Strong isomorphism reductions in complexity theory

Sam Buss Yijia Chen Jorg Flum
sbuss@math.ucsd.edu vyijia.chen@cs.sjtu.edu.cn joerg.flum@math.uni-freiburg.de
Sy Friedman Moritz Muller
sdf@logic.univie.ac.at mmueller@crm.cat

1. Introduction

In many areas of computational complexity, polynomial tireduction is the appropriate notion for
comparing the complexity of problems. However, supposewleface, for example, the problem of
comparing the complexity of the isomorphism problem for tlasse<” and D of graphs. Here

Iso(C) := {(A,B) | A,B € CandA = B}

is the isomorphism problem far' (more precisely, the set of positive instances of this mebland
Iso(D) is defined analogously. Probably we would not accept a patyaltime computable function
f:CxC — D x D with

(A,B) € 1s0(C) < f(A,B) € Iso(D)

as the right notion of reduction in this context but we wolddlsastrong isomorphism reductiothat
is, a polynomial time computable functigh: C — D with

A= B = [f(A) = f(B). (1)

This paper is devoted to the study of this type of reductiar. Us the motivation for this study came
from various areas:

Computational complexityThe isomorphism relation (on a clag§ is an equivalence relation. In
the context of arbitrary equivalence relations a notioneoluction defined analogously as in (1) (and
that for the isomorphism relation coincides with our nojibas been introduced in [7]. However that
paper is mainly devoted to other problems (see the end oioBetfor some more details); concerning
the notion of reduction only some open problems are statgq,iproblems we address in our paper.

Descriptive set theoryFor the isomorphism relation our notion of reduction wastfaonsidered
by the fourth author (see [8]) inspired by the analogousomofiom descriptive set theory (see [9]).
In descriptive set theory,’ and D denote classes of structures with univeRsand the functionf
satisfying (1) is required to be Borel (in the topology gexted by the first-order definable classes).

Descriptive complexityThe existence of a logic capturing polynomial time remdhescentral open
problem of descriptive complexity theory. For many clasSesf graphs (or of other types of struc-
tures), one shows that a loglc captures polynomial timen C' by defining inL an invariantization
for C. From the definition of invariantization (given in Sectioj) dne immediately gets that @ is
strongly isomorphism reducible 1, thenC' has an invariantization i has one.

This paper contains the first systematic study of strong @phism reductions. In Section 3 and
Section 4 we introduce our framework, derive some basicaitmgs of strong isomorphism reduc-
tions, and explain via invariantizations and canonizatitire relationship to logics capturing polyno-
mial time mentioned above. At various places of our analysigriantizations and canonizations will
be valuable tools. Their relationship and the computationmplexity of problems related to these
notions have been studied in [2, 3, 7, 11, 13, 14].

We denote by<js, the partial ordering on the set of degrees induced by streagarphism
reductions. While already in Section 3 we observe that (dgrek of) the class of graphs is thg,
maximum element, by Theorem 11 we see that some “basic aligediasses of structures” all have
the same strong isomorphism degree. In Section 5 we shovthiatructure oKs, is rich already
when restricting to classes with an invariantization.

Assume thatC' is strongly isomorphism reducible t8. Since such reductions are computable
in polynomial time we know that for some polynomjale N[X] and alln € N the number of iso-
morphism types of structures @ with at mostn elements is at most the number of isomorphism
types of structures iD with < p(n) elements. If this condition is satisfied, then following 8¢
say thatC' is potentially reducible td. Already in Section 5 this concept is the main tool to demon-
strate the richness of the partial orderifg,. We believe that the notions of strong isomorphism
reducibility and that of potential reducibility are distirbut can only show this under the hypothesis
U2EXPN co-U2EXP=# 2EXP (see Section 6). It turns out in Section 7 that we woutdgg #P if
we could separate the two notions without any complexigetktic assumption.

The isomorphism relation is an equivalence relation in NFESéction 8 we study reductions (de-
fined in analogy to (1)) between arbitrary equivalence i@batin NP. In particular, we show that
there is a maximum element in the corresponding partialrorgef and only if there is an effective
enumeration of these equivalence relations by means dfedibturing machines. Even if we restrict
to equivalence relations in P (= PTIME), we cannot show thataximum element exists; we can
guarantee its existence if a p-optimal propositional psystem exists. The existence of a maximum
element for equivalence relations in P was addressed ingén@uestion 4.14].

The authors wish to acknowledge the generous support obtive Templeton Foundation and the
Centre de Recerca Matematica through the CRM Infinity Btoj8am Buss’ work was supported in
part by NSF grant DMS-0700533.

2. Some preliminaries

Throughout the paper denotes the alphabgb, 1} and we let:* be the set of strings over this
alphabet. Fon € N we denote byi” the string11...1 of lengthn. An ordered pai(z,y) with
x,y € ¥* is coded (identified) with a string iB* of length2 + 2max{|z|, |y|}. Sometimes statements
containing a formulation like “there iséc N such that for al: € ¥*: ... < |z|?” can be wrong for

x € ¥* with |z| < 1 (here|z| denotes the length of the string. We trust the reader's common sense
to interpret such statements reasonably.

2.1. Structures and classes of structuresA vocabularyr is a finite set of relation symbols, function
symbols, and constant symbols. The universeof#ructureA will be denoted by the corresponding
Latin letter A, the cardinality of the set by |A|, and the interpretation of a symbeok 7 in A by s,

All structures in this paper are assumed to be finite and teehay:= {1,2,...,n} as
universe for some < N.

For a structured we denote byj|.4| the size ofA, that is, the length of a reasonable encoding of
A by a nonempty string efiel) € ¥* (e.g., cf. [6]). In particular, we assume that the mappings

2

A — end.A) and en¢A) — A are computable in polynomial time and that for every vocatyut
there is a polynomia, € N[X] such thajA| < |end.A)| < ¢.(|A]) for everyr-structureA (here
|A| denotes the cardinality of the sétand|end.4)| the length of the string efigl)).

Clearly, a clasg’ of r-structures is in P if the set
{enqA) | Ae C}
isin P. The clasg’ is closed under isomorphisihfor all structuresA and B
AeCandA=BimplyBeC
(recall that we restrict to structures with univefs¢for somen € N).

In the rest of the papeat’ (and D) will always denote a class of structures, all of the same
vocabularyr, which is inP, is closed under isomorphism, and contains arbitrarilygar
(finite) structures

Examples of such classes are:

— The classes &, BOOLE, FIELD, GROUP, ABELIAN, and CrcLic of sets (structures of empty
vocabulary), Boolean algebras, fields, groups, abeliangg,cand cyclic groups, respectively.

— The class ®APH of (undirected and simple) graphs. We view graphs@s.».-structures,
wherergrapn := { E'} for a binary relation symbak.

