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RELATIVE DECIDABILITY AND DEFINABILITY IN

HENSELIAN VALUED FIELDS

JOSEPH FLENNER

Abstract. Let K be a henselian valued field of characteristic 0. Then K

admits a definable partition on each piece of which the leading term of a poly-
nomial in one variable can be computed as a definable function of the leading
term of a linear map. Two applications are given: first, a constructive quan-
tifier elimination relative to the leading terms, suggesting a relative decision
procedure; second, a presentation of every definable subset ofK as the pullback
of a definable set in the leading terms subjected to a linear translation.

1. Introduction

In [8], Holly showed that definable subsets of algebraically closed valued fields
can be expressed canonically as disjoint unions of swiss cheeses, sets of the form

S \ (T1 ∪ . . . ∪ Tn)

where the S, Ti are open or closed balls. In this way she presents the balls as the
basic building blocks of the definable subsets of the field K. The language of valued
fields used here is a three-sorted one, with sorts for the field, the value group, and
the residue field.

Holly’s theorem relied essentially on the completeness and quantifier elimination
in the theory of algebraically closed valued fields (ACVF) dating from Robinson
[16]. As made explicit in [9], this was intended as a first step towards the elimina-
tion of imaginaries for ACVF that came to fruition in work of Haskell, Hrushovski,
and Macpherson in [6]. This in turn became a starting point for a line of work
establishing ACVF as a testing ground for the adaptation of methods from sta-
bility theory to nonstable theories. See for example the monograph [7] of Haskell,
Hrushovski, and Macpherson.

Meanwhile, model-theoretic work on the p-adics has paralleled to some degree
work on ACVF. We have, for example, the decision procedure of Cohen [5] and
quantifier elimination of Macintyre [13]. Macintyre’s theorem exists in a language
enhancing the usual valued field language by a system of predicates identifying
the nth powers for each n. Translated into the value group (Z,+), this evokes
the divisibility predicates which are precisely what is needed to achieve quantifier
elimination in Presburger arithmetic.

Indeed, it appears that in the general setting of henselian valued fields, many
of the sort of results holding outright in ACVF can be proved, in a sense, modulo
the associated theories of residue field and value group. This idea began with Ax-
Kochen [1–3] and Ersov, establishing the completeness of the theory of henselian
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2 JOSEPH FLENNER

valued fields of pure characteristic 0 relative to the theories of the residue field and
value group.

For general henselian fields, however, quantifier elimination relative to the residue
field and value group fails. Suggesting that perhaps the three-sorted language em-
ployed by Holly is not optimal in the henselian case, Kuhlmann [12] has obtained
elimination of quantifiers relative to an associated structure of ‘additive and mul-
tiplicative congruences’.

We aim to prove for henselian valued fields of characteristic 0 analogues of both
Holly’s theorem on canonical forms of subsets of the field and of Cohen’s on de-
cidability. To do so we adopt a language built around structures of leading terms
which is equivalent to (but for our purposes somewhat more syntactically conve-
nient than) Kuhlmann’s. These both capture the information of the value group
and residue field, and provide an algebraic view of the topology of balls.

Section 2 covers the relevant definitions and basic properties. The main technical
tool is in Section 3, in which it is shown that the field admits a partition on each
piece of which the leading term of a polynomial in x can be easily computed in
terms of the leading term of x − a, some a ∈ K. Section 4 uses this to describe a
constructive relative quantifier elimination procedure (differing in particular from
Kuhlmann’s result in its constructivity), while Section 5 concludes with a char-
acterization of the definable subsets (in one variable) of the field relative to the
definable subsets of the leading term structures.

While elimination of imaginaries has already been generalized from ACVF to the
p-adics [10] (as well as real-closed valued fields [14]), it is hoped that this may even-
tually form the one-dimensional case for a more native and comprehensive approach
to a relative elimination of imaginaries for henselian valued fields in characteristic
0.

1.1. Acknowledgments. The bulk of the research presented here was done while
the author was a graduate student at the University of California, Berkeley un-
der the supervision of Thomas Scanlon. My gratitude for Dr. Scanlon’s advice and
insight through countless discussions on this subject (and many others as well) can-
not be overstated. I would also like to thank Deirdre Haskell, Dugald Macpherson,
and Anand Pillay for helpful conversations and support during and after visits to
Hamilton and Leeds. Some loose ends were tied up and a first draft written while I
was hosted by the Hausdorff Research Institute for Mathematics, whose hospitality
during their trimester program on Diophantine Equations I happily acknowledge.

2. Leading terms

2.1. Definitions and notation. To fix notation, we work in a valued field K with
value group V and valuation ring O := {x ∈ K | v(x) ≥ 0}. Among the ideals of O
are

mδ := {x ∈ O | v(x) > δ}

and in particular the (unique) maximal ideal m := m0.
The residue field is R := O/m, and the residue of x is written either x̄ or res(x)

as convenient. More generally, for any δ ≥ 0 in V we have the ring Rδ := O/mδ

with reduction map resδ : O → Rδ.
Valued fields possess a topology having as basic open sets the open balls

B>δ(a) := {x ∈ K | v(x − a) > δ}
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with center a and radius δ. Closed balls B≥δ(a) are defined in the obvious way,
and we will also have occasion to refer to balls of the form

B>δ/n(a) := {x ∈ K | nv(x− a) > δ}

even if δ is not divisible by n in V . We allow the radius δ to be either ∞ or −∞,
so K, ∅, and {a} are all balls.

It is readily shown using the ultrametric inequality v(x + y) ≥ min {v(x), v(y)}
that for any two balls B and C, if B ∩ C 6= ∅ then B ⊆ C or C ⊆ B; that any
element of B is a center of B; and that both the open and closed balls are in fact
clopen in the valuation topology.

Definition 2.1. Let δ ≥ 0 in V . The leading term structure of order δ is the
quotient group

RVδ := K×/(1 +mδ).

The quotient map is denoted rvδ : K× → RVδ. As with the value group, it is
convenient to include an element ∞ in RVδ as rvδ(0). Generally, the subscript 0
will be omitted, so RV = RV0 and rv = rv0.

Besides the induced multiplication, RVδ inherits a partially defined addition from
K via the relation

⊕δ(x,y, z) ⇐⇒ ∃x, y, z ∈ K (x = rvδ(x) ∧ y = rvδ(y) ∧ z = rvδ(z) ∧ x+ y = z) .

The sum x+y is said to be well-defined (and = z) if there is exactly one z such
that ⊕δ(x,y, z). While the notation x+ y = z will be used exclusively when well-
defined, in order to better accommodate sums of more than two terms it will be
useful to write x+ y ≈ z for ⊕δ(x,y, z) in general, bearing in mind that x+ y ≈ z

and x+ y ≈ w does not imply z = w.
If γ ≥ δ ≥ 0, since 1 + mγ ⊆ 1 +mδ there is a natural map RVγ → RVδ, which

we also denote rvδ, or rvγ→δ should there be fear of confusion.
To be clear, then, the leading term language refers to a multisorted language

(K, 〈RVδ〉δ∈∆)

with the usual ring language on the field sort, ∆ ⊆ {δ ∈ V | 0 ≤ δ <∞} to be
specified as needed, the multiplication and the relation⊕δ on each RVδ, and as maps
between the sorts rvδ : K → RVδ and rvγ→δ : RVγ → RVδ for each γ ≥ δ ∈ ∆.

