defining A such that in the 0-th column we never take the rightmost
path (with respect to P ). If and when this happens at some stage s, we choose
the least number m > s in N[0] and at stage m + 1 we define A � f(m + 1) to
be the rightmost node in P of length f(m + 1) which extends A � f(m). Now to
decide ‘0 ∈ ∅′′?’ we just have to ask the following Σ0

1(A) question: ‘is there some
m ∈ N[0] such that A � f(m + 1) is the rightmost node in P of length f(m + 1)
which extends A � f(m)?’. If yes, then 0 ∈ ∅′′, otherwise 0 6∈ ∅′′. The only property
of f that we used, is that for every P -extendible string of length f(n) there are at
least two P -extendible extensions of it of length f(n+ 1). This property can easily
be established via g.

The main conflict appears when we also try to satisfy the following requirements

Qe : ∃z [ΦAe (z) ↑ ∨ ΦAe (z) ↓6= ∅′(z)].

It is not hard to see that for the satisfaction of these incompleteness requirements
we may need to force with additional Π0

1 classes in the construction. If (Ti) are
the Π0

1 classes that have been introduced in the construction (for the satisfaction
of Qe, e ∈ N) we have A ∈ P ∩ (∩iTi). The problem is that when we introduce
some Π0

1 class T at some stage s, the function f may no longer give a bound on
the ‘splittings’ in P ∩ T , thus potentially forcing us to give the wrong answer to
0 ∈ ∅′′. To ensure that this never happens, we insist that the construction and f
have the following property: if T is introduced at stage s, then above A � f(s− 1)
in P ∩ T the function f bounds splittings. In other words, for all t ≥ s and every
P ∩ T -extendible string of length f(t − 1) which extends A � f(s − 1), there are
at least two P ∩ T -extendible nodes of length f(t) extending A � f(t − 1). It is
a routine to verify that under such a condition the strategy for A′ ≥T ∅′′ would
succeed as before.

It remains therefore to show how we can meet this condition. The first obser-
vation is that we can compute the indices of the Π0

1 classes that might be used for
the satisfaction of the Qe, e ∈ N. In particular, given an index i of a Π0

1 class Pi

7The reader should draw a parallel with the plain constructions of a high incomplete set:

the ∆0
2 and the c.e. case. Columns and thickness requirements were essential in those classic

arguments.
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and e ∈ N we can compute an index of a Π0
1 class T such that one of the following

holds:8

• either Qe is satisfied by all A ∈ Pi or
• Pi ∩ T 6= ∅ and Qe is satisfied by all A ∈ Pi ∩ T .

For future reference, let h be a computable function such that h(i, e) is an index of
P ∩ T , as above.

Second, we can define f in such a way that it takes into account every possibility
as far as the introduction of new classes is concerned (from some level on). In other
words, let D0 contain an index of P , and inductively let Dn+1 = Dn ∪{h(i, n) | i ∈
Dn}. Also, let f(0) = 0 and f(n+ 1) be the maximum of all g(f(n), i) for i ∈ Dn,
where g is from Lemma 1.3. According to the definition of f , the coding into A′

will not be affected as long as we act for Qe after A � f(e) has been defined. In
other words, at stage s if T is the current Π0

1 condition (the intersection of all
Π0

1 conditions that are currently active) and n ∈ N, every T -extendible node above
A � f(s) of length f(n) has (at least) two T -extendible extensions of length f(n+1).
In the global construction there is also a finite injury of the Qe requirements due
to the coding requirements of higher priority.

This argument is very similar to the jump inversion theorem for ∆0
2 random

sets, which was stated without proof in [Kuč85] and proved in [DM06]. This result
states that for every set C which is c.e. in ∅′ and above ∅′ there is a ∆0

2 random X
such that X ′ ≡T C. It was also noted in [Kuč85] that both of these arguments are
compatible with upper cone avoidance. Namely that the constructed set A (in the
case of the incomplete high random) or X (in the jump inversion) can be chosen to
be not Turing above any given non-computable ∆0

2 set. Since no proof of this was
given, we discuss the argument in the following.

1.2.2. Sacks preservation with Kučera-Gács coding. In this section we show how
to combine the construction which uses Kučera-Gács coding, with cone avoidance.
This method can be combined with the argument detailed in [DM06] in order to
show the following.

Theorem 1.4 (Kučera [Kuč85]). Given any non-computable D ≤T ∅′ and some
C ≥ ∅′ which is c.e. in ∅′, there is a random A ≤T ∅′ such that A′ ≡T C and
D 6≤T A.

To demonstrate how to avoid upper cones, we discuss the following extension of
the construction of a high incomplete random of Section 1.2.1.

Theorem 1.5 (Kučera [Kuč85]). Given any non-computable D ≤T ∅′, there exists
a random A ≤T ∅′ such that A′ ≡T ∅′′ and D 6≤T A.

Now instead of mere incompleteness requirements we have the following.

Qe : ∃z [ΦAe (z) ↑ ∨ ΦAe (z) ↓6= D(z)].

These requirements correspond to a Π0
1 condition, much like the incompleteness

requirements of Section 1.2.1 did. The difference here is that now we cannot com-
pute that Π0

1 condition, given the index e of the requirement. Therefore, we cannot
define f accordingly as before, so that the introduction of new Π0

1 classes in the

8for example, since ∅′ is complete, we can choose some witness z ∈ N and T = {X | ΦXe (z) ↑
∨ ΦXe (z) = 1}, in such a way that if and when Pi ∩ T = ∅, z is enumerated into ∅′.
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construction does not affect the coding. In particular, if at stage s of the construc-
tion we satisfy Q0 by restricting A into P ∩T for a Π0

1 class T , it is possible that for
some n > s, n ∈ N[0] this restriction forces A � f(n + 1) to be the rightmost path
of P extending A � f(n). If 0 6∈ ∅′′, this makes the coding of ∅′′ into A′ invalid.

The solution is to find some Π0
1 class T for the satisfaction of Qe which respects

the higher priority coding, i.e. the coding of ∅′′ � e into A′. We do this through
a Π0

1 version of the Sacks preservation strategy from the theory of the c.e. Turing
degrees (e.g. see [Soa87]). Notice that we can define f in such a way that it takes into
account all Π0

1 classes (from some point on). If we let f(n) = max{g(i, j) | i, j ≤ n},
then for every Π0

1 class T there exists some level n ∈ N such that for all T ∩ P -
extendible strings of length f(i), i > n there are at least two T ∩ P -extendible
strings of length f(i+ 1) extending them. Suppose that we have currently defined
A � f(s) = τ , currently restricted in a Π0

1 class T and we have committed to the
belief that ∅′′ � n = σ (for some string σ). Now let [T ]στ be the Π0

1 class which
consists of T ∩ [τ ], apart from the paths which extend T -extendible strings ρ of
length f(n+ 1), n ∈ N[i], i ≤ |σ| which

• are the leftmost extending ρ � f(n) and σ(i) = 1
• are the rightmost extending ρ � f(n) and σ(i) = 0.

Notice that committing to any Π0
1 subclass of [T ]στ is in accordance to the current

coding of ∅′′ � |σ| into A′. Moreover, due to the universal way that f was defined,
it allows any kind of coding from some higher level on. To find a subclass of [T ]στ
which satisfies Qe we only have to find some t such that

{X | ΦXe � t ↑ ∨ ΦXe � t ↓6= D � t} ∩ [T ]στ 6= ∅.
Such a t ∈ N exists by a classic result in [JS72]. Now the construction can proceed
as discussed in Section 1.2.1, using this modification.9

2. Jump Inversion in Π0
1 classes and forming minimal pairs with ∅′

Our interest on the special topic of inverting the jump with degrees that form a
minimal pair with 0′ began with our study of [Nie09, Problem 3.6.9]. As mentioned
in the introduction, in order to see the relevance between these two problems, recall
that

• The weakly 2-random sets are the 1-random sets whose degree forms a
minimal pair with 0′.

• Two sets with Turing equivalent jumps cannot be relatively weakly 2-
random.

