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Abstract. We present a characterization of weakly compact cardinals in
terms of generalized stationarity. We apply this characterization to construct

a model with no partial square sequences.

One of the striking features of weak compactness in the large cardinal hierarchy
is the wide variety of characterizations of the concept. These characterizations meet
many disparate areas of set theory, including metamathematics, combinatorics, and
elementary embeddings, among others. In this paper we expand on this theme by
characterizing weak compactness in terms of generalized stationarity.

The property of Mahloness illustrates a way to define or characterize a large
cardinal property: specify a naturally defined set, and then assert that the large
cardinal property holds iff the set is stationary. For example, a cardinal κ is Mahlo
iff the set of strongly inaccessible cardinals below κ is stationary.

The first goal of the paper is to characterize weakly compact cardinals along the
same lines. Let κ > ω be a regular cardinal. Let S be the set of N in Pκ(H(κ+))
satisfying: (1) N∩κ is strongly inaccessible, (2) N<N∩κ ⊆ N , and (3) the transitive
collapse of N is a 1-elementary substructure of H((N ∩ κ)+). We will prove that κ
is weakly compact iff S is stationary in Pκ(H(κ+)).

The second goal of the paper is to demonstrate how this characterization of weak
compactness can be applied in forcing arguments. The property that a forcing poset
P is λ-distributive, for a regular cardinal λ, is Π1 over H(δ+), where P ∈ H(δ+)
and λ ≤ δ+, and thus this property is preserved under 1-elementarity. This fact
will enable us to use the above characterization of weak compactness to prove that
a certain forcing iteration is distributive.

Specifically, we would like to construct a model in which there are no partial
square sequences on any stationary subset of µ+ ∩ cof(µ), where µ is a regular
uncountable cardinal. A partial square sequence on a set A ⊆ µ+ ∩ cof(µ) is a
sequence 〈cα : α ∈ A〉 satisfying that each cα is a club subset of α with order type
µ, and if γ is a common limit point of cα and cβ , then cα ∩ γ = cβ ∩ γ. If there
is such a sequence with domain A, we say that A carries a partial square. It is
known to be consistent that there are no stationary subsets of µ+ ∩ cof(µ) which
carry a partial square sequence. This follows from a strong stationary set reflection
property which holds in a model of Magidor [4].

We would like to construct a model with no partial squares more directly. Specif-
ically, we iterate forcing to destroy the stationarity of any subset of µ+ ∩ cof(µ)
which carries a partial square. In general, such an iteration will collapse cardi-
nals. So first we prepare the ground model by Lévy collapsing a weakly compact
cardinal κ to become µ+. Then we use the above characterization of weak compact-
ness to show that the iteration of club adding is κ-distributive and thus preserves
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cardinals. The proof that the iteration is distributive demonstrates how to use ele-
mentary substructures, as an alternative to elementary embeddings, in applications
of weak compactness.

1. Preliminaries and Notation

We review some basic ideas and notation which will be important in the paper.
Let N be a set satisfying extensionality: if x and y are distinct elements of N ,

then there is z in N such that z ∈ x \ y or z ∈ y \ x. Define a function π with
domain N by ∈-recursion:

π(x) = {π(y) : y ∈ x}.
Let N be the range of π. Then N is transitive, and

π : (N,∈)→ (N,∈)

is an isomorphism. Moreover, if M is a transitive set and σ : (N,∈) → (M,∈) is
an isomorphism, then M = N and σ = π. We call N the transitive collapse of N ,
and π the transitive collapsing map. The map π satisfies that if X ⊆ N and X is
transitive, then π � X is the identity.

More generally, let E be a relation on a set X. We say E is well-founded if
whenever A is a non-empty subset of X, then there is a ∈ A which is E-minimal
in A, meaning that there is no y in A such that yEa. We say E is extensional if
whenever x and y are distinct elements of X, there is z in X such that zEx and
¬zEy, or zEy and ¬zEx.

Suppose E is a well-founded, extensional relation on a set X. Define a function
π with domain X by E-recursion:

π(x) = {π(y) : yEx}.
Then the range of π, π[X], is a transitive set, and

π : (X,E)→ (π[X],∈)

is an isomorphism. Moreover, if M is a transitive set and σ : (X,E) → (M,∈) is
an isomorphism, then M = π[X] and σ = π. Again we call π[X] the transitive
collapse of (X,E), and π the transitive collapsing map.

We will be concerned with stationary subsets of

Pκ(H(κ+)) = {a ⊆ H(κ+) : |a| < κ},
where κ is a regular uncountable cardinal. Recall that a set C ⊆ Pκ(H(κ+)) is
club if (1) whenever 〈ai : i < ζ〉 is a ⊆-increasing sequence of sets in C, where
ζ < κ, then

⋃
i<ζ ai ∈ C, and (2) for all a in Pκ(H(κ+)), there is b in C such

that a ⊆ b. A set S ⊆ Pκ(H(κ+)) is stationary if S ∩ C 6= ∅, for every club set
C ⊆ Pκ(H(κ+)). We will use the following characterization of stationarity. Let S
be a subset of {a ∈ Pκ(H(κ+)) : a ∩ κ ∈ κ}. Then S is stationary iff for every
function F : H(κ+)<ω → H(κ+), there is a in S such that F [a<ω] ⊆ a.

Let P be a forcing poset, and λ an ordinal. A P-name Ẋ is a nice name for a
subset of λ if every element of Ẋ is an ordered pair 〈p, ξ̌〉, where ξ ∈ λ, and for each
ξ in λ, the set

{p : 〈p, ξ̌〉 ∈ Ẋ}
is an antichain of P. If p is a condition in P and p 
 Ẏ ⊆ λ̌, then there is a nice
name Ẋ for a subset of λ such that p 
 Ẋ = Ẏ .
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2. Some Π1
1 Expressions

In this section we describe some properties of models of the form (Vα,∈), using
Π1

1-formulas. These expressions will be used in the next section to show that if κ
is Π1

1-indescribable, then there are stationary many N in Pκ(H(κ+)) such that the
transitive collapse of N is a 1-elementary substructure of H((N ∩ κ)+).

We begin by specifying a second-order language L. The non-logical symbols
of L are: (1) a binary relation symbol ∈, (2) unary predicate symbols α̇, Ė, K̇,

Ṫ , and Ċ. First order variables will always be written in lower case, and second
order variables will always be written in upper case. If Φ is a formula of L, we
write Φ(X1, . . . , Xn, x1, . . . , xk) to indicate that the free variables of Φ are among
X1, . . . Xn, x1, . . . , xk.

Let ∆ denote the set of formulas of L which have no second order quantifications.
We say a formula of L is Π1

1 if it is of the form ∀X1 · · · ∀XnΨ, where Ψ is in ∆.
Any conjunction of Π1

1 formulas is logically equivalent to a Π1
1 formula. We will

sometimes speak loosely and refer to a formula as being Π1
1 when we really mean

it is logically equivalent to a Π1
1 formula.

Let κ be a strongly inaccessible cardinal. A set M is said to be a κ-model if M
is transitive, the cardinality of M is equal to κ, κ is a member of M , M<κ ⊆ M ,
and M is a model of ZFC− (that is, the theory ZFC minus the power-set axiom).
Note that any κ-model is a subset of H(κ+). Also, if M ≺ H(κ+), κ+ 1 ⊆M , M
has size κ, and M<κ ⊆M , then M is a κ-model.

Let us briefly describe the intended interpretation of the non-logical symbols of
L. Suppose κ is strongly inaccessible, M is a κ-model, and H : M<ω → M is
a function. We code the structure (M,∈, H) as a subset of Vκ as follows. Fix a
bijection π : κ → M . Define E ⊆ κ × κ by letting xEy if π(x) ∈ π(y). Define
K : κ<ω → κ by letting K(β1, . . . , βn) = π−1(H(π(β1), . . . , π(βn))). Clearly π :

(κ,E,K) → (M,∈, H) is an isomorphism. Now interpret the symbols α̇, Ė, and

K̇ by the sets κ, E, and K respectively. We interpret the predicate symbol Ṫ as
a subset of Vκ which codes the elementary diagram of the structure (κ,E,K). We

interpret Ċ as a particular club subset of κ.
Let us recall the following basic fact about the satisfaction relation. Suppose

Φ(X1, . . . , Xn) is a formula of L which does not mention certain non-logical symbols
of L. Then the satisfaction of this formula in a model (Vκ,∈, κ, E,K, T, C) is
equivalent to its satisfaction in any restriction of this model obtained by omitting
the interpretations of some of the predicate symbols which do not occur in Φ.

We begin our description of some Π1
1 properties by reviewing the well-known fact

that the statements “α is strongly inaccessible” and “M is an α-model” are Π1
1.

Lemma 2.1. There is a Π1
1 sentence Φ0 such that for any ordinal α, (Vα,∈) |= Φ0

iff α is strongly inaccessible.

Proof. Let Φ0 be the conjunction of the following sentences:

(1) For every ordinal β, β + 1 exists.
(2) There exists a limit ordinal.
(3) For every ordinal β, there is an ordinal γ and a function from γ onto the

power set of β.
(4) For all X, if X is an ordinal-valued operation with domain an ordinal, then

the range of X is bounded.

Note that (1), (2), and (3) are in ∆, and (4) is Π1
1. �
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Let LST denote the set of Gödel numbers for formulas in the first order language
of set theory, and let ZFC− be the subset of LST consisting of the axioms of ZFC
minus the power set axiom.

We will consider structures which are expansions of (Vα,∈, α, E), where E ⊆
α × α. We would like to express statements of the form “(α,E) satisfies such and
such formulas of LST” using the language L. To this end, we review the idea of a
truth assignment.

Let Γ(Z) be the conjunction of the following formulas of L:

• Z is an operation, taking values 0 and 1, defined on pairs (ϕ, h), where
ϕ ∈ LST and h is a function which assigns to each variable of LST a
member of α̇.
• Z(x = y, h) = 0 iff h(x) = h(y).

• Z(x ∈ y, h) = 0 iff h(x) Ė h(y).
• Z(ϕ ∧ ψ, h) = 0 iff Z(ϕ, h) = 0 and Z(ψ, h) = 0.
• Z(¬ϕ, h) = 0 iff Z(ϕ, h) = 1.
• Z(∃xϕ, h) = 0 iff there is b in α̇ such that Z(ϕ, h′) = 0, where h′ is the

function equal to h everywhere except at x, and h′(x) = b.

