
Strong isomorphism reductions in complexity theory

Sam Buss
sbuss@math.ucsd.edu

Yijia Chen
yijia.chen@cs.sjtu.edu.cn

Jörg Flum
joerg.flum@math.uni-freiburg.de

Sy Friedman
sdf@logic.univie.ac.at

Moritz Müller
mmueller@crm.cat

1. Introduction

In many areas of computational complexity, polynomial timereduction is the appropriate notion for
comparing the complexity of problems. However, suppose that we face, for example, the problem of
comparing the complexity of the isomorphism problem for twoclassesC andD of graphs. Here

ISO(C) := {(A,B) | A,B ∈ C andA ∼= B
}

is the isomorphism problem forC (more precisely, the set of positive instances of this problem) and
ISO(D) is defined analogously. Probably we would not accept a polynomial time computable function
f : C × C → D × D with (A,B) ∈ ISO(C) ⇐⇒ f(A,B) ∈ ISO(D)
as the right notion of reduction in this context but we would seek astrong isomorphism reduction, that
is, a polynomial time computable functionf : C → D with

A ∼= B ⇐⇒ f(A) ∼= f(B). (1)

This paper is devoted to the study of this type of reduction. For us the motivation for this study came
from various areas:

Computational complexity: The isomorphism relation (on a classC) is an equivalence relation. In
the context of arbitrary equivalence relations a notion of reduction defined analogously as in (1) (and
that for the isomorphism relation coincides with our notion) has been introduced in [7]. However that
paper is mainly devoted to other problems (see the end of Section 7 for some more details); concerning
the notion of reduction only some open problems are stated in[7], problems we address in our paper.

Descriptive set theory: For the isomorphism relation our notion of reduction was first considered
by the fourth author (see [8]) inspired by the analogous notion from descriptive set theory (see [9]).
In descriptive set theory,C andD denote classes of structures with universeN and the functionf
satisfying (1) is required to be Borel (in the topology generated by the first-order definable classes).

Descriptive complexity: The existence of a logic capturing polynomial time remainsthe central open
problem of descriptive complexity theory. For many classesC of graphs (or of other types of struc-
tures), one shows that a logicL captures polynomial timeon C by defining inL an invariantization
for C. From the definition of invariantization (given in Section 4), one immediately gets that ifC is
strongly isomorphism reducible toD, thenC has an invariantization ifD has one.
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This paper contains the first systematic study of strong isomorphism reductions. In Section 3 and
Section 4 we introduce our framework, derive some basic properties of strong isomorphism reduc-
tions, and explain via invariantizations and canonizations the relationship to logics capturing polyno-
mial time mentioned above. At various places of our analysis, invariantizations and canonizations will
be valuable tools. Their relationship and the computational complexity of problems related to these
notions have been studied in [2, 3, 7, 11, 13, 14].

We denote by≤iso the partial ordering on the set of degrees induced by strong isomorphism
reductions. While already in Section 3 we observe that (the degree of) the class of graphs is the≤iso

maximum element, by Theorem 11 we see that some “basic algebraic classes of structures” all have
the same strong isomorphism degree. In Section 5 we show thatthe structure of≤iso is rich already
when restricting to classes with an invariantization.

Assume thatC is strongly isomorphism reducible toD. Since such reductions are computable
in polynomial time we know that for some polynomialp ∈ N[X℄ and alln ∈ N the number of iso-
morphism types of structures inC with at mostn elements is at most the number of isomorphism
types of structures inD with ≤ p(n) elements. If this condition is satisfied, then following [8]we
say thatC is potentially reducible toD. Already in Section 5 this concept is the main tool to demon-
strate the richness of the partial ordering≤iso . We believe that the notions of strong isomorphism
reducibility and that of potential reducibility are distinct but can only show this under the hypothesis
U2EXP∩ co-U2EXP 6= 2EXP (see Section 6). It turns out in Section 7 that we would get P 6= #P if
we could separate the two notions without any complexity-theoretic assumption.

The isomorphism relation is an equivalence relation in NP. In Section 8 we study reductions (de-
fined in analogy to (1)) between arbitrary equivalence relations in NP. In particular, we show that
there is a maximum element in the corresponding partial ordering if and only if there is an effective
enumeration of these equivalence relations by means of clocked Turing machines. Even if we restrict
to equivalence relations in P (= PTIME), we cannot show that amaximum element exists; we can
guarantee its existence if a p-optimal propositional proofsystem exists. The existence of a maximum
element for equivalence relations in P was addressed in [7, Open Question 4.14].

The authors wish to acknowledge the generous support of the John Templeton Foundation and the
Centre de Recerca Matemàtica through the CRM Infinity Project. Sam Buss’ work was supported in
part by NSF grant DMS-0700533.

2. Some preliminaries

Throughout the paper� denotes the alphabet{0, 1} and we let�∗ be the set of strings over this
alphabet. Forn ∈ N we denote by1n the string11 . . . 1 of lengthn. An ordered pair(x, y) with
x, y ∈ �∗ is coded (identified) with a string in�∗ of length2+2max{|x|, |y|}. Sometimes statements
containing a formulation like “there is ad ∈ N such that for allx ∈ �∗: . . . ≤ |x|d” can be wrong for
x ∈ �∗ with |x| ≤ 1 (here|x| denotes the length of the stringx). We trust the reader’s common sense
to interpret such statements reasonably.

2.1. Structures and classes of structures.A vocabularyτ is a finite set of relation symbols, function
symbols, and constant symbols. The universe of aτ -structureA will be denoted by the corresponding
Latin letterA, the cardinality of the setA by |A|, and the interpretation of a symbols ∈ τ in A by sA.

All structures in this paper are assumed to be finite and to have [n℄ := {1, 2, . . . , n} as
universe for somen ∈ N.

For a structureA we denote by‖A‖ the size ofA, that is, the length of a reasonable encoding of
A by a nonempty string enc(A) ∈ �∗ (e.g., cf. [6]). In particular, we assume that the mappings
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A 7→ enc(A) and enc(A) 7→ A are computable in polynomial time and that for every vocabulary τ
there is a polynomialqτ ∈ N[X℄ such that|A| ≤ |enc(A)| ≤ qτ (|A|) for everyτ -structureA (here
|A| denotes the cardinality of the setA and|enc(A)| the length of the string enc(A)).
Clearly, a classC of τ -structures is in P if the set

{
enc(A) | A ∈ C

}

is in P. The classC is closed under isomorphismif for all structuresA andB

A ∈ C andA ∼= B imply B ∈ C

(recall that we restrict to structures with universe[n℄ for somen ∈ N).

In the rest of the paperC (andD) will always denote a class of structures, all of the same
vocabularyτ , which is inP, is closed under isomorphism, and contains arbitrarily large
(finite) structures.

Examples of such classes are:

– The classes SET, BOOLE, FIELD, GROUP, ABELIAN , and CYCLIC of sets (structures of empty
vocabulary), Boolean algebras, fields, groups, abelian groups, and cyclic groups, respectively.

– The class GRAPH of (undirected and simple) graphs. We view graphs asτGRAPH-structures,
whereτGRAPH := {E} for a binary relation symbolE.

– The class ORD of linear orderings. Here we use the vocabularyτORD := {<} with a binary
relation symbol<.