— The class @b of linear orderings. Here we use the vocabulagy, := {<} with a binary
relation symbok:.

— The class bp of Linear Orderings with a distinguishe®oint and the class &u of Linear
Orderings with dJnary relation. Letr op := Torp U {c} with a constant symbalandr oy :=
Torp U { P} with a unary relation symbaP. Then Lop (Lou) is the class of alt_qp-Structures
(1Lou-structures)A with (A, <A) € ORD.

Structures in lou correspond to strings IH* and vice versa, in fact, a structudec L ou corresponds
to the string of lengthA| whoseith bit is 1 if and only if theith element of4 (according to<) is
in PA,

3. Strong isomorphism reductions

We define the notion of strong isomorphism reduction alréadigated in the Introduction and present
first examples.

Definition 1. Let C' and D be classes. We say thétis strongly isomorphism reducible t® and
write C'<iso D, if there is a functionf : C — D computable in polynomial time such that for all
A BeC

A= B = f(A) = f(B).

We then say thaf is astrong isomorphism reductidnom C to D and writef : C'<iso D. If C<ijso D
and D<so C, denoted byC'=iso D, thenC' and D have the same strong isomorphism degree

Examples 2. The mapping sending a field to its multiplicative group weses that ELD <jso CYCLIC.
Furthermore, @D =iso CycLIC and CrCLIC <jso ABELIAN.

Remark 3. We can reduce the notion of strong isomorphism reductionderdral notion of com-
putational complexity, namely to the notion of polynomiahé¢ reduction. For this, we introduce the
problem

Iso(C)
Instance: A,B e C.
Problem: Is A= B?

A function f : ¢ — D induces the functiorf : C' x C — D x D with f(A,B) := (f(A), f(B)).
Then
f:0<igoD <= f:180(C) <, 1s0(D),

wheref : 1so(C) <, Iso(D) means thaf is a polynomial time reduction fronsb(C) to 1so(D).
Of course, it is easy to construct polynomial time reduditmom Iso(C') to Iso(D) that are not
of the form f for somef : C'<iso D. Moreover, in Remark 14 we shall present clagseand D such
that
so(C) <, Iso(D) but notC'<iso D.

This answers [7, Open Question 4.13].
As already mentioned in the Introduction one of our goal®isttdy the relatior<is,. First we
see that this relation has a maximum element:

Proposition 4. C'<jso GRAPH for all classesC.

Proof: Let 7 be a vocabulary and be the class of al--structures. It is well-known that there is a
strong isomorphism reduction froS1to GRAPH (even a first-order interpretation, e.g. see [6, Propo-
sition 11.2.5 (i)]). In particular, its restriction to a skC' of r-structures shows thét<iso GRAPH. O

4 . Invariantizations and canonizations

One of the central aims of algebra and of model theory is terd®s the isomorphism type of a
structure by means of an invariant. The underlying notiomediriantization is also relevant in our
context. We use it (and the related notion of canonizationrghow that most classes of structures
mentioned in Section 2.1 have the same strong isomorphigneeécf. Corollary 12).

Definition 5. An invariantization forC' is a polynomial time computable function InvC — %*
such that for all4, B € C
A= B <~ Inv(A) = Inv(B).

Lemma 6. If C<jso.D and D has an invariantization, then alsG has an invariantization.
Proof: If Inv is an invariantization forD and f : C<iso D, then Invo f is an invariantization fo€'. O
Lou is a maximum class among those with an invariantization:

Proposition 7. For a classC the following are equivalent.
(1) C has an invariantization.
(2) C<isoLoOU.

(3) There is a clas® of ordered structures such thét<iso D.

Here, a classD is a class of ordered structuréfsits vocabulary contains a binary relation symbol
which in all structures oD is interpreted as a linear ordering of the universe.

Proof: (1) implies (2) by the natural correspondence betweengstrin >* and structures in au.
That (2) implies (3) is trivial. To see that (3) implies (1)same that there is a clags of ordered
structures such thdt <;so D. As ordered structures have no nontrivial automorphiswveryeordered
structureA is isomorphic to a unique structurd’ with universe{l, 2,..., |A|} and with its natural
linear ordering on it. Thus the mapping dhdefined byA — end.A’) is an invariantization of?
(recall that en¢B3) is the encoding oB by a string in*). Now we apply Lemma 6. O

It is open whether the classRAPH has an invariantization or equivalently (by Propositiomd a
Proposition 7) whether &u is a maximum element ofijs,. Moreover, it is known [11, 13] that an
invariantization for @APH yields a canonization.

Definition 8. A function Can: C' — C' is acanonization forC' if it is polynomial time computable
and

(1) forallA,Be C: (A= B < CanA) = CanB));
(2) forall A e C: A=CanA).

Every classC of ordered structures, in particularou, has a canonization. In fact, the mapping
A — A’ defined for all ordered structures in the previous proof iaroaization forC'.

We do not define the notion oflagic capturingP on a clas<C (e.g. see [6]). However we mention
that canonizations and invariantizations are importaeiscriptive complexity theory as:

Proposition 9. (1) If C has a canonization, then there is a logic capturiagn C.
(2) If GRAPH has an invariantization, then there is a logic capturiRgon all finite structures).

If a classC has a canonization, then it also has an invariantizationfadh by property (1) of
Definition 8, if Can: C' — C'is a canonization, thed — enqCar(.A)) is an invariantization. Often
the invariantizations we encounter in mathematics yieldoo&ations. For example, consider the
class FELD of fields. Then an invariant for a field is the pair(pi, ni), wherepg is its characteristic
andn its dimension over the prime field. As for every invarigpin) one can explicitly construct
a canonical fieldF,~ of this invariant, we see that the mappikg— }-pﬁ’c is a canonization. This

canonization has a further property, it is a canonizatia llas a polynomial time enumeration:

Definition 10. Let Can be a canonization for the claSs The enumeration induced bgan is the
enumeration
Ai, Ags

of Can(C) such that enc4;) <iexend.A;)! for i < j. If the mappings4,, — 1" and1" — A, are
computable in polynomial time, then Chas a polynomial time enumeration

Note that the mappingl,, — 1™ is computable in polynomial time if and only if we get an irieauti-
zation Inv of C' by setting
Inv(A) := 1" <= CanA) = A,.

1By <iex We denote the standard (length-)lexicographic ordering on

Moreover, if the mappingd,, — 1™ is computable in polynomial time, then
{enqdCanA)) | A€ C}

is a sparse set.

The classes ST, FIELD, ABELIAN, CycLICc, ORD, and LOP have canonizations with polynomial
time enumerations (for BELIAN see [12], for example). The classes®LE and Lou have canon-
izations but none with a polynomial time enumeration (favd e the function1™ — A,, will not
be computable in polynomial time, as there are, up to eqeivad, “too few” Boolean algebras of
cardinality< n, namely|log n|; for Lou the functionA,, — 1™ won’t be computable in polynomial
time, as there are “too many” structures inW of cardinality < n, namely2"t! — 1).