Note that the formula Γ is in ∆. If T ⊆ Vα, then (Vα,∈, α, E) |= Γ[T ] iff T
is a truth assignment for the structure (α,E) in the usual sense, namely, that for
every formula ϕ(x1, . . . , xn) of LST and a1, . . . , an in α, T (ϕ, h) = 0 iff (α,E) |=
ϕ[a1, . . . , an], where h is any function satisfying that h(xi) = ai for i = 1, . . . , n.

For example, we can express the statement

(Vα,∈, α, E) |= “(α,E) |= ϕ[a1, . . . , an]”

to mean that for any T ⊆ Vα such that

(Vα,∈, α, E) |= Γ[T ],

T (ϕ, h) = 0 for any function h satisfying that h(xi) = ai for all i = 1, . . . , n. Clearly
this is expressible by a Π1

1 formula of L.
We sometimes write T (ϕ, a1, . . . , an) = 0 to abbreviate that the free variables of

ϕ are included among x1, . . . , xn, and T (ϕ, h) = 0 for some (any) function h which
assigns values a1, . . . , an to the variables x1, . . . , xn. When ϕ is a sentence of LST,
we will sometimes write T (ϕ) to mean T (ϕ, h) for some (any) h.

There are straightforward variations on these expressions which we will use. For
example, we could write down a similar ∆ formula with free variables X and Z
which assert that X ⊆ α̇× α̇ and Z is a truth assignment for (α̇,X). We will also
consider truth assignments for models expanding (α,E).

When writing down formulas of L, we will sometimes write xĖy to abbreviate
Ė(〈x, y〉).

Lemma 2.2. There is a Π1
1 sentence Φ1 satisfying the following. Suppose α is

strongly inaccessible and E ⊆ Vα. Then (Vα,∈, α, E) |= Φ1 iff E ⊆ α×α, (α,E) is
well-founded and extensional, and the transitive collapse of (α,E) is an α-model.

Proof. Let Φ1 be the conjunction of the following sentences:

(1) For all x, if Ė(x), then x is an ordered pair of ordinals.
(2) For every ordinal-valued function f with domain ω, there is n < ω such

that ¬(f(n+ 1) Ė f(n)).
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(3) For any distinct ordinals x and y, there is z such that either (zĖx∧¬(zĖy))

or (zĖy ∧ ¬(zĖx)).

(4) For every truth assignment Y for the structure (α̇, Ė), for every ϕ in ZFC−,
Y (ϕ) = 0.

(5) There is x in α̇ such that (α̇, Ė) |= “x is an ordinal”, and for all y in α̇

there is z > y in α̇ such that zĖx.
(6) For any ordinal-valued function g with domain an ordinal, there is x in α̇

such that for all y in α̇, yĖx iff y is in the range of g.

Note that each of the above statements is in ∆, except (4) which is Π1
1.

Suppose α is strongly inaccessible and E ⊆ Vα. Let A = (Vα,∈, α, E). Then
easily, A models (1) iff E ⊆ α×α, A models (2) iff (α,E) is well-founded (this uses
the fact that α is strongly inaccessible), and A models (3) iff (α,E) is extensional.
Assume that these three properties hold. Let (M,∈) be the transitive collapse of
(α,E), and let π : (α,E) → (M,∈) be the transitive collapsing map. Then A
models (4) iff (α,E) is a model of ZFC− iff (M,∈) is a model of ZFC−, since (α,E)
and (M,∈) are isomorphic. The structure A models (5) iff there is an ordinal ξ in
M such that ξ ≥ α, which is equivalent to α being in M , since M is transitive.

Suppose A models (6), and we show M<α ⊆M . Let a be a subset of M of size
less than α, and we show a is in M . Fix a bijection f : β → a, where β < α. Define
g : β → α by letting g(i) = π−1(f(i)). Clearly g is in Vα, since β < α and α is
strongly inaccessible. By (6), fix x in α such that for all y, yEx iff y is in the range
of g. Then π(x) = {π(y) : yEx} = {π(y) : y ∈ ran(g)} = {π(π−1(f(i))) : i < β} =
{f(i) : i < β} = a. So π(x) = a and a is in M .

On the other hand, assume M<α ⊆ M , and let g : β → α be in Vα. So β < α.
Define f : β → M by letting f(i) = π(g(i)). By the closure of M , ran(f) is in M .
Fix x in α such that π(x) = ran(f). Then yEx iff π(y) ∈ π(x) = ran(f) iff there is
i < β such that π(y) = f(i). But f(i) = π(g(i)) and π is an isomorphism. So the
last statement is equivalent to the statement that there is i < β such that y = g(i),
which is equivalent to the statement that y is in the range of g. �

Lemma 2.3. There is a formula Θ(X,S) in ∆ satisfying the following. Suppose
α is strongly inaccessible, and F and T are subsets of Vα. Then

(Vα,∈, α) |= Θ[F, T ]

iff F ⊆ α × α, (α, F ) is well-founded and extensional, the transitive collapse of
(α, F ) is an α-model, and T is a truth assignment for (α, F ).

Proof. The proof is nearly identical to the proof of the previous lemma. Define
Θ(S,X) by replacing all occurrences in Φ1 of an atomic formula of the form “Ė(x)”
with the atomic formula “x ∈ X”, and replace (4) with “S is a truth assignment
for (α̇,X) and S(ϕ) = 0 for every ϕ in ZFC−”. �

Our next goal is to prove that for a strongly inaccessible cardinal α and an
α-model M , the statement that M is a 1-elementary substructure of H(α+) is a
Π1

1 property over Vα. Specifically, let E ⊆ α × α be such that (α,E) and (M,∈)
are isomorphic. Then there is a Π1

1 formula Φ2 such that (Vα,∈, α, E) |= Φ2 iff
(M,∈) ≺1 (H(α+),∈).

First we prove some technical lemmas which show how to express the relation
M ⊆ N , between α-models M and N , with a formula in ∆.
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Lemma 2.4. Suppose α is strongly inaccessible, M and N are α-models, E and
F are subsets of α×α, and (M,∈) and (N,∈) are isomorphic to (α,E) and (α, F )
respectively. Let π : (α,E) → (M,∈) and σ : (α, F ) → (N,∈) be the transitive
collapsing maps. Then M ⊆ N iff there exists a function G : α → α such that
σ ◦G = π.

Proof. Assume M ⊆ N . Define G : α → α by G = σ−1 ◦ π. This makes sense
because M ⊆ N . Then σ ◦G = σ ◦ σ−1 ◦ π = π. Conversely, assume G : α→ α is
a function such that σ ◦G = π. Then M = π[α] = σ[G[α]] ⊆ σ[α] = N . �

Lemma 2.5. Suppose α, M , N , E, F , π, and σ are as described in the assumptions
of Lemma 2.4. Then for any function G : α → α, the following statements are
equivalent.

(1) σ ◦G = π.
(2) (a) xEy iff G(x) F G(y) for all x, y in α, and (b) if z F G(x), then z is

in the range of G, for all x, z in α.

Proof. Suppose G : α → α is a function and σ ◦ G = π. Then M ⊆ N , and
G = σ−1 ◦ π. For x, y in α, xEy iff π(x) ∈ π(y) (since π : (α,E) → (M,∈) is
an isomorphism) iff G(x) = σ−1(π(x)) F σ−1(π(y)) = G(y) (since σ−1 : (N,∈) →
(α, F ) is an isomorphism). So xEy iff G(x) F G(y), proving (a).

For (b), assume z F G(x). Since σ : (α, F )→ (N,∈) is an isomorphism, σ(z) ∈
σ(G(x)) = π(x). So σ(z) ∈ π(x). Now π(x) is in M , and M is transitive, so σ(z) is
in M . Let z′ be in α such that π(z′) = σ(z). Then σ(z) = π(z′) = σ(G(z′)). But
σ is injective, so z = G(z′). Thus z is in the range of G, which proves (b).

Conversely, assume G : α→ α is a function satisfying (2). We prove σ◦G = π by
E-induction. So let y be in α, and suppose for all x such that xEy, σ(G(x)) = π(x).
Then π(y) = {π(x) : xEy} = {σ(G(x)) : xEy}. By (a), this last set is equal to
{σ(G(x)) : G(x) F G(y)}. On the other hand, σ(G(y)) = {σ(z) : z F G(y)}.
But {z : z F G(y)} = {G(x) : G(x) F G(y)} by (b). So σ(G(y)) = {σ(G(x)) :
G(x) F G(y)} = π(y). �

Lemma 2.6. There is a formula Ψ(X,Y ) in ∆ satisfying the following. Suppose α
is strongly inaccessible, M and N are α-models, and E and F are subsets of α×α
such that (M,∈) and (N,∈) are isomorphic to (α,E) and (α, F ) respectively. Let
π : (α,E) → (M,∈) and σ : (α, F ) → (N,∈) be the transitive collapsing maps.
Then for any G ⊆ Vα, (Vα,∈, α, E) |= Ψ[F,G] iff G : α→ α is a function such that
σ ◦G = π.

Proof. Let Ψ(X,Y ) be the conjunction of the following formulas:

(1) Y is an operation which maps ordinals to ordinals.

(2) For all x, y in α̇, xĖy iff 〈Y (x), Y (y)〉 ∈ X.
(3) For all x, z in α̇, if 〈z, Y (x)〉 ∈ X, then there is y in α̇ such that z = Y (y).

Clearly (Vα,∈, α, E) |= Ψ[F,G] iff G : α → α is a function, xEy iff G(x) F G(y),
and z F G(x) implies z is in the range of G. By Lemma 2.5, this is equivalent to
the statement that G : α→ α is a function such that σ ◦G = π. �

Lemma 2.7. Let α be strongly inaccessible, and let M be an α-model. Then the
following are equivalent.

(1) (M,∈) ≺1 (H(α+),∈).
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(2) For every ∆0-formula ϕ(x, x1, . . . , xn) in the first order language of set
theory, for all a1, . . . , an in M , for every α-model N such that M ⊆ N , if
there is c ∈ N such that (N,∈) |= ϕ[c, a1, . . . , an], then there is b ∈M such
that (M,∈) |= ϕ[b, a1, . . . , an].