– The class LOP of Linear Orderings with a distinguishedPoint and the class LOU of Linear
Orderings with aUnary relation. LetτLOP := τORD ∪ {c} with a constant symbolc andτLOU :=
τORD ∪{P} with a unary relation symbolP . Then LOP (LOU) is the class of allτLOP-structures
(τLOU-structures)A with (A,<A) ∈ ORD.

Structures in LOU correspond to strings in�∗ and vice versa; in fact, a structureA ∈ LOU corresponds
to the string of length|A| whoseith bit is 1 if and only if theith element ofA (according to<A) is
in PA.

3. Strong isomorphism reductions

We define the notion of strong isomorphism reduction alreadyindicated in the Introduction and present
first examples.

Definition 1. Let C andD be classes. We say thatC is strongly isomorphism reducible toD and
write C≤isoD, if there is a functionf : C → D computable in polynomial time such that for all
A,B ∈ C

A ∼= B ⇐⇒ f(A) ∼= f(B).
We then say thatf is astrong isomorphism reductionfrom C to D and writef : C≤iso D. If C≤isoD
andD≤isoC, denoted byC≡isoD, thenC andD have the same strong isomorphism degree.

Examples 2. The mapping sending a field to its multiplicative group witnesses that FIELD ≤iso CYCLIC .
Furthermore, ORD≡iso CYCLIC and CYCLIC ≤iso ABELIAN .
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Remark 3. We can reduce the notion of strong isomorphism reduction to acentral notion of com-
putational complexity, namely to the notion of polynomial time reduction. For this, we introduce the
problem

ISO(C )
Instance: A,B ∈ C.
Problem: IsA ∼= B?

A function f : C → D induces the function̂f : C × C → D × D with f̂(A,B) := (
f(A), f(B)).

Then
f : C≤isoD ⇐⇒ f̂ : ISO(C) ≤p ISO(D),

wheref̂ : ISO(C) ≤p ISO(D) means that̂f is a polynomial time reduction from ISO(C) to ISO(D).
Of course, it is easy to construct polynomial time reductions from ISO(C) to ISO(D) that are not

of the formf̂ for somef : C≤iso D. Moreover, in Remark 14 we shall present classesC andD such
that

ISO(C) ≤p ISO(D) but notC≤iso D.

This answers [7, Open Question 4.13].
As already mentioned in the Introduction one of our goals is to study the relation≤iso . First we

see that this relation has a maximum element:

Proposition 4. C≤iso GRAPH for all classesC.

Proof: Let τ be a vocabulary andS be the class of allτ -structures. It is well-known that there is a
strong isomorphism reduction fromS to GRAPH (even a first-order interpretation, e.g. see [6, Propo-
sition 11.2.5 (i)]). In particular, its restriction to a classC of τ -structures shows thatC≤iso GRAPH.2

4. Invariantizations and canonizations

One of the central aims of algebra and of model theory is to describe the isomorphism type of a
structure by means of an invariant. The underlying notion ofinvariantization is also relevant in our
context. We use it (and the related notion of canonization) to show that most classes of structures
mentioned in Section 2.1 have the same strong isomorphism degree (cf. Corollary 12).

Definition 5. An invariantization forC is a polynomial time computable function Inv: C → �∗

such that for allA,B ∈ C
A ∼= B ⇐⇒ Inv(A) = Inv(B).

Lemma 6. If C≤iso D andD has an invariantization, then alsoC has an invariantization.

Proof: If Inv is an invariantization forD andf : C≤isoD, then Inv◦ f is an invariantization forC. 2
LOU is a maximum class among those with an invariantization:

Proposition 7. For a classC the following are equivalent.

(1) C has an invariantization.

(2) C≤iso LOU.
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(3) There is a classD of ordered structures such thatC≤isoD.

Here, a classD is a class of ordered structuresif its vocabulary contains a binary relation symbol
which in all structures ofD is interpreted as a linear ordering of the universe.

Proof: (1) implies (2) by the natural correspondence between strings in�∗ and structures in LOU.
That (2) implies (3) is trivial. To see that (3) implies (1) assume that there is a classD of ordered
structures such thatC≤isoD. As ordered structures have no nontrivial automorphisms, every ordered
structureA is isomorphic to a unique structureA′ with universe

{1, 2, . . . , |A|
}

and with its natural
linear ordering on it. Thus the mapping onD defined byA 7→ enc(A′) is an invariantization ofD
(recall that enc(B) is the encoding ofB by a string in�∗). Now we apply Lemma 6. 2

It is open whether the class GRAPH has an invariantization or equivalently (by Proposition 4 and
Proposition 7) whether LOU is a maximum element of≤iso . Moreover, it is known [11, 13] that an
invariantization for GRAPH yields a canonization.

Definition 8. A function Can: C → C is acanonization forC if it is polynomial time computable
and

(1) for allA,B ∈ C:
(
A ∼= B ⇐⇒ Can(A) = Can(B));

(2) for allA ∈ C: A ∼= Can(A).
Every classC of ordered structures, in particular LOU, has a canonization. In fact, the mapping
A 7→ A′ defined for all ordered structures in the previous proof is a canonization forC.

We do not define the notion of alogic capturingPon a classC (e.g. see [6]). However we mention
that canonizations and invariantizations are important indescriptive complexity theory as:

Proposition 9. (1) If C has a canonization, then there is a logic capturingPonC.

(2) If GRAPH has an invariantization, then there is a logic capturingP (on all finite structures).

If a classC has a canonization, then it also has an invariantization. Infact, by property (1) of
Definition 8, if Can: C → C is a canonization, thenA → enc(Can(A)) is an invariantization. Often
the invariantizations we encounter in mathematics yield canonizations. For example, consider the
class FIELD of fields. Then an invariant for a fieldK is the pair(pK, nK), wherepK is its characteristic
andnK its dimension over the prime field. As for every invariant(p, n) one can explicitly construct
a canonical fieldFpn of this invariant, we see that the mappingK 7→ Fp

nK
K

is a canonization. This
canonization has a further property, it is a canonization that has a polynomial time enumeration:

Definition 10. Let Can be a canonization for the classC. The enumeration induced byCan is the
enumeration

A1,A2, . . .
of Can(C) such that enc(Ai)<lex enc(Aj)1 for i < j. If the mappingsAn 7→ 1n and1n 7→ An are
computable in polynomial time, then Canhas a polynomial time enumeration.

Note that the mappingAn 7→ 1n is computable in polynomial time if and only if we get an invarianti-
zation Inv ofC by setting

Inv(A) := 1n ⇐⇒ Can(A) = An.

1By <lex we denote the standard (length-)lexicographic ordering on�∗.
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Moreover, if the mappingAn 7→ 1n is computable in polynomial time, then

{enc(Can(A)) | A ∈ C}

is a sparse set.
The classes SET, FIELD, ABELIAN , CYCLIC, ORD, and LOPhave canonizations with polynomial

time enumerations (for ABELIAN see [12], for example). The classes BOOLE and LOU have canon-
izations but none with a polynomial time enumeration (for BOOLE the function1n 7→ An will not
be computable in polynomial time, as there are, up to equivalence, “too few” Boolean algebras of
cardinality≤ n, namely⌊log n⌋; for LOU the functionAn 7→ 1n won’t be computable in polynomial
time, as there are “too many” structures in LOU of cardinality≤ n, namely2n+1 − 1).