Theorem 11. Assume that the classésand D have canonizations with polynomial time enumera-
tions. Then
CEisoD.

Corollary 12. The classe$ET, FIELD, ABELIAN, CycLIc,ORD, andLopPall have the same strong
isomorphism degree.

Proof of Theorem LlLet C' and D be classes with canonizations Gaand Carm which have poly-
nomial time enumerations
Ai, Ag,

and
By, Bs,. ..

respectively. We define a strong isomorphism reducfidrom C to D by:
f(A) =B, < Canx(A) = A,.
Hence,C<iso D; by symmetry we geD <o C. O

An analysis of the previous proof shows that we already alttai s, D if the mappings4,, — 1"
and1™ — B3,, are computable in polynomial time. By this, we get, for exlenBoOOLE<;s, CYCLIC.

5. On <50 below LopP

As we have seen that the structure<gf, between lou and GRAPH is linked with central open
problems of descriptive complexity, we turn our attentiontlie structure below @u even below
Lor. In this section we show that there the structure is quite ric fact, this section is devoted to a
proof of the following resulf

Theorem 13. The partial ordering of the countable atomless Boolean lalges embeddable into the
partial ordering induced b5, on the degrees of strong isomorphism reducibility belawe. More
precisely, let5 be a countable atomless Boolean algebra. Then there is d®pee functiorb — C,
defined onB such that for allb, ¥’ € B

— ()} is asubclass ot op;
- b<V <= Cp<isoCy.

2Recall that up to isomorphism there is a unique countablmlass Boolean algebra (e.g. see [10]).

Recall that the partial ordering of an atomless Booleanhagdas infinite antichains and infinite
chains, even chains of ordertype the rationals.

Remark 14. By the preceding result, we see that there exist an infidjtg-antichain of classe€’
below Lop, whose problemsdo(C) are pairwise equivalent under usual polynomial time redost
Indeed, evendo(C') € P for allC C LoP.

The reader not interested in the details of the proof of Témmot3 should read till Lemma 17 and
can then skip the rest of this section. We obtain Theorem I®mparing the number of isomorphism
types of structures with universe of bounded cardinalitgifferent classes. First we introduce the
relevant notations and concepts.

For a classC we let C(n) be the subclass consisting of all structuresCirwith universe of
cardinality < n and we let#C'(n) be the number of isomorphism types of structure€’{m), more
formally

C(n):={A€C[|A <n} and #C(n):=|C(n)/=|

Here, for a class of structuréswe denote bys5/~ the set of isomorphism classesSn
Examples 15. (1) #BooLg(n) = |log n] and#CycLIC(n) = n.
(2) #LorP(n) =31 ;i=(n+1)-n/2and#Lou(n) =Y 1,2t =2l — 1.

(3) For every vocabulary there is a polynomiap, € N[X] such that#C(n) < 2P for all
n € N.

(4) (e.g. see[1]}¥#GROUPR(n) is superpolynomial but subexponential (more precisél@rour(n) <
nO(log Qn))'

Definition 16. A classC' is potentially reducibleto a classD, written C' <, D, if there is some
polynomialp € N[X] such that#C(n) < #D(p(n)) for all n € N. Of course, byC' =pot D we
meanC<pot D and D <yt C.

The following lemma explains the term potentially redueibl

Lemma 17. If C<iso D, thenC' <yt D.

Proof: Let f : C<ijsoD. As f is computable in polynomial time, there is a polynomiaduch that
for all A € C we have|f(A)| < p(]A|), wheref(A) denotes the universe ¢f(A). As f strongly
preserves isomorphisms, it therefore induces a one-torume from{A € C | |A| < n}/~ to
{Be DB <p(n)}/=. 0

We state some consequences of this simple observation:

Corollary 18. (1) CycLIC £jso BOOLEandLouU «jso LOP.
(2) C<potLou for all classesC’ andLoU =pot GRAPH.
(3) The strong isomorphism degree @ROUPIs strictly between that ok op and GRAPH, that is,

LoP<ijso GROUP<jso GRAPH, but LOP #jso GROUPand GROUP #jso GRAPH.
(4) The potential reducibility degree @RouPis strictly between that ok opand Lou, that is,

LoP<pot GROUP<gtLOU, but LOP #pot GROUPand GROUP #pot LOU.

Proof: Using the previous lemma we see that
— (1) follows by Examples 15 (1), (2);
— (2) from Examples 15 (2), (3) and Proposition 4;

— GROUP<so GRAPH holds by Lemma 4 and &P<js, CycCLIC <jso GROUP Dy Corollary 12; the
remaining claims in (3) follow from (4) asdu =5t GRAPH,

— the first claim follows from the first claim in (3) asdu =,,t GRAPH; the remaining claims
follow from Examples 15 (2), (4).

O
The following concepts and tools will be used in the proof tiedrem 13. We call a function

f : N — N value-polynomialf it is increasing andf (n) can be computed in timg(n)°(). Let VP
be the class of all value-polynomial functions.

Lemma 19. The images of the functions WP and the finite subsets dff are the elements of a
countable Boolean algebr& (under the usual set-theoretic operations). The factoebig V/=,
where forb, b’ ¢ V

b=V <« (b\V)uU ¥\ D) is finitg

is a countable atomless Boolean algebra.

Proof: For a functionf : N — N we denote by iMif) the image off. Using the definition of
value-polynomial function it is easy to verify that f¢rg € VP the sets

NAIm(f), im(f) nim(g), and in(f) Uim(g)

are images of value-polynomial functions provided theyiafiaite. We leave the rest of the proof to
the reader. O

For f € VP the set
Cj={AcLor||Al eim(f)}

is in P and is closed under isomorphism. As in cardinafity;) there are exactlyf (k) pairwise
nonisomorphic structures indp, we get

#Cp(n) = > f (k).

k € Nwith f(k) <n
The following observation contains an essential idea uséide proof of Theorem 13.

Proposition 20. Let f € VP and assume that for every polynomjak N[X] there isn € N such

that
> f(2k) > > f(2k + 1). 2)

k € Nwith f(2k) < n k € Nwith £(2k + 1) < p(n)

ThenCy, is not potentially reducible t@’,,, wheregy, g : N — N are defined byj(n) := f(2n)
andg;(n) := f(2n+1).

Proof: By contradiction, assume that there is some polynomia N[X]| such that#Cy (n) <
#Cy, (p(n)) for all n € N. Choosen such that (2) holds. Then

#Cg(n) = Y f2K)> > f2k+1)=#Cy (p(n)),
f(

2k)<n f(2k+1)<p(n)
a contradiction. O

The reader will easily verify that the following functiolh : N — N defined by recursion is
value-polynomial:

h(0) = 0,
h(n+1) = (h(0) + -+ h(n))".
For f,g € VP set
fC"g < im(f)\im(g) is finite.