Proof. Assume (1) holds. Let ϕ(x, x1, . . . , xn) be ∆0, let a1, . . . , an be in M , and
let N be an α-model such that M ⊆ N . Assume there is c in N such that (N,∈) |=
ϕ[c, a1, . . . , an]. Since N is an α-model, N ⊆ H(α+). But ϕ is ∆0, so (H(α+),∈
) |= ϕ[c, a1, . . . , an]. Hence (H(α+),∈) |= ∃xϕ[a1, . . . , an]. As M ≺1 H(α+),
(M,∈) |= ∃xϕ[a1, . . . , an]. So there is b in M such that (M,∈) |= ϕ[b, a1, . . . , an].

Now assume (2) holds. Let ϕ(x, x1, . . . , xn) be ∆0 and let a1, . . . , an be in M . As-
sume (H(α+),∈) |= ∃xϕ[a1, . . . , an]. Fix c such that (H(α+),∈) |= ϕ[c, a1, . . . , an].
Since α<α = α, we can find an α-model N such that M∪{c} ⊆ N . As ϕ is ∆0, (N,∈
) |= ϕ[c, a1, . . . , an]. By (2), there is b in M such that (M,∈) |= ϕ[b, a1, . . . , an]. So
(M,∈) |= ∃xϕ[a1, . . . , an]. �

Proposition 2.8. There is a Π1
1 sentence Φ2 satisfying the following. Suppose α

is strongly inaccessible, M is an α-model, E ⊆ α× α, and (α,E) is isomorphic to
(M,∈). Then (Vα,∈, α, E) |= Φ2 iff (M,∈) ≺1 (H(α+),∈).

Proof. Let Θ(X,S) and Ψ(X,Y ) be the formulas from Lemmas 2.3 and 2.6. Let

Ψ∗(X,Y, S, S′) be the formula: S′ is a truth assignment for (α̇, Ė), Θ(X,S), and
Ψ(X,Y ). Note that Ψ∗ is in ∆.

Let Φ2 be the following sentence: for all X, Y , S, S′, for every ∆0 formula
ϕ(x, x1, . . . , xn) in LST, and for all a1, . . . , an in α̇: either ¬Ψ∗, or (Ψ∗, and if there
exists c in α̇ such that S(ϕ, c, Y (a1), . . . , Y (an)) = 0, then there exists b in α̇ such
that S′(ϕ, b, a1, . . . , an) = 0). Clearly Φ2 is Π1

1.
Let α be strongly inaccessible, and assume M is an α-model. Let E be a subset

of α × α such that (M,∈) is isomorphic to (α,E), and let π : (α,E) → (M,∈) be
the transitive collapsing map.

Assume (Vα,∈, α, E) |= Φ2. We verify (M,∈) ≺1 (H(α+),∈) by proving (2) of
Lemma 2.7. So let ϕ(x, x1, . . . , xn) be ∆0, and let a1, . . . , an be in M . Suppose N
is an α-model, M ⊆ N , c ∈ N , and (N,∈) |= ϕ[c, a1, . . . , an]. We show there is b
in M such that (M,∈) |= ϕ[b, a1, . . . , an].

Fix F ⊆ α×α such that (α, F ) is isomorphic to (N,∈). Let T and T ′ be truth as-
signments for the structures (α, F ) and (α,E) respectively. Let σ : (α, F )→ (N,∈)
be the transitive collapsing map. Since M ⊆ N , by Lemma 2.4 there is a function
G : α → α satisfying σ ◦ G = π. It follows that (Vα,∈, α, E) |= Ψ∗[F,G, T, T ′].
Now c ∈ N and (N,∈) |= ϕ[c, a1, . . . , an]. Since σ−1 : (N,∈) → (α, F ) is an
isomorphism, (α, F ) |= ϕ[σ−1(c), σ−1(a1), . . . , σ−1(an)].

For each i = 1, . . . , n, ai is in M , so fix γi in α such that π(γi) = ai. Since σ◦G =
π, σ(G(γi)) = ai. So σ−1(ai) = G(γi). Hence (α, F ) |= ϕ[σ−1(c), G(γ1), . . . , G(γn)].
So T (ϕ, σ−1(c), G(γ1), . . . , G(γn)) = 0.

Since (Vα,∈, α, E) |= Φ2, there is b in α such that T ′(ϕ, b, γ1, . . . , γn) = 0.
Therefore (α,E) |= ϕ[b, γ1, . . . , γn]. As π : (α,E) → (M,∈) is an isomorphism,
(M,∈) |= ϕ[π(b), π(γ1), . . . , π(γn)], that is, (M,∈) |= ϕ[π(b), a1, . . . , an]. This
proves that (M,∈) ≺1 (H(α+),∈).

On the other hand, assume (M,∈) ≺1 (H(α+),∈), and we show (Vα,∈, α, E) |=
Φ2. So let F,G, T, T ′ be subsets of Vα, ϕ(x, x1, . . . , xn) a ∆0-formula, and a1, . . . , an
in α. Suppose (Vα,∈, α, E) |= Ψ∗[F,G, T, T ′]. By the choice of Θ, F ⊆ α×α, (α, F )
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is well-founded and extensional, the transitive collapse of (α, F ) is an α-model, and
T is a truth assignment for (α, F ). Let (N,∈) be the transitive collapse of (α, F ),
and let σ : (α, F ) → (N,∈) be the transitive collapsing map. By the choice of Ψ,
G : α→ α is a function and σ ◦G = π. Also T ′ is a truth assignment for (α,E).

Suppose there exists c in α such that T (ϕ, c,G(a1), . . . , G(an)) = 0. Then
(α, F ) |= ϕ[c,G(a1), . . . , G(an)]. We need to show there is b in α such that
T ′(ϕ, b, a1, . . . , an) = 0, that is, (α,E) |= ϕ[b, a1, . . . , an]. Since σ : (α, F )→ (N,∈)
is an isomorphism, (N,∈) |= ϕ[σ(c), σ(G(a1)), . . . , σ(G(an))]. As σ ◦ G = π,
(N,∈) |= ϕ[σ(c), π(a1), . . . , π(an)]. Now ϕ is ∆0 and N ⊆ H(α+), so (H(α+),∈
) |= ϕ[σ(c), π(a1), . . . , π(an)]. Since (M,∈) ≺1 (H(α+),∈) and M = π[α], there is
b in α such that (M,∈) |= ϕ[π(b), π(a1), . . . , π(an)]. As π : (α,E) → (M,∈) is an
isomorphism, (α,E) |= ϕ[b, a1, . . . , an]. �

3. Weak Compactness and Generalized Stationarity

With the Π1
1 expressions from the last section at hand, we are now ready to prove

our generalized stationarity characterization of weak compactness. Let L be the
second order language from the previous section. If κ is weakly compact, then κ is
Π1

1-indescribable. In our context, this means that if E, K, T , and C are subsets of
Vκ, and Φ is a Π1

1 sentence of L such that (Vκ,∈, κ, E,K, T, C) |= Φ, then there is
α < κ such that (Vα,∈, α, E ∩ Vα,K ∩ Vα, T ∩ Vα, C ∩ Vα) |= Φ.

For easy reference, we describe again the three Π1
1-sentences Φ0, Φ1, and Φ2

introduced in the last section.

For any ordinal α, (Vα,∈) |= Φ0 iff α is strongly inaccessible.

Suppose α is strongly inaccessible and E ⊆ Vα. Then (Vα,∈, α, E) |= Φ1 iff
E ⊆ α × α, (α,E) is well-founded and extensional, and the transitive collapse of
(α,E) is an α-model.

Suppose α is strongly inaccessible, M is an α-model, E ⊆ α × α, and (M,∈) is
isomorphic to (α,E). Then (Vα,∈, α, E) |= Φ2 iff (M,∈) ≺1 (H(α+),∈).

For a regular cardinal κ, if N is in Pκ(H(κ+)), we write κN for N ∩ κ.

Theorem 3.1. Let κ be a regular cardinal. Let S be the set of N in Pκ(H(κ+))
satisfying:

(1) κN is strongly inaccessible,
(2) N<κN ⊆ N ,
(3) (N,∈) ≺1 (H(κ+N ),∈).

Then κ is weakly compact iff S is stationary.

Proof. Suppose κ is weakly compact. Then κ is Π1
1-indescribable. Let

F : H(κ+)<ω → H(κ+)

be a function. We will find a set N in S which is closed under F . Since κ is
strongly inaccessible, κ<κ = κ, so we can find a κ-model M which is an elementary
substructure of H(κ+) and is closed under F . Let

H = F �M<ω.

Let us code the structure (M,∈, H) as a subset of Vκ. Fix a bijection π :
κ → M . Define a relation E on κ by letting xEy if π(x) ∈ π(y). Then π :
(κ,E) → (M,∈) is an isomorphism. It follows that (κ,E) is well-founded and
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extensional. Since M is transitive, M is the transitive collapse of (κ,E), and π
is the transitive collapsing map. Define an operation K : κ<ω → κ by letting
K(ξ1, . . . , ξn) = π−1(H(π(ξ1), . . . , π(ξn))). Then clearly

π : (κ,E,K)→ (M,∈, H)

is an isomorphism.

Next we interpret the non-logical predicate symbols of L. We use κ, E, and K
to interpret the symbols α̇, Ė, and K̇.

We interpret the symbol Ṫ with a truth predicate T for the structure (κ,E,K).
Let L+ be the set of Gödel numbers for formulas in the first order language of set
theory, augmented with one function symbol. Let T be the set of finite sequences of
the form 〈ϕ, ξ1, . . . , ξn〉, where ϕ is a formula in L+ with free variables x1, . . . , xn,
ξ1, . . . , ξn are in κ, and (κ,E,K) |= ϕ[ξ1, . . . , ξn].

Let C be the club set of α in κ such that:

(1) for all y in α, if |{x : xEy}| < κ, then {x : xEy} ⊆ α,
(2) for all ξ1, . . . , ξn in α, K(ξ1, . . . , ξn) ∈ α.

We interpret the symbol Ċ with C.
Let A be the structure

(Vκ,∈, κ, E,K, T, C)

in the language L.

Now we consider some Π1
1 sentences satisfied by A. Since κ is strongly inaccessi-

ble, A |= Φ0. As (κ,E) is well-founded and extensional, and the transitive collapse
of (κ,E) is the κ-model (M,∈), A |= Φ1. Since (M,∈) ≺ (H(κ+),∈), in particular,
(M,∈) ≺1 (H(κ+),∈). So A |= Φ2.