The first fact is due to Downey, Nies, Weber and Yu [DNWY06], the crucial step
being established by a theorem of Hirschfeldt and Miller (see [Nie09, Theorem
5.3.16] or [DH10, Theorem 6.2.11]). The second follows from the definition of weak
2-randomness. We do not have to look far to see that such inversions are always
possible outside of Π0

1 classes.

Theorem 2.1 (Implicit in [Pos81]). If c > 0′ then there is a such that a′ = a∪0′ =
c and a ∩ 0′ = 0.

9The readers that are familiar with the construction of a high c.e. incomplete set (see [Soa87])
should notice the following analogy. The special class [T ]στ in which we look for solutions, cor-
responds to the ‘correct’ computations with respect to certain ‘thickness’ requirement in the c.e.

construction. The ‘thickness’ requirements in the c.e. argument are entirely analogous to our
coding of ∅′′ into A′, only that the latter is expressed in terms of Kučera-Gács coding.
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Proof. We sketch this proof as we will use (some of) the techniques within Π0
1

classes soon.
First suppose that c is 0′-dominated. In particular, it is not c.e. in 0′. By the

jump inversion with minimal degrees [Coo73] there is a minimal degree m such
that m′ = m ∨ 0′ = c. Since m′ is not c.e. in 0′, the degree m is not below 0′.
Therefore, it forms a minimal pair with 0′.

Now suppose that c is 0′-hyperimmune. Then there is a function f ≡T c which is
not dominated by any 0′-computable function. We can use f in a standard way as a
search bound for a stage where Φ∅

′

e (n) is defined (for some e ∈ N corresponding to a
requirement). Given a Turing functional Φj , the oracle 0′ can determine if splittings
exist (i.e. strings σ, τ and n ∈ N such that Φσj (n) 6= Φτj (n)), and if they do exist
it can find them. The minimal pair strategies are combined with forcing the jump
of the constructed set a and the values of f are simultaneously coded into a ∪ 0′.
The domination property of f implies the satisfaction of all requirements in this f -
computable construction. Indeed, on the assumption that a least requirement with
index e remains unsatisfied, the 0′-computable function bounding the computation
time of Φ∅

′

e dominates f . The condition a′ ≤ c follows by the forcing of the jump,
while a ∪ 0′ can recover bit by bit the construction and the values of f .

The details of this construction are omitted, as it is quite standard. Moreover it
is very similar to the main construction of [Pos81] only that instead of forcing a′

the author only makes a ∪ 0′ = c. The construction sketched above is easier than
the one in [Pos81] because we only complement with 0′ which is very useful as an
oracle, whereas Posner has a more complex complementation condition. �

It is interesting that the proof is non-uniform, the cases depending on whether c
is 0′-dominated. This distinction is also vital in the jump inversions within Π0

1

classes. However in this case when c is 0′-dominated the situation is more complex
as we show in Section 4.

In the next sections, we study this type of jump inversion within a given special
Π0

1 class. When the measure of the given class is positive we can prove something
stronger (see Section 2.2).

2.1. Special Π0
1 classes. The following result and its proof contain the basis of

the other arguments in the rest of Section 2.

Theorem 2.2. Given a special non-empty Π0
1 class P and C ≥T ∅′′ there is A ∈ P

which forms a minimal pair with ∅′ and A′ ≡T A⊕ ∅′ ≡T C.

Proof. We force with Π0
1 classes, by defining a sequence P ⊇ P1 ⊇ . . . . Class Pi

will be defined at stage 2i + 1 and all of these steps are for the sake of making
A ∈ ∩iPi a minimal pair with ∅′. In the same steps we will force the jump so that
A′ ≤T A⊕ ∅′. At stage 2i we will code the ith bit of C into A, by fixing (defining)
a certain segment σi of A. We will have, Pi ⊆ [σi] and σi ⊆ σi+1.

At stage 2e let σ be the least node such that both σ ∗ 0 and σ ∗ 1 are Pe−1-
extendible. Let σe = σ ∗ i for i = C(e). At stage 2e+ 1 let σ be the least node such
that both σ ∗ 0 and σ ∗ 1 are Pe−1 ∩ [σe]-extendible. Check if for some z we have
Φ∅

′

e (z) ↓= r and

(2.1) Pe−1 ∩ [σ ∗ 1] ∩ {X | ΦXe (z) 6= r ∨ ΦXe (z) ↑} 6= ∅.
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If there is such z, consider the least one and set P ∗e equal to the Π0
1 class of (2.1).

Otherwise, let P ∗e := Pe−1 ∩ [σ ∗ 0]. Finally, let Pe be P ∗e ∩ {X | ΦXe (e) ↑} if this
non-empty, or P ∗e otherwise.

Let A = ∪eσe. Clearly A ∈ ∩ePe and the construction is computable in C ⊕
∅′′ ≡T C. Therefore, A⊕∅′ ≤T A′ ≤T C since we force the jump in the odd stages.
To show that A forms a minimal pair with ∅′, assume that the functions ΦAe , Φ∅

′

e

are total and equal.10 Then the construction did not act for (2.1), which means
that ΦZe (t) is defined for all Z ∈ Pe−1 ∩ [σe ∗ 1], t ∈ N and the values agree with
those of Φ∅

′

e . Since Pe−1 ∩ [σe ∗ 1] is a Π0
1 class, Φ∅

′

e must be computable.
Finally it remains to show that C ≤T A⊕∅′. We show how A⊕∅′ can uncover the

construction (and along with that, C). Suppose inductively that the construction
and C � e has been uncovered up to step 2e. Using ∅′ and Pe−1 we can compute σ
of step 2e. Then C(e) = i where i is such that σ ∗ i ⊂ A. Also, σe = σ ∗ i. In the
same way, ∅′ can compute σ of step 2e+1. If σ ∗0 ⊂ A, the construction must have
set P ∗e := Pe−1 ∩ [σ ∗ 0]. Otherwise, if σ ∗ 1 ⊂ A, the construction sets P ∗e equal to
the class of (2.1). The notice that z was chosen the least with the property (2.1),
so it is computable from ∅′.11 Finally, the index of Pe is easily computable from
P ∗e , given ∅′. This concludes the induction and the proof. �

2.2. Π0
1 classes of positive measure. The following is a jump-inversion theorem

for Π0
1 classes of positive measure. An application of it shows that one direction of

van Lambalgen’s theorem does not hold for weak 2-random sets.

Theorem 2.3. Given C ≥T ∅′′ and a Π0
1 class P of positive measure, there is a

path A⊕B of P which forms a minimal pair with ∅′, such that A′ ≡T A⊕∅′ ≡T C
and B′ ≡T B ⊕ ∅′ ≡T C.

Proof. Without loss of generality, let P be a Π0
1 class consisting entirely of 1-

random paths. We are going to use the fact that if node σ is Q-extendible for some
Π0

1 class Q ⊆ P , then the measure of [σ] ∩Q is positive. We construct A⊕B as a
path of P .

As in the proof of Theorem 2.2 we will deal with making A⊕B a minimal pair
with ∅′ on odd stages, while we code C into A′, B′. Stage 2e will define σe and
stage 2e+ 1 will define Pe.

At stage 2e let τ, ρ be the least12 Pe−1-extendible strings which differ both on an
odd position and an even position. Notice that since Pe−1 is perfect, τ, ρ exist and
have equal lengths. Without loss of generality assume that τ is (lexicographically)
smaller than ρ. Let σe = τ if C(e) = 0 and σe = ρ if C(e) = 1.

At stage 2e+1 let τ, ρ be the least Pe−1∩[σe]-extendible strings which differ both
on an odd position and an even position. Check if for some z we have Φ∅

′

e (z) ↓= r

(2.2) Pe−1 ∩ [ρ] ∩ {X | ΦXe (z) 6= r ∨ ΦXe (z) ↑} 6= ∅.

10Without loss of generality we can assume that the index e of the Turing functionals is the

same for both functions, see footnote 19 on page 22.
11Here we use the standard convention that if Φ∅

′
(x) ↓ then Φ∅

′
(y) ↓ for all y < x.