By the homogeneity properties of atomless countable Booddgebras, to prove Theorem 13 it suf-
fices to find a corresponding embedding defined only on theerorglements o¥’/=. In general

f C* gandg C* f do notimplyCj.; = Choq. However, by the following lemma we get an embed-
ding of V/= into the partial ordering of the&iso-degrees as required by Theorem 13 by defining the
mapping on a set of representatives, more precisely on& seVP such that

— for everyf € VP there is exactly ong € R with f C* g andg C* f.

Lemma 21. The mappingf — C)or from (VP,C*) to ({C' C LOU | C aclasg, <iso) is one-to-
one and for allf, g € VP:

(1) if Chos<isoChog, thenf C* g;
(2) if f C* gandg Z* f, thenChos<iso Choy-
For the proof of the Lemma 21 we need an appropriate way tetim&easing functiong : N — N.

We definef~! : N — N by

FHn) = max{i | f(i) < n},
where we set mak := 0. We collect some properties of this inverse in the followiegma, whose
simple proof we omit. We denote byndhe identity function orN.

Lemma22. (1) If f: N — Nis increasing, therf ! is nondecreasingf ' <idy, f~' o f = idy
and f(f~*(n)) < nforall n> f(0).

(2) If f,g: N — Nare increasing, therfif o g)~! =g~ 1o fL.
(3) If f € VP, thenf~! is computable in polynomial time.

A further notation is useful: Fof : N — N let f* : N — N be defined by

Py =) f().

i<n

Lemma 23. Let f, g : N — N be functions and assumss increasing. Thefif o g)> < f> o g.

Proof: This is seen by direct calculation:

(fog)™(n) =Y _ flg@) = D fi)< Y fli)=f"ogn);
)

i<n i<g(n i<g(n)
i€im(g)
here the second equality uses thas increasing. O

Furthermore observe that:
Lemma 24. If f € VP, then for alln € Nwe have#C¢(n) = (> o f~')(n).

Proof of Lemma 21The mappingf — C},. ¢ is one-to-one: ASSum€,. ¢ = Choq. Thenimho f) =
im(h o g) and thus, inif) = im(g) ash is one-to-one. Sinc¢ andg are both increasing, this yields
f = g. We prove the remaining statements of Lemma 21 by the foligwivo claims.

Claim1l:Let f,g € VPandf C* gandg Z* f. ThenCo s <iso Chog-

Proof of Claim 1: By our assumptions, the set {fno f) \ im(h o g) is finite (asf C* ¢ implies
ho f C* hog) and (by injectivity ofh) the setinfhog) \ im(ho f) is infinite. ThenC'yo ¢ <iso C'hog IS
witnessed by a function sending the (ugtpfinitely many structures i6';o ¢ \ Chog 10 Chog \ Chof
and which is the identity on all other structures(ip, ;.

Claim 2:Let f,g € VP andf Z* g. ThenC),o5 Liso Chog-

Proof of Claim 2: By contradiction assumeé’;,, ¢ <iso Chog- ThenC'y,y is potentially reducible to
Chog by Lemma 17. Hence there jse N[X] such that#Cjor(n) < #Chog(p(n)) for all n € N.
We show that this is wrong for some For this purpose we choogesuch that

9(0) < f(k), p(h(f(K))) <h(f(k)+1), and f(k)<im(f)\im(g) 3)

(by the definition ofh and the assumptiofi Z* g such ak exists). Then we get

)

k) (by Lemma 24)
f(k

=(hog)* o (hog) ™ (p(h(f(
h))) (by Lemma 22(2))

(
()
=(hog)”o (g~ o h™")(p(h(f (k)
(g (k) (oy p(h(f(K))) < h(f(k) + 1) (see (3)) and by definition df ')
(og (f(k) = 1) (asf(k) &im(g))
<h¥ogog ' (f(k) —1) (by Lemma 23)
<h*(f(k) —1) (by Lemma22(1) ag(0) < f(k))
<h(f(k)) (by definition ofh)
<#Chnor(h(f(k))) (by definition of#C},.¢).

10

6. Strong isomorphism reducibility and potential reducibility

We know that RAPH< ot LOU (cf. Corollary 18 (2)) while ®APH<so LOU is equivalent to ®APH
having an invariantization (cf. Proposition 7). However,far in all concrete examples of classgs
andD, for which we know the status @f <iso D and ofC'<pt D, we had that

C<isoD <= C<potD.

So the question arises whether the relations of strong igumsm reducibility and of potential re-
ducibility coincide. Recall that we require the classéand D to be closed under isomorphism and
decidable in polynomial time. Generalizing the proof idéa beorem 11, we shall see in the next
section that indeed the relationgs, and<pqt coincide if P= #P. We believe that they are distinct
but could only show:

Theorem 25. If U2EXPN co-U2EXP=# 2EXP, then the relations of strong isomorphism reducibility
and that of potential reducibility are distinct.

Recall that
20(1) 20(1)
2EXP:= DTIME (22 > and N2EXP.= NTIME (22 >

The complexity class U2EXP consists of tha@ee N2EXP for which there is a nondeterminis-
tic Turing machine of type N2EXP that for evetly € @ has exactly one accepting run. Finally,
Co-U2EXP:= {¥*\ Q | Q € U2EXP}.

The rest of this section is devoted to a proof of this resule &plain the underlying idea: As-
sume@ € U2EXPnN co-U2EXP. We construct class€sand D which contain structures in the same
cardinalities and which contain exactly two nonisomorg@tiactures in these cardinalities. Therefore
they are potentially reducible to each other. While it igi#ii to exhibit two nonisomorphic struc-
tures inC of the same cardinality, from any two concrete nonisomariuctures inD we obtain
information on membership i) for all strings of a certain length. '<is, D, we get concrete noni-
somorphic structures i (in time allowed by 2EXP) by applying the strong isomorphissduction
to two nonisomorphic structures (i and therefore obtaiy € 2EXP.

Proof of Theorem 25Let Q € U2EXPN co-U2EXP. Then there exists a nondeterministic Turing
machineM and a constan{ > 2 such that (M1)—(M5) hold:

(M1) The machinéM has three terminal statgges, ‘no, and‘maybe.

|4
(M2) Forz € ¥*, every run ofMl on inputz stops aftelexactly22‘ ! many steps.
(M3) Forz € @ exctly one run ofM on z stops in ‘yes’ and none in ‘no.’
(M4) Forz ¢ (@ exactly one run oM on x stops in ‘no’ and none in ‘yes.’
(M5) The machinéV has exactly two different choices for the next step in evemytarminal state.
We say that a run d¥l takes a decisioif it ends in ‘yes’ or in ‘no.’

d
Forn € N we set/(n) := 22" . Forz € ¥, by (M2) and (M5), every run o on inputz can
be identified with a binary string € {0, 1}5(“. Conversely, from such a stringwe can determine a
run ofM onz.