Let us define two more sentences Φ3 and Φ4 of L. Let Φ3 be the sentence: for ev-
ery truth assignment S for the structure (α̇, Ė, K̇), for every formula ϕ(x1, . . . , xn)
of L+, and for all ordinals ξ1, . . . , ξn, 〈ϕ, ξ1, . . . , ξn〉 is in T iff S(ϕ, ξ1, . . . , ξn) = 0.
Note that Φ3 is Π1

1, and A |= Φ3.
Let Φ4 be the sentence: for every ordinal β, there is an ordinal γ > β which is

in Ċ. Since C is club in κ, A |= Φ4. Note that Φ4 is in ∆.

Now we apply the Π1
1-indescribability of κ. We have that

(Vκ,∈, κ, E,K, T, C) |= Φ0 ∧ Φ1 ∧ Φ2 ∧ Φ3 ∧ Φ4.

By Π1
1-indescribability, fix an ordinal α < κ such that

(Vα,∈, α, E ∩ Vα,K ∩ Vα, T ∩ Vα, C ∩ Vα) |= Φ0 ∧ Φ1 ∧ Φ2 ∧ Φ3 ∧ Φ4.

Let Eα = E ∩ Vα and Kα = K ∩ Vα. Note that by the choice of Φ4, α is a limit
point of C, so α is in C. In particular, α is closed under K, so Kα = K � α<ω. Let
Tα = T ∩ Vα. Note that C ∩ Vα = C ∩ α. Let

B = (Vα,∈, α, Eα,Kα, Tα, C ∩ α).

Let us draw some relevant conclusions from the choice of α. Since B |= Φ0, α
is strongly inaccessible. Since B |= Φ1, Eα ⊆ α × α, (α,Eα) is well-founded and
extensional, and the transitive collapse of (α,Eα) is an α-model. Let (Mα,∈) be
the transitive collapse of (α,Eα), and let πα : (α,Eα)→ (Mα,∈) be the transitive
collapsing map. Since B |= Φ2, (Mα,∈) ≺1 (H(α+),∈).
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Since B |= Φ3, for every formula ϕ(x1, . . . , xn) in L+, and for all ξ1, . . . , ξn in α,
(α,Eα,Kα) |= ϕ[ξ1, . . . , ξn] iff 〈ϕ, ξ1, . . . , ξn〉 ∈ Tα. But this is true iff 〈ϕ, ξ1, . . . , ξn〉
is in T , which by definition of T is equivalent to (κ,E,K) |= ϕ[ξ1, . . . , ξn]. It follows
that (α,Eα,Kα) is an elementary substructure of (κ,E,K).

We noted above that since B |= Φ4, α is in C. It follows that if y is in α and
|{x : xEy}| < κ, then {x : xEy} ⊆ α. In particular, if |{x : xEy}| < κ, then
{x : xEαy} = {x : xEy}.

Define
Hα : M<ω

α →Mα

by letting Hα(d1, . . . , dn) = πα(Kα(π−1α (d1), . . . , π−1α (dn))). Then clearly

πα : (α,Eα,Kα)→ (Mα,∈, Hα)

is an isomorphism.
Define a function

j : (Mα,∈, Hα)→ (M,∈, H)

by
j = π ◦ π−1α .

Since π−1α : (Mα,∈, Hα) → (α,Eα,Kα) is an isomorphism, (α,Eα,Kα) is an el-
ementary substructure of (κ,E,K), and π : (κ,E,K) → (M,∈, H) is an isomor-
phism, it follows that j : (Mα,∈, Hα)→ (M,∈, H) is an elementary embedding.

Let N = j[Mα]. Since j is an elementary embedding,

(N,∈, H � N<ω) ≺ (M,∈, H).

In particular, N is closed under H. Therefore N is closed under F , since H = F �
M<ω. So we will be done if we can show that N is in S.

First we show that the critical point of j is equal to α, and j(α) = κ. Since
the property of being a cardinal is Π1, and Mα ≺1 H(α+), for all β in Mα, β
is a cardinal in Mα iff β is cardinal in H(α+) iff β is a cardinal. So Mα models
that α is the largest cardinal. But M models that κ is the largest cardinal, since
M ≺ H(κ+). Since j is elementary, j(α) = κ.

We prove by induction that j(β) = β for all β < α. So let β < α, and assume
j(ξ) = ξ for all ξ < β. Let x = π−1α (β). Then π(x) = π(π−1α (β)) = j(β), and
πα(x) = πα(π−1α (β)) = β. So it suffices to show π(x) = πα(x). Since β < α,
π(x) = j(β) < j(α) = κ. So π(x) < κ. But π(x) = {π(y) : yEx}, so the set
{y : yEx} has size less than κ. As α is in C, {y : yEx} = {y : yEαx}. If yEαx,
then πα(y) ∈ πα(x) = β, so by induction, j(πα(y)) = πα(y). But j(πα(y)) =
π(π−1α (πα(y))) = π(y). So π(y) = πα(y). Hence j(β) = π(x) = {π(y) : yEx} =
{πα(y) : yEαx} = πα(x) = β.

It follows easily that N ∩ κ = α. On the one hand, if β < α, then β = j(β) ∈
j[Mα] = N , and β = j(β) < j(α) = κ. Thus α ⊆ N∩κ. On the other hand, suppose
γ is in N ∩ κ, and fix β ∈ Mα such that j(β) = γ. Then j(β) = γ < κ = j(α), so
β < α. So β = j(β) = γ, and γ is in α.

Finally, we verify that N is in S. The set N has size equal to |Mα|, which is
α. And κN = N ∩ κ = α, which is strongly inaccessible. Suppose a is a subset of
N of size less than κN . Then j−1[a] is a subset of Mα of size less than κN . Since
Mα is an α-model, j−1[a] is in Mα. Therefore j(j−1[a]) is in N . But as |a| < κN ,
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and κN is the critical point of j, j(j−1[a]) = j[j−1[a]] = a. So a is in N . Finally,
since N is isomorphic to Mα, and Mα is transitive, N is equal to Mα. Therefore
(N,∈) ≺1 (H(κN),∈).

Now we prove the other direction of the theorem. Assume S is stationary in
Pκ(H(κ+)). We prove that κ is Π1

1-indescribable.
First note that by (1) in the definition of S, the set of strongly inaccessible

cardinals below κ is stationary. So κ is Mahlo. In particular, |Vκ| = κ, so Vκ ∈
H(κ+).

Consider the second order language of set theory with one predicate symbol.
Let R be a subset of Vκ, and let Φ(X) be a formula in this language containing no
second order quantifiers. Assume (Vκ,∈, R) |= ∀XΦ. This is equivalent to

∀A ⊆ Vκ (Vκ,∈, R) |= Φ[A],

which is a first order statement in (H(κ+),∈).
We find α < κ such that (Vα,∈, R ∩ Vα) |= ∀XΦ. Fix a set N in S such that

N ≺ H(κ+) and (Vκ,∈, R) ∈ N . Then κN is strongly inaccessible, N<κN ⊆ N , and
(N,∈) ≺1 (H(κ+N ),∈). By the elementarity of N , N models that (Vκ,∈, R) |= ∀XΦ.
Let π : N → N be the transitive collapsing map. Note that π(κ) = κN .

Let us check that π(Vκ) = VκN . If α < κN , then Vα ∈ N by elementarity.
But |Vα| < κN , since κN is strongly inaccessible, so Vα ⊆ N . This proves that
VκN ⊆ N ∩ Vκ. On the other hand, if x is in N ∩ Vκ, then by elementarity there is
α < κN such that x is in Vα. So Vκ ∩N = VκN . But VκN is a transitive subset of
N , so π � VκN is the identity function. Therefore π(Vκ) = {π(x) : x ∈ N ∩ Vκ} =
{π(x) : x ∈ VκN } = {x : x ∈ VκN } = VκN . Also, since N ∩Vκ = VκN , it follows that
R ∩N = R ∩ VκN , and hence π(R) = {π(x) : x ∈ R ∩N} = {x : x ∈ R ∩ VκN } =
R ∩ VκN .

Since π is an isomorphism,

(N,∈) |= π((Vκ,∈, R)) |= ∀XΦ.

By the last paragraph, it follows that

(N,∈) |= (VκN ,∈, R ∩ VκN ) |= ∀XΦ.

This is equivalent to

(N,∈) |= ∀A ⊆ VκN (VκN ,∈, R ∩ VκN ) |= Φ[A].

The above statement satisfied by (N,∈) is Π1. But (N,∈) ≺1 (H(κ+N ),∈). Hence

(H(κ+N ),∈) |= ∀A ⊆ VκN (VκN ,∈, R ∩ VκN ) |= Φ[A].

But H(κ+N ) contains every subset of VκN , so it is correct in computing the truth of
the above statement. Therefore (VκN ,∈, R ∩ VκN ) |= ∀XΦ. �

The proof of the forward direction of the last theorem is similar to proofs that
the Π1

1-indescribability of κ implies the existence of elementary embeddings with
critical point κ defined on κ-models; see [3].
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4. A remark on subcompactness

We give an example of a large cardinal property, much stronger than weak com-
pactness, which can be characterized in terms of generalized stationarity in a way
surprisingly similar to the characterization of weak compactness given above.

A cardinal κ is said to be subcompact if for every set B ⊆ H(κ+), there is a
cardinal α < κ, a set A ⊆ H(α+), and an elementary embedding

j : (H(α+),∈, A)→ (H(κ+),∈, B)

with critical point α. Note that by elementarity, j(α) = κ. Subcompact cardinals
were introduced by Jensen. Schimmerling and Zeman have studied the impact of
subcompact cardinals in inner model theory ([6]). Subcompactness lies between
superstrong and supercompact in the large cardinal hierarchy.

The next result provides a generalized stationarity type characterization of sub-
compactness, which displays subcompactness as a natural strengthening of weak
compactness.

Theorem 4.1. Let κ be a regular cardinal. Let T be the set of N in Pκ(H(κ+))
satisfying:

(1) κN is strongly inaccessible,
(2) N is equal to H(κ+N ).

Then κ is subcompact iff T is stationary.

Proof. Suppose κ is subcompact. Let F : H(κ+)<ω → H(κ+) be a function. We
find a set N in T which is closed under F . Since F ⊆ H(κ+), there is a cardinal
α < κ, a set G ⊆ H(α+), and an elementary embedding

j : (H(α+),∈, G)→ (H(κ+),∈, F )

with critical point α. Since κ is strongly inaccessible and j(α) = κ, α is strongly
inaccessible by elementarity.