Theorem 11. Assume that the classesC andD have canonizations with polynomial time enumera-
tions. Then

C≡isoD.

Corollary 12. The classesSET, FIELD, ABELIAN , CYCLIC,ORD, andLOP all have the same strong
isomorphism degree.

Proof of Theorem 11: Let C andD be classes with canonizations CanC and CanD which have poly-
nomial time enumerations

A1,A2, . . .
and

B1,B2, . . .
respectively. We define a strong isomorphism reductionf from C to D by:

f(A) = Bn ⇐⇒ CanC(A) = An.

Hence,C≤iso D; by symmetry we getD≤isoC. 2
An analysis of the previous proof shows that we already obtain C≤isoD if the mappingsAn 7→ 1n

and1n 7→ Bn are computable in polynomial time. By this, we get, for example, BOOLE≤iso CYCLIC .

5. On≤iso below LOP

As we have seen that the structure of≤iso between LOU and GRAPH is linked with central open
problems of descriptive complexity, we turn our attention to the structure below LOU even below
LOP. In this section we show that there the structure is quite rich. In fact, this section is devoted to a
proof of the following result:2

Theorem 13. The partial ordering of the countable atomless Boolean algebra is embeddable into the
partial ordering induced by≤iso on the degrees of strong isomorphism reducibility belowLOP. More
precisely, letB be a countable atomless Boolean algebra. Then there is a one-to-one functionb 7→ Cb

defined onB such that for allb, b′ ∈ B

– Cb is a subclass ofLOP;

– b ≤ b′ ⇐⇒ Cb≤iso Cb′ .

2Recall that up to isomorphism there is a unique countable atomless Boolean algebra (e.g. see [10]).
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Recall that the partial ordering of an atomless Boolean algebra has infinite antichains and infinite
chains, even chains of ordertype the rationals.

Remark 14. By the preceding result, we see that there exist an infinite≤iso -antichain of classesC
below LOP, whose problems ISO(C) are pairwise equivalent under usual polynomial time reductions.
Indeed, even ISO(C) ∈ P for allC ⊆ LOP.

The reader not interested in the details of the proof of Theorem 13 should read till Lemma 17 and
can then skip the rest of this section. We obtain Theorem 13 bycomparing the number of isomorphism
types of structures with universe of bounded cardinality indifferent classes. First we introduce the
relevant notations and concepts.

For a classC we let C(n) be the subclass consisting of all structures inC with universe of
cardinality≤ n and we let#C(n) be the number of isomorphism types of structures inC(n), more
formally

C(n) := {A ∈ C | |A| ≤ n} and #C(n) := |C(n)/∼=|
Here, for a class of structuresS we denote byS/∼= the set of isomorphism classes inS.

Examples 15. (1) #BOOLE(n) = ⌊log n⌋ and#CYCLIC(n) = n.

(2) #LOP(n) = ∑n
i=1 i = (n + 1) · n/2 and#LOU(n) = ∑n

i=0 2i = 2n+1 − 1.

(3) For every vocabularyτ there is a polynomialpτ ∈ N[X℄ such that#C(n) ≤ 2pτ (n) for all
n ∈ N.

(4) (e.g. see [1])#GROUP(n) is superpolynomial but subexponential (more precisely,#GROUP(n) ≤
nO(log 2n)).

Definition 16. A classC is potentially reducibleto a classD, written C≤potD, if there is some
polynomialp ∈ N[X℄ such that#C(n) ≤ #D(p(n)) for all n ∈ N. Of course, byC ≡pot D we
meanC≤potD andD≤potC.

The following lemma explains the term potentially reducible.

Lemma 17. If C≤iso D, thenC≤potD.

Proof: Let f : C≤iso D. As f is computable in polynomial time, there is a polynomialp such that
for all A ∈ C we have|f(A)| ≤ p(|A|), wheref(A) denotes the universe off(A). As f strongly
preserves isomorphisms, it therefore induces a one-to-onemap from

{
A ∈ C | |A| ≤ n

}
/∼= to{

B ∈ D | |B| ≤ p(n)}/∼=. 2
We state some consequences of this simple observation:

Corollary 18. (1) CYCLIC 6≤iso BOOLE andLOU 6≤iso LOP.

(2) C≤pot LOU for all classesC andLOU ≡pot GRAPH.

(3) The strong isomorphism degree ofGROUP is strictly between that ofLOP and GRAPH, that is,

LOP≤iso GROUP≤iso GRAPH, but LOP 6≡iso GROUPandGROUP 6≡iso GRAPH.

(4) The potential reducibility degree ofGROUP is strictly between that ofLOP and LOU, that is,

LOP≤pot GROUP≤pot LOU, but LOP 6≡pot GROUPandGROUP 6≡pot LOU.
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Proof: Using the previous lemma we see that

– (1) follows by Examples 15 (1), (2);

– (2) from Examples 15 (2), (3) and Proposition 4;

– GROUP≤iso GRAPH holds by Lemma 4 and LOP≤iso CYCLIC≤iso GROUPby Corollary 12; the
remaining claims in (3) follow from (4) as LOU ≡pot GRAPH;

– the first claim follows from the first claim in (3) as LOU ≡pot GRAPH; the remaining claims
follow from Examples 15 (2), (4). 2

The following concepts and tools will be used in the proof of Theorem 13. We call a function
f : N → N value-polynomialif it is increasing andf(n) can be computed in timef(n)O(1). Let VP
be the class of all value-polynomial functions.

Lemma 19. The images of the functions inVP and the finite subsets ofN are the elements of a
countable Boolean algebraV (under the usual set-theoretic operations). The factor algebra V/≡,
where forb, b′ ∈ V

b ≡ b′ ⇐⇒ (b \ b′) ∪ (b′ \ b) is finite,

is a countable atomless Boolean algebra.

Proof: For a functionf : N → N we denote by im(f) the image off . Using the definition of
value-polynomial function it is easy to verify that forf, g ∈ VP the sets

N \ im(f), im(f) ∩ im(g), and im(f) ∪ im(g)
are images of value-polynomial functions provided they areinfinite. We leave the rest of the proof to
the reader. 2

Forf ∈ VP the set
Cf := {

A ∈ LOP | |A| ∈ im(f)}
is in P and is closed under isomorphism. As in cardinalityf(k) there are exactlyf(k) pairwise
nonisomorphic structures in LOP, we get#Cf (n) = ∑

k ∈ N with f(k) ≤ n

f(k).
The following observation contains an essential idea used in the proof of Theorem 13.

Proposition 20. Let f ∈ VP and assume that for every polynomialp ∈ N[X℄ there isn ∈ N such
that ∑

k ∈ N with f(2k) ≤ n

f(2k) >
∑

k ∈ N with f(2k + 1) ≤ p(n) f(2k + 1). (2)

ThenCg0 is not potentially reducible toCg1 , whereg0, g1 : N → N are defined byg0(n) := f(2n)
andg1(n) := f(2n + 1).
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Proof: By contradiction, assume that there is some polynomialp ∈ N[X℄ such that#Cg0(n) ≤#Cg1(p(n)) for all n ∈ N. Choosen such that (2) holds. Then#Cg0(n) = ∑

f(2k)≤n

f(2k) >
∑

f(2k+1)≤p(n) f(2k + 1) = #Cg1(p(n)),
a contradiction. 2

The reader will easily verify that the following functionh : N → N defined by recursion is
value-polynomial:

h(0) = 0,
h(n + 1) = (h(0) + · · ·+ h(n))n .