The following propositions justify some of the claims of the Introduction. The
proofs follow directly from the definitions.

Proposition 2.2. Given 0 ≤ δ ∈ V , the following are equivalent for all nonzero
x, y ∈ K:

(1) rvδ(x) = rvδ(y)
(2) v(x − y) > v(y) + δ
(3) resδ(x/y) = 1 in Rδ

(4) B>v(x)+δ(x) = B>v(y)+δ(y) �

In particular, note that because v(x−y) > v(y) can occur only when v(x) = v(y),
rvδ(x) = rvδ(y) implies v(x) = v(y). Thus we can speak unambiguously of v(x) for
x ∈ RVδ (any δ ≥ 0).

The following example provides a good general source of intuition.
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Example 2.3. Let R be any field, and V any ordered abelian group. The Hahn field
R((tV )) consists of the formal power series over R

∑

δ∈V

cδt
δ

where the support {δ | cδ 6= 0} is well-ordered. Taking v
(
∑

cδt
δ
)

= min {δ | cδ 6= 0},

R((tV )) has residue field R and value group V .
More concretely, in case R = Q and V = Z, we have the field Q((t)) of Laurent

series over the rational numbers. Two such series will have the same leading term
of order 3, say, if they have the same value and their first four coefficients coincide.
Thus, if

x = t−2 + t−1 + 1+ t+ 2t2 + t3 + . . .
y = t−2 + t−1 + 1+ t+ t2 + t3 + . . .

then rv3(x) = rv3(y) since v(x) = v(y) = −2 and v(x − y) = v(t2) = 2 > v(y) + 3.
But rv4(x) 6= rv4(y).

Next we establish when the addition on RVδ is well-defined.

Proposition 2.4. Let δ ≥ 0, and v(x+ y) = min{v(x), v(y)}. Then for all z such
that rvδ(z) = rvδ(x), rvδ(z + y) = rvδ(x + y).

Conversely, if v(x+ y) > v(x), then there exists z such that rvδ(z) = rvδ(x) but
rvδ(z + y) 6= rvδ(x+ y).

Proof. Consider z = x(1 +m), with v(m) > δ. Defining m′ := xm
x+y , we then find

z + y = x(1 +m) + y = x+ y + (x + y)m′ = (x+ y)(1 +m′)

and

v(m′) = v(m) + v(x)− v(x + y) ≥ v(m) > δ.

On the other hand, suppose v(x + y)− v(x) = ε > 0, and let m be any element
of value δ + ε. Take z := x(1 +m). As v(m) > δ, rvδ(z) = rvδ(x). But

v((z + y)− (x+ y)) = v(z − x) = v(x) + v(m) = v(x + y) + δ

implies, by Proposition 2.2, that rvδ(z + y) 6= rvδ(x+ y). �

Therefore, there is a well-defined z ∈ RVδ such that ⊕δ(rvδ(x), rvδ(y), z) pre-
cisely when v(x+ y) = min{v(x), v(y)}, namely z = rvδ(x+ y).

For later use, it will be necessary to extend 2.4 to sums of more than two
terms in RVδ. This is not entirely automatic, since even if say v(x + y + z) =
min {v(x), v(y), v(z)}, it may be the case that rvδ(y) + rvδ(z) is not well-defined.
It must then be shown that if ⊕δ(rvδ(y), rvδ(z),u1) and ⊕δ(rvδ(y), rvδ(z),u2) with
u1 6= u2, we still have rvδ(x)+u1 = rvδ(x)+u2. This however is easily accomplished
with help from Proposition 2.2.

Proposition 2.5. Suppose that v(x1 + . . . + xn) = min {v(x1), . . . , v(xn)}. Then
y ≈ rvδ(x1) + . . .+ rvδ(xn) if and only if y = rvδ(x1 + . . .+ xn). �

The next proposition clarifies what happens when the addition is not well-
defined.

Proposition 2.6. Suppose that v(x1+ . . .+xn)−min {v(xi)} = ε > 0. If γ ≥ δ+ε
and rvγ(x1) + . . .+ rvγ(xn) ≈ z ∈ RVγ , then rvγ→δ(z) = rvδ(x1 + . . .+ xn).
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Proof. By definition of ⊕γ , there are z ∈ K and mi ∈ mγ such that z = rvγ(z) and
z = x1(1 +m1) + . . .+ xn(1 +mn). Now

v(x1 + . . .+ xn − z) = v(x1m1 + . . .+ xnmn) ≥ min {v(ximi)}

> min {v(xi)}+ γ ≥ min {v(xi)}+ ε+ δ = v(x1 + . . .+ xn) + δ

and Proposition 2.2 give rvδ(x1 + . . .+ xn) = rvδ(z) = rvγ→δ(z). �

In other words, when v(x + y) > v(x), while 2.4 shows that there is more than
one z ∈ RVγ such that rvγ(x) + rvγ(y) ≈ z, 2.6 implies that all such z have the
same image in RVδ for δ ≤ γ − (v(x+ y)− v(x)).

As a corollary, the following proposition shows that when v(x + y) is not too
much larger than v(x) (compared to γ), at least v(rvγ(x) + rvγ(y)) is well-defined.
On the other hand, when v(x + y) > v(x) + γ, nothing further can be said.

Proposition 2.7. Suppose ε = v(x + y)− v(x) ≥ 0. Then

(i) if γ ≥ ε and ⊕γ(rvγ(x), rvγ(y), z1) and ⊕γ(rvγ(x), rvγ(y), z2), then v(z1) =
v(z2).

(ii) if 0 ≤ γ < ε and v(z) > v(x) + γ, then ⊕γ(rvγ(x), rvγ(y), rvγ(z)).

Proof. The first statement is an immediate consequence of 2.6 with δ = 0, while
the second follows from rvγ(x) = rvγ(x+ z), rvγ(y) = rvγ(−x). �

2.2. Interpretations. Recall that a structure N is interpretable inM over A ⊆M
when there is an A-definable subset S ⊆Mn and anA-definable equivalence relation
∼ on S such that

(i) the elements of N are in bijection with the equivalence classes of ∼, and
(ii) the relations on S induced by the relations and functions ofN by this bijection

are all A-definable.

As suggested by Proposition 2.2, the leading term structures in a sense encompass
both residue field and value group. This can now be made more explicit.

Proposition 2.8. Let 0 ≤ δ ∈ V and d ∈ RVδ be any element with v(d) = δ.