Let N = j[H(α+)]. Then N is an elementary substructure of (H(κ+),∈, F ). In
particular, N is closed under F . Since α is the critical point of j and j(α) = κ, it
is easy to check that N ∩ κ = α. Now H(α+) is transitive and j−1 : N → H(α+)
is an isomorphism, so by the uniqueness of the transitive collapse, N = H(α+). So
N is in T .

Conversely, assume T is stationary, and we show κ is subcompact. Let B be a
subset of H(κ+). Choose a set N in T such that (N,∈, B ∩ N) ≺ (H(κ+),∈, B).
Let π : N → N be the transitive collapsing map. By the definition of T , κN = π(κ)
is strongly inaccessible and N = H(κ+N ). Since

π−1 : (H(κ+N ),∈, π[B ∩N ])→ (N,∈, B ∩N)

is an isomorphism and (N,∈, B ∩N) ≺ (H(κ+),∈, B), it follows that

π−1 : (H(κ+N ),∈, π[B ∩N ])→ (H(κ+),∈, B)

is an elementary embedding, and the critical point of π−1 is κN . �

5. Partial Square Sequences

Let µ be an uncountable cardinal. Recall that a �µ-sequence is a sequence

〈cα : α ∈ µ+, α limit〉
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satisfying that every cα is a club subset of α with order type less than or equal to
µ, and for every limit point γ of cα, cα ∩ γ = cγ .

A partial square sequence is a variation of this idea, in which we require the clubs
to be defined only on a set of ordinals, not necessarily on every limit ordinal. The
coherence property then needs to be modified, since a limit point of a club on the
sequence does not necessarily have a club attached to it. We restrict our attention
to sets concentrating on a fixed cofinality; in that case, it is possible to thin out the
domain and arrange that the clubs all have the same regular order type.

Definition 5.1. Let µ be an uncountable cardinal, and let ν ≤ µ be regular. Let
A ⊆ µ+∩ cof(ν). A sequence 〈cα : α ∈ A〉 is a partial square sequence on A if each
cα is a club subset of α with order type ν, and whenever γ is a limit point of both
cα and cβ, then cα ∩ γ = cβ ∩ γ.

We say that a set A carries a partial square if A is the domain of some partial
square sequence. (Note that in our terminology, A is not necessarily stationary.)

One of the reasons why partial square sequences are interesting is because their
existence can be proven in ZFC. The main result in this direction is the following
theorem of Shelah.

Theorem 5.2 (Shelah [7]). Let µ be a regular uncountable cardinal, and let ν < µ
be regular. Then µ+ ∩ cof(ν) is the union of µ many subsets, each of which carries
a partial square.

It follows from the theorem that for any stationary set S ⊆ µ+ ∩ cof(ν), there is
a club C ⊆ µ+ such that S ∩C can be partitioned into µ many stationary subsets,
each of which carries a partial square.

There are two cases which are not handled by the last theoreom. First, the the-
orem says nothing about the existence of partial square sequences on the successor
of a singular cardinal. Indeed, one of the most important open questions on this
topic is whether ZFC proves the existence of a stationary subset of ℵω+1 ∩ cof(ω1)
which carries a partial square ([2]).

The second case not handled by the theorem is whether, for an uncountable
regular cardinal µ, there exists a stationary subset of µ+ ∩ cof(µ) which carries a
partial square. It turns out that this is independent of ZFC. Clearly �µ implies
that the set µ+ ∩ cof(µ) itself carries a partial square. On the other hand, Magidor
[4] constructed a model satisfying that for an uncountable regular cardinal µ, for
every stationary set S ⊆ µ+ ∩ cof(<µ), there is a club C ⊆ µ+ such that for all α
in C ∩ cof(µ), S ∩ α is stationary in α. Sakai [5] noted that this strong reflection
property implies that there is no stationary subset of µ+ ∩ cof(µ) which carries a
partial square.

In the next section we will construct a model with no partial squares more
directly. Specifically, we will iterate forcing to destroy the stationarity of any subset
of µ+ ∩ cof(µ) which carries a partial square. We feel this is the natural forcing for
constructing a model with no partial squares. Moreover, it seems possible a similar
forcing would work to resolve the problem for successors of singulars.

In general, a forcing iteration as just described will collapse cardinals. For ex-
ample, this is certainly the case if �µ holds. So we first prepare the ground model
by Lévy collapsing a weakly compact cardinal κ to become µ+. We then use the
characterization of weak compactness given above to prove the distributivity of the
iteration.
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We will need the following lemma which asserts that a proper forcing poset
cannot add a thread through a partial square sequence.

Lemma 5.3. Let µ be an uncountable cardinal. Let 〈dξ : ξ ∈ µ+〉 be a sequence,
where each dξ is a subset of ξ. Suppose that P is a proper forcing poset. Let G be a
generic filter on P. Assume that in V [G], c is a club subset of (µ+)V which threads
the sequence 〈dξ : ξ ∈ (µ+)V 〉; that is, if γ is a limit point of c below (µ+)V , then
c ∩ γ = dγ . Then c is in V .

Proof. Suppose for a contradiction that p is a condition in P, and p forces that ċ
is a club subset of (µ+)V , not in V , which threads the sequence 〈dξ : ξ ∈ (µ+)V 〉.
Let θ be a sufficiently large regular cardinal, and let N be a countable elementary
substructure of H(θ) which contains as elements the sets P, p, ċ, and 〈dξ : ξ ∈ µ+〉.

Since p forces that ċ is not in V , there are q, r ≤ p such that for some ζ in µ+,
q 
 ζ ∈ ċ and r 
 ζ /∈ ċ. By the elementarity of N , we can choose q, r, and ζ in N .
Now apply the properness of P to choose N -generic conditions s ≤ q and t ≤ r.

Let α = sup(N ∩ µ+). So ζ ∈ α. As s and t are N -generic, s and t force that

sup(N [Ġ] ∩ µ+) is equal to α. Therefore as ċ ∈ N , s and t force that α is a limit
point of ċ. Since ċ is forced to be a thread, s and t force that ċ∩α = dα. Now s ≤ q,
so s 
 ζ ∈ ċ∩α, and thus ζ is in dα. But as t ≤ r, t 
 ζ /∈ ċ∩α, contradicting that
t forces ċ ∩ α = dα. �

6. No Partial Squares

Let κ be a weakly compact cardinal, and let µ < κ be regular and uncountable.
We will produce a generic extension in which κ has been collapsed to become µ+,
and there are no stationary subsets of µ+ ∩ cof(µ) which carry a partial square
sequence. Without loss of generality we also assume 2κ = κ+. For if this failed,
then we can precede our construction with a collapse Coll(κ+, 2κ). This collapse
does not add subsets of κ, and therefore it preserves the weak compactness of κ.

Our forcing poset will be of the form

Coll(µ,<κ) ∗ P,

where P is an iteration of length κ+ which successively destroys the stationarity of
subsets of µ+ ∩ cof(µ) which carry a partial square. Since Coll(µ,< κ) is κ-c.c.
and has size κ, Coll(µ,<κ) forces 2κ = κ+. When working in V Coll(µ,<κ), we will
write κ and µ+ interchangeably.

By standard arguments, if κ is strongly inaccessible and µ < κ ≤ κ, then
Coll(µ,<κ) forces

µ<µ = µ, 2µ = µ+, µ+ = κ,

and Coll(µ,<κ) is κ-c.c. and has size κ.
Let κ < κ be strongly inaccessible, and suppose G is a generic filter on Coll(µ,<

κ). Let G � κ = {p � (µ× κ) : p ∈ G}. Then G � κ = G ∩Coll(µ,<κ), and G � κ
is a generic filter on Coll(µ,<κ).

We will use the following version of a result of Magidor.

Theorem 6.1 (Magidor [4]). Let κ < κ be strongly inaccessible. Suppose G is a
generic filter on Coll(µ,<κ). In V [G � κ], let P be a µ-closed forcing poset of size
less than κ. Then in V [G], there is a V [G � κ]-generic filter H on P. Moreover,

V [G] = V [G � κ][H][K],
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where K is a V [G � κ][H]-generic filter on some µ-closed forcing poset.

In V let S be the set of N in Pκ(H(κ+)) satisfying:

• N ≺ H(κ+),
• µ+ 1 ⊆ N ,
• κN is strongly inaccessible,
• N<κN ⊆ N ,
• N ≺1 H(κ+N ).

(Recall that κN denotes N ∩ κ.) Since κ is weakly compact, the set S is stationary
by Theorem 3.1.

Let us prove several lemmas which analyze the interaction between sets in S and
the Lévy collapse.

Note that if N is in S and π : N → N is the transitive collapsing map, then

π(Coll(µ,<κ)) = Coll(µ,<κN).

This is true because, since N<κN ⊆ N ,

N ∩Coll(µ,<κ) = Coll(µ,<κN),

and π is the identity on this set.

Lemma 6.2. Let N be in S, and suppose G∗ is a generic filter on Coll(µ,<κN).
Then N [G∗] ≺1 H(κ+N )V [G∗].

Proof. This is a standard fact which follows from the assumption that N ≺1 H(κ+N ).
For a proof, see Theorem 2.11 in Chapter 3 of [8]. �

Lemma 6.3. Let N be in S, and suppose G is a generic filter on Coll(µ,< κ).
Then N [G] ∩ V = N , and N [G]<µ ⊆ N [G].

Proof. Suppose a is in N [G] ∩ V . Let ȧ be a name for a in N . Define A as the set
of x such that for some p in Coll(µ,<κ), p 
 ȧ = x̌. Note that since ȧ is in N ,
A is in N by elementarity, and as Coll(µ,<κ) is κ-c.c., |A| < κ. Hence |A| < κN
by elementarity, so A ⊆ N . But ȧG = a is in A, and hence a is in N . (This is a
standard proper forcing type argument.)

Let f : ν → N [G] be a function, where ν < µ. We show f is in N [G]. Define
g : ν → N by letting g(i) = ȧi be a name in N such that ȧGi = f(i). Since
Coll(µ,< κ) is µ-closed, g is in V . But then in V , g is in N<κN , since µ < κN ,
so g is in N . As g and G are in N [G] and f is definable from g and G, f is in
N [G]. �

Lemma 6.4. Let N be in S, and suppose G is a generic filter on Coll(µ,< κ).
Then

N [G] = N [G � κN ].

In particular, N [G] is a member of V [G � κN ], and

N [G] ≺1 H(κ+N )V [G�κN ].