Forf, g ∈ VP set
f ⊆∗ g ⇐⇒ im(f) \ im(g) is finite.

By the homogeneity properties of atomless countable Boolean algebras, to prove Theorem 13 it suf-
fices to find a corresponding embedding defined only on the nonzero elements ofV/≡. In general
f ⊆∗ g andg ⊆∗ f do not implyCh◦f = Ch◦g. However, by the following lemma we get an embed-
ding ofV/≡ into the partial ordering of the≤iso -degrees as required by Theorem 13 by defining the
mapping on a set of representatives, more precisely on a setR ⊆ VP such that

– for everyf ∈ VP there is exactly oneg ∈ R with f ⊆∗ g andg ⊆∗ f .

Lemma 21. The mappingf 7→ Ch◦f from (VP,⊆∗) to
(
{C ⊆ LOU | C a class},≤iso

)
is one-to-

one and for allf, g ∈ VP:

(1) if Ch◦f≤iso Ch◦g, thenf ⊆∗ g;

(2) if f ⊆∗ g andg 6⊆∗ f , thenCh◦f≤isoCh◦g.

For the proof of the Lemma 21 we need an appropriate way to invert increasing functionsf : N → N.
We definef−1 : N → N by

f−1(n) := max{i | f(i) ≤ n},

where we set max∅ := 0. We collect some properties of this inverse in the followinglemma, whose
simple proof we omit. We denote by idN the identity function onN.

Lemma 22. (1) If f : N → N is increasing, thenf−1 is nondecreasing,f−1 ≤ idN, f−1 ◦ f = idN

andf(f−1(n)) ≤ n for all n ≥ f(0).
(2) If f, g : N → N are increasing, then(f ◦ g)−1 = g−1 ◦ f−1.
(3) If f ∈ VP, thenf−1 is computable in polynomial time.

A further notation is useful: Forf : N → N let f� : N → N be defined by

f�(n) := ∑

i≤n

f(i).
Lemma 23. Letf, g : N → N be functions and assumeg is increasing. Then(f ◦ g)� ≤ f� ◦ g.
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Proof: This is seen by direct calculation:(f ◦ g)�(n) = ∑

i≤n

f(g(i)) = ∑

i≤g(n)
i∈im(g) f(i) ≤ ∑

i≤g(n) f(i) = f� ◦ g(n);
here the second equality uses thatg is increasing. 2

Furthermore observe that:

Lemma 24. If f ∈ VP, then for alln ∈ N we have#Cf (n) = (f� ◦ f−1)(n).
Proof of Lemma 21:The mappingf 7→ Ch◦f is one-to-one: AssumeCh◦f = Ch◦g. Then im(h◦f) =
im(h ◦ g) and thus, im(f) = im(g) ash is one-to-one. Sincef andg are both increasing, this yields
f = g. We prove the remaining statements of Lemma 21 by the following two claims.

Claim 1: Let f, g ∈ VP andf ⊆∗ g andg 6⊆∗ f . ThenCh◦f≤iso Ch◦g.

Proof of Claim 1: By our assumptions, the set im(h ◦ f) \ im(h ◦ g) is finite (asf ⊆∗ g implies
h◦f ⊆∗ h◦g) and (by injectivity ofh) the set im(h◦g)\ im(h◦f) is infinite. ThenCh◦f≤isoCh◦g is
witnessed by a function sending the (up to∼=) finitely many structures inCh◦f \Ch◦g to Ch◦g \Ch◦f

and which is the identity on all other structures inCh◦f .

Claim 2: Let f, g ∈ VP andf 6⊆∗ g. ThenCh◦f 6≤iso Ch◦g.

Proof of Claim 2: By contradiction assumeCh◦f≤isoCh◦g. ThenCh◦f is potentially reducible to
Ch◦g by Lemma 17. Hence there isp ∈ N[X℄ such that#Ch◦f (n) ≤ #Ch◦g(p(n)) for all n ∈ N.
We show that this is wrong for somen. For this purpose we choosek such that

g(0) < f(k), p(h(f(k))) < h(f(k) + 1), and f(k) ∈ im(f) \ im(g) (3)

(by the definition ofh and the assumptionf 6⊆∗ g such ak exists). Then we get#Ch◦g(p(h(f(k))))=(h ◦ g)� ◦ (h ◦ g)−1(p(h(f(k)))) (by Lemma 24)=(h ◦ g)� ◦ (g−1 ◦ h−1)(p(h(f(k)))) (by Lemma 22(2))

≤(h ◦ g)� ◦ g−1(f(k)) (by p(h(f(k))) < h(f(k) + 1) (see (3)) and by definition ofh−1)=(h ◦ g)� ◦ g−1(f(k)− 1) (asf(k) /∈ im(g))
≤h� ◦ g ◦ g−1(f(k)− 1) (by Lemma 23)

≤h�(f(k)− 1) (by Lemma 22(1) asg(0) < f(k))
<h(f(k)) (by definition ofh)

≤#Ch◦f (h(f(k))) (by definition of#Ch◦f ). 2
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6. Strong isomorphism reducibility and potential reducibility

We know that GRAPH≤pot LOU (cf. Corollary 18 (2)) while GRAPH≤iso LOU is equivalent to GRAPH

having an invariantization (cf. Proposition 7). However, so far in all concrete examples of classesC
andD, for which we know the status ofC≤isoD and ofC≤potD, we had that

C≤iso D ⇐⇒ C≤potD.

So the question arises whether the relations of strong isomorphism reducibility and of potential re-
ducibility coincide. Recall that we require the classesC andD to be closed under isomorphism and
decidable in polynomial time. Generalizing the proof idea of Theorem 11, we shall see in the next
section that indeed the relations≤iso and≤pot coincide if P= #P. We believe that they are distinct
but could only show:

Theorem 25. If U2EXP∩ co-U2EXP6= 2EXP, then the relations of strong isomorphism reducibility
and that of potential reducibility are distinct.

Recall that

2EXP := DTIME

(22n
O(1))

and N2EXP:= NTIME

(22n
O(1))

The complexity class U2EXP consists of thoseQ ∈ N2EXP for which there is a nondeterminis-
tic Turing machine of type N2EXP that for everyx ∈ Q has exactly one accepting run. Finally,
co-U2EXP:= {�∗ \ Q | Q ∈ U2EXP}.

The rest of this section is devoted to a proof of this result. We explain the underlying idea: As-
sumeQ ∈ U2EXP∩ co-U2EXP. We construct classesC andD which contain structures in the same
cardinalities and which contain exactly two nonisomorphicstructures in these cardinalities. Therefore
they are potentially reducible to each other. While it is trivial to exhibit two nonisomorphic struc-
tures inC of the same cardinality, from any two concrete nonisomorphic structures inD we obtain
information on membership inQ for all strings of a certain length. IfC≤isoD, we get concrete noni-
somorphic structures inD (in time allowed by 2EXP) by applying the strong isomorphismreduction
to two nonisomorphic structures inC and therefore obtainQ ∈ 2EXP.

