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THORN-FORKING IN CONTINUOUS LOGIC

CLIFTON EALY AND ISAAC GOLDBRING

Abstra
t. We study thorn forking and rosiness in the 
ontext of 
on-

tinuous logi
. We prove that the Urysohn sphere is rosy (with respe
t

to �nitary imaginaries), providing the �rst example of an essentially


ontinuous unstable theory with a ni
e notion of independen
e. In the

pro
ess, we show that a real rosy theory whi
h has weak elimination of

�nitary imaginaries is rosy with respe
t to �nitary imaginaries, a fa
t

whi
h is new even for 
lassi
al real rosy theories.

1. Introdu
tion

In 
lassi
al model theory, thorn forking independen
e was de�ned by Tom

S
anlon, and investigated by Alf Onshuus and then by the �rst author as

a 
ommon generalization of forking independen
e in stable theories and (all

known) simple theories as well as the independen
e relation in o-minimal

theories given by topologi
al dimension. More generally, a theory T is 
alled

rosy if thorn independen
e is a stri
t independen
e relation for T eq
. If T

is rosy, then thorn independen
e is the weakest notion of independen
e for

T eq
. It thus follows that all simple theories and o-minimal theories are rosy.

It is the purpose of this paper to de�ne and investigate thorn independen
e

and rosiness in the 
ontext of 
ontinuous logi
.

Continuous logi
 is a generalization of �rst-order logi
 whi
h is suited for

studying stru
tures based on 
omplete metri
 spa
es, 
alled metri
 stru
-

tures. Moreover, one has 
ontinuous versions of nearly all of the notions and

theorems from 
lassi
al model theory. In parti
ular, stable theories have

been studied in the 
ontext of 
ontinuous logi
; see [8℄. Nearly all of the

�essentially 
ontinuous� theories that were �rst studied in 
ontinuous logi


are stable, e.g. in�nite-dimensional Hilbert spa
es, atomless probability al-

gebras, Lp
-Bana
h latti
es, and ri
hly bran
hing R-trees; see [6℄ and [9℄.

Here, �essentially 
ontinuous� is a vague term used to eliminate 
lassi
al

�rst-order stru
tures, viewed as 
ontinuous stru
tures by equipping them

with the dis
rete metri
, from the dis
ussion. One 
an also make sense

of the notion of a 
ontinuous simple theory; see [5℄, where the notion of

simpli
ity is studied in the more general 
ontext of 
ompa
t abstra
t the-

ories. However, there are 
urrently no �natural� examples of an essentially


ontinuous, simple, unstable theory and all attempts to produ
e an essen-

tially 
ontinuous, simple, unstable theory have failed. For example, adding

a generi
 automorphism to almost all known essentially 
ontinuous stable
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theories (e.g. in�nite-dimensional Hilbert spa
es, stru
tures expanding Ba-

na
h spa
es, probability algebras) yields a theory whi
h is on
e again stable;

this result appears to be folklore and has not appeared anywhere in the lit-

erature. Another failed attempt involves taking the Keisler randomization

of a (
lassi
al or 
ontinuous) simple, unstable theory. More pre
isely, either

a Keisler randomization is dependent (in whi
h 
ase, if it is simple, then it

is stable) or it is not simple; see [3℄. In this paper, we will give an exam-

ple of an essentially 
ontinuous theory whi
h is not simple but is rosy (with

respe
t to �nitary imaginaries), namely the Urysohn sphere, providing the

�rst example of an essentially 
ontinuous theory whi
h is unstable and yet

possesses a ni
e notion of independen
e.

There are many natural ways of de�ning thorn independen
e for 
ontin-

uous logi
, yielding many notions of rosiness. The approa
h whi
h shares

the most features with the 
lassi
al notion is the geometri
 approa
h, where

one de�nes thorn-independen
e to be the independen
e relation one obtains

from the relation of algebrai
 independen
e after for
ing base monotoni
ity

and extension to hold; this is the approa
h to thorn independen
e taken by

Adler in [1℄. This notion of thorn independen
e in 
ontinuous logi
 has the

new feature that �nite 
hara
ter is repla
ed by 
ountable 
hara
ter, whi
h

should not be too surprising to 
ontinuous model theorists as the notions of

de�nable and algebrai
 
losure also lose �nite 
hara
ter in favor of 
ount-

able 
hara
ter in the 
ontinuous setting. In order to salvage �nite 
hara
ter,

we present alternative approa
hes to thorn independen
e, yielding notions

of rosiness for whi
h we do not know any essentially 
ontinuous unstable

theories that are rosy.

We now outline the stru
ture of the paper. In Se
tion 2, we des
ribe some

of our 
onventions 
on
erning 
ontinuous logi
 as well as prove some fa
ts


on
erning the extensions of de�nable fun
tions to elementary extensions.