11

Letm(n) := 2" and
T1,T2, .- rxm(n)
be the enumeration of all strings &f* in the lexicographic ordering. We call a binary stringf

lengthm(n) - £(n) = 2™ - 22”d adecision stringif for i € [m(n)] the ith substring ofs of length
¢(n) corresponds to a run &fl onz; taking a decision; more precisely, if we have= si'sy - s, ()
with |s;| = ¢(n) for i € [m(n)], thens; corresponds to a run &fl on x; taking a decision. By our
assumptions (M3) and (M4) we get:

for everyn € N there is exactly one decision string of lengttin) - ¢(n). 4)

We turn every string of lengthm(n) - £(n) into a structureA(s) over the vocabulary = {P, R},
whereP is a unary relation symbol anfl is a binary one. Let

A(s) := [m(n) - £(n)],
RA(Gs) .— {(G,7+1) | j €[m(n)-£(n) — 1]},
PAGs) . {j1j € [m(n) - £(n)] and thejth bit of s is one}, if s is a decision string
U otherwise
By (4) for everys, s’ € {0, 1}m(n)-f(n)

A(s) 2A(s") <= exactly one of ands’ is a decision string. (5)

Let D, be the class containing, up to isomorphism, the structdiie$ with s € {0, 1} The
following is straightforward.

(D1) The universe of every structure I, has cardinalityn(n) - £(n).
(D2) | Dy /| = 2.

We set

D= U D,.

neN

C:= U Cn,

neN

where forn € N every structure in the class,, is isomorphic to the complete gragty,;, ,,).¢(,) On
m(n) - £(n) vertices or to its complemetﬁ’m(m_g(n). Then:

Finally, we let

(C1) The universe of every structuredr), has cardinalityn(n) - £(n).
(C2) |Cy/~| = 2.
Hence,C<pot D.
Claim; Assumef : C'<ijso D. Then there isyy € N such that for alh > ng
f(Cn/%) :Dn/%- (6)

By this equality we mean:

12

— f(A) € D, forevery A € Cy;
— for everyB € D, there exists al € C,, such thatf(A) = B.

Proof of the Claim First observe that by (C2) and (D2) it suffices to show forsalfficiently large

néeN
f(Cr) € Dy. @)

As f is computable in polynomial time theredse N such that for every, € Nand A € C,

nd
the universe off (A) has< (2" - 22")° elements.

We choose € N such that for allh > ng
d\ ¢ d
(2" 2%) < gl g2t

Hence, form > ng

flyce| <l p,
q<n q<n

As J,<, Cq and,<, Dy contain, up to isomorphism, the same number of structuresClim
follows. - =

Now assume thaf : C'<isoc D. Then the following algorithni witnesses tha) € 2EXP. Letng be
as in the Claim. Fox € ™ with n > nq the algorithmA computes the structures

f (Kmmyemy) and f (Kgny.(n)) ;

they are nonisomorphic and in,, by the Claim. In particular, by (5) we get a runIgf on inputz
taking a decision; the algorithi answers accordingly. O

7. Strong isomorphism reducibility and potential reducibility coincide under P = #P

In the previous section we have seen that under some conyptaroretic assumption the two notions
of reduction (strong isomorphism reducibility and potehteducibility) are distinct. One might won-
der whether we can separate them without any such compldsetyretic assumption. We show in
this section that this would settle some open problem in dexity theory; more precisely, we show
the statement of the title of this sectidrin particular, by Corollary 18 (2), the assumption=P#P
implies that Lou is a maximum element ofis, . We prove the result in a more general setting.

For a clasg” consider the equivalence relati@i{C') on X* induced by the isomorphism relation,
that is,

E(C) := {(endA),endB)) | A,B € CandA = B}
U {(w, y) | x,y € ¥* andz andy are not encodings of structuresdh}.

3Recall that P= #P means that for every polynomial time nondeterministigfigimachineM the function fi; such
that fy(x) is the number of accepting runslfonz € ¥* is computable in polynomial time. The clag$ consists of all
the functionsfy.

13

Of course,E(C) is in NP. In this section we consider arbitrary such equivederelations or* and
show that the corresponding two notions of reduction cdidi P= #P. We start by introducing all
relevant concepts; we do not restrict ourselves to equicaleelations in NP, but consider equivalence
relations in an arbitrary complexity class (for an equinake relationt on >.* we also writex £y for
(z,y) € E).

Definition 26. (1) Let CC be an arbitrary complexity class. Then we denot€86Yeq) the set of
equivalence relationg on ¥* with £ € CC.

(2) LetE andE’ be equivalence relations at. We say thaf? is strongly equivalence reducible to
E’" and writeE<eq E', if there is a functionf : ¥* — X* computable in polynomial time such
that for allz, y € *

2By <= f(x)E'f(y).

We then say thaf is astrong equivalence reductidrom E to £’ and writef : E<eqFE'.

Clearly, E(C) € NP(eq) for every clas€’ of structures; furthermorey(Lou) € P(eq). Let Rop
and TAUT denote the set of all formulas of propositional logic andgéeof tautologies, respectively.
Note thatFequiy € cO-NP(eq), where

FEequiv = {(o,) | a, 8 € PROP and(a < 3) € TAUT} U {(z,y) | z,y € £* \ PROP}.
Clearly, if C and D are classes of structures as in the previous sections, then
C<isoD <= E(C)<eqE(D).
We generalize the notion of potential reducibility to eg@nce relations.

Definition 27. Let £ and £’ be equivalence relations a&i*. We say thatt is potentially reducible
to £’ and write E<pot E' if there is ap € N[X] such that for alln € N the numbefx="/E| of
E-equivalence classes containing a stringeiv® is at most|2§1’("> /E' \

Due to our definition of£(C'), the new notion coincides with the old one for equivalendatiens of
the formE(C):

Proposition 28. LetC andC’ be classes. Then

Cépotcl < E(C)SpotE(C/)

Proof: Recall that the empty string is not the encoding of a strectuetC' be a class of-structures
andC’ a class of~'-structures. By our assumption on the encoding of strusfihere are polynomials
pr, P € N[X] such that for every-structure4

Al < lendA)| < p-(|A])

and for everyr’-structureB3
|B| < |lendB)| < p-(|B]).

Assume first thal'<po: C’, say#C(n) < #C’(p(n)) for some polynomiap. Then

[S="/E(C)| < #C(n) + 1 < #C'(p(n)) + 1 < [£=7) /B(C)).