Proof. Let π : N → N and σ : N [G] → N [G] be the transitive collapsing maps.
We claim that σ � N = π. So let x be in N , and suppose for all y in x, if y is in N
then σ(y) = π(y). Since N [G] ∩ V = N ,

x ∩N [G] = x ∩N.
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So σ(x) = {σ(y) : y ∈ x∩N [G]} = {σ(y) : y ∈ x∩N} = {π(y) : y ∈ x∩N} = π(x).

Thus σ � N = π. In particular, N ⊆ N [G].
Next we claim that

σ(G) = G � κN ,

and in particular, G � κN is in N [G]. Since Coll(µ,< κN) ⊆ VκN , and VκN is a
transitive subset of N [G], σ is the identity function on Coll(µ,<κN). Also

N [G] ∩Coll(µ,<κ) = N ∩Coll(µ,<κ),

as N [G] ∩ V = N . It follows that

N [G] ∩Coll(µ,<κ) = Coll(µ,<κN).

Therefore
N [G] ∩G = G � κN .

For if p is in N [G] ∩ G, then p is in G ∩ Coll(µ,< κN) = G � κN . On the other
hand, if p is in G � κN , then p is in G and p is in N , since Coll(µ,<κN) ⊆ N . So
p is in N [G] ∩ G. Hence σ(G) = {σ(p) : p ∈ N [G] ∩ G} = {σ(p) : p ∈ G � κN} =
{p : p ∈ G � κN} = G � κN .

Since N ⊆ N [G] and G � κN is in N [G], N [G � κN ] ⊆ N [G]. For as N [G] is

isomorphic to N [G], N [G] is closed under the interpretation function ȧ 7→ ȧG�κN .
On the other hand, suppose a is in N [G], and we show σ(a) is in N [G � κN ]. Fix
ȧ in N such that ȧG = a. Then σ(a) = σ(ȧG) = σ(ȧ)σ(G) = π(ȧ)G�κN , which is in
N [G � κN ]. �

Let us observe that the truth of several forcing properties is captured by the
model N [G � κN ], which is a 1-elementary substructure of H(κ+N )V [G�κN ].

First recall that statements of the form “p 
 ẋ ∈ ẏ” and “p 
 ẋ = ẏ” are
absolute between transitive sets, as can be shown by recursion on names. For
example, p 
 ẋ ∈ ẏ iff for all p′ ≤ p there is p′′ ≤ p′ and a pair 〈s, ż〉 in ẏ such that
p′′ ≤ s and p′′ 
 ẋ = ż.

Lemma 6.5. Let P be a forcing poset and λ an ordinal. Then the statement that
λ is regular and P is λ-distributive is Π1.

Proof. It is well known and easily checked that the statement “λ is regular” is Π1.
The statement that P is λ-distributive is equivalent to the following: for all D, for
all β in λ, and for any function f : β → D, if f is surjective and every set in D is
a dense open subset of P, then

⋂
D is dense open. Recall that the property “dense

open” is ∆0, so the last statement is Π1. �

Now we are ready to begin our forcing construction. We would like to iterate
forcing over V Coll(µ,<κ) to add clubs disjoint from every subset of κ∩ cof(µ) which
carries a partial square. We bookkeep so that after κ+ many steps, every subset
of κ has been dealt with. Actually, the forcing poset we define is not literally a
forcing iteration, although it is equivalent to one.

It will be notationally convenient to use an auxiliary partially ordered set

(X,≤X),

which is defined in the model V Coll(µ,<κ). Let X be the set of all closed, bounded
subsets of κ. Let y ≤X x if y is an end-extension of x, that is, if y∩(max(x)+1) = x.
Note that since 2µ = µ+ = κ in V Coll(µ,<κ), X has size κ.
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To describe the factor forcings, let us consider the situation somewhat abstractly.
Assume P is a κ-distributive forcing poset in V Coll(µ,<κ). Note that since P is
κ-distributive, every bounded subset of κ in V Coll(µ,<κ)∗P is in V Coll(µ,<κ). In
V Coll(µ,<κ)∗P let A be a subset of µ+ ∩ cof(µ) (we do not care whether or not A is
stationary). Define a forcing poset P(A) in V Coll(µ,<κ)∗P which adds a club disjoint
from A as follows. A condition in P(A) is a closed, bounded subset of κ (that is, a
member of X) which is disjoint from A. Let q ≤ p in P(A) if q end-extends p (that
is, if q ≤X p).

If p and q are conditions in P(A) which are compatible, then either q ≤ p or
p ≤ q. Indeed, assume max(p) ≤ max(q), and let r ≤ p, q. Then q∩ (max(p) + 1) =
(r ∩ (max(q) + 1)) ∩ (max(p) + 1) = r ∩ (max(p) + 1) = p. So q ≤ p. In particular,
every family of pairwise compatible conditions is a chain.

Lemma 6.6. Let B be a chain of P(A) with size less than µ. Let α = sup{max(p) :
p ∈ B}. Let q =

⋃
B ∪ {α}. Then q is in P(A) and q ≤ p for all p ∈ B.

Proof. If B has a maximum element, then the maximum element is q, and we are
done. Otherwise for all p in B, p is a proper initial segment of q. So q is a condition
in P(A) iff α is not in A. But A is a subset of µ+ ∩ cof(µ), and since |B| < µ and
B has no maximum element, α has cofinality less than µ. �

It follows that P(A) is µ-closed. In general, the forcing poset P(A) might collapse
κ = µ+. But in the specific situation we will be considering, P(A) will be κ-
distributive.

Now we are ready to begin the description of the forcing iteration. For the
remainder of the section, let G be a V -generic filter on Coll(µ,< κ). Unless
specified otherwise, we work in the model V [G]. For the purpose of bookkeeping,
fix a surjective function f : κ+ → κ+ × κ+ such that f(α) = 〈i, j〉 implies i ≤ α.

We define by recursion in V [G] a sequence of forcing posets

〈Pi : i ≤ κ+〉,
and a sequence of names

〈Ṫ ij : i, j < κ+〉.
For each α < κ+, we write Ṫ (α) for Ṫ ij , where f(α) = 〈i, j〉.

Here is a sketch of the definition. Having defined Pα, we define Pα+1 as a forcing

poset which is forcing equivalent to Pα ∗ P(Ṫ (α)), where the second factor adds a

club disjoint from Ṫ (α). The forcing poset Pα will force that Ṫ (α) is a subset of
µ+ ∩ cof(µ) which carries a partial square. At limit stages we take a <κ-support
limit. In the end, the chain condition of Pκ+ will imply that any set which carries
a partial square has appeared already in some previous stage, and our bookkeeping
will ensure that it was made non-stationary along the way.

Before making the definition completely precise, we list our recursion hypotheses.

Recursion Hypotheses 6.7. The following statements hold for all α ≤ κ+:

(1) If p is in Pα, then p : α→ X is a partial function with |dom(p)| < κ.
(2) For all p and q in Pα, q ≤ p iff dom(p) ⊆ dom(q) and for all i in dom(p),

q(i) ≤X p(i).
(3) Let β < α. (a) For all q in Pα, q � β ∈ Pβ. (b) Pβ ⊆ Pα. (c) If q is in Pα

and s ≤ q � β in Pβ, then letting t = s ∪ q � [β, α), t is in Pα and t ≤ s, q
in Pα. (d) The inclusion map Pβ → Pα is a complete embedding.
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(4) Pα is µ-closed.
(5) If α < κ+ then |Pα| < κ+, and if α = κ+ then Pα is κ+-c.c.

(6) If α is a successor ordinal ν+1, then Pα is forcing equivalent to Pν∗P(Ṫ (ν)).

(7) If α < κ+ then 〈Ṫαi : i < κ+〉 is an enumeration of all nice Pα-names for
subsets of κ ∩ cof(µ) which are forced to carry a partial square.

(8) Pα is κ-distributive.

Most of the recursion hypotheses follow easily from the definition. The main
challenge will be to prove 6.7(8), that Pα is κ-distributive, and this is the only
place where we will use the fact that κ is weakly compact in V .

Now we make the definition of the forcing iteration precise.

Base case: Let P0 be the trivial forcing consisting of just the empty condition.

Successor case: Suppose that Pβ is defined for all β ≤ α, where α < κ+, and

moreover that sequences 〈T βi : i < κ+〉 are defined, for all β < α. We assume that
the recursion hypotheses 6.7 are satisfied by these objects.

Let 〈Ṫαi : i < κ+〉 enumerate all nice Pα-names for subsets of µ+ ∩ cof(µ) which
are forced to carry a partial square. Namely, by 6.7(5), |Pα| ≤ κ, and since 2κ = κ+,
Pα has at most κ+ many antichains. So the number of nice Pα-names for subsets
of κ = µ+ is (κ+)κ = κ+.

Now consider the bookkeeping function f : κ+ → κ+ × κ+. Let f(α) = 〈i, j〉.
Then i ≤ α. Therefore Ṫ ij = Ṫ (α) is defined, and Ṫ (α) is a Pi-name for a subset

of µ+ ∩ cof(µ) which carries a partial square. Since the inclusion map Pi → Pα
is a complete embedding and Pα is µ-closed, Ṫ (α) is a Pα-name for a subset of
µ+ ∩ cof(µ). Since being a partial square sequence is upwards absolute, Pα forces

that Ṫ (α) carries a partial square.
Let Pα+1 be the set of all partial functions p : α+ 1→ X satisfying:

(1) p � α ∈ Pα,
(2) if α ∈ dom(p), then p(α) ∈ X and

p � α 
 p(α) ∩ Ṫ (α) = ∅.
Note that (2) is equivalent to

p � α 
 p(α) ∈ P(Ṫ (α)).

Now define a partial ordering on Pα+1 by letting q ≤ p if

(1) q � α ≤ p � α in Pα,
(2) if α ∈ dom(p), then α ∈ dom(q) and q(α) ≤X p(α).

Limit case: Suppose α ≤ κ+ is a limit ordinal and Pi is defined for all i < α as
required. Let Pα be the set of all partial functions p : α→ X satisfying:

(1) p � i ∈ Pi for all i < α,
(2) |dom(p)| < κ.

Define a partial ordering on Pα by letting q ≤ p in Pα if q � i ≤ p � i in Pi for all
i < α.

Our goal is to verify the recursion hypotheses for Pα. Most of these are straight-
forward. 6.7(1) is immediate, and 6.7(2) can be easily checked. 6.7(3) is a standard
fact about forcing iterations, and we omit the easy proof.
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The next lemma follows easily from 6.7(2).