(1) The value group V is interpretable in RVδ over {d}.
(2) The ring Rδ is interpretable in RVδ over {d}.
(3) For γ > δ, RVδ is interpretable in RVγ over {d}.

Proof. (1): To begin, observe that v(x) > 0 is definable in RVδ. Indeed, it is easily
verified that

v(x) > 0 ⇐⇒ dx+ 1 = 1

(where 1 = rvδ(1)). From this it follows that v(x) = 0 is also definable:

v(x) = 0 ⇐⇒ ¬v(x) > 0 ∧ ∃y (xy = 1 ∧ ¬v(y) > 0) .

Now define the equivalence relation ∼ on RVδ by

x ∼ y ⇐⇒ ∃u (v(u) = 0 ∧ x = uy) .

Clearly, we have x ∼ y iff v(x) = v(y), so that the equivalence classes of ∼ in RVδ

are in bijection with V .
Moreover, addition of v(x) + v(y) in V corresponds to the multiplication xy in

RVδ, and the group ordering < is defined by x < y iff x 6= ∞∧ x+ dy = x.
(2): Define ∼ on RV+

δ := {x ∈ RVδ | v(x) ≥ 0} by

x ∼ y ⇐⇒ ∃z (v(z) > δ ∧ x− y = z) .
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We leave it to the reader to confirm that elements of Rδ are in bijection with the
∼-equivalence classes in RV+

δ , with resδ(x) corresponding to rvδ(x)/ ∼. The mul-
tiplication and addition in Rδ translates directly from multiplication and addition
in RVδ.

(3): Considering x = rvγ(x),y = rvγ(y) ∈ RVγ , it will be enough to show that
x ∼ y ⇔ rvδ(x) = rvδ(y) is definable over {d} in RVγ . Recalling 2.7, this follows
from

rvδ(x) = rvδ(y) ⇐⇒ v(x − y) > v(y) + δ
⇐⇒ ∃z ∈ RVγ (v(z) > v(y) + δ ∧ x− y ≈ z) .

�

In the following sections, we will only need to consider RVδ when δ is the value
of an integer. Then the d in 2.8 would always be ∅-definable, in which case the
interpretations could in fact be taken over ∅.

As noted in the Introduction, in [12] Kuhlmann has introduced the ‘structures
of additive and multiplicative congruences’ which connect the structure of Rδ and
V in a similar way. He defines, for each δ ≥ 0 in V , the system

Kδ := (Rδ,RVδ,Θδ(x, y))

(whereby RVδ is taken only as a multiplicative group). The relation Θδ is defined
on Rδ × RVδ as

Θδ(x, y) ⇔ ∃z ∈ O (resδ(z) = x ∧ rvδ(z) = y) .

It can also be shown that RVδ interprets Kδ and vice versa. In fact, the two
structures bear the stronger mutual relation of (quantifier-free) bi-interpretability.
Though we find the formalism of the leading term language more convenient,
the two languages should be taken as equivalent. Cluckers and Loeser [4] and
Hrushovski and Kazhdan [11] each work with other alternative manifestations of
the leading term structures.

2.3. Henselian fields. The valued field K is called henselian if it satisfies

Hensel’s Lemma. For all P (x) ∈ O[x] and a ∈ O, if v(P (a)) > 0 and v(P ′(a)) =
0, then there exists b ∈ O such that P (b) = 0 and ā = b̄.

For examples of henselian fields, in addition to the p-adics Qp we have the Hahn
fields R((tV )) of Example 2.3. This shows in particular that from an arbitrary field
R and ordered abelian group V , a henselian field can be constructed with R and V
as residue field and value group.

It is well known that Hensel’s Lemma can be reformulated to loosen the restric-
tion on v(P ′(a)) as in the following proposition. See [15] for a proof, as well as a
thorough exposition of other equivalent forms of Hensel’s Lemma.

Proposition 2.9. Suppose K is henselian, P (x) ∈ O[x] and a ∈ O. If v(P (a)) >
2v(P ′(a)), then there exists b ∈ O such that P (b) = 0 and ā = b̄. �

Both of these guarantee the existence of a root b of P close to the ‘approximate
root’ a, in the sense that v(a− b) > 0. In working with the leading term structures,
it will be desirable to refine the conclusion that a and b have the same residue to
give rvδ(a) = rvδ(b) (note that ā = b̄ implies rv(a) = rv(b) only when v(a) = 0).
A sharper result on the proximity of the approximate root to an actual root is
obtained in
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Proposition 2.10. Suppose K is henselian, P (x) ∈ O[x], a ∈ O, and 0 ≤ δ ∈ V . If
v(P (a)) > 2v(P ′(a))+δ, then there exists b ∈ O such that P (b) = 0 and v(a−b) > δ.

Proof. By induction on d := deg(P ). Let b be the root of P given by Proposition
2.9, and factor P (x) = (x− b)R(x). We have

v(P (a)) = v(a− b) + v(R(a)),

v(P ′(a)) = v((a− b)R′(a) +R(a)) ≥ min {v(a− b) + v(R′(a)), v(R(a))} .

Assume first that v(R(a)) ≤ v(a− b) + v(R′(a)). Then v(P (a)) > 2v(P ′(a)) + δ
gives

v(a− b) + v(R(a)) > 2v(R(a)) + δ,

whence v(a− b) > v(R(a)) + δ ≥ δ.
If on the other hand v(a−b)+v(R′(a)) < v(R(a)), v(P ′(a)) = v(a−b)+v(R′(a))

implies

v(R(a)) > 2v(R′(a)) + v(a− b) + δ > 2v(R′(a)) + δ.

Now the induction gives a root c of R, and so also of P , such that v(a− c) > δ. �

Therefore, to produce a root b with rvδ(a) = rvδ(b), it would suffice to require
that v(P (a)) > 2v(P ′(a)) + γ with γ at least v(a) + δ.

3. Decomposition

3.1. Collisions. From now on, the valued field K is assumed to be henselian and
of characteristic 0. The residue field may have positive characteristic, though the
results generally take a simpler form in the pure characteristic 0 case.

The goal being to investigate definability in K through the leading term struc-
tures, this would be trivial if we could simply say for f(x) ∈ K[x] that rv(f(x)) =
f(rv(x)). However, as seen in Proposition 2.4, this is not always the case. For exam-
ple, rv(x2+a) is identically equal to rv(x)2+rv(a) only when the sum is well-defined.
Difficulties arise wherever x2 and a ‘collide’ to make v(x2 + a) > min{v(x2), v(a)}.

Our strategy is to partition K so that on each piece of the partition, v(f(x))
reduces to a simple form and rvδ(f(x)) can be analyzed within RVδ in linear terms
as a function of rvδ(x − α) for some α ∈ K.

Definition 3.1. Say f(x) =
d
∑

i=0

ai(x−α)i has a collision at β around α if v(f(β)) >

min
i≤d

{v(ai(β − α)i)}. In this case, the severity of the collision is the value

v(f(β))−min
i≤d

{v(ai(β − α)i)}.