14

Conversely, assume th#t(C)<pot E(C"), say |SS"/E(C)| < [P /E(C")| with p € N[X].
Then

#C(n) +1 < [5570/B(C)| < |25P0rM)/B(C")| < #C (p(pr(n))) + 1. O

Along the lines of the proof of Lemma 17, one shows thateq E' implies E<pqt E’. For equiv-
alence relations we can show thatq is finer than<p,t under weaker assumptions than that of
Theorem 25:

Proposition 29. If NP #£ P, then the relations of strong equivalence reduction and dfigootential
reducibility do not coincide oNP(eq)

Proof: AssumeQ € NP\ P. We definefg by
By <+ (w =y or (z = bzandy = (1 — b)"z for somez € Q andb € %))

By our assumptions of, we haveE, € NP(eq). We let” be the identity ort*. Clearly, B <pot E.
AsQ ¢ P, we getEg Zeq E, as anyf : Eg<eqE would yield a polynomial time decision procedure
for Q. O

Generalizing the proof idea of Theorem 11 we show:

Theorem 30. If P = #P, then<eq = <pot ON P(eq) that is, the relations of strong equivalence
reducibility and that of potentially reducibility coinaéddonP(eq)

To prove this theorem we first generalize the notions of caration and of enumeration induced
by a canonization.

Definition 31. Let E € CC(eq). Afunction Can ©* — X* is acanonization forZ if it is polynomial
time computable and

(1) forallz,y € ©*: (2By <= Canz) = Can(y));
(2) forallx € ¥*: zF Can(z).
Let Can be a canonization &f. Theenumeration induced b@an is the enumeration

1,22 ...
of Can(¥*) such thatr; <jex z; fori < j.

If £ has a canonization, thefi € P: to decide whethet Ey we compute Cafxr) and Catfy) and
check whether Cqn) = Can(y).

Now it is easy to explain the idea underlying the proof of Tieeo 30. First we show that (under
the assumption P- NP) every Ec P(eq) has a canonization GanThen, givenE, E' € P(eq), we
define a strong equivalence reductipn >* — X* from E to E’ as follows: Letr € X*. If Cang(z)
is theith element in the enumeration induced by gathen we letf(z) be theith element in the
enumeration induced by Can By the properties of canonizations it should be clear that

zBy <= f(2)E'f(y)

(we can even replacé(z)E' f(y) by f(x) = f(y)). So it remains to show (under suitable assump-
tions) thatf is computable in polynomial time and to show that every eajaivce relation has a
canonization.

The following lemma was already proven in [2].

15

Lemma 32. If P = NP, then everyE € P(eq)has a canonization; in fact, then the mapping sending
eachz € ¥* to the <j -first member of thé&’-equivalence class af is a canonization.

Proof: Let F € P(eq) and assume £ NP. Then we know that the polynomial hierarchy collapses,
P = PH. So it suffices to show that the mapping defined in the setemof this lemma can be
computed by an alternating polynomial time algoritiimvith a constant number of alternations. This
is easy: on input: € ¥* the algorithmA guesses existentially € ¥* with |y| < |z| andxEy; then

A guesses universally a furthere X* with |z| < || andzEz; if y<iex 2z, thenA outputsy otherwise

it rejects. O

Lemma 33. Let £ € P(eq)be an equivalence relation with a canonizatiGan Then the following
problem is in#P:

Instance: x € ¥*.
Problem: Computei (in binary) such that Cdm) is theith element
in the enumeration induced by Can.

Proof: Consider a nondeterministic polynomial time algoritimwhich on inputz € ¥* runs as
follows: It first computes the string := Can(xz). ThenA guesses a string € ¥* with |z] < |y|.
Finally it accepts if Cafr) = z andz <jex y. It should be clear that the number of accepting runs of
Aonzxis

{z | z <jex Can(z) and Caffz) = z}|. O

Proof of Theorem 30Assume that P= #P. LetE, E' € P(eq) be equivalence relations and assume
that E<pot £/, that is, |[2="/E| < |£=P(") /E'| for some polynomiap and alln € N. We show
E<eqF'.

As P = #P, there are canonizations Ganof £ and Can: of £’ and there are polynomial time
algorithmsA andA’ that solve the problem of the preceding lemmaZband E’, respectively. The
following nondeterministic polynomial time algorithm cputtes anf : E<eqE’. On inputz € X*,
it computes Cap(x) andn := |Cang(x)| and guesses a string € ©=P(") with Cang/(z) = .
SimulatingA and A/, it checks whether Caf(xz) andz’ are at the same position in the enumeration
induced by Cap and in the enumeration induced by Garrespectively; in the positive case it outputs
', otherwise it rejects. ABS<"/E| < |[%=P(") /E’| such ane’ € ©=P(") with Cang, (') = 2’ at the
same position as Caitx) exists. As P= NP, the functionf is computable in polynomial time. O

We briefly point to the papers [2, 3, 7] that deal with relatedbtems. Let Inv(eq) be the class
of equivalence relations having an invariantization (dedim analogy to Definition 5), Can(eq) the
class of equivalence relations having a canonization amadfin_exfirst(eq) the class of equivalence
relations having a canonization that maps every stringgecthy -first element of its equivalence class.
Clearly

Lexfirst(eq)C Can(eq)C Inv(eq) C P(eq). (8)

Lemma 32 shows that Lexfirst(eg) Can(eq)= Inv(eq) = P(eq) if P= #P. Blass and Gurevich [2],
for example, prove that Lexfirst(eg) Can(eq) unless the polynomial hierarchy collapses, antd For
now and Grochow [7] show that Can(eg) Inv(eq) would imply that integers can be factored in
probabilistic polynomial time. Blass and Gurevich [2, 3hgmare the complexity of the “problems

16

underlying the definition of the sets in (8).” Finally, thedbo[14], among other things, deals with
the question whether two propositional formulas are Idlyicaguivalent up to a permutation of their
variables. It is not hard to see that the isomorphism prolitana classC' can be rephrased in these
terms; however no analogue gfs, is considered in [14].

8. On maximum elements in P(eq) and NP(eq)

In this section we study whether there is a maximum elemetht rgspect to strong equivalence re-
ductions in the classes P(eq) and NP(eq), that is, in theedasf deterministic and nondeterministic
polynomial time equivalence relations. We already memiibthat the existence of a maximum ele-
ment in P(eq) is mentioned as [7, Open Question 4.14 |; themalf strong equivalence reduction
was already introduced in that paper and called kernel teduthere.

Let SAT be the set of satisfiable propositional formulas. ConsideNP-equivalence relation
Esar:= {(o,) | a,3 € PROPand(a = S ora, 3 € SAT) };
more precisely, to get an equivalence relationtnwe should write
Esai:= {(a, 8) | a, 3 € PROPand(a = fora, 5 € SAT) } U {(z,y) | #,y € £*\ PROP}.