Proof of Theorem 25: Let Q ∈ U2EXP∩ co-U2EXP. Then there exists a nondeterministic Turing
machineM and a constantd ≥ 2 such that (M1)–(M5) hold:

(M1) The machineM has three terminal states‘yes,’ ‘no,’ and‘maybe.’

(M2) Forx ∈ �∗, every run ofM on inputx stops afterexactly22|x|d many steps.

(M3) Forx ∈ Q exctly one run ofM onx stops in ‘yes’ and none in ‘no.’

(M4) Forx 6∈ Q exactly one run ofM onx stops in ‘no’ and none in ‘yes.’

(M5) The machineM has exactly two different choices for the next step in every nonterminal state.

We say that a run ofM takes a decisionif it ends in ‘yes’ or in ‘no.’

For n ∈ N we setℓ(n) := 22n
d

. Forx ∈ �n, by (M2) and (M5), every run ofM on inputx can
be identified with a binary stringr ∈ {0, 1}ℓ(n). Conversely, from such a stringr we can determine a
run ofM onx.
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Let m(n) := 2n and
x1, x2, . . . , xm(n)

be the enumeration of all strings of�n in the lexicographic ordering. We call a binary strings of

lengthm(n) · ℓ(n) = 2n · 22n
d

a decision stringif for i ∈ [m(n)℄ the ith substring ofs of length
ℓ(n) corresponds to a run ofM onxi taking a decision; more precisely, if we haves = s1̂s2̂ · · ·̂ sm(n)
with |si| = ℓ(n) for i ∈ [m(n)℄, thensi corresponds to a run ofM on xi taking a decision. By our
assumptions (M3) and (M4) we get:

for everyn ∈ N there is exactly one decision string of lengthm(n) · ℓ(n). (4)

We turn every strings of lengthm(n) · ℓ(n) into a structureA(s) over the vocabularyτ = {P,R},
whereP is a unary relation symbol andR is a binary one. Let

A(s) := [m(n) · ℓ(n)℄,
RA(s) := {(j, j + 1) | j ∈ [m(n) · ℓ(n)− 1℄},

PA(s) := {{
j | j ∈ [m(n) · ℓ(n)℄ and thejth bit of s is one

}
, if s is a decision string

∅, otherwise.

By (4) for everys, s′ ∈ {0, 1}m(n)·ℓ(n)
A(s) 6∼=A(s′) ⇐⇒ exactly one ofs ands′ is a decision string. (5)

Let Dn be the class containing, up to isomorphism, the structuresA(s) with s ∈ {0, 1}m(n)·ℓ(n) . The
following is straightforward.

(D1) The universe of every structure inDn has cardinalitym(n) · ℓ(n).
(D2) |Dn/∼=| = 2.

We set

D := ⋃

n∈N

Dn.

Finally, we let
C := ⋃

n∈N

Cn,

where forn ∈ N every structure in the classCn is isomorphic to the complete graphKm(n)·ℓ(n) on
m(n) · ℓ(n) vertices or to its complement�Km(n)·ℓ(n). Then:

(C1) The universe of every structure inCn has cardinalitym(n) · ℓ(n).
(C2) |Cn/∼=| = 2.

Hence,C≤potD.

Claim: Assumef : C≤isoD. Then there isn0 ∈ N such that for alln ≥ n0
f (Cn/∼=) = Dn/∼=. (6)

By this equality we mean:

12



– f(A) ∈ Dn for everyA ∈ Cn;

– for everyB ∈ Dn there exists anA ∈ Cn such thatf(A) ∼= B.

Proof of the Claim: First observe that by (C2) and (D2) it suffices to show for allsufficiently large
n ∈ N

f (Cn) ⊆ Dn. (7)

As f is computable in polynomial time there isc ∈ N such that for everyn ∈ N andA ∈ Cn

the universe off(A) has≤
(2n · 22n

d )c
elements.

We choosen0 ∈ N such that for alln ≥ n0
(2n · 22n

d

)c

< 2n+1 · 22(n+1)d
.

Hence, forn ≥ n0
f




⋃

q≤n

Cq


 ⊆

⋃

q≤n

Dq.

As
⋃

q≤n Cq and
⋃

q≤n Dq contain, up to isomorphism, the same number of structures the Claim
follows. ⊣

Now assume thatf : C≤isoD. Then the following algorithmA witnesses thatQ ∈ 2EXP. Letn0 be
as in the Claim. Forx ∈ �n with n ≥ n0 the algorithmA computes the structures

f
(
Km(n)·ℓ(n)) and f

( �Km(n)·ℓ(n)) ;
they are nonisomorphic and inDn by the Claim. In particular, by (5) we get a run ofM on inputx
taking a decision; the algorithmA answers accordingly. 2

7. Strong isomorphism reducibility and potential reducibility coincide under P = #P

In the previous section we have seen that under some complexity-theoretic assumption the two notions
of reduction (strong isomorphism reducibility and potential reducibility) are distinct. One might won-
der whether we can separate them without any such complexity-theoretic assumption. We show in
this section that this would settle some open problem in complexity theory; more precisely, we show
the statement of the title of this section.3 In particular, by Corollary 18 (2), the assumption P= #P
implies that LOU is a maximum element of≤iso . We prove the result in a more general setting.

For a classC consider the equivalence relationE(C) on�∗ induced by the isomorphism relation,
that is,

E(C) := {(enc(A),enc(B)) | A,B ∈ C andA ∼= B
}

∪
{(x, y) | x, y ∈ �∗ andx andy are not encodings of structures inC

}
.

3Recall that P= #P means that for every polynomial time nondeterministic Turing machineM the functionfM such
thatfM(x) is the number of accepting runs ofM onx ∈ �∗ is computable in polynomial time. The class#P consists of all
the functionsfM.
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Of course,E(C) is in NP. In this section we consider arbitrary such equivalence relations on�∗ and
show that the corresponding two notions of reduction coincide if P= #P. We start by introducing all
relevant concepts; we do not restrict ourselves to equivalence relations in NP, but consider equivalence
relations in an arbitrary complexity class (for an equivalence relationE on�∗ we also writexEy for(x, y) ∈ E).

Definition 26. (1) Let CC be an arbitrary complexity class. Then we denote byCC(eq) the set of
equivalence relationsE on�∗ with E ∈ CC.

(2) LetE andE′ be equivalence relations on�∗. We say thatE is strongly equivalence reducible to
E′ and writeE≤eqE′, if there is a functionf : �∗ → �∗ computable in polynomial time such
that for allx, y ∈ �∗

xEy ⇐⇒ f(x)E′f(y).
We then say thatf is astrong equivalence reductionfrom E to E′ and writef : E≤eqE′.

Clearly,E(C) ∈ NP(eq) for every classC of structures; furthermore,E(LOU) ∈ P(eq). Let PROP

and TAUT denote the set of all formulas of propositional logic and theset of tautologies, respectively.
Note thatEequiv ∈ co-NP(eq), where

Eequiv := {(α, β) | α, β ∈ PROP and(α ↔ β) ∈ TAUT} ∪ {(x, y) | x, y ∈ �∗ \ PROP}.