Lemma 6.8. (1) Let p and q be in Pα, and let β < α. If q ≤ p in Pα, then
q � β ≤ p � β in Pβ.

(2) Let β < α, and suppose u and t are in Pβ. Then u ≤ t in Pβ iff u ≤ t in Pα.

The following useful fact follows almost immediately from the definition of Pα.

Lemma 6.9. Suppose p : α→ X is a partial function with |dom(p)| < κ, and p is
not in Pα. Then there is ν < α in dom(p) such that p � ν ∈ Pν , but p � ν does not

force that p(ν) is disjoint from Ṫ (ν).

Lemma 6.10. Let p and q be in Pα, and suppose p and q are incompatible. Then
there is ν in dom(p)∩dom(q) such that neither of p(ν) and q(ν) are initial segments
of the other.

Proof. Assume that for all ν in dom(p)∩dom(q), p(ν) is an initial segment of q(ν),
or vice versa. We show that p and q are compatible. Define r : α → X as the
partial function with domain equal to dom(p) ∪ dom(q), such that for all β in this
domain,

r(β) =

 p(β) if β ∈ dom(p) \ dom(q)
q(β) if β ∈ dom(q) \ dom(p)
p(β) ∪ q(β) if β ∈ dom(p) ∩ dom(q)

It is now easy to check by cases, using Lemma 6.9, that r is in Pα and r ≤ p, q. �

We make a remark about notation. If p is in Pα and i is not in the domain of
p, then strictly speaking, p(i) is not defined. However, we will find it notationally
convenient to write p(i) without knowing whether or not i is in dom(p). In the
case it is not, then by p(i) we mean the empty set. Similarly, max(p(i)) denotes
the empty set if i is not in dom(p).

The next lemma proves 6.7(4), that Pα is µ-closed.

Lemma 6.11. Suppose B is a directed subset of Pα of size less than µ. Define a
partial function q : α→ X with domain equal to⋃

{dom(p) : p ∈ B},

so that for each β in this domain,

q(β) =
⋃
{p(β) : p ∈ B} ∪ {sup{max(p(β)) : p ∈ B}}.

Then q is in Pα, and q ≤ p for all p ∈ B.

Proof. The lemma is proved by induction. First suppose α = ξ + 1 is a successor
ordinal. Then by 6.8(1), {p � ξ : p ∈ B} is a directed subset of Pξ of size less than
µ. So by the lemma applied to Pξ, q � ξ is in Pξ and is below p � ξ for all p ∈ B.
Since B is directed, for all s and t in B, s(ξ) and t(ξ) are compatible with each
other, and hence one is an initial segment of the other. Thus {p(ξ) : p ∈ B} is a

chain. By Lemma 6.6 and the definition of q(ξ), q � ξ forces that q(ξ) is in P(Ṫ (ξ))
and end-extends p(ξ) for all p ∈ B. It follows that q is in Pα and q ≤ pi for all
i < ν.

Now suppose α is a limit ordinal. Then for all β < α, q � β is in Pβ and is below
p � β for all p ∈ B, by the lemma applied to Pβ . Since q has domain of size less
than κ, q is in Pα, and q ≤ p for all p ∈ B. �
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Now we prove 6.7(5). Suppose α < κ+, and we show |Pα| < κ+. The set X,
which is the collection of closed, bounded subsets of κ, has size equal to κ<κ = κ.
By 6.7(1), if p is in Pα, then p : α → X is a partial function with domain of size
less than κ. There are α<κ ≤ κ many possible domains, and for each choice of a
domain, there are no more than |X|<κ = κ<κ = κ many possible conditions. So
Pα has size at most κ× κ = κ.

Lemma 6.12. The forcing poset Pκ+ is κ+-c.c.

Proof. The proof is standard. Given a family {pi : i < κ+} of conditions in Pκ+ ,
using the fact that κ<κ = κ and the ∆-system lemma, we can find an unbounded
set Z ⊆ κ+ and a set a ⊆ κ+ such that for all i < j in Z, dom(pi) ∩ dom(pj) = a
and pi � a = pj � a. Let i < j be in Z. Then Lemma 6.10 implies that pi and pj
are compatible. �

For 6.7(6), assume that α = ν + 1 is a successor ordinal, and we prove that Pα
is forcing equivalent to Pν ∗P(Ṫ (ν)). If p is in Pα, then by definition, p � ν is in Pν ,

and p(ν) is either empty or p � ν 
 p(ν) ∈ P(Ṫ (ν)). Hence we can define a map

i : Pα → Pν ∗ P(Ṫ (ν))

by letting
i(p) = p � ν ∗ p(ν).

Lemma 6.13. The map i : Pν+1 → Pν ∗ P(Ṫ (ν)), given by i(p) = p � ν ∗ p(ν), is

an isomorphism between Pν+1 and a dense subset of Pν ∗P(Ṫ (ν)). Hence Pν+1 and

Pν ∗ P(Ṫ (ν)) are forcing equivalent.

Proof. It is straightforward to show that i is an isomorphism between its domain
and its range, because the orderings are determined by the end-extension relation
≤X , which is absolute. So we only need to see that the range of i is dense in
Pν ∗ P(Ṫ (ν)).

Suppose s ∗ ṫ is in Pν ∗ P(Ṫ (ν)). Without loss of generality, assume s 
 ṫ 6= ∅,
for otherwise we can extend to a condition which satisfies this. Since Pν is κ-
distributive by 6.7(8), we can find s′ ≤ s in Pν and x in X such that s′ 
 ṫ = x̌.
Define

u = s′ ∪ {〈ν, x〉}.
Then u is in Pν+1 and i(u) = s′ ∗ x̌ ≤ s ∗ ṫ. �

This completes the proof of 6.7(6). 6.7(7) is immediate.
It remains to show 6.7(8), that Pα is κ-distributive. For α = κ+, this follows

from the recursion hypotheses.

Lemma 6.14. Suppose Pα is κ-distributive for all α < κ+. Then Pκ+ is κ-
distributive.

Proof. It is straightforward to check that Pκ+ is separative (this uses the fact that
every set in X is non-empty). Hence Pκ+ is κ-distributive iff every function f : µ→
On in a generic extension by Pκ+ is in the ground model.

Let ḟ be a name for f . For each i < µ, let Ai be a maximal antichain contained
in the dense set of conditions which decide the value of ḟ(i). As Pκ+ is κ+-c.c.,
|Ai| < κ+ for all i < µ. But Pκ+ =

⋃
i<κ+ Pi. So there is β < κ+ such that for

all i < µ, Ai ⊆ Pβ . It follows that f is in the generic extension by Pβ . But Pβ is
κ-distributive by assumption, so f is in the ground model. �
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It remains to show that Pα is κ-distributive, for all α < κ+. First we need several
lemmas.

Lemma 6.15. Let ν ≤ κ+. Let Gν be a generic filter on Pν . If A is a subset of
Gν in V [G][Gν ] of size less than µ, then A has a lower bound in Gν .

Proof. Since Gν is directed, we can find a directed set B with A ⊆ B ⊆ Gν , also of
size less than µ. It suffices to find a lower bound of B in Gν . Since Pν is µ-closed,
B is in the ground model V [G]. So in V [G], B is a directed subset of Pν of size
less than µ. Let q be defined as in the statement of Lemma 6.11. Then q is a lower
bound of B.

If q is not in Gν , then there is s in Gν which is incompatible with q. By Lemma
6.10, this means there is ξ in dom(q) ∩ dom(s) such that neither of q(ξ) and s(ξ)
is an initial segment of the other. But for any p in B, p and s are compatible. So
if ξ is in dom(p), then p(ξ) is an initial segment of s(ξ), or vice versa. If p(ξ) is
an initial segment of s(ξ) for all p in B, then by the definition of q, q(ξ) is also.
Otherwise there is p in B such that s(ξ) is an initial segment of p(ξ), and then
clearly s(ξ) is an initial segment of q(ξ). This is a contradiction, so q is indeed in
Gν . �

Consider ν < α ≤ κ+. Let Gν be a V [G]-generic filter on Pν . In V [G][Gν ], we
define a forcing poset Pα/Pν as follows. The underlying set of Pα/Pν is {p � [ν, α) :
p ∈ Pα}. Let t ≤ s in Pα/Pν if there is p in Gν such that p∪ t ≤ p∪ s in Pα. Then
Pα is isomorphic to a dense subset of Pν ∗ (Pα/Pν), by the map

p 7→ p � ν ∗ p � [ν, α).

(See Section 5 of [1] for the details.)

Lemma 6.16. Let ν < α ≤ κ+. Then Pν forces that Pα/Pν is µ-closed.

Proof. Let Gν be a V [G]-generic filter on Pν . In V [G][Gν ], let 〈si : i < ζ〉 be a
descending sequence of conditions in Pα/Pν , where ζ < µ is a limit ordinal. For
each i < j < ζ, choose pi,j in Gν such that

pi,j ∪ sj ≤ pi,j ∪ si
in Pα. Let A = {pi,j : i < j < ζ}. Then A ⊆ Gν and |A| < µ, so by Lemma 6.15,
A has a lower bound q in Gν . By 6.7(3c), q ∪ si is in Pα for all i. By 6.7(2),

q ∪ sj ≤ q ∪ si
in Pα, for all i < j < ζ.

So in V [G], 〈q ∪ si : i < ζ〉 is a descending sequence of conditions in Pα. By
Lemma 6.11, this sequence has a lower bound r satisfying that r � ν = q. Let
u = r � [ν, α), which is in Pα/Pν . Then

r = q ∪ u ≤ q ∪ si
for all i < ζ. Since q is in Gν , this implies

u ≤ si
in Pα/Pν for all i < ζ. �

Proposition 6.17. Let α < κ+. Assume that Pν is κ-distributive for all ν < α.
Then Pα is κ-distributive.
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Proof. Assume that Pν is κ-distributive for all ν < α. We show that Pα is κ-
distributive. Whether α is a successor or a limit ordinal is not relevant. Let D be
a family of µ many dense open subsets of Pα, and let p be a condition in Pα. We
find q ≤ p which is in

⋂
D. Choose Coll(µ,<κ)-names Ṗα, ṗ, and Ḋ in H(κ+)V

for Pα, p, and D.
Let us recall the definition of S. In V , S is the set of N in Pκ(H(κ+)) satisfying:

• N ≺ H(κ+),
• µ+ 1 ⊆ N ,
• κN is strongly inaccessible,
• N<κN ⊆ N ,
• N ≺1 H(κ+N ).