Note that it is impossible for a polynomial to have a collision at α around α,even
if α is a root of f(x). On the other hand, if α 6= β, then f(β) = 0 iff f(x) has a
collision of infinite severity at β around α.

As mentioned above, by Proposition 2.5 for any β where f(x) does not have a
collision,

rvδ(f(β)) =

d
∑

i=0

rvδ(ai) rvδ(β − α)i

is well-defined. Accordingly, the existence of a collision at β around α depends only
on rv(β − α).
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In fact, we can go further by locating collisions near roots of the derivatives
of f(x). Here let us introduce the convention that if deg(f) = d then by the
derivatives of f(x) we mean f , f ′, . . . , and f (d), notably including f itself as the
‘0th derivative’.

By scaling f(x) ∈ K[x] to obtain a polynomial P (x) over O, it is possible to
transfer Hensel’s Lemma to polynomials over the field rather than only the valuation
ring, with collisions filling the role of the conditions on the valuation of P . The
following can be seen as a further generalization of the Hensel property along these
lines, giving a root of a derivative of f wherever f has a collision exceeding a bound
on the severity.

Proposition 3.2. Let α ∈ K and f(x) =
d
∑

i=0

ai(x − α)i. Suppose moreover that f

has a collision at β around α of severity ε > 2m(v(m!) + δ), where

m = max
{

i ≤ d | ∀j ≤ d
(

v(ai(β − α)i) ≤ v(aj(β − α)j)
)}

.

Then there is a λ ∈ K and n < m such that f (n)(λ) = 0 and rvδ(λ−α) = rvδ(β−α).

Proof. Note first that β 6= α, since otherwise v(f(β)) = v(a0) and f cannot have a
collision at β.

Define σ := am(β − α)m and

P (x) :=
f((β − α)x + α)

σ
=

1

σ

d
∑

i=0

ai(β − α)ixi.

So, P (x) ∈ O[x] and v(P (1)) = ε.
Consider P (m)(1). Since

P (m)(1) =
1

σ

d
∑

i=m

i!

(i−m)!
ai(β − α)i

for i = m we have

v

(

1

σ

i!

(i−m)!
ai(β − α)i

)

= v

(

m!

σ
am(β − α)m

)

= v(m!)

while for i > m,

(1) v

(

1

σ

i!

(i−m)!
ai(β − α)i

)

= v

(

i!

(i−m)!

)

+v
(

ai(β − α)i
)

−v (am(β − α)m) .

Since m! divides i!/(i−m)!, and v(ai(β − α)i) > v(am(β − α)m) by maximality of
m, the quantity in (1) is greater than v(m!). Thus we conclude that

v
(

P (m)(1)
)

= v(m!).

Now, from

v(P (1)) > 2m (v(m!) + δ) = 2m
(

v(P (m)(1)) + δ
)

we must have for some n < m

v
(

P (n)(1)
)

> 2
(

v(P (n+1)(1)) + δ
)

.
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Proposition 2.10 now gives u ∈ O with P (n)(u) = 0 and rvδ(u) = rvδ(1). Set
λ := (β − α)u + α. Since β − α 6= 0, it follows from

P (n)(u) =
(β − α)n

σ
f (n)(λ) = 0

that f (n)(λ) = 0. Finally, rvδ(λ−α) = rvδ(u(β−α)) = rvδ(β−α), as required. �

3.2. The decomposition. Like the m in the proof of Proposition 3.2, we will
frequently need to refer to the largest degree term carrying the smallest valuation.
Therefore define

(2) m(f, α, S) := max
{

i ≤ d | ∃x ∈ S ∀j ≤ d
(

v
(

ai(x− α)i
)

≤ v
(

aj(x− α)j
))}

where as before the ai are the coefficients of the expansion of f(x) around α,
f(x) =

∑

ai(x − α)i. Thus, m(f, α, S) is the highest power term in f centered at
α which can have minimal valuation (among the other terms of f) on S.

Proposition 3.3. If f(x) ∈ K[x], β ∈ S, v(β − α) = δ, and T ⊆ B≥δ(β), then
m(f, β, T ) ≤ m(f, α, S).

Proof. Let f(x) =
d
∑

i=0

ai(x− α)i =
d
∑

i=0

bi(x− β)i and

n := max
{

i ≤ d | ∀j ≤ d
(

v(an (β − α)n) ≤ v
(

aj(β − α)j
))}

(so n ≤ m(f, α, S)). Define also σ := an(β − α)n.
Like in Proposition 3.2, from f(x) we define the polynomials

Pα(x) :=
f((β − α)x+ α)

σ
=

1

σ

d
∑

i=0

ai(β − α)ixi

Pβ(x) :=
f((β − α)x+ β)

σ
=

1

σ

d
∑

i=0

bi(β − α)ixi

so that Pα ∈ O[x] and deg (res (Pα)) = n.
Furthermore, since Pα(x + 1) = Pβ(x), Pβ(x) ∈ O[x] and deg (res (Pβ)) =

deg (res (Pα)) = n as well. This implies that

(3) 0 = v(bn) + nδ = v (bn(β − α)n) < v
(

bi(β − α)i
)

= v(bi) + iδ

for i > n.
Now, taking any ζ ∈ T , v(ζ − β) ≥ δ combined with (3) gives

v (bn(ζ − β)n) < v
(

bi(ζ − β)i
)

for all i > n. Therefore we have m(f, β, T ) ≤ n ≤ m(f, α, S). �

The partition of K is made up of swiss cheeses. Recall that a swiss cheese is a
set of the form B \ (C1 ∪ . . . ∪ Cn), where B and each Ci are (open or closed) balls,
including K itself as well as singletons. A key property is that the intersection of
two swiss cheeses is again a swiss cheese.

Proposition 3.4. Let f(x) ∈ K[x] and S be a swiss cheese in K. Then there exist
(disjoint) sub-swiss cheeses T1, . . . , Tk ⊆ S and α1, . . . , αk ∈ K such that

S =

k
⋃

i=1

Ti
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and for all x ∈ Ti,

v (aimi
(x− αi)

mi) ≤ v(f(x)) ≤ v (aimi
(x− αi)

mi) + 2miv(mi!)

where f(x) =
d
∑

n=0
ain(x− αi)

n and mi = m(f, αi, Ti).

Furthermore the αi can be chosen from among the roots of the derivatives of
f(x).

Proof. To begin, choose any root α of a derivative of f , and let f(x) =
∑d

n=0 ai(x−
α)i. For simplicity, assume that S is a ball B≥γ(α). No generality is lost as a
decomposition for B≥γ(α) ⊇ S may simply be intersected with S to get the desired
result. In particular, α ∈ S.

The proof proceeds by a double induction, first on m(f, α, S) and then on the
number of roots of derivatives of f contained in S. Clearly, if m(f, α, S) = 0, then
v(f(x)) = v(a0) for all x ∈ S.

Now suppose m(f, α, S) = m. Let

D := {δ ≥ γ | ∀i ≤ m (v(am) +mδ ≤ v(ai) + iδ)} .