12The ordering on pairs of strings that is used here is based on the ordering on strings which
is first by length and then lexicographically. We let (τ, ρ) ≺ (τ ′, ρ′) if either τ is less than τ ′ or

they are equal and ρ is less than τ .
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If there is such z, consider the least one and set P ∗e equal to the Π0
1 class of (2.2).

Otherwise, let P ∗e := Pe−1 ∩ [τ ]. Finally, notice that given a Π0
1 class Q, the classes

[Q]0 = {X | ∃Y (X ⊕ Y ∈ Q)} and [Q]1 = {Y | ∃X (X ⊕ Y ∈ Q)}

are also Π0
1 by compactness. This last step consists of two actions which ensure

that A′ ≤T A⊕ ∅′ and B′ ≤T B ⊕ ∅′ respectively. If [P ∗e ]0 ∩ {X | ΦXe (e) ↑} 6= ∅ we
let

(2.3) T = {X ⊕ Y ∈ P ∗e | ΦXe (e) ↑}.

Otherwise we let T = P ∗e . Symmetrically, if [T ]1 ∩ {Y | ΦYe (e) ↑} 6= ∅ we let
Pe = {X ⊕ Y ∈ T | ΦYe (e) ↑}. Otherwise we let Pe = T .

Verification. First notice that the construction is computable in C ⊕ ∅′′, hence
computable in C by the hypothesis C ≥T ∅′′. Hence A⊕B ≤T C, where A⊕B =
∪eσe. Also, we show that A′ ≤T C and B′ ≤T C. Given the query ‘e ∈ A′?’ we
can run the construction up to the end of step 2e+1 using C as an oracle. If T was
defined according to (2.3) in step 2e+ 1, we can conclude that e 6∈ A′. Otherwise,
e ∈ A′. A symmetric argument shows that B′ ≤T C. Hence A ⊕ ∅′ ≤T A′ ≤T C
and B ⊕ ∅′ ≤T B′ ≤T C.

Second, to show that A ⊕ B forms a minimal pair with ∅′, assume that the
functions ΦA⊕Be , Φ∅

′

e are total and equal.13 Then the construction did not act for
(2.2), which means that ΦZe (t) is defined for all Z ∈ Pe−1∩ [ρ], t ∈ N and the values
agree with those of Φ∅

′

e . Since Pe−1 ∩ [ρ] is a Π0
1 class, Φ∅

′

e must be computable.
It remains to show that each of A⊕∅′, B⊕∅′ can compute C and, in fact, recover

the entire construction. Suppose inductively that with the use of A ⊕ ∅′ we have
recovered the construction up to step 2e, as well as C � e. Hence we have computed
σe−1 and (an index of) Pe−1. Using ∅′ and Pe−1 we can compute the strings τ, ρ
that where used in step 2e (where τ is less than ρ). By the choice of these strings,
exactly one of them agrees with A on the even positions14. If τ agrees with A, then
C(e) = 0; otherwise C(e) = 1. Moreover, σe equals τ , if A agrees with τ (on the
even positions), and ρ otherwise.

To recover step 2e + 1, we use ∅′, Pe−1 and σe to determine the strings τ, ρ
that were used in this step. Again, exactly one of them agrees with A on the even
positions. Although we cannot decide (2.2) directly (it is a two-quantifier question)
we know that it holds iff A agrees with ρ on the even positions. In this way we can
compute an index of P ∗e . Using P ∗e and ∅′ we can compute T . Similarly, using T
and ∅′ we can compute Pe. This completes the induction.

In a symmetric way, it follows that C ≤T B ⊕ ∅′. This concludes the proof. �

2.3. Failure of van Lambalgen’s theorem for weak 2-randomness. For an
application of Theorem 2.3 to the question of whether van Lambalgen’s theorem
holds for weak 2-randomness we need the following definition.

Definition 2.1. A set A forms a minimal pair with C over B if there is no X >T B
such that X ≤T A⊕B and X ≤T C.

13Without loss of generality we can assume that the index e of the Turing functionals is the

same for both functions, see footnote 19 on page 22.
14That is, the 2i-th digit of the string is the same as the ith digit of A, for all i such that

2i < |τ | = |ρ|.
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Recall that A is weakly 2-random relative to B if it does not belong to any Π0
2(B)

null class; equivalently, if it does not belong to any Σ0
3(B) null class. The following

was proved in [DNWY06] for the special case when D = ∅.

Proposition 2.4. A set C is weakly 2-random relative to D iff it is Martin-Löf
random relative to D and it forms a minimal pair with D′ over D.

Proof. If C is weakly 2-random relative to D then it clearly is Martin-Löf random
relative to D. Furthermore, it forms a minimal pair with D′ over D. Indeed,
suppose that it does not. Then there is X >T D such that X ≤T C ⊕ D and
X ≤T D′. Hence C belongs to the class {Y | X ≤T Y ⊕D}. Since X ≤T D′, this is
a Σ0

3(D) class. On the other hand, since D <T X it is null by a theorem of Stillwell
[Sti72]. This contradicts the fact that C is weakly 2-random relative to D.

For the other direction assume that C is not weakly 2-random relative to D and
it is Martin-Löf random relative to D. Hence it belongs to a null Π0

2(D) class Q. A
theorem of Hirschfeldt/Miller (see [Nie09, Theorem 5.3.16], and [DH10, Theorem
6.2.11]) says that given a Π0

2 null class (in fact Σ0
3 null class) there is a noncom-

putable c.e. simple set which is computed by all Martin-Löf random members of
the class. Relativizing this argument with respect to oracle D, we have that given
a Π0

2(D) null class there exists a D-c.e. set X such that D <T X and X ≤T Y ⊕D
for all members Y of the class which are Martin-Löf random relative to D. Apply-
ing this to D and the null Π0

2(D) class Q, we get that X ≤T C ⊕D for some set
X ≤T D′ such that D <T X. This shows that C is not a minimal pair with D′

over D, which concludes the argument. �

The following theorem answers [Nie09, Problem 3.6.9]. It shows that one direc-
tion of van Lambalgen’s theorem does not hold for weak 2-randomness, while the
other does.

Corollary 2.1. There is a weakly 2-random real A⊕B such that A is not weakly
2-random relative to B (and B is not weakly 2-random relative to A). Thus, van-
Lambalgen’s theorem does not hold for weak 2-randomness. However if A is weakly
2-random relative to B and B is weakly 2-random then A⊕B is weakly 2-random.

Proof. For the first claim we apply Theorem 2.3 on a Π0
1 class P consisting entirely

of 1-random reals, and let C = ∅′′. We have that A ⊕ B is 1-random and forms a
minimal pair with ∅′. Therefore, A ⊕ B is weakly 2-random. On the other hand,
A ≤T B′ so A belongs to a Π0

2(B) null class and hence it is not weakly 2-random
relative to B. Similarly, B ≤T A′ and hence B is not weakly 2-random relative to
A.

For the second claim, assume that A is weakly 2-random relative to B and B is
weakly 2-random. Then A is Martin-Löf random relative to B and B is Martin-Löf
random. By van Lambalgen’s Theorem, A ⊕ B is Martin-Löf random. According
to Proposition 2.4 (for C = A⊕B and D = ∅) it remains to show that A⊕B forms
a minimal pair with ∅′. For a contradiction let us assume that this is not the case,
i.e. there exists a non-computable set X ≤T ∅′ such that X ≤T A ⊕ B. Since B
is weakly 2-random, X 6≤T B. Hence B <T X ⊕ B. Also, X ⊕ B ≤T A ⊕ B and
X ⊕ B ≤T B′. Hence A does not form a minimal pair with B′ over B. According
to Proposition 2.4, this is a contradiction. �
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3. More general jump inversion results

The arguments of Section 2 can be extended (with reasonable effort) in order
to yield more general results. Although those arguments had constructions which
used the full power of 0′′, it turns out we can run them more efficiently using only
a small fragment of the strength of this oracle. In other words, we can replace the
condition C ≥T ∅′′ in Theorems 2.2 and 2.3 with the much weaker requirement that
C is 0′-hyperimmune (and computes 0′). Thus, in particular, they will apply to any
degree a > 0′ which is computably enumerable relative to 0′ or with 0′ < a ≤ 0′′.
As we see, for various randomness notions, these generalizations have interesting
consequences in the study of the jumps of the random degrees. We discuss these
consequences in Section 4.