However, henceforth if we speak of an equivalence relaiomhose field FIdE) is a proper subset
of ©*, we identify it with the equivalence relatidfi U {(z,y) | z,y € £* \ FId(E) }. We useFsxto
show:

Proposition 34. If the polynomial hierarchy?Hdoes not collapse, thefi(GRAPH) is not a maximum
element iN(NP(eq) <eq); in fact, thenEsa; Leq £(GRAPH).

Proof: For o € PrRoPand a propositional variabl& we have & € SAT < aFsaX). By
contradiction, assume th#t: Esa<eqE(GRAPH). We havef(X) € GRAPH; otherwise, &T € P,
which contradicts our assumption that the polynomial ma@na does not collapse. Then for every
a € PROP

a € SAT <= f(a) = f(X).

Thus E(GRAPH) would be NP-complete. It is well-known [4] that this implig§ = PH. O

We show that the existence of a maximum elemeriNiR(eq) <eq) is equivalent to the existence
of an effective enumeration of NP(eq). This result is alse fior P(eq) and co-NP(eq). To state the
precise result we introduce some notions. A deterministisamdeterministic Turing machiné is
clocked(more preciselypolynomially time-clockex if (the code of)M contains a natural number
time(M) such that"™mM™) js a bound for the running time afl on inputs of length. So, by this
definition, all runs of a clocked machine are of polynomiaigth. Of course, the functioM +—
time(M), defined on the set of clocked machines, is computable impatyal time.

Definition 35. Let CCe {P, NP, co-NP}. Let L be a set of languagdswith L C >*. We say that
Lo, Ly,...

is a CGenumeration oL by clocked Turing machineg L = {Ly, L, ...} and there is a computable
function Ml defined onN such thatVi(i) for i € N is (the code of) a clocked Turing machine of type
CC accepting;.

17

Proposition 36. LetCC € {P, NP, co-NP}. Then the following are equivalent:
(1) (CC(eq), <egq) has a maximum element.
(2) There is aCC-enumerationEy, E1, ... of CC(eq) by clocked Turing machines.

Proof: (1) = (2): Assume that? is a maximum element ifCC(eq), <eq) and letMmay be a Turing
machine of type CC acceptingj. Of course, there is a computable functidi such thatM’ (i) for
1 € N is a deterministic clocked Turing machine computing a fiomctf; : ¥* — X* such that
fo, f1,-..is an enumeration of all polynomial time computable funcsidrom>* to >*. We define
the machinéVl a0 M'(4) in a straightforward manner such that it decides

E; = {(z,y) | (fix), fily)) € E}.

We letM be the function defined oN with M((7) := Mpmaxo M/(i). As from a polynomial bounding
Mmax and timéM’ (7)) we get a time bound fawi(i), we can assume thaf(7) is clocked. It should
be clear thaty, Fq, ... has the desired properties.

(2) = (1): LetEy, F1, ... be asin (2) and I€tl be a corresponding computable function. By padding
if necessary, we may assume that the grgh, 1M@1) | i € N} is decidable in polynomial time and
thati < |[M(7)| for all i € N. We define the relatioi’ as follows (for better reading we denote here,
and in the proof of Lemma 39, the string, that is the strind1 . .. 1 of length?, by (¢)):

B = { (000, @, (2 + 20) ™)), (M), y, (2 + 21y ™4D))) | i € Nand(a,y) € Ei}

By the effectivity properties oM, we haveEl € CC(eq) (more preciselyy U {(z,y) | =,y €
¥*\ FId(E)} € CC(eq). Clearly, for € N the mappingz — (M(3), z, (2 + 2|z|)iMeM@)}) is a
strong equivalence reduction frof} to E/, henceE is a maximum element. O

Below we will show that{NP(eq) <¢q) has a maximum element if NP co-NP. Note that we
do not even know whethgiP(eq) <eq) has a maximum element. The main result concerning this
problem that we have reads as follows (later we recall thenidiefa of p-optimal proof system):

Theorem 37. If TAUT has ap-optimal proof system, theiP(eq) <eq) has a maximum element.

The following observations will lead to a proof of this resul

Definition 38. LetM be a deterministic or nondeterministic Turing machineam@N. The machine
M defines an equivalence relation &¥" if the set

{(z,y) | 2,y € £=" andM acceptyz, y) }
is an equivalence relation &&=" := {z € ¥* | |z| < n}.

An analysis of the complexity of the first of the following flems will be crucial for our purposes.

EQuiv(P)
Instance: A deterministic clocked Turing machidd andn € N.
Problem: DoesM define an equivalence relation &¥"?

18

EQuUIV(NP)
Instance: A nondeterministic clocked Turing machiié andn € N.
Problem: DoesM define an equivalence relation &¥"?

Lemma 39. (1) If (M, n) € EQuIV(P) is solvable by a deterministic algorithm in timé (M) for
some functiory : N — N, thenP(eq)has a maximum elemeht.

(2) If (M,n) € EQuIV(NP) is solvable by a nondeterministic algorithm in timé&I™l) for some
functionf : N — N, thenNP(eq)has a maximum element.

Proof: Let A be an algorithm, deterministic for (1) and nondeterminidtir (2), witnessing that
(M, n) € Q is solvable in timex/(IMl) for somef : N — N. We define the equivalence relatidt
onX* by: foru,v € ¥*

uFgv

if and only if
u=wvor (u = (M,z,(2+2- |2z|)imeM) 1) and

v=(M,a/,(2+2-[a/))"™ 1) and (1) - (3) are fulfiueg,

where
— M is a clocked Turing machine of type CC, where €@ for (1) and CC= NP for (2);
— A acceptqM, |z|) in at mostt steps andM, |2’|) in at mostt’ steps;
— M acceptqz,).
Clearly, Ey € CC(eq). We show that, is a maximum element. Leéf € CC(eq) be arbitrary and let
M be a clocked Turing machine decidiigy Then
z— (M,z, (2+2- ‘x’)time(M)7 qx’f(l\MH)»

is computable in polynomial time and hence a strong equieagl@eduction fron¥ to Ej. O

Theorem 40. (1) If E = NE, thenP(eq)has a maximum element.
(2) If NP = co-NP, thenNP(eq)has a maximum element.

Proof: (1) We may assume that is written in binary in the instance@Vl, n) of EQuiv(P). We
consider the following nondeterministic algorithtnaccepting the complement ofgeiv(P). On
input (M, n), it guesses one of the three axioms of an equivalence nelat&y, the transitivity axiom;
then A guessest,y,z € X", it simulatesM on input(x,y), on input(y, z), and on input(z, z)
and accepts iM accepts the first two inputs but not the third one. As we mayraesthat||M|| >
time(M), the algorithmA runs in time||M|| - nO(imeM)) — 9O([IM]l-logn) ' By the assumption E= NE,
there is a deterministic algorithm deciding the complen@riEQuiv (P) and hence Bulv (P) itself
in time 2€(IMlog2) ' Now our claim follows from the preceding lemma.