In other words, m(f, α, S) = m when v(am(x − α)m) is minimal somewhere in S
(within the set

{

v(ai(x − α)i) | 0 ≤ i ≤ d
}

), while D gives those values where it
actually is minimal. Define also

BD := {x ∈ S | v(x− α) ∈ D} .

D is an initial segment of [γ,∞). Indeed, if γ ≤ ε < δ ∈ D and i < m, then
v(ai) + iδ ≥ v(am) +mδ implies

(4) v(ai) + iε > v(am) +mε,

so ε ∈ D as well. We need not consider i > m, by the maximality of m.
In particular, the inequality in (4) becomes strict for ε < δ. Therefore we have

also shown that if ε ∈ D is not a maximal element of D, then for all x such that
v(x− α) = ε,

v(f(x)) = v(am(x− α)m).

This already suffices to prove the claim if D = [γ,∞), so we assume that D
is in fact a proper initial segment. In this case, there is some i < m such that
v(am(x − α)m) > v(ai(x − α)i) whenever v(x − α) > δ for every δ ∈ D. Set
η := v(ai)− v(am) and note that

S \BD = B≥γ(α) \BD = B>η/(m−i)(α)

since for x ∈ S,

x /∈ BD ⇔ v(ai(x− α)i) < v(am(x− α)m)

⇔ v(ai)− v(am) < (m− i)v(x− α).

Therefore, so far we have:

(i) if x ∈ BD = B≥γ(α) \B≥η/(m−i)(α), but v(x− α) is not maximal in D, then
v(f(x)) = v(am(x− α)m) by (4);

(ii) if x ∈ S \ BD = B>η/(m−i)(α), then m(f, α,B>η/(m−i)(α)) < m and the
induction hypothesis applies.
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Note that the existence of a maximal element of D depends on the divisibility of η
by m − i in V , but regardless, as mentioned in Section 2.1, open (or closed) balls
of radius η/(m− i) are still definable.

Setting δ := η/(m− i), now S is the disjoint union of the three swiss cheeses

S = B≥γ(α) \B≥δ(α) ∪ B≥δ(α) \B>δ(α) ∪ B>δ(α),

the second being empty if δ /∈ V . On the first of these, as observed above, v(f(x)) =
v(am(x − α)m), and on the last, m(f, α,B>δ(α)) < m. It therefore remains only
to consider A := B≥δ(α) \B>δ(α), i.e. where D contains a maximal element δ and
v(x− α) = δ.

Let C be the set {x ∈ A | v(f(x)) > v (am(x− α)m) + 2mv(m!)}. Now the con-
dition on v(f(x)) of the proposition also holds on A \ C, so in fact it only remains
to consider v(f(x)) on C. Define an equivalence relation ∼ on C by x ∼ y ⇔
v(x− y) > δ ⇔ rv(x − α) = rv(y − α).

Proposition 3.2 shows that each ∼-equivalence class in C contains a root λ of
a derivative of f . Thus, each such equivalence class is of the form B>δ(λ), and
in particular, there are finitely many of them. So A \ C is a swiss cheese, and we
finally must only prove the claim for a ball B = B>δ(λ).

By Proposition 3.3, m(f, λ,B) ≤ m. If in fact m(f, λ,B) < m, then the induc-
tion hypotheses takes effect, and we’re done. However, equality may occur. In this
case, however, note that α /∈ B (since f cannot have a collision at α around α).
As α was chosen to be a root of a derivative of f and α ∈ S, B contains strictly
fewer roots of derivatives of f than S. Thus, in this case the secondary induction
hypothesis applies to complete the proof. �

In residue characteristic 0 the statement of Proposition 3.4 simplifies consid-
erably: since v(n) = 0 for all integers n, on each Ti we get in fact v(f(x)) =
v (aimi

(x− αi)
mi).

Finally, we return to the leading term structures to find that the above decom-
position also enables the analysis of rvδ(f(x)). Thanks to Propositions 2.5 and 2.6,
this is an immediate consequence of the above proposition.

Proposition 3.5. Let f(x) ∈ K[x] be a polynomial of degree d and 0 ≤ δ ∈ V .
Then there are

(i) disjoint swiss cheeses U1, . . . , Uk partitioning K =
k
⋃

i=1

Ui,

(ii) elements α1, . . . , αk ∈ K,

(iii) and positive integers q1, . . . , qk ≤ (d!)2
d

such that for each i, if f(x) =
d
∑

j=0

aij(x− αi)
j then for all x ∈ Ui,

rvδ (P (x)) = rvδ





d
∑

j=0

rvδ+v(qi)(aij) rvδ+v(qi)(x− αi)
j





is well-defined.
The α1, . . . , αk can be chosen from among the roots of derivatives of f . �

Though each of the preceding propositions is stated for a single polynomial f(x),
the same results will hold for any finite number of polynomials f1, . . . , fn. To ob-
tain the desired decomposition, simply apply the proposition to each fi separately,
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and then intersect the resulting partitions to get one which works for all fi simul-
taneously. We are again using the fact that the intersection of finitely many swiss
cheeses is a swiss cheese.

4. Quantifier elimination

The methods used in the decomposition of the previous section are reminiscent
of those employed by Cohen [5] in his decision procedure for the p-adics (as well
as those of Cluckers and Loeser [4] in the context of b-minimality). In fact, these
results and techniques can be used to give an effective quantifier elimination, and
therefore a decision procedure, for the field relative to the leading term structures.

Unlike in Qp, there can be no quantifier elimination or decision procedure for
general henselian valued fields, due to the lack of control over the residue field or
value group in the general case. One could propose that Qp is decidable precisely
because its residue field (a finite field) and value group (Presburger arithmetic) are.

The objective, then, turns to relative results. As noted in the Introduction,
Kuhlmann [12] proved that in the leading term language, the theory of a henselian
valued field of characteristic 0 eliminates quantifiers over the field sort. In this
section, we give a new proof of Kuhlmann’s theorem which yields not only the
relative quantifier elimination, but an explicit procedure for eliminating field-sorted
quantifiers.

This implies a relative decision procedure in the sense that if the leading term
structures are themselves decidable, then the valued field as a whole is decidable; or
alternatively, if we allow ourselves access to an oracle for the leading term structures,
then we can construct a decision procedure for the valued field.

Let us point out also that the quantifier elimination fails relative to the residue
field and value group. The leading term language is a necessity here. To see this,
consider the elements x1 = t2 and x2 = 2t2 in the field Q((t)). Although x1
is a square while x2 is not, since both are transcendental over Q and both have
identical residue and valuation, x1 and x2 satisfy precisely the same field-quantifier-
free formulas in the standard three-sorted language.

One could circumvent this by adding other additional structure such as a cross-
section of the value group or an angular component map (see for example [17]) on
the field. However such a language would be strictly stronger than the leading term
language in that it could interpret the leading term structures, but also contains a
definable subset isomorphic to the value group (namely, the value group sort itself).