It is important to determine exactly what properties of the oracle are needed in
order to run the arguments of Section 2, especially if one is interested in charac-
terizing the associated degree classes. For such arguments, where sufficiently long
searches are needed, one cannot require less than non-0′-domination. However,
there may be other reasons why a certain jump inversion is possible inside a Π0

1

class. Interesting examples can be given by random sets (see Section 4). Thus we
remark that the theorems in this section are not fully general. Many interesting
cases occur when the given degree that we are trying to invert is 0′-dominated.

We begin with a generalization of Theorem 2.2.

Theorem 3.1. If C ≥T ∅′ is not ∅′-dominated and P is a special non-empty Π0
1

class, then there is A ∈ P which forms a minimal pair with ∅′ and A′ ≡T A⊕∅′ ≡T
C.

Proof. We force with Π0
1 classes and permit below C in order to define a sequence

(Ps) of Π0
1 classes such that the unique real in ∩sPs meets the conditions of the

theorem. By the hypothesis there exists an increasing function f ≤T C which is
not dominated by any ∅′-computable function. To make the degree of A a minimal
pair with the degree of ∅′, it suffices to satisfy the following conditions.15

Qe : Φ∅
′

e is total and non-computable ⇒ Φ∅
′

e 6= ΦAe
During the construction, requirements Qe will be in the state of either satisfied or
unsatisfied, with the latter being the default. We say that Qe requires attention at
stage s+ 1 if it is unsatisfied, e ≤ s and there exists x < f(s) such that

(3.1) Φ∅
′�f(s)
e,f(s+1)(x) ↓ and

Ps ∩ [T0e+21] ∩ {Y | ΦYe (x) ↑ ∨ ΦYe (x) ↓6= Φ∅
′

e (x)} 6= ∅
where T is the tree (as a function from 2<ω to 2<ω) corresponding to the perfect
class Ps, and T0e+21 is its value on 0e+21. We also have the following coding
requirements.

Re : code C(e) into A⊕ ∅′.
We say that Re requires attention at stage s if e ≤ s and C(e) has not been coded
into A in the stages prior to s. Finally we have the following requirements which
force the jump, so that A′ ≤T C.

Le : Decide if ΦAe (e) ↓

15See footnote 19 on page 22.
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Here to ‘decide’ means to determine the answer to this question in the construction
(once and for all). Indeed, if this happens for all e ∈ N we get A′ ≤T C since the
construction is computable in C. Requirement Le will be satisfied at the end of
stage e, after some actions for the other requirements have been performed.

We fix the following priority list for conditions Re, Qe: R0 < Q0 < R1 < . . . .
Let P0 = P .

Construction. At stage s+ 1, perform the following steps:
(a) Consider the highest priority R or Q requirement M which requires attention.
Also, let T be the perfect binary tree that corresponds to the perfect Π0

1 class Ps.
If M = Re, let P ∗ be Ps∩ [T1] or Ps∩ [T01] according to whether C(e) is 1 or 0, and
say that the eth digit of C has been ‘coded’. If M = Qe, let P ∗ be the Π0

1 class in
the second part of (3.1), for the least x satisfying (3.1). Declare Qe to be satisfied.
(b) Let Ps+1 be P ∗ ∩ {X | ΦXe (e) ↑} if this is not empty, and P ∗ otherwise.

Verification. The construction is computable in C and ∩ePe 6= ∅ by induction.
Let A be the unique set in ∩ePe. Since we force the jump at step (b) of every stage,
we have A⊕ ∅′ ≤T A′ ≤T C. First we show that C ≤T A⊕ ∅′.

We show how A ⊕ ∅′ can uncover the construction (and along with that, C).
Suppose inductively that A⊕∅′ has reproduced the construction up to stage s− 1,
i.e. it has computed Ps−1. Notice that ∅′ can compute the tree T of stage s, i.e. the
tree corresponding to the perfect Π0

1 class Ps−1. According to the construction, A
must be prefixed by exactly one of T1, T01, or T0e+21, for some e ∈ N. Let A ⊕ ∅′
calculate which of these cases holds. Given this information, according to step (a)
of the construction it can also calculate P ∗ of step s. Finally, using ∅′ we can
calculate Ps according to step (b) of the construction. To compute C from A⊕ ∅′
it suffices to show that every digit of C is ‘coded’ during the construction, since
A⊕ ∅′ can reproduce the construction. For the latter it suffices to show that every
R,Q condition requires attention finitely often. Indeed, in that case all digits of
C will be coded during the construction, since each R condition requires attention
as long as it is not satisfied. If some Q condition requires attention at some stage,
it will either be satisfied, or some higher priority condition will receive attention.
Since there are only finitely many conditions of higher priority than Q, an inductive
argument shows that eventually it will stop requiring attention. The same holds
for R. Thus C ≤T A⊕ ∅′.

It remains to show that Qn is satisfied for all n ∈ N. For a contradiction, suppose
that e is the least number such that Qe is not satisfied. Then Φ∅

′

e is total and not
computable. Let s0 be a stage after which no condition of higher priority than
Qe requires attention. It follows that there is no stage s ≥ s0 where Qe requires
attention. Indeed if it did, the construction would act on it and would satisfy it. We
are going to derive a contradiction by defining a function g ≤T ∅′ which dominates
f . Since Φ∅

′

e is non-computable, given any Π0
1 class S 6= ∅ there exists a least ` ∈ N

such that for some x < `,

(3.2) Φ∅
′�`
e (x)[`] ↓ and

S ∩ {Y | ΦYe (x) ↑ ∨ ΦYe (x) ↓6= Φ∅
′

e (x)} 6= ∅.
Also, such ` can be computed by ∅′. We define recursively in ∅′ a sequence (Js)
of finite sets of Π0

1 classes such that Ps ∈ Js and a function g such that g(s) >
f(s) for all s ≥ s0. Let Js0 consist of Ps0 and let g(s0) be the least number



JUMP INVERSIONS INSIDE EFFECTIVELY CLOSED SETS AND RANDOMNESS 17

that is greater than each such ` of (3.2), where S = Ps0 ∩ [T0e+21] and T is the
perfect tree representing Ps0 . For s ≥ s0 let Js+1 consist of the intersections of
classes in Js with all boolean combinations of the Π0

1 classes [T0k+21], [T1], [T01],
{Y | ΦYt (x) ↑ ∨ ΦYt (x) ↓6= j} and {X | ΦXi (i) ↑} where T ranges over the perfect
trees representing classes in Js, j ≤ 1, x ≤ g(s) and i, k, t ≤ s. Also let g(s+ 1) be
the least number that is greater than each ` of (3.2), where S = Q ∩ [T0e+21] and
Q ranges over all classes in Js and is represented by the perfect tree T (if S = ∅ let
` = 0).

Clearly g ≤T ∅′. Also, Ps0 ∈ Js0 trivially and since Qe does not require attention
at s0, g(s0) > f(s0 + 1). Inductively assume that Ps ∈ Js and g(s) > f(s + 1).
By the latter clause, the construction and the definition of Js+1 we have that
Ps+1 ∈ Js+1. On the other hand since Qe is not satisfied at s+ 2, by the definition
of g(s+ 1) we have that f(s+ 2) < g(s+ 1). This finishes the induction and shows
g(s) > f(s+ 1) for all s ≥ s0, which is a contradiction. �

Theorem 2.3 can be generalized in a similar way.

Theorem 3.2. Given C ≥T ∅′ which is 0′-hyperimmune and a Π0
1 class P of

positive measure, there is a path A ⊕ B of P which forms a minimal pair with ∅′,
such that A′ ≡T A⊕ ∅′ ≡T C and B′ ≡T B ⊕ ∅′ ≡T C.