Clearly, if C andD are classes of structures as in the previous sections, then

C≤iso D ⇐⇒ E(C)≤eqE(D).
We generalize the notion of potential reducibility to equivalence relations.

Definition 27. Let E andE′ be equivalence relations on�∗. We say thatE is potentially reducible
to E′ and writeE≤potE

′ if there is ap ∈ N[X℄ such that for alln ∈ N the number|�≤n/E| of
E-equivalence classes containing a string in�≤n is at most

∣∣�≤p(n)/E′
∣∣.

Due to our definition ofE(C), the new notion coincides with the old one for equivalence relations of
the formE(C):
Proposition 28. LetC andC ′ be classes. Then

C≤potC
′ ⇐⇒ E(C)≤potE(C ′).

Proof: Recall that the empty string is not the encoding of a structure. LetC be a class ofτ -structures
andC ′ a class ofτ ′-structures. By our assumption on the encoding of structures, there are polynomials
pτ , pτ ′ ∈ N[X℄ such that for everyτ -structureA

|A| ≤ |enc(A)| ≤ pτ (|A|)
and for everyτ ′-structureB

|B| ≤ |enc(B)| ≤ pτ ′(|B|).
Assume first thatC≤potC

′, say#C(n) ≤ #C ′(p(n)) for some polynomialp. Then

|�≤n/E(C)| ≤ #C(n) + 1 ≤ #C ′(p(n)) + 1 ≤ |�≤p
τ ′(p(n))/E(C ′)|.
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Conversely, assume thatE(C)≤potE(C ′), say |�≤n/E(C)| ≤
∣∣�≤p(n)/E(C ′)∣∣ with p ∈ N[X℄.

Then #C(n) + 1 ≤ |�≤pτ (n)/E(C)| ≤ ∣∣∣�≤p(pτ (n))/E(C ′)∣∣∣ ≤ #C ′(p(pτ (n))) + 1. 2
Along the lines of the proof of Lemma 17, one shows thatE≤eqE′ impliesE≤potE

′. For equiv-
alence relations we can show that≤eq is finer than≤pot under weaker assumptions than that of
Theorem 25:

Proposition 29. If NP 6= P, then the relations of strong equivalence reduction and that of potential
reducibility do not coincide onNP(eq).

Proof: AssumeQ ∈ NP\ P. We defineEQ by

xEQy ⇐⇒
(
x = y or

(
x = b̂ z andy = (1− b)̂ z for somez ∈ Q andb ∈ �) )

.

By our assumptions onQ, we haveEQ ∈ NP(eq). We letE be the identity on�∗. Clearly,EQ≤potE.
As Q /∈ P, we getEQ 6≤eq E, as anyf : EQ≤eqE would yield a polynomial time decision procedure
for Q. 2

Generalizing the proof idea of Theorem 11 we show:

Theorem 30. If P = #P, then≤eq = ≤pot on P(eq), that is, the relations of strong equivalence
reducibility and that of potentially reducibility coincide onP(eq).

To prove this theorem we first generalize the notions of canonization and of enumeration induced
by a canonization.

Definition 31. LetE ∈ CC(eq). A function Can: �∗ → �∗ is acanonization forE if it is polynomial
time computable and

(1) for all x, y ∈ �∗:
(
xEy ⇐⇒ Can(x) = Can(y));

(2) for all x ∈ �∗: xE Can(x).
Let Can be a canonization ofE. Theenumeration induced byCan is the enumeration

x1, x2 . . .

of Can(�∗) such thatxi <lex xj for i < j.

If E has a canonization, thenE ∈ P: to decide whetherxEy we compute Can(x) and Can(y) and
check whether Can(x) = Can(y).

Now it is easy to explain the idea underlying the proof of Theorem 30. First we show that (under
the assumption P= NP) every E∈ P(eq) has a canonization CanE . Then, givenE,E′ ∈ P(eq), we
define a strong equivalence reductionf : �∗ → �∗ from E to E′ as follows: Letx ∈ �∗. If CanE(x)
is the ith element in the enumeration induced by CanE , then we letf(x) be theith element in the
enumeration induced by CanE′ . By the properties of canonizations it should be clear that

xEy ⇐⇒ f(x)E′f(y)
(we can even replacef(x)E′f(y) by f(x) = f(y)). So it remains to show (under suitable assump-
tions) thatf is computable in polynomial time and to show that every equivalence relation has a
canonization.

The following lemma was already proven in [2].
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Lemma 32. If P = NP, then everyE ∈ P(eq)has a canonization; in fact, then the mapping sending
eachx ∈ �∗ to the≤lex -first member of theE-equivalence class ofx is a canonization.

Proof: Let E ∈ P(eq) and assume P= NP. Then we know that the polynomial hierarchy collapses,
P = PH. So it suffices to show that the mapping defined in the statement of this lemma can be
computed by an alternating polynomial time algorithmA with a constant number of alternations. This
is easy: on inputx ∈ �∗ the algorithmA guesses existentiallyy ∈ �∗ with |y| ≤ |x| andxEy; then
A guesses universally a furtherz ∈ �∗ with |z| ≤ |x| andxEz; if y≤lex z, thenA outputsy otherwise
it rejects. 2
Lemma 33. Let E ∈ P(eq)be an equivalence relation with a canonizationCan. Then the following
problem is in#P:

Instance: x ∈ �∗.
Problem: Computei (in binary) such that Can(x) is theith element

in the enumeration induced by Can.

Proof: Consider a nondeterministic polynomial time algorithmA which on inputx ∈ �∗ runs as
follows: It first computes the stringy := Can(x). ThenA guesses a stringz ∈ �∗ with |z| ≤ |y|.
Finally it accepts if Can(z) = z andz ≤lex y. It should be clear that the number of accepting runs of
A onx is

|{z | z ≤lex Can(x) and Can(z) = z}|. 2
Proof of Theorem 30:Assume that P= #P. LetE,E′ ∈ P(eq) be equivalence relations and assume
that E≤potE

′, that is, |�≤n/E| ≤ |�≤p(n)/E′| for some polynomialp and alln ∈ N. We show
E≤eqE′.