The first step in the quantifier elimination comes from deciding questions about
when certain finite sets of balls have a non-empty intersection.

Proposition 4.1. Let zi, ai ∈ K, 0 ≤ δi ∈ V for i ≤ n. The formula

∃x





∧

i≤n

rvδi(zi) = rvδi(x− ai)





is equivalent to a formula with no field-sorted quantifiers over the parameters rvδi(zi),
rvδi(ai − aj), and δi (or, more precisely, an element of value δi).

Proof. Notice that the set of x satisfying rvδi(zi) = rvδi(x − ai) is in fact equal to
the open ball Bi := B>v(zi)+δi(zi + ai). So what is sought is a means of testing for
nonemptiness of the intersection of the balls Bi. Since finitely many balls having
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pairwise nonempty intersections implies a nonempty intersection, it will be sufficient
to do so for the intersection of two balls. Thus we may assume n = 2.

Let us assume also that v(z1) + δ1 ≤ v(z2) + δ2. This implies that B1 ∩ B2 6= ∅
iff B1 ⊇ B2 iff z2 + a2 ∈ B1 iff v(z1 + a1 − z2 − a2) > v(z1) + δ1.

• Case 1: v(z1) ≤ v(a1 − a2), v(z1) ≤ v(z2), and δ1 ≤ δ2.
Then, by Proposition 2.7, v(z1 + a1 − z2 − a2) > v(z1) + δ1 is equivalent

to

∃w1,w2 ∈ RVδ1





v(w1) 6= v(w2) ∧
rvδ1(z1)− rvδ1(z2) + rvδ1(a1 − a2) ≈ w1 ∧
rvδ1(z1)− rvδ1(z2) + rvδ1(a1 − a2) ≈ w2





since the sum in RVδ1 at least determines the valuation except when

v(z1 − z2 + a1 − a2) > min {v(z1), v(z2), v(a1 − a2)}+ δ1 = v(z1) + δ1.

• Case 2: v(z1) ≤ v(a1 − a2), v(z1) ≤ v(z2), and δ1 > δ2.
This time, although rvδ1(z2) is no longer uniquely determined from

rvδ2(z2), v(z1 + a1 − z2 − a2) > v(z1) + δ1 is equivalent to

∀u ∈ RVδ1 ∃w1,w2 ∈ RVδ1


rvδ2(u) = rvδ2(z2) →





v(w1) 6= v(w2) ∧
rvδ1(z1)− u+ rvδ1(a1 − a2) ≈ w1 ∧
rvδ1(z1)− u+ rvδ1(a1 − a2) ≈ w2









because rvδ2(u) = rvδ2(z2) implies that rvδ1(z1)− u = rvδ1(z1)− rvδ1(z2).
To see this, let u = rvδ1(u) and note that the inequality v(z1) < v(z2) =

v(u) must in fact be strict. Thus rvδ1(z1)−u = rvδ1(z1−u) and rvδ1(z1)−
rvδ1(z2) = rvδ1(z1 − z2) as well-defined sums. Now

v((z1 − u)− (z1 − z2)) = v(z2 − u) > v(z2) + δ2 ≥ v(z1) + δ1

by rvδ2(u) = rvδ2(z2).
Now argue as in Case 1.

• Case 3: v(z1) ≤ v(a1 − a2) and v(z2) < v(z1).
This implies v(z1 + a1 − z2 − a2) = v(z2) < v(z1) + δ1, so this case is

trivial.
• Case 4: v(a1 − a2) < v(z1).

In this case, rvδ1(z1) + rvδ1(a1 − a2) is well-defined. Then

∃x (rvδ1(z1) = rvδ1(x− a1) ∧ rvδ2(z2) = rvδ2(x − a2))

holds if and only if

∃x (rvδ1(z1) + rvδ1(a1 − a2) = rvδ1(x− a2) ∧ rvδ2(z2) = rvδ2(x− a2)) .

If δ1 ≤ δ2 this is equivalent to

rvδ1(z1) + rvδ1(a1 − a2) = rvδ1 (rvδ2(z2))

(witnessed when the above holds by x = z2 + a2), while if δ2 < δ1 it is
equivalent to

rvδ2 (rvδ1(z1) + rvδ1(a1 − a2)) = rvδ2(z2)

(witnessed by x = z1 + a1).

The desired formula will then be the disjunction over all these cases. �
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In fact, we will need the above result to apply more generally to formulas involv-
ing the leading terms of polynomials linear in x.

Proposition 4.2. Let zi, ai, bi ∈ K with ai 6= 0. The formula

(5) ∃x





∧

i≤n

rvδi(zi) = rvδi(aix− bi)





is equivalent to a formula with no field-sorted quantifiers over parameters rvδi(zi),
rvδi(aj), rvδi(aibj − ajbi), and δi.

Proof. This is easily adapted from 4.1 by applying the proposition after factoring
out rvδi(ai) in (5). �

Proposition 4.2 forms the basis for an induction on the maximum degree of a
polynomial appearing as a leading term. The relative quantifier elimination essen-
tially uses the linearization of the leading terms of polynomials to push questions
about the existence of field elements into the leading term structures.

One consequence of this approach is that we need not make any assumptions on
the formula in the RV structures. Indeed, we may allow any additional structure
(such as a cross section, or an expansion to RVeq) on the leading terms. The
important point is that the field sort carries only the usual ring language and the
map(s) rvδ.

The basic situation, therefore, would be a two-sorted structure (K,RV) in residue
characteristic 0, and a many-sorted structure (K,RV0,RVv(p),RVv(p2), . . .) when
char(R) = p > 0. In full generality, however, the language can include any expan-
sion on the leading term sorts of these basic languages.

Proposition 4.3. Let T be the theory of a characteristic 0 henselian field in a
language of the kind described above. Then T eliminates field-sorted quantifiers.

Proof. We break the proof up into several steps, each of which further reduces
the class of formulas needing to be considered. To mitigate a logjam of indices,
the notation is reset at each step, so that f(x) in Step 2 is not necessarily the
same as f(x) in Step 1, but only the syntax of the formula under consideration is
maintained.

We begin with an existential formula of the form

(6) ∃x ∈ K
(

ϕ (rvδ1(f1(x, ū)), . . . , rvδn(fn(x, ū)))
)

where ϕ is some predicate definable (with RV-sorted parameters, possibly in an
expanded language) in RVδ1 × . . . × RVδn , the fi are polynomials over K, and
all field-sorted free variables are among ū (which we henceforth suppress from the
notation). It suffices to show that this is equivalent to a field-quantifier-free formula.

We proceed by induction on m := maxi≤n {deg(fi(x))}. If m = 0, the result is
trivial.

If m = 1, i.e. each fi is linear in x, rewrite (6) as

(7) ∃zi ∈ RVδi



ϕ (z1, . . . , zn) ∧ ∃x ∈ K





∧

i≤n

zi = rvδi(fi(x))







 .