The proof of this theorem is based on the original argument for the proof of
Theorem 2.3, along with the ideas elaborated in the proof of Theorem 3.1 for
making the construction effective in C. Since no new ideas are involved (other than
the ones we have elaborated) we leave the details of the proof to the reader.

Theorem 3.1 will be used in Section 4 for characterizing the jumps of the weakly
2-random sets which are not 2-randoms. For this application we will need the
following.

Proposition 3.3. The constructed sets A,B in the proofs of Theorems 3.1, 3.2
can be made so as to be not 2-random.

To show Proposition 3.3, consider a universal Solovay test for 2-randomness: a
0′-computable sequence of strings (ρs) such that for all sets X,

(3.3) X is not 2-random iff there exist infinitely many s such that ρs ⊂ X

and
∑
i 2−|ρi| is finite. Now recall that every (non-empty) Π0

1 class contains a
set which is not 2-random. Hence for every Π0

1 class P there exists s such that
P ∩ [ρs] 6= ∅. Moreover such s can be found effectively in ∅′. Since the constructions
of Theorems 3.1, 3.2 are forcing arguments with Π0

1 classes, it is a routine to add a
step which forces the sets in the current Π0

1 classes to be prefixed by some ρs. If this
is done in every stage, the constructions will produce sets that are not 2-random,
according to (3.3). Moreover the verifications will not be affected as ∅′ is always
given in those arguments.

4. Consequences for the jumps of random sets

The results of Section 3.1 have certain consequences on the jumps of random
sets—for various notions of randomness. In this section we discuss these conse-
quences. Additionally, we will combine them with other results in the literature,
and hence form a better picture of jump inversion with random sets. Some of
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the results are summarized in Table 2. Note that the only new complete charac-
terization that we obtain is for the jumps of the weakly 2-random sets which are
not 2-random, and the weakly 1-random relative to ∅′ which are not 2-random.
The other cases are interesting open questions, although we do contribute some
information about them.

Corollary 4.1. Every 0′-hyperimmune degree above 0′ is the jump of a weakly
2-random.

Proof. Since a 1-random is weakly 2-random iff it forms a minimal pair with 0′,
the corollary follows by applying Theorem 3.1 to a Π0

1 class consisting entirely of
1-randoms. �

Theorem 4.1. The jumps of almost all sets (i.e. all but a class of measure 0) are
0′-hyperimmune. In fact, the jump of any 3-random is 0′-hyperimmune.

Proof. By [Mar0s] (also see [DH10] for a presentation of the proof) all 2-random
sets are hyperimmune. If we relativize Martin’s result to 0′ we get the following:
if X is 3-random, then X ⊕ ∅′ is 0′-hyperimmune. Then it suffices to note that by
counting the quantifiers in the proofs of [Sac63, Kau91] every 3-random (in fact,
every 2-random) is GL1. �

We note that, by a relativization of the above argument, Theorem 4.1 holds through-
out the jump hierarchy. In particular, if X is n-random then X(n−2) is 0(n−2)-
hyperimmune.

The following theorem shows that Corollary 4.1 does not provide a characteri-
zation of the jumps of weakly 2-random sets.

Theorem 4.2. There is a 2-random whose jump is 0′-dominated.

Proof. Recall that every 2-random is GL1 (see [Kau91]). Therefore it suffices
to show that there is a 2-random X such that X ⊕ ∅′ is 0′-dominated. By the
Hyperimmune-free Basis Theorem of [JS72] every Π0

1 class contains a set of 0-
dominated degree. If we relativize this argument to 0′ we get that every Π0

1[∅′]
class contains a set X such that X ⊕∅′ is 0′-dominated. Now apply the relativized
theorem to a Π0

1[∅′] class which consists entirely of 2-random sets. �

We note that, by a relativization of the above argument, Theorem 4.2 holds through-
out the jump hierarchy. In particular, for each n > 1 there is an n-random whose
jump is 0(n)-dominated.

In trying to characterize the jumps of weakly 2-random sets, it seems that it is
useful to study the jumps of 2-randoms and the jumps of weakly 1-randoms relative
to ∅′. Recall that a set is weakly 1-random relative to ∅′ if it does not belong to
any null Π0

1[∅′] class. As noted earlier, 2-randomness implies weak 2-randomness,
which in turn implies weak 1-randomness relative to ∅′ but none of these implica-
tions can be reversed. Some more subtle connections between 2-randomness, weak
2-randomness, weak 1-randomness relative to ∅′ and 1-randomness are given in
[BMN].

As mentioned in the introduction, it seemed possible that each degree strictly
above 0′ is the degree of the jump of a weakly 2-random. This is not true.

Theorem 4.3. If a degree is 0′-dominated and not diagonally non-computable rel-
ative to 0′ then it is not the jump of a weakly 2-random. In fact, it is not the jump
of any degree weakly 1-random relative to 0′.
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Proof. Let C satisfy the hypotheses of the theorem. By a result in [SY06] (rela-
tivized to 0′) the set C ⊕ ∅′ does not compute any weakly 1-random relative to 0′

(in fact it is low with respect to this notion). �

So perhaps the degrees above 0′ which are either 0′-hyperimmune or 0′-DNC
characterize the jumps of weakly 2-random degrees. Alas, this is also not the case.

Theorem 4.4. If a degree is PA relative to 0′ and is not above 0′′, then it is not
the jump of a 2-random.

Proof. By [Ste06] all 1-random PA degrees bound 0′. The relativization of this
argument to 0′ gives if A is 2-random and A⊕ ∅′ is PA relative to 0′, then ∅′′ ≤T
A⊕∅′. However 2-random degrees are GL1 [Sac63] so their join with 0′ equals their
jump. �

The following gives some more information about the jumps of 2-random sets.

Theorem 4.5. Every degree ≥ 0′′ is the jump of a 2-random degree.

Proof. Since 2-random degrees are GL1 [Sac63] it suffices to show that given c ≥ 0′′

and a Π0
1[∅′] class P which contains only 2-random sets, there is a path through

P of degree x such that x ∨ 0′ = c′. The latter follows by a direct relativization
(with respect to 0′) of Kučera’s result in [Kuč85] that every degree ≥ 0′ contains a
1-random set. �

The following theorem shows that although the jumps of some weakly 2-random
sets are 0′-dominated, this does not happen for those that are not already 2-random.

Theorem 4.6. The jump of a set which is weakly 1-random relative to 0′ but not
2-random is 0′-hyperimmune.

Proof. Recall that by [NST05], inside the class of 0-dominated sets, the notions
of weak 1-randomness and Martin-Löf randomness coincide. If we relativize this
argument to 0′ we get the following: if C ⊕ ∅′ is 0′-dominated and C is weakly 1-
random relative to 0′, then C is 2-random. The result follows since C⊕∅′ ≤T C ′. �

If we combine Theorem 4.6 with Proposition 3.3 we get the following character-
ization.

Corollary 4.2. Given a degree c ≥ 0′ the following are equivalent:
(a) c contains the jump of a weakly 2-random which is not 2-random
(b) c contains the jump of a weakly 1-random relative to 0′ which is not 2-

random
(c) c is 0′-hyperimmune.

By Theorems 4.3, 4.4, 4.6 we get that the jump of a weakly 2-random set falls
into one of the following cases:

• 0′-hyperimmune
• diagonally non-computable relative to ∅′ but not PA relative to ∅′.

Which of the 0′-dominated degrees above 0′ are jumps of weakly 2-random sets?
We discuss this question and other related issues.

The PA degrees are exactly the ones that compute a diagonally non-computable
function with binary values. On the other hand, if a diagonally non-computable
degree is hyperimmune-free, then, in particular, the diagonally non-computable
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function that it computes should have values that are bounded by a computable
function. These statements relativize to 0′. Hence in the 0′-dominated degrees,
the ones that are jumps of weakly 2-randoms need to compute a diagonally non-
computable function whose values grow moderately fast. For a characterization of
the jumps of weakly 2-random sets one needs to study this narrow class of DNR
degrees, which is determined by the growth of the DNR function that they compute.