As P= #P, there are canonizations CanE of E and CanE′ of E′ and there are polynomial time
algorithmsA andA

′ that solve the problem of the preceding lemma forE andE′, respectively. The
following nondeterministic polynomial time algorithm computes anf : E≤eqE′. On inputx ∈ �∗,
it computes CanE(x) andn := |CanE(x)| and guesses a stringx′ ∈ �≤p(n) with CanE′(x′) = x′.
SimulatingA andA

′, it checks whether CanE(x) andx′ are at the same position in the enumeration
induced by CanE and in the enumeration induced by CanE′ , respectively; in the positive case it outputs
x′, otherwise it rejects. As|�≤n/E| ≤ |�≤p(n)/E′| such anx′ ∈ �≤p(n) with CanE′(x′) = x′ at the
same position as CanE(x) exists. As P= NP, the functionf is computable in polynomial time. 2

We briefly point to the papers [2, 3, 7] that deal with related problems. Let Inv(eq) be the class
of equivalence relations having an invariantization (defined in analogy to Definition 5), Can(eq) the
class of equivalence relations having a canonization and finally, Lexfirst(eq) the class of equivalence
relations having a canonization that maps every string to the≤lex -first element of its equivalence class.
Clearly

Lexfirst(eq)⊆ Can(eq)⊆ Inv(eq)⊆ P(eq). (8)

Lemma 32 shows that Lexfirst(eq)= Can(eq)= Inv(eq)= P(eq) if P= #P. Blass and Gurevich [2],
for example, prove that Lexfirst(eq)6= Can(eq) unless the polynomial hierarchy collapses, and Fort-
now and Grochow [7] show that Can(eq)= Inv(eq) would imply that integers can be factored in
probabilistic polynomial time. Blass and Gurevich [2, 3] compare the complexity of the “problems
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underlying the definition of the sets in (8).” Finally, the book [14], among other things, deals with
the question whether two propositional formulas are logically equivalent up to a permutation of their
variables. It is not hard to see that the isomorphism problemfor a classC can be rephrased in these
terms; however no analogue of≤iso is considered in [14].

8. On maximum elements in P(eq) and NP(eq)

In this section we study whether there is a maximum element with respect to strong equivalence re-
ductions in the classes P(eq) and NP(eq), that is, in the classes of deterministic and nondeterministic
polynomial time equivalence relations. We already mentioned that the existence of a maximum ele-
ment in P(eq) is mentioned as [7, Open Question 4.14 ]; the notion of strong equivalence reduction
was already introduced in that paper and called kernel reduction there.

Let SAT be the set of satisfiable propositional formulas. Consider the NP-equivalence relation

Esat := {(α, β) | α, β ∈ PROPand
(
α = β or α, β ∈ SAT

)};
more precisely, to get an equivalence relation on�∗, we should write

Esat := {(α, β) | α, β ∈ PROPand
(
α = β or α, β ∈ SAT

)}
∪

{(x, y) | x, y ∈ �∗ \ PROP
}
.

However, henceforth if we speak of an equivalence relationE whose field Fld(E) is a proper subset
of �∗, we identify it with the equivalence relationE ∪

{(x, y) | x, y ∈ �∗ \ Fld(E)}. We useEsat to
show:

Proposition 34. If the polynomial hierarchyPHdoes not collapse, thenE(GRAPH) is not a maximum
element in(NP(eq),≤eq); in fact, thenEsat 6≤eq E(GRAPH).
Proof: For α ∈ PROP and a propositional variableX we have (α ∈ SAT ⇐⇒ αEsatX). By
contradiction, assume thatf : Esat≤eqE(GRAPH). We havef(X) ∈ GRAPH; otherwise, SAT ∈ P,
which contradicts our assumption that the polynomial hierarchy does not collapse. Then for every
α ∈ PROP

α ∈ SAT ⇐⇒ f(α) ∼= f(X).
ThusE(GRAPH) would be NP-complete. It is well-known [4] that this implies�p2 = PH. 2

We show that the existence of a maximum element in(NP(eq),≤eq) is equivalent to the existence
of an effective enumeration of NP(eq). This result is also true for P(eq) and co-NP(eq). To state the
precise result we introduce some notions. A deterministic or nondeterministic Turing machineM is
clocked(more precisely,polynomially time-clocked), if (the code of)M contains a natural number
time(M) such thatntime(M) is a bound for the running time ofM on inputs of lengthn. So, by this
definition, all runs of a clocked machine are of polynomial length. Of course, the functionM 7→
time(M), defined on the set of clocked machines, is computable in polynomial time.

Definition 35. Let CC∈ {P, NP, co-NP}. Let L be a set of languagesL with L ⊆ �∗. We say that

L0, L1, . . .
is a CC-enumeration ofL by clocked Turing machines, if L = {L0, L1, . . .} and there is a computable
functionM defined onN such thatM(i) for i ∈ N is (the code of) a clocked Turing machine of type
CC acceptingLi.
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Proposition 36. LetCC∈ {P, NP, co-NP}. Then the following are equivalent:

(1) (CC(eq),≤eq) has a maximum element.

(2) There is aCC-enumerationE0, E1, . . . of CC(eq) by clocked Turing machines.

Proof: (1) ⇒ (2): Assume thatE is a maximum element in(CC(eq),≤eq) and letMmax be a Turing
machine of type CC acceptingE. Of course, there is a computable functionM

′ such thatM′(i) for
i ∈ N is a deterministic clocked Turing machine computing a function fi : �∗ → �∗ such that
f0, f1, . . . is an enumeration of all polynomial time computable functions from�∗ to �∗. We define
the machineMmax◦ M

′(i) in a straightforward manner such that it decides

Ei := {(x, y) | (fi(x), fi(y)) ∈ E
}
.

We letM be the function defined onN with M(i) := Mmax ◦ M
′(i). As from a polynomial bounding

Mmax and time(M′(i)) we get a time bound forM(i), we can assume thatM(i) is clocked. It should
be clear thatE0, E1, . . . has the desired properties.(2) ⇒ (1): LetE0, E1, . . . be as in (2) and letM be a corresponding computable function. By padding
if necessary, we may assume that the graph{(1i, 1|M(i)|) | i ∈ N} is decidable in polynomial time and
that i ≤ |M(i)| for all i ∈ N. We define the relationE as follows (for better reading we denote here,
and in the proof of Lemma 39, the string1ℓ, that is the string11 . . . 1 of lengthℓ, by 〈ℓ〉):

E := {((M(i), x, 〈(2 + 2|x|)time(M(i))〉), (M(i), y, 〈(2 + 2|y|)time(M(i))〉)) ∣∣∣ i ∈ N and(x, y) ∈ Ei

}
.

By the effectivity properties ofM, we haveE ∈ CC(eq) (more preciselyE ∪ {(x, y) | x, y ∈�∗ \ Fld(E)} ∈ CC(eq). Clearly, fori ∈ N the mappingx 7→ (M(i), x, 〈(2 + 2|x|)time(M(i))〉) is a
strong equivalence reduction fromEi to E, henceE is a maximum element. 2

Below we will show that(NP(eq),≤eq) has a maximum element if NP= co-NP. Note that we
do not even know whether(P(eq),≤eq) has a maximum element. The main result concerning this
problem that we have reads as follows (later we recall the definition of p-optimal proof system):

Theorem 37. If TAUT has ap-optimal proof system, then(P(eq),≤eq) has a maximum element.

The following observations will lead to a proof of this result.

Definition 38. LetM be a deterministic or nondeterministic Turing machine andn ∈ N. The machine
M defines an equivalence relation on�≤n if the set

{(x, y) | x, y ∈ �≤n andM accepts(x, y)}
is an equivalence relation on�≤n := {

x ∈ �∗ | |x| ≤ n
}

.

An analysis of the complexity of the first of the following problems will be crucial for our purposes.

EQUIV(P)
Instance: A deterministic clocked Turing machineM andn ∈ N.
Problem: DoesM define an equivalence relation on�≤n?
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EQUIV(NP)
Instance: A nondeterministic clocked Turing machineM andn ∈ N.
Problem: DoesM define an equivalence relation on�≤n?