Now Proposition 4.2 applies to eliminate the quantifier ∃x.
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Step 1: From (6) to formulas of the form

(8) ∃x ∈ K
(

f(x) = 0 ∧ ϕ (rvδ1(g1(x)), . . . , rvδn(gn(x)))
)

with deg(f(x)) ≤ m.

Proposition 3.5 gives a partition K =
m
⋃

j=1

Sj and for each i ≤ n, j ≤ m:

• a root αij of some derivative gij(x) of fi (including possibly fi itself),
• and positive integers qij ≤ 2mv(m!)

such that for all x ∈ Sj and i ≤ n, rvδi(fi(x)) can be computed as the well-defined
image in RVδi of a polynomial function of rvδi+v(qij)(x− αij).

The roots α1j , . . . , αnj also serve as centers of the balls comprising the swiss
cheeses Sj .

In this way, the formula in (6) is equivalent to one of the form

(9)

∃y11, . . . , ynm ∈ K

(

∧

i,j

gij(yij) = 0 ∧

∃x ∈ K

(

∨

j

ϕj

(

rvδ1+v(q1j)(x− y1j), . . . , rvδn+v(qnj)(x− ynj)
)

))

.

Specifically, ϕj will express that x ∈ Sj , that

uij :=

di
∑

k=0

rvδi+v(qij)(aijk) rvδi+v(qij)(x− yij)
k

(given fi =
di
∑

k=0

aijk(x− yij)
k, so aijk is a function of yij) is well-defined for each i,

and that ϕ holds with uij substituted for each fi.
In (9) the bound variable x occurs only linearly, so it can be eliminated as shown

above. This produces an equivalent formula in the form

(10) ∃ (yij)i,j ∈ K









∧

i,j

gij(yij) = 0



 ∧ ψ (rvγ1
(h1(ȳ)), . . . , rvγℓ

(hℓ(ȳ)))





with h1, . . . , hℓ being polynomials and ψ an RV formula. So it remains to show
that the quantifiers ∃y11, . . . , ymn can be eliminated in such a formula.

In fact we may do so one quantifier at a time, so it will suffice to consider a
formula of the form

(11) ∃y ∈ K
(

g(y) = 0 ∧ ψ (rvγ1
(h1(y)), . . . , rvγℓ

(hℓ(y)))
)

with deg(g(y)) ≤ m. This completes Step 1.
Step 2: From (8) to formulas of the form

(12) ∃x ∈ K
(

f(x) = 0 ∧ ϕ (rvδ1(x− z1), . . . , rvδn(x− zn))
)

with deg(f(x)) ≤ m, and the zi free variables.
First of all, in (8),

∃x ∈ K
(

f(x) = 0 ∧ ϕ (rvδ1(g1(x)), . . . , rvδn(gn(x)))
)

,

each gi(x) can be replaced with its remainder on division by f(x) (in applying
the euclidean algorithm, it will be necessary to multiply through by powers of the
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leading coefficient of f). Thus it may be assumed that

deg(gi(x)) < deg(f(x)) ≤ m

for each i ≤ m. If the latter inequality were strict, of course, the induction hypoth-
esis would finish the proof.

Otherwise, if we have equality, let us apply the decomposition of Proposition 3.5
a second time relative to g1(x), . . . , gn(x). The result is another formula equivalent
to (8) taking the form
(13)

∃ (zi)i≤k ∈ K





∧

i≤k

hi(zi) = 0 ∧ ∃x
(

f(x) = 0 ∧ ψ (rvγ1
(x − z1), . . . , rvγk

(x− zk))
)





with deg(hi(zi)) ≤ max
j≤n

{deg(gj(x))} < m for every i. Now, it will suffice to

eliminate the quantifier ∃x from the subformula

(14) ∃x
(

f(x) = 0 ∧ ψ (rvγ1
(x− z1), . . . , rvγk

(x− zk))
)

since then we would be in the situation of (10) except now with the degrees of the
hi(zi) strictly less than m.

This completes Step 2.
Step 3: From (12) to formulas of the form

∃x ∈ K (f(x) = 0 ∧ ϕ (rvδ(x− z)))

with z a free variable, deg(f(x)) = d ≤ m, and f(x) coprime to f (i)(x) for 1 ≤ i ≤
d.

In

∃x ∈ K
(

f(x) = 0 ∧ ϕ (rvδ1(x− z1), . . . , rvδn(x− zn))
)

,

suppose that we had v(x − zi) ≥ v(x − zk) and δj ≥ δk for all k ≤ n. Then for
each k, rvδk(x− zk) = rvδj→δk

(

rvδj (x− zi) + rvδj (zi − zk)
)

is well-defined. (Since
v(zi − zk) ≥ v(x − zk),

v(x − zk) ≥ min {v(x− zi), v(zi − zk)} ≥ v(x− zk)

implies equality and hence well-definition of rvδj (x− zk) = rvδj (x− zi) + rvδj (zi −
zk).)

Thus ϕ (rvδ1(x− z1), . . . , rvδn(x− zn)) depends only on rvδj (x − zi) and the
parameters rvδj (zi − zk), and in this case we may write (12) as

(15) ∃x
(

f(x) = 0 ∧ ψ
(

rvδj (x− zi)
))

.

If we can eliminate the ∃x in this formula, then by taking the disjunction over the
possible cases of which v(x − zi) is largest, we will be done.

Regarding the coprimality condition, if for some i ≥ 1 we have gcd(f(x), f (i)(x)) =
g(x) and f(x) = g(x)h(x), (15) is equivalent to

∃x
(

g(x) = 0 ∧ ψ
(

rvδj (x− zi)
))

∨ ∃x
(

h(x) = 0 ∧ ψ
(

rvδj (x− zi)
))

,

and deg(g(x)), deg(h(x)) < m.
Therefore we may also assume gcd(f(x), f (i)(x)) = 1 for all 1 ≤ i ≤ d, finishing

Step 3.
Step 4: Eliminating the quantifier ∃x from the formula

(16) ∃x ∈ K
(

f(x) = 0 ∧ ϕ (rvδ(x− z))
)
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when deg(f(x)) = d ≤ m and gcd(f(x), f (i)(x)) for 1 ≤ i ≤ d.

Suppose f(x) =
d
∑

i=0

ai(x− z)i. If a0 = 0, then z is a root of f and we may check

whether ϕ holds on rvδ(z − z) = ∞.
Let γ = 2d(v(d!) + δ) and χ(y) be the formula

∃u1,u2

(

d
∑

i=0

rvγ(ai)y
i ≈ u1 ∧

d
∑

i=0

rvγ(ai)y
i ≈ u2 ∧ v(u1) 6= v(u2)

)

.

So f has a collision of severity > γ at x around z if and only if χ(rvγ(x − z)) (by
Proposition 2.7).