The work of Jockusch and Stephan in [JS93, JS97] on the jumps of cohesive sets
is very relevant to this topic. For example, Jockusch and Stephan [JS93, Theorem
3.5 and Corollary 3.7] show that the jump of a hyperimmune-free degree cannot be
diagonally non-computable relative to 0′.

Our problems are related to the problem of characterizing the jumps of the
hyperimmune-free degrees, which appears in [JS93]. It should be noted that the
following present certain similarities:

(i) the construction of a hyperimmune-free degree inside a Π0
1 class

(ii) the construction of a weakly 2-random degree
(iii) the construction within a Π0

1 class of a degree forming a minimal pair with
0′.

Since a set is weakly 2-random iff it is 1-random and it forms a minimal pair with
0′, the relation between (ii) ad (iii) is almost obvious, as in order to get (ii) one
can apply (iii) on a Π0

1 class containing only 1-randoms. Of course from (ii) we
automatically get (iii) since every weakly 2-random forms a minimal pair with 0′.

If we apply (i) to a Π0
1 class of 1-randoms we get (ii). However the direct

construction of a weakly 2-random set is more flexible than (i) mainly because
measure plays an important role (we only need to avoid Π0

2 classes of measure 0).
This flexibility is reflected by the fact that the class of weakly 2-random sets has
measure 1 while the hyperimmune-free degrees have measure 0 by [Mar0s].

The comparison between (i) and (iii) is very instructive, especially if one is inter-
ested in characterizing the jumps of the hyperimmune-free degrees. To recall (i) we
refer to the classic Hyperimmune-Free Basis Theorem of [JS72], while (iii) is essen-
tially contained in the proof of Theorem 2.2 of Section 2.1. The two constructions
look remarkably similar, being naturally ∆0

3 forcing arguments with Π0
1 classes and

relying on the same compactness argument for the satisfaction of the requirements.
However there must be a difference since with respect to (iii) we are able to prove

strong statements like Theorem 3.1 while (i) is not compatible in this way. Indeed,
by Martin’s characterization [Mar66] of highness no hyperimmune-free degree is
high ([JS93, JS97] contain stronger results as mentioned above). The difference
is exactly the following: when we find that a Turing functional Φ (corresponding
to a requirement) is defined on all paths of a Π0

1 class P , in (i) we are forced to
commit to P (for the satisfaction of the requirement). In (ii) however Φ gives the
same function on all oracles in P , so the requirement is satisfied even if we do not
commit to it (indeed, in that case ΦX is computable for all X ∈ P ). This flexibility
allows us to code complicated facts into the set we are building, and was a key
ingredient in the proofs of Theorems 2.2 and 2.3.

5. Domination and weak 2-randomness

The standard construction of an almost everywhere dominating function [Kur81]
(also see [Nie09, Proposition 5.6.28]) gives a function f ≤tt ∅′ which dominates ΦXe
for all e ∈ N and all X which do not belong to a certain null set. The latter set is
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of the form {Y | ∃∞n (Y ∈ Vg(n))} where (Vi) is an effective enumeration of all Σ0
1

classes and g ≤tt ∅′ such that µ(Vg(i)) < 2−i for all i ∈ N. In current terminology
(e.g. [DH10, Section 6.6.1] and [Nie09, Section 3.6]), f dominates ΦXe for all e ∈ N
and all X which are outside a certain Demuth test. This shows that there is an ω-
c.e. function which dominates all functions that are computable from any Demuth
(hence any 2-random) set. In other words, all Demuth random (hence all 2-random)
sets are array computable. Since weak 2-randomness is in some ways an apparently
mild strengthening of Martin-Löf randomness, Nies [Nie09, Problem 8.2.14] asked if
all weakly 2-random reals are array computable. Theorem 5.1 not only answers this
question in the negative, but it also shows that there is no function that dominates
all functions computable from any weakly 2-random set.

For the proof of Theorem 5.1 we use the following standard apparatus for Kučera-
Gács coding. Let P be the complement of a member of the standard universal
Martin-Löf test. Notice that P contains only Martin-Löf random sets. By Lemma
1.3 there is a computable function h such that for each σ ∈ 2<ω and each (index16

of a) Π0
1 class Q, if [σ] ∩ P ∩Q 6= ∅ then the latter class has measure > 2−h(|σ|,Q).

It follows that h(|σ|, Q) > |σ| and that there are two distinct extensions of σ of
length h(|σ|, Q) which are extendible in P ∩Q. Given a Π0

1 class Q ⊆ P we let T [Q]
be the tree17 that is used in the standard Kučera-Gács coding via h. Formally, we
define T [Q](∅) = ∅ and supposing that level n of T [Q] has been defined we define
level n+ 1 as follows. Given a string σ of length n let

(5.1) T [Q](σ ∗ i) = T [Q](σ)∗ τi, where τ0, τ1 are the leftmost/rightmost
Q-extendible strings of length h(|T [Q](σ)|, Q) respectively.

Clearly the length `n of level n of T [Q] is defined by `n+1 = h(`n, Q) (and `0 = 0);
hence it is a computable function on n. Moreover, given any string σ on some
level of T [Q] we can effectively find (the unique) τ ∈ 2<ω such that T [Q](τ) = σ.18

Indeed, a computable function p for this task can be defined recursively as follows.

(5.2) p[Q](σ) =



p[Q](σ � `n) ∗ 0

if |σ| = `n+1 and there exists a stage such

that all strings extending σ � `n that have

length `0 and are to the left of σ are not

Q-extendible.

p[Q](σ � `n) ∗ 1
if the previous condition holds with ‘to the

left’ replaced by ‘to the right’.

↑ if |σ| is not `n+1 for some n.

It is clear that given a string σ on some level of T [Q], we have that p[Q](σ) ↓ and
T [Q](p[Q](σ)) = σ. The behaviour of p[Q] on strings which do not belong on some
level of T [Q] is not important.

16Here and in the following when a Π0
1 class seems to be an argument in a function, we actually

mean an index (a presentation) of it. The presentation of the class that we are referring to will
be clear from the context.

17That is, as a function from 2<ω to 2<ω which respects compatibility and incompatibility
relations of strings. Level n of a tree T is the collection of strings T (σ) for all strings σ of length
n.

18This tree gives the reduction of any set to a random set in P . See the original argument in
[Kuč85].
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Theorem 5.1. Given any function f : N → N there exists a weakly 2-random set
X and a function g ≤T X which is not dominated by f .

In order to obtain a suitable function g as in the statement of Theorem 5.1, we
need to code part of f into some X ∈ P while ensuring that X forms a minimal
pair with ∅′. For the latter we need to meet the following conditions:19

Ne : [ΦXe ,Φ
∅′
e are total ∧ ΦXe = Φ∅

′

e ]⇒ ΦXe is computable.

The argument will be forcing with Π0
1 classes. The effectiveness of the construction

is not an issue of concern here. The oracle f ⊕ ∅′′ suffices in order to perform
the construction of X. However we must ensure that a function g as described in
Theorem 5.1 can be effectively extracted from X.

In order to code information to a member X of P we will use Kučera-Gács
coding, as this was described in Section 1.2.1. However note that this coding is
in general incompatible with forcing with Π0

1 conditions, which is required for the
satisfaction of Ne. For example, it is clear that if f = ∅′ it is not possible to code
f into X while ensuring that ∅′, X form a minimal pair20. Hence we need to use a
more flexible coding method, which is compatible with the satisfaction of Ne.

The construction will proceed in stages s at which a decreasing sequence (Ps) of
subclasses of P , and an increasing sequence of initial segments X � ts are defined.
In particular, at stages s ∈ 4N∪(4N+1) we define ts, at stages s ∈ 4N+2 we define
Ps and at stages s ∈ 4N + 3 we define ts (again). Stages 4e, 4e + 1 correspond to
coding information into X which is relevant to the satisfaction of Ne. In stage 4e+2
the actual satisfaction of Ne takes place, by possibly restricting P4e to a smaller
class P4e+2. Finally at stage 4e+ 3, the value of f on some argument is coded into
X, for the purpose of computing a function g as prescribed in Theorem 5.1. The
value of ts (in stages s in 4N, 4N + 1 or 4N + 3) will be effectively obtained from
an index of Ps and X � ts−1, via the computable function h that was described at
the beginning of Section 5. (as in the standard Kučera-Gács coding). Morevover,
X � ts will be the leftmost or rightmost Ps-extendible extension of X � ts−1 of
length ts.