“By ||M|| we denote the length of a reasonable encodingldfy a string ofL*.

19

(2) The following alternating algorithmA decides the complement oldB1v(NP): On input(M, n)
(again we may assume thghl|| > time(M)), it existentially guesses one of the three axioms of
an equivalence relation, say, the transitivity axiom; theexistentially guesses,y,z € X" and
runs of M accepting(z,y) and(y, z); furthermore it yields the string»I™I). Finally A universally
simulatesM on input(z, z) and accepts iM rejects. The algorithmd\ has one alternation. By our
assumption NP= co-NP, its universal part (an algorithm of type co-NP witputs M, (z, z), and
(nIMlYy can be simulated by a nondeterministic algorithm runnmgjrme n°(MI) - Altogether we
get a nondeterministic algorithm accepting (the compler&nEqQuiv (NP) in time nCMI) | Now
our claim follows from the preceding lemma. O

We consider thecceptance problem for nondeterministic Turing machines

ACCS
Instance: A nondeterministic Turing machingl andn € N.
Problem: DoesM accept the empty input tape #in steps?

Lemma 41. The following are equivalent:
(1) (M,n) € Acce< is solvable deterministically in time/(I™I) for somef : N — N,
(2) (M, n) € EQUIV(P) is solvable deterministically in time/(IM) for somef : N — N.

Proof: (1) = (2): Assume thatM, n) € Acc< (whereM is a nondeterministic machine ands N)
can be solved by an algorith# in time »/(IMl) for somef : N — N. Then the following algorithm
B will witness that Byuiv (P) is decidable in the time claimed in (2). L&Y, n) be an instance of
EQuIVv(P), in particularM is a deterministic clocked Turing machine. We may assumelthan
input (z,) runs for exactly(2 + 2 - max{z, y})imeM) steps. LetM be the nondeterministic Turing
machine that on empty input tape, in the first phase guessesfahe three axioms of an equivalence
relation, say, the transitivity axiom; then in the secondg#M guesses:, y, z € ¥*; finally in the
third phase it simulatell on input(x, y), on input(y, z), and on inputz, z) and accepts M accepts
the first two inputs but not the third one. We can assumelthdoes this simulation in such a way that
it runs for exactly(2 + 2 - max{z, y, z})"meM) steps on each of the tuplés, y), (y, z), and(z, z).

Let k1, ko(x,y, 2), andks(x, y, z) be the exact tim@/ uses for the first phase, the second phase
and the third phase, respectively. As indicated for thedthitase we may arrange things in such a
way that there are (nonconstant) polynomid]sk’, such that

ko (x,y, 2) = ky(max{|z], y], |2]}) and ks (2, y, z) = ky(max{|z|, |yl |=[})

and such that if for examplel has chosen the symmetry axiom and € ¥*, thenky (max{|z|, |y|})
is also the exact number of stegsuses for the second phase. Bsandk} are increasing functions,
we get _

(M,n) ¢ EQUIV <= (M, k + kj(n) + k3(n)) € Acc,

which gives the desired bound.

(2) = (1): For a nondeterministic Turing machiiv let M be the deterministic Turing machine that
on input (z,y) with z,y € X* first checks whether # y; if so, it accepts; ifx = y, it simulates
the |z| steps of a run oM on empty input tape, namely the steps corresponding to {théhx and
rejects if in thesex| stepsM accepts; otherwiskl accepts. Thus for every € N

(M,n) € AcC< <= M does not define an equivalence relationss.

20

As from the definition ofVl we immediately get a polynomial time bound, we can assuntd\this
clocked, so that the preceding equivalence immediatekysgilre claim. O

A proof systenfor TAUT is a surjective functionS : ¥* — TAUT computable in polynomial
time. The proof systen$ for TAUT is p-optimalif for every proof systent’ for TAUT there is a
polynomial time computablé& : ¥* — »* such that for alkw € ©*

S(T(w)) = §'(w).

It is not known whether there is a p-optimal proof system fAlT, even though it is conjectured
there is no such p-optimal proof system. In [5] it has beenvshihat:;

Proposition 42. The following are equivalent:
(1) There is a p-optimal proof system f6AUT.
(2) (M,n) € Acce is solvable in time:/ (M) for some functiory : N — N.

Proof of Theorem 37tf there is a p-optimal proof system for TAUT, by the previqusposition and
Lemma 41 we see thébl, n) € EQuIV(P) is solvable in time:/ (M) for some functionf : N — N.
Now the claim follows from Lemma 39.

References

[1] H.U. Besche, B. Eick and E.A. O'Brien. The groups of ordemost 2000, Electronic Research
announcements of the American Mathematical Society, 7:26@1.

[2] A. Blass and Y. Gurevich. Equivalence relations, ingats, and normal forms. SIAM Journal
of Computing, 13:682-689, 1984.

[3] A. Blass and Y. Gurevich. Equivalence relations, ingats, and normal forms, Il. Lecture
Notes in Computer Science, 171:24-42, 1984.

[4] R.B.Boppana, J. Hastad and S. Zachos. Does co-NP haxtdrdlecactive proofs? Information
Processing Letters, 25(2):127-132, 1987.

[5] Y. Chen and J. Flum. On p-optimal proof systems and logpcsPTIME. In Proceedings of
the 37th International Colloquium on Automata, Languaged &rogramming (ICALP’1Q)
Lecture Notes in Computer Science 6199, pages 321-332depri2010.

[6] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Pectpes in Mathematical Logic,
Second Edition, Springer 1999.

[7] L. Fortnow and J. Grochow. Complexity classes of eq@kak problems revisited,
arXiv:0907.4775v1 [cs.CC], 20009.

[8] S. Friedman Descriptive set theory for finite structuresLecture at the Kurt Godel
Research Center, 2009, Available http://www.logic.univie.ac.at/"sdf
/papers/wien-spb.pdf

[9] H. Friedman and L. Stanley. A Borel reducibility theomyrfclasses of countable structures,
Journal Symbolic Logic 54, (1989), 894-914.

21

[10] S. Givant and P. Halmos. Introduction to Boolean algsbiSpringer, 2008.

[11] Y. Gurevich. From invariants to canonization. Bull.riep. Assoc. Theor. Comp. Sci 63:115—
119, 1997.

[12] T. Kavithal. Efficient algorithms for abelian group morphism and related problems. In
Proceedings of the 23rd Conference on Foundations of Sadtwachnology and Theoretical
Computer Science (FSTTCS’02ecture Notes in Computer Science 2914, pages 277-288,
Springer, 2003.

[13] G. Miller. Isomorphism testing for graphs of boundecdge. InProceedings of the 12th Annual
ACM Symposium on Theory of Computing (STOG'82p—235, 1980.

[14] T. Thierauf. The computational complexity of equivate and isomorphism problems. Lecture
Notes in Computer Science, 1852, Springer, 2000.

22