Since κ is weakly compact, the set S is stationary in V .
Choose N in S such that the names Ṗα, ṗ, and Ḋ are members of N . So Pα, p,

and D are in N [G], and N [G] ≺ H(κ+)V [G]. Let

σ : N [G]→ N [G]

be the transitive collapsing map. By Lemmas 6.2, 6.3, and 6.4,

N [G] = N [G � κN ] ≺1 H(κ+N )V [G�κN ],

N [G] ∩ V = N,

and

N [G]<µ ⊆ N [G].

It follows that

N [G � κN ]<µ ⊆ N [G � κN ]

in V [G � κN ], since N [G � κN ] and N [G] are ∈-isomorphic.
The forcing poset Pα is µ-closed, so N [G] models that Pα is µ-closed. Therefore

N [G � κN ] models that σ(Pα) is µ-closed. But N [G � κN ] is closed under subsets
of size less than µ, as noted above. So in V [G � κN ], σ(Pα) really is µ-closed. Note
that

σ � (Pα ∩N [G]) : (Pα ∩N [G],≤)→ (σ(Pα),≤)

is an isomorphism.
We apply Theorem 6.1 to the forcing poset σ(Pα)/σ(p). Fix a V [G � κN ]-generic

filter H on σ(Pα) in V [G], which contains σ(p), such that

V [G] = V [G � κN ][H][K],

where K is a V [G � κN ][H]-generic filter on some µ-closed forcing poset.
Define H by

H = σ−1[H].

So H is a subset of Pα∩N [G]. Note that p is in H, any two conditions in H have a
lower bound in H, and H is N [G]-generic for Pα. For if D is a dense open subset of
Pα in N [G], then N [G � κN ] models that σ(D) is dense open in σ(Pα). The property
“dense open” is ∆0, so σ(D) is a dense open subset of σ(Pα) in V [G � κN ]. Since
H is V [G � κN ]-generic, there is some s in H ∩σ(D). Then σ−1(s) ∈ H ∩D∩N [G].

Let us note that ⋃
{dom(s) : s ∈ H} = N [G] ∩ α = N ∩ α.
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On the one hand, if s is in H, then s has domain of size less than κ, so dom(s) ⊆
N [G]. On the other hand, if γ is in N [G] ∩ α, then by the N [G]-genericity of H,
there is some s in H with γ ∈ dom(s).

Define a partial function q : α → X with domain N [G] ∩ α as follows. By
the compatibility of conditions in H and the N [G]-genericity of H, for each β in
N [G] ∩ α, the set ⋃

{s(β) : s ∈ H}

is cofinal in κN , and is closed below κN . For each β in N [G] ∩ α, define

q(β) =
⋃
{s(β) : s ∈ H} ∪ {κN}.

Then q is a partial function q : α→ X, with domain of size |N [G] ∩ α| ≤ |N [G]| =
µ < κ.

If s is in H, then dom(s) ⊆ dom(q), and for all β in dom(s), q(β) ≤X s(β). So
if we can show that q is a condition in Pα, then q ≤ s in Pα for all s in H. This
implies q ≤ p and q ∈

⋂
D. For let D be in D. Since D ∈ N [G] and |D| = µ < κ,

D ⊆ N [G]. Hence D ∈ N [G]. Therefore we can fix some s in D ∩H. Then q ≤ s,
so q ∈ D, as D is open. Thus we will be done if we can show that q is in Pα.

Let us suppose for a contradiction that q is not a condition in Pα. By Lemma
6.9, there is ν in dom(q) such that q � ν is in Pν , but q � ν does not force that q(ν)

is disjoint from Ṫ (ν). In particular, ν is in N [G].
Let

Hν = {s � ν : s ∈ H}.
Then it is easy to see that

Hν = H ∩ Pν ,
and moreover, Hν is N [G]-generic for Pν . Also, since q � ν is a condition in Pν ,
q � ν is clearly a lower bound of Hν .

Fix a Pν-name Ċ in N [G] for a partial square sequence with domain Ṫ (ν). For
each ξ in κ, let ċξ be a Pν-name such that Pν forces:

ċξ =

{
Ċ(ξ) if ξ ∈ Ṫ (ν)

∅ if ξ /∈ Ṫ (ν)

where Ċ(ξ) is the club indexed by ξ in Ċ. By elementarity, there is such a sequence
of names 〈ċξ : ξ ∈ κ〉 in N [G].

For each γ in κ, let ḋγ be a Pν-name such that Pν forces:

ḋγ =

{
ċξ ∩ γ if ξ ∈ Ṫ (ν) and γ ∈ lim ċξ
∅ if there is no such ξ

Note that by coherence, the definition of ḋγ in the first case is independent of the

choice of ξ. By elementarity, there is such a sequence of names 〈ḋξ : ξ ∈ κ〉 in N [G].

Now each ḋγ is forced by Pν to be a set of ordinals of order type less than µ.

Since Pν is µ-closed, each ḋγ is forced to be in the ground model. For each γ in κN ,
let

dγ = v,

where v is a set such that for some t in Hν ,

t 
 ḋγ = v.
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Note that by the N [G]-genericity of Hν , dγ is defined for all γ in κN , and by
elementarity each dγ is in N [G]. This defines a sequence

〈dγ : γ ∈ κN〉
in the model V [G].

Recall that q � ν does not force that q(ν) is disjoint from Ṫ (ν). But every proper
initial segment of q(ν) is an initial segment of s(ν), for some s in H, and hence is

forced by q � ν to be disjoint from Ṫ (ν). So there is an extension of q � ν which

forces that κN is in Ṫ (ν).
Now ċκN , if non-empty, has order type µ, and by assumption, Pν is κ-distributive.

So we can find r ≤ q � ν and a club c ⊆ κN of order type µ such that

r 
 ċκN = c.

It follows that

∀γ ∈ lim c r 
 ḋγ = c ∩ γ.
But r is a lower bound of Hν . Hence

∀γ ∈ lim c r 
 dγ = c ∩ γ.
Therefore

∀γ ∈ lim c dγ = c ∩ γ.
In other words, c is a thread of the sequence 〈dγ : γ ∈ κN〉 which is in V [G].

Let

Hν = {t � σ(ν) : t ∈ H}.
Then

Hν = H ∩ σ(Pν).

Also

Hν = σ[Hν ].

By 6.7(3) applied to σ(Pα) and σ(Pν), it is easy to check that Hν is a V [G � κN ]-
generic filter on σ(Pν).

We can factor σ(Pα) as

σ(Pν) ∗ σ(Pα/Pν),

and σ(Pν) forces σ(Pα/Pν) is µ-closed. More specifically, N [G � κN ] models these
facts; but the <µ-closure of N [G � κN ] easily implies they are true in V [G � κN ].
Hence we can write

V [G] = V [G � κN ][Hν ][Hν,α][K],

where Hν,α is a generic filter for the µ-closed forcing σ(Pα/Pν). So V [G] is a generic

extension of V [G � κN ][Hν ] by a µ-closed forcing.
Let us prove that the sequence 〈dγ : γ < κN〉 is in V [G � κN ][Hν ]. Note that

σ(〈ḋγ : γ ∈ κ〉) = 〈σ(ḋγ) : γ ∈ κN〉.

For γ in κN , there is s in Hγ such that s 
 ḋγ = dγ . Then σ(s) ∈ Hν , and

σ(s) 
 σ(ḋγ) = σ(dγ).

(Recall that this last forcing statement is absolute between N [G � κN ] and V [G �
κN ].) But dγ is a bounded subset of κN , and the critical point of σ−1 equals κN .
Hence σ(dγ) = dγ . So

σ(s) 
 σ(ḋγ) = dγ .
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It follows that
σ(ḋγ)Hν = dγ .

Now the sequence 〈σ(ḋγ) : γ < κN〉 and the set Hν are in V [G � κN ][Hν ]. So the

sequence 〈dγ : γ < κN〉 is in V [G � κN ][Hν ].
Recall that κN is equal to µ+ in the model V [G � κN ]. We claim that κN equals

µ+ in the model V [G � κN ][Hν ]. It suffices to show that σ(Pν) is κN -distributive in
V [G � κN ]. The forcing poset Pν is κ-distributive in V [G], so

N [G] |= Pν is κ-distributive.

As σ is an isomorphism,

N [G � κN ] |= σ(Pν) is κN -distributive.

But
N [G � κN ] ≺1 H(κ+N )V [G�κN ],

and the property of being κN -distributive is Π1, so

H(κ+N )V [G�κN ] |= σ(Pν) is κN -distributive.

Since every family of dense open subsets of σ(Pν) of size µ is in H(κ+N )V [G�κN ],
σ(Pν) is κN -distributive in V [G � κN ].

Now we apply Lemma 5.3 to get a contradiction. The model V [G] is a generic
extension of V [G � κN ][Hν ] by a µ-closed (and hence proper) forcing poset. The
sequence 〈dγ : γ ∈ κN〉 is in V [G � κN ][Hν ], and has a thread c in V [G]. By Lemma

5.3, c is in V [G � κN ][Hν ]. But this is impossible, because c is a cofinal subset of
κN of order type µ, whereas κN = µ+ in V [G � κN ][Hν ]. �

Let P = Pκ+ . This completes the construction of our forcing poset,

Coll(µ,<κ) ∗ P.
Let H be a V [G]-generic filter on P. Since P is κ-distributive, κ is equal to µ+ in

V [G][H]. Suppose A is a subset of µ+∩cof(µ) which carries a partial square. Then

there is a nice name Ȧ for A which is forced by P to carry a partial square. Using
the κ+-chain condition of P and the fact that P =

⋃
i<κ+ Pi, we can find β < κ+

such that Ȧ is a nice Pβ-name for a subset of µ+ ∩ cof(µ) which carries a partial
square (using an argument similar to the proof of 6.14). But then at some stage
γ ≥ β, κ \A acquires a club subset. Therefore A is non-stationary in V [G][H].

A question which arises from this work is whether a weakly compact cardinal
is necessary in the above result, or whether a weaker large cardinal hypothesis
suffices. For example, assume µ ≥ ω1 is regular, and there is no stationary subset
of µ+ ∩ cof(µ) which carries a partial square. Does it follow that µ+ is weakly
compact in L?
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