With a forcing argument in mind, suppose that we are given a Π0
1 class Q and

we wish to restrict it so that all paths X in the new class satisfy Ne. Then it is
crucial to decide whether (5.3) holds.

(5.3) ∀n, t ∀X ∈ Q ∃s [s > t ∧ ΦXe (n)[s] ↓ = Φ∅
′

e (n)[s] ↓].21

If (5.3) holds, then Φe is total on Q and its range on Q consists of a single set. This
set is computable by compactness. Hence Ne is satisfied for all X ∈ Q. So if (5.3)
holds we do not need to restrict Q.

On the other hand if (5.3) does not hold, there exists 〈n, t〉 such that either
Φ∅

′

e (n) ↑ or

{Z ∈ Q | ΦZe (n) ↑ ∨ ΦZe (n) ↓6= Φ∅
′

e (n)[s]} 6= ∅ for all s > t.

19Notice that the requirements Ne are sufficient. Without loss of generality we can assume
that 0 6∈ ∅′ and that all paths through P start with 1. Now given any i, j ∈ N it is easy to see

that there is e ∈ N such that ΦXi = ΦXe and Φ∅
′
j = Φ∅

′
e for each X ∈ P .

20It is instructive to think of the technical reasons for this impossibility.
21Here Φ∅

′
e (n)[s] ↓ is the computable predicate which says that Φe(n) at stage s is defined on

oracle ∅′[s]. By compactness (5.3) is a Π0
2 sentence. Therefore it is decidable in ∅′′. Notice that

it does not imply that Φ∅
′
e is total.
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In the latter case we have

(5.4) {Z ∈ Q | ΦZe (n) ↑ ∨ ΦZe (n) ↓6= Φ∅
′

e (n) ↓} 6= ∅.
Notice that if (5.3) does not hold, the least 〈n, t〉 witnessing the negation ¬(5.3)

of (5.3) is ∅′-computable from Q, e. If Φ∅
′

e (n) ↑ requirement Ne is satisfied as Φ∅
′

e is
partial . If Φ∅

′

e (n) ↓, to satisfy Ne we need to intersect Q with the class in (5.4).22

For reference in the construction, let d be a computable function such that for all
Π0

1 classes Q and all e ∈ N we either have (5.3) or lims d(Q, e, s) exists and

(5.5) lim
s
d(Q, e, s) = the least 〈n, t〉 such that ¬(5.3) holds.

Also let md be the modulus function of d for these limits, namely

(5.6) md(Q, e) = the least k such that d(Q, e, t) = d(Q, e, k) for all t ≥ k
for those e ∈ N such that ¬(5.3) holds and md(Q, e) ↑ for those e ∈ N such that
(5.3) holds. To conclude, there are the following possibilities that we distinguish in
the construction below:

(i) (5.3) holds
(ii) ¬(5.3) holds and Φ∅

′

e (n) ↑
(iii) ¬(5.3) holds and Φ∅

′

e (n) ↓
where n is the first coordinate of lims d(Q, e, s). In case (ii) we will call Ne poten-
tially needy as there is a possibility that we need to force with a suitable class. In
case (iii) we will call Ne needy as we certainly need to intersect with a suitable class
in order to satisfy of Ne.

5.1. Construction of X.
Stage s = 4e. (Code information about how is Ne going to be satisfied.)
Code into X the information whether (5.3) holds for Q equal to Ps−1∩T [Ps−1](11):

X � ts =

{
T [Ps−1](0); if (5.3) holds (for the above class)
T [Ps−1](1); otherwise.

where ts = |T [Ps−1](0)|. If the second clause above was used, say that Ne is
potentially needy. Let Ps = Ps−1.

Stage s = 4e+ 1. (Code more information about how is Ne going to be satisfied.)
If in the previous stage we found that (5.3) did not hold, code intoX the information
whether Φ∅

′

e (n) ↓, where 〈n, t〉 is the least number witnessing ¬(5.3) for Q equal to
Ps−1 ∩ T [Ps−1](11):

X � ts =

{
T [Ps−1](10); if Φ∅

′

e (n) ↑
T [Ps−1](11); if Φ∅

′

e (n) ↓

where ts = |T [Ps−1](10)|. Also, if the second clause was used, say that Ne is needy.
If in the previous stage we found that (5.3) holds, let

ts = |T [Ps−1](00)| and X � ts = T [Ps−1](00)

and say that Ne is not needy. In any case let Ps = Ps−1 ∩ [X � ts].

22Notice that the argument presented here is valid even with a modified (5.3), where in place
of Q we have any non-empty Π0

1 subclass of Q. We will use this in the construction below.
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Stage s = 4e+ 2. (Satisfy Ne.)
If Ne is needy, let n be as in step 4e+1 and let Ps be the class in (5.4) with Q equal
to Ps−1. Otherwise, if Ne is not needy, let Ps be Ps−1. In any case, ts = ts−1.

Stage s = 4e+ 3. (Code a value of f on some argument se.)
Let

se =



The largest of
? se−1 + 1, md(P4e+1, e) (if this is defined)

? the first stage where p[P4j+1](X � t4j+3) ↓, for each
j < e

? the modulus of convergence of Φ∅
′

j (n)[m] in case Nj is
needy, for each j ≤ e.

(5.7)

where p is the decoding function of (5.2). Code f(se) into X: let

ts = |T [Ps−1](0f(se)1)| and X � ts = T [Ps−1](0f(se)1).(5.8)

Define Ps = Ps−1 ∩ [X � ts].

5.2. Verification of the construction of X. According to the construction and
the standard Kučera-Gács machinery (Lemma 1.3, the function h and the tree in
(5.1)) the set X and sequences (Ps), (ts) are totally defined in such a way that
P ⊇ P0 ⊇ P1 ⊇ . . . and X ∈ ∩tPt. Moreover by the discussion made before the
construction and the action in Step 4e + 2 of the construction, requirement Ne is
satisfied for all e ∈ N. Therefore the degree of X forms a minimal pair with the
degree of ∅′. It remains to show that some function g ≤T X is not dominated by f .

By the definition of X we have

X � ts ∈ {T [Ps−1](k) | k = 0, 1} for all s ∈ 4N.(5.9)

X � ts ∈ {T [Ps−1](σ) | σ = 00, 10, 11} for all s ∈ 4N + 1.(5.10)

X � ts ∈ {T [Ps−1](0k1) | k ∈ N} for all s ∈ 4N + 3.(5.11)

Using the decoder function p of (5.2) we can recover what values are coded in X.
That is, we can find the unique string σ such that X � ts = T [Ps−1](σ). The
difficulty however is that we cannot do this uniformly in the stages s. The reason is
that in stages s ∈ 4N + 2, the class Ps is defined in a non-effective way. The choice
for Ps was not coded into X. However once we know the information coded into X
in stage s − 1 ∈ 4N + 1, the index of Ps can be computably approximated via the
function d of (5.5).

5.2.1. Extracting g from X. For each e we give a procedure Ge which attempts to
reconstruct steps 4e, 4e + 1, 4e + 2, 4e + 3 of the construction. In other words, it
produces approximations Pk[s], tk[s] of the parameters Pk, tk, k ∈ {4e, 4e+ 1, 4e+
2, 4e + 3} of the construction when it is run at stage s. The family of procedures
(Ge)e∈N is interconnected, in the sense that a procedure may call another one.
Moreover the actions of Ge depend on the stage that it is called. We denote by
Ge[m] the version of procedure Ge at stage m. These algorithms work with oracle
X and define the function g ≤T X that is required for the proof of the theorem.
Notice that by the definition of (se) in (5.7) there is and X-computable double
sequence se[m] such that se[m] ≤ se[m + 1] and se = limm se[m] for each e ∈ N.