Let also ̺(y1, . . . , yn) be a field-quantifier-free formula equivalent to




n
∧

i=1

d
∨

j=1

f (j)(yi) = 0



 ∧





d
∧

j=1

(

¬∃y ∈ K

(

f (j)(y) = 0 ∧
∧

i

y 6= yi

))





stating that y1, . . . , yn are all the roots of the proper derivatives f ′, f ′′, . . . , f (d).
Such a formula must exist by the induction hypothesis. We can take n to be as

large as necessary, no more than d(d−1)
2 .

Now, consider the formula

(17) ∃y1, . . . , yn∃x
(

̺(y1, . . . , yn) ∧
(
∧n

i=1 χ(rvγ(x − yi)
)

∧ ϕ(rvδ(x− z))
)

.

We claim that (17) is equivalent to (16). In fact, if f has a root at x and λ is
a root of f (i) (1 ≤ i < d), then f(λ) 6= 0 by coprimality, and so the constant term
of f recentered around λ is nonzero. This implies that f still has a collision at x
around λ (of infinite severity).

Suppose conversely that (17) holds. Proposition 3.3 (and the proof of Proposition
3.4) implies that there is a λ, which is a root of one of f, f ′, f ′′, . . . , f (d), for which
rvδ(x−z) = rvδ(λ−z) and f does not have a collision at x around λ. Since χ holds
on each rvγ(x−yi), therefore, this λ must be a root of f itself. In other words, (17)
implies that there is a root λ of f for which rvδ(x − z) = rvδ(λ − z), and ϕ holds
for this leading term rvδ(λ− z). This shows that (16) and (17) are equivalent.

In (17), the quantifier ∃x can be eliminated as in (7), since x appears only linearly.
Likewise, each quantifier ∃yi can also be eliminated by the induction hypothesis,
because deg(f (i)) < deg(f).

Taking the disjunction over all these cases, we have succeeded in eliminating the
field-sorted quantifier in (16), and this finishes the proof. �

Since, looking back over the proof of Proposition 3.4, we have an effective al-
gorithm for producing the swiss cheese decomposition, the above proof gives an
effective algorithm for producing a field-quantifier-free formula from any formula
in the leading term language. Assuming formulas in the leading term sorts are
decidable, therefore, we may use this to devise a decision procedure for formulas
over the valued field, and we have proved

Proposition 4.4. The theory of a henselian valued field with char(K) = 0 is de-
cidable relative to an oracle for the leading term structures 〈RVv(n)〉n∈N, or equiv-
alently, as long as these structures are decidable. �
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5. Definable subsets of K

In this section, the goal is to use the quantifier elimination and decomposition
to give a characterization of definable subsets of K. This provides the promised
analogue of the theorem of Holly [8] on canonical forms for sets definable (in one
variable) in algebraically closed valued fields.

Proposition 5.1. Suppose S ⊆ K is definable over A. Then there are α1, . . . , αk ∈
acl(A) and a subset D ⊆ RVδ1 × . . .× RVδk definable over acl(A) such that

S = {x ∈ K | 〈rvδ1(x− α1), . . . , rvδk(x − αk)〉 ∈ D} .

As before, if char(R) = 0, we may take δi = 0 for all i; if char(R) = p > 0, then
the δi can be taken among v(pn) for n ∈ N.

Proof. The elimination of field-sorted quantifiers from Proposition 4.3 implies that
S is definable by a formula of the form

(18) ϕ (rvδ1(f1(x)), . . . , rvδk(fk(x)))

with ϕ being a formula over the leading term sorts and each fi a polynomial with
coefficients over A.

Applying the decomposition of Proposition 3.5, there are swiss cheeses U1, . . . , Um

partitioning K, for each i ≤ k RV-polynomials ti1, . . . , tim (over acl(A)), and for
each i ≤ k and j ≤ m field elements αij ∈ acl(A) such that (18) is equivalent to

m
∨

j=1

(

x ∈ Uj ∧ ϕ
(

t1j [rvδ1j (x− α1j)], . . . , tkj [rvδkj
(x− αkj)]

))

(with each δij = δi + v(pn), some integer n). For each i ≤ k define γi :=
maxj≤m{δij}. Since every tij [rvδij (x−αij)] can be computed as tij [rvγi→δij

(rvγi
(x−

αij))], it may without loss of generality be assumed that δij = γi for all i, j.
The condition x ∈ Uj is definable in RV with parameters of the form rv(x− β).

Without loss of generality we take β to be among the αij (so that x ∈ Uj is an
RV-definable condition on rvγi

(x− αij), some i, j), and let ψj be the formula over
the leading term sorts expressing

ψj(x1, . . . ,xk) ⇐⇒ x ∈ Uj ∧ ϕ (t1j [x1], . . . , tkj [xk]) .

Thus each ψj is a formula over RVγ1
× . . .× RVγk

.
Finally, letting χ be the formula

∨

ψj and D be the set in RVγ1
× . . . × RVγk

defined by χ, we have

S = {x ∈ K | 〈rvγ1
(x − α1), . . . , rvγk

(x− αk)〉 ∈ D}

as required. �

Holly’s swiss cheeses in algebraically closed valued fields arise as boolean com-
binations of a finite number of balls. This can be seen as the combination of a
pullback of a finite set (from the residue field) and an interval (the value group).
It is a consequence of strong minimality and o-minimality that these are all the
sets definable in residue field and value group. As pointed out in the Introduction,
it is unavoidable in the general henselian setting that we must allow for pullbacks
of arbitrary definable sets D of the leading term structures, which could be very
complicated.
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The pullback of an interval in the value group itself will produce a ball (or,
more accurately, an annulus) around 0. Shifting to balls centered elsewhere in
the algebraically closed case can be taken as analogous to our linear shifting by
〈α1, . . . , αk〉.

To obtain a one-dimensional elimination of imaginaries in [9] (‘1-prototypes’),
Holly introduces a new sort for the balls. It follows by the same reasoning that
henselian valued fields of characteristic 0 admit 1-prototypes in the leading term
language after adding new sorts for definable sets of the form

{x ∈ K | 〈rvδ1(x− α1), . . . , rvδk(x− αk)〉 ∈ D} .

In more dimensions, it is an immediate consequence of quantifier elimination
that definable subsets of Kn take the form

(19) {〈x1, . . . , xn〉 ∈ K | 〈rvδ1(f1(x̄)), . . . , rvδk(fk(x̄))〉 ∈ E}

where E is definable in RVδ1 × . . .× RVδk and each fi ∈ K[x1, . . . , xn].
One could then obtain an essentially trivial elimination of imaginaries by includ-

ing new sorts consisting of the sets (19). An approach towards a more satisfying
solution of the elimination of imaginaries problem may be to give a necessary and
sufficient subclass of the polynomials fi.

For example, one could hope to show that every definable set can be coded in
terms of sets of the form (19) with the fi being affine transformations of Kn. This
seems overly optimistic, but if true would provide a suitable henselian analogy to
Haskell, Hrushovski, and Macpherson’s elimination of imaginaries for algebraically
closed valued fields [6] in terms of definable modules and torsors over O.
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