Lemma 39. (1) If (M, n) ∈ EQUIV(P) is solvable by a deterministic algorithm in timenf(‖M‖) for
some functionf : N → N, thenP(eq)has a maximum element.4

(2) If (M, n) ∈ EQUIV(NP) is solvable by a nondeterministic algorithm in timenf(‖M‖) for some
functionf : N → N, thenNP(eq)has a maximum element.

Proof: Let A be an algorithm, deterministic for (1) and nondeterministic for (2), witnessing that(M, n) ∈ Q is solvable in timenf(‖M‖) for somef : N → N. We define the equivalence relationE0
on�∗ by: for u, v ∈ �∗

uE0v
if and only if

u = v or
(
u = (

M, x, (2 + 2 · |x|)time(M), 1t
)

and

v = (
M, x′, (2 + 2 · |x′|)time(M), 1t′

)
and (1) – (3) are fulfilled

)
,

where

– M is a clocked Turing machine of type CC, where CC= P for (1) and CC= NP for (2);

– A accepts(M, |x|) in at mostt steps and(M, |x′|) in at mostt′ steps;

– M accepts(x, x′).
Clearly,E0 ∈ CC(eq). We show thatE0 is a maximum element. LetE ∈ CC(eq) be arbitrary and let
M be a clocked Turing machine decidingE. Then

x 7→ (M, x, (2 + 2 · |x|)time(M), 〈|x|f(‖M‖)〉)
is computable in polynomial time and hence a strong equivalence reduction fromE to E0. 2
Theorem 40. (1) If E = NE, thenP(eq)has a maximum element.

(2) If NP= co-NP, thenNP(eq)has a maximum element.

Proof: (1) We may assume thatn is written in binary in the instances(M, n) of EQUIV(P). We
consider the following nondeterministic algorithmA accepting the complement of EQUIV(P). On
input (M, n), it guesses one of the three axioms of an equivalence relation, say, the transitivity axiom;
then A guessesx, y, z ∈ �n, it simulatesM on input (x, y), on input (y, z), and on input(x, z)
and accepts ifM accepts the first two inputs but not the third one. As we may assume that‖M‖ ≥
time(M), the algorithmA runs in time‖M‖·nO(time(M)) = 2O(‖M‖·log n). By the assumption E= NE,
there is a deterministic algorithm deciding the complementof EQUIV(P) and hence EQUIV(P) itself
in time 2O(‖M‖·log n). Now our claim follows from the preceding lemma.

4By ‖M‖ we denote the length of a reasonable encoding ofM by a string of�∗.
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(2) The following alternating algorithmA decides the complement of EQUIV(NP): On input(M, n)
(again we may assume that‖M‖ ≥ time(M)), it existentially guesses one of the three axioms of
an equivalence relation, say, the transitivity axiom; thenA existentially guessesx, y, z ∈ �n and
runs ofM accepting(x, y) and(y, z); furthermore it yields the string〈n‖M‖〉. Finally A universally
simulatesM on input(x, z) and accepts ifM rejects. The algorithmA has one alternation. By our
assumption NP= co-NP, its universal part (an algorithm of type co-NP with inputsM, (x, z), and
〈n‖M‖〉) can be simulated by a nondeterministic algorithm running in timenO(‖M‖). Altogether we
get a nondeterministic algorithm accepting (the complement of) EQUIV(NP) in time nO(‖M‖). Now
our claim follows from the preceding lemma. 2

We consider theacceptance problem for nondeterministic Turing machines:

ACC≤

Instance: A nondeterministic Turing machineM andn ∈ N.
Problem: DoesM accept the empty input tape in≤ n steps?

Lemma 41. The following are equivalent:

(1) (M, n) ∈ ACC≤ is solvable deterministically in timenf(‖M‖) for somef : N → N.

(2) (M, n) ∈ EQUIV(P) is solvable deterministically in timenf(‖M‖) for somef : N → N.

Proof: (1) ⇒ (2): Assume that(M, n) ∈ ACC≤ (whereM is a nondeterministic machine andn ∈ N)
can be solved by an algorithmA in timenf(‖M‖) for somef : N → N. Then the following algorithm
B will witness that EQUIV(P) is decidable in the time claimed in (2). Let(M, n) be an instance of
EQUIV(P), in particularM is a deterministic clocked Turing machine. We may assume that M on
input (x, y) runs for exactly(2 + 2 · max{x, y})time(M) steps. LetM̃ be the nondeterministic Turing
machine that on empty input tape, in the first phase guesses one of the three axioms of an equivalence
relation, say, the transitivity axiom; then in the second phaseM̃ guessesx, y, z ∈ �∗; finally in the
third phase it simulatesM on input(x, y), on input(y, z), and on input(x, z) and accepts ifM accepts
the first two inputs but not the third one. We can assume thatM̃ does this simulation in such a way that
it runs for exactly(2 + 2 · max{x, y, z})time(M) steps on each of the tuples(x, y), (y, z), and(x, z).

Let k1, k2(x, y, z), andk3(x, y, z) be the exact timẽM uses for the first phase, the second phase
and the third phase, respectively. As indicated for the third phase we may arrange things in such a
way that there are (nonconstant) polynomialsk′2, k′3 such that

k2(x, y, z) = k′2(max{|x|, |y|, |z|}) and k3(x, y, z) = k′3(max{|x|, |y|, |z|})
and such that if for examplẽM has chosen the symmetry axiom andx, y ∈ �∗, thenk2(max{|x|, |y|})
is also the exact number of stepsM̃ uses for the second phase. Ask′2 andk′3 are increasing functions,
we get (M, n) /∈ EQUIV ⇐⇒ (M̃, k + k′2(n) + k′3(n)) ∈ ACC≤,

which gives the desired bound.(2) ⇒ (1): For a nondeterministic Turing machineM let M̂ be the deterministic Turing machine that
on input(x, y) with x, y ∈ �∗ first checks whetherx 6= y; if so, it accepts; ifx = y, it simulates
the |x| steps of a run ofM on empty input tape, namely the steps corresponding to (the bits in) x and
rejects if in these|x| stepsM accepts; otherwisêM accepts. Thus for everyn ∈ N(M, n) ∈ ACC≤ ⇐⇒ M̂ does not define an equivalence relation on�≤n.
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As from the definition ofM̂ we immediately get a polynomial time bound, we can assume that M̂ is
clocked, so that the preceding equivalence immediately gives the claim. 2

A proof systemfor TAUT is a surjective functionS : �∗ → TAUT computable in polynomial
time. The proof systemS for TAUT is p-optimal if for every proof systemS′ for TAUT there is a
polynomial time computableT : �∗ → �∗ such that for allw ∈ �∗

S(T (w)) = S′(w).
It is not known whether there is a p-optimal proof system for TAUT, even though it is conjectured
there is no such p-optimal proof system. In [5] it has been shown that:

Proposition 42. The following are equivalent:

(1) There is a p-optimal proof system forTAUT.

(2) (M, n) ∈ ACC≤ is solvable in timenf(‖M‖) for some functionf : N → N.

Proof of Theorem 37:If there is a p-optimal proof system for TAUT, by the previousproposition and
Lemma 41 we see that(M, n) ∈ EQUIV(P) is solvable in timenf(‖M‖) for some functionf : N → N.
Now the claim follows from Lemma 39.
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