JUMP INVERSIONS INSIDE EFFECTIVELY CLOSED SETS AND RANDOMNESS 25

Let P−1[s] = P for all s ∈ N. We start running G0[0] and follow the procedures as
detailed below.

Procedure Ge[m]. If si[m] = m for some i < e, go to Gi[m] for the least such i.
Let t4e[m] = h(1, P4e−1))[m− 1], t4e+1[m] = h(2, P4e−1)[m− 1] and check if one of
the following holds:

(a) d(P4k+1[m − 1], k,m) 6= d(P4k+1[m], k,m) for some k < e such that Nk
is potentially needy; or Φ∅

′

k (n)[m] ↑ where n is the first coordinate of
d(P4k+1[m− 1], k,m− 1), for some k < e such that Nk is needy .23

(b) p[P4e−1](X � t4e)[m] ↓, p[P4e−1](X � t4e+1)[m] ↓.
If none of these holds, go to Ge[m + 1]. If (a) holds, go to procedure Gk[m + 1]
(for the least k such that (a) is true). If (b) holds (and (a) does not hold) let
P4e[m] = P4e−1[m], P4e+1[m] = P4e[m] ∩ [X � t4e+1[m]] and do the following:

(c) If p[P4e−1](X � t4e)[m] = 0 or p[P4e](X � t4e+1)[m] = 10 let P4e+2[m] =
P4e+1[m] and in the second case say that Ne is potentially needy.

(d) Otherwise (if p[P4e](X � t4e+1)[m] = 11) let P4e+2[m] be the intersection of
P4e+1[m] with the class of (5.4) where n is taken to be the first coordinate
of d(P4e+1[m], e,m) and in place of Φ∅

′

e (n) ↓ we have the approximation
Φ∅

′

e (n)[m]. Say that Ne is needy.
Let t4e+2[m] = t4e+1[m]. Check if p[P4e+2](X � z)[m] ↓= 0q1 for some q, z < m. If
not, go to Ge[m+ 1]. Otherwise let t4e+3[m] = h(P4e+2[m], q + 1) and P4e+3[m] =
(P4e+2 ∩ [X � t4e+3])[m]. Also let me

∗ be the largest stage ≤ m such that during
the stages in [me

?,m] the only procedure that ran was Ge. Define g(me
?) = q and

g(x) = 0 for all arguments x < me
? on which g is not yet defined; and go to

Ge+1[m+ 1].

5.2.2. Verification of procedures and g. First of all, notice that a procedure Ge[m]
can define g for at most the first me

? arguments, where me
? is the largest stage ≤ m

such that during the stages in [me
?,m] the only procedure that ran was Ge. Also, if

Ge[m] runs, during the stages in [me
?,m) no definition of g is given. Therefore there

is no conflict in the definition of g. In other words, when some g(m) is defined, it
has been previously undefined.

We are going to show the following claims, which conclude the proof of Theorem
5.1. Recall the definition of se from (5.7). For each e let re be the maximum stage
m ≥ se such that me

? = se. Notice that for each e there is re ≥ se such that
procedure Ge[m] runs continuously for m ∈ [se, re]. The fact that Ge will run at se
follows by the first instruction in the family of Gi[m] procedures and the fact that
se[m] tends monotonically to se.

(I) When Ge runs in the interval of stages [se, re] , it reproduces steps 4e, 4e+
1, 4e + 2, 4e + 3 of the construction of X. In other words, Pk[re] = Pk,
tk[re] = tk for all k ∈ {4e, 4e+ 1, 4e+ 2, 4e+ 3}.

(II) For each e procedure Ge[m] does not run for any m > re.
(III) The function g is total and g(se) = f(se) for all e ∈ N.

23We assume the standard hat-trick for the functionals Φ∅
′
e . That is, Φe is modified (without

loss of generality) in such a way that, if a certain computation Φ∅
′
e [s − 1] ↓ no longer exists at

stage s, we have Φ∅
′
e [s] ↑. In other words, any subsequent computation is delayed by at most one

stage.
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Notice that (III) implies that in the last run of Ge (at stage re), this procedure will
run completely. In other words, it will reach the final instruction (the definition of
g).

Proof of (I),(II). By induction. For e = 0 the procedure will define ti[s0] = ti,
Pi[s0] = Pi for all i = 0, 1, 2. Indeed, if md(P1, 0) ↑ this is immediate. Otherwise
it follows from the fact that at this stage d has reached a limit on arguments P1

and 0. Notice that it will also declare N0 potentially needy, needy or not, in full
accordance with stages 0, 1 of the construction of X.

Also, it will stay in the last part of the instructions, waiting for a stage m ≥ s0
with p[P2](X � z)[m] ↓= 0q1 for some q, z < m. By the construction of X, such
a stage r0 ≥ s0 (large enough so that the relevant computations halt) will be
found. Then it will define t3[r0] = t3 and P3[r0] = P3. This shows Claim (I) for
e = 0. Claim (II) follows from the definition of s0 and in particular the fact that
d(P1, 0, s) has reached a limit at s = s0 in the case that the limit exists (i.e. Ne has
been declared potentially needy). So procedure G0 will never run after it finishes,
after this stage (i.e. after r0). This finishes the base of the induction.

Now suppose that Claims (I),(II) hold for all e < j and stages se have been
defined for e < j. Recall the definition of sj in (5.7). As before, at sj procedure Gj
will run and will define ti[sj ] = ti, Pi[sj ] = Pi for all i = 4j, 4j+1, 4j+2. Indeed, by
the induction hypothesis we have that P4j−1[sj ] = P4j−1 so Gj [sj ] will run exactly
as in steps 4j, 4j+ 1, 4j+ 2, of the construction of X. Now if md(P4j+1, j) ↑ clearly
it will also run as step 4j + 3 of the construction. If md(P4j+1, j) ↓, since d has
reached a limit on arguments P4n+1 and n, for n ≤ j, it will also run as step 4j+ 3
of the construction. Notice that it will also declare Nj potentially needy, needy or
not, in full accordance with stages 4j, 4j + 1 of the construction of X.

Also, it will stay in the last part of the instructions, waiting for a stage m ≥ sj
with p[P4j+2](X � z)[m] ↓= 0q1 for some q, z < m. By the construction of X, such
a stage rj ≥ sj (large enough so that the relevant computations halt) will be found.
Then it will define t4j+3[rj ] = t4j+3 and P4j+3[rj ] = P4j+3. This shows Claim (I)
for e = j. Claim (II) follows from the definition of sj and in particular the fact
that d(P4j+1, 0, s) has reached a limit at s = sj in the case that the limit exists
(i.e. Nj has been declared potentially needy). So procedure Gj will never run after
it finishes, after this stage (i.e. after rj).

Proof of (III). By Claim (I) and the routines Ge[m] we have that g is total.
Moreover, by the routine Ge[t] in the interval t ∈ [se, re] (along with the definition
(5.2) of the decoding function p and the definition of sj in (5.7)) we get that
g(se) = f(se). Indeed, notice that rj < sj+1 ≤ rj+1 by the conditions on the
definition of se in (5.7). Since se < se+1 for all e ∈ N, this finishes the proof of the
Theorem 5.1.

5.3. Application to Problem 8.2.14 of Nies. Now we can give a positive answer
to the second problem of Nies [Nie09] that was discussed in Section 1.

Corollary 5.1. There are weakly 2-random reals that are array non-computable.

Proof. It follows from Theorem 5.1 by taking f to be a function which dominates
all functions which are truth-table reducible to ∅′. �
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Theorem 5.1 actually shows that for any oracle X, there are weakly 2-random sets
which are not array computable relative to X. We also remark that the proof of
Theorem 5.1 shows something apparently stronger than its statement. Namely, for
every function f there is a weakly 2-random X which computes a function g, which
in turn agrees with f on infinitely many values. Another consequence of the proof
is that X ≤T f ⊕ ∅′′.
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