These latter fa
ts have yet to appear in the literature on 
ontinuous logi


and will only be used in Se
tion 5 in an appli
ation of the rosiness of the

Urysohn sphere to de�nable fun
tions. In Se
tion 3, we introdu
e the geo-

metri
 approa
h to thorn independen
e and prove some basi
 results about

this notion. In Se
tion 4, we dis
uss weak elimination of �nitary imaginaries

and prove that a 
ontinuous real rosy theory whi
h has weak elimination of

�nitary imaginaries is rosy with respe
t to �nitary imaginaries. In parti
u-

lar, this shows that a 
lassi
al real rosy theory whi
h has weak elimination of

imaginaries is rosy, a fa
t that has yet to appear in the literature on 
lassi
al

rosy theories. In Se
tion 5, we prove that the Urysohn sphere is real rosy

and has weak elimination of �nitary imaginaries, when
e we 
on
lude that

it is rosy with respe
t to �nitary imaginaries. In Se
tion 6, we introdu
e

other notions of thorn independen
e and develop properties of these various

notions. In Se
tion 7, we show that if T is a 
lassi
al theory for whi
h the

Keisler randomization TR
of T is strongly rosy, then T is rosy; here strongly

rosy is one of the alternative notions of rosiness de�ned in Se
tion 6.
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We assume that the reader is familiar with the rudiments of 
ontinuous

logi
; otherwise, they 
an 
onsult the wonderful survey [6℄. For ba
kground

information on rosy theories, one 
an 
onsult [13℄ and [1℄. All terminology


on
erning independen
e relations will follow [1℄.

We would like to thank Itaï Ben Yaa
ov and Ward Henson for helpful

dis
ussions involving this work.

2. Model Theoreti
 Preliminaries

In this se
tion, we establish some 
onventions and notations as well as

gather some mis
ellaneous model-theoreti
 fa
ts. First, let us establish a


onvention 
on
erning formulae. All formulae will have their variables sepa-

rated into three parts: the obje
t variables, the relevant parameter variables,

and the irrelevant parameter variables, so a formula has the form ϕ(x, y, z),
where x is a multivariable of obje
t variables, y is a multivariable of relevant
parameter variables, and z is a multivariable of irrelevant parameter vari-

ables. This distin
tion will be
omes useful in our dis
ussion of thorn-forking,

for often only some of the parameter variables are allowed to vary over a type-

de�nable set. While this distin
tion is usually glossed over in 
lassi
al logi
,

we make a point of dis
ussing it here as the metri
 on 
ountable tuples is

sensitive to the presentation of the tuple. For ease of exposition, we make

the following further 
onvention. When 
onsidering a formula ϕ(x, y, z), we
may write ϕ(x, b) to indi
ate that b is a y-tuple being substituted into ϕ
for y and we do not 
are about what parameters are being plugged in for z.
When using this 
onvention, if b′ is another y-tuple, then ϕ(x, b′) will denote
the formula obtained from ϕ(x, y, z) by substituting b′ for y and the same

tuple for z as in ϕ(x, b). Finally, let us say that we maintain the 
onventions

of this paragraph for de�nable predi
ates as well.

We will use the following metri
s on 
artesian produ
ts. Suppose that

(Mi, di)i<ω are metri
 spa
es. For two �nite tuples x = (x0, . . . , xn) and

y = (y0, . . . , yn) from
∏

i≤nMi, we set d(x, y) = maxi≤n di(xi, yi). For two


ountably in�nite tuples x = (xi | i < ω) and y = (yi | i < ω) from∏
i<ωMi, we set d(x, y) :=

∑
i 2

−id(xi, yi). Further suppose that L is a

bounded 
ontinuous signature. De�ne the signature Lω to be the signature

L together with new sorts for 
ountably in�nite produ
ts of sorts of L. We

de�ne the metri
 on these new sorts as above. We also in
lude proje
tion

maps: if (Si | i < ω) is a 
ountable 
olle
tion of sorts of L, we add fun
tion

symbols πS,j :
∏

i Si → Sj to the language for ea
h j < ω. Ea
h L-stru
ture
expands to an Lω-stru
ture in the obvious way.

For any r ∈ R>0
and any x ∈ [0, 1], we set r ⊙ x := max(rx, 1). Also, for

x, y ∈ R>0
, we set x−. y := max(x− y, 0).

In all but the last se
tion of this paper, L denotes a �xed bounded 
on-

tinuous signature. For simpli
ity, let us assume that L is 1-sorted and the

metri
 d is bounded by 1. We also �x a 
omplete L-theory T and a monster
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model M for T . We let κ(M) denote the saturation 
ardinal for M and we

say that a parameterset is small if it is of 
ardinality < κ(M).
If ϕ(x) is an M-de�nable predi
ate, then we set Z(ϕ(x)) to be the zeroset

of ϕ(x), that is, Z(ϕ(x)) = {a ∈ Mx | ϕ(a) = 0}. Likewise, if p(x) is a type,
we write Z(p(x)) =

⋂
{Z(ϕ(x)) | “ϕ(x) = 0� ∈ p}.

Let us brie�y re
all the eq-
onstru
tion for 
ontinuous logi
. Suppose that

ϕ(x, y) is a de�nable predi
ate, where x is a �nite tuple of obje
t variables

and y is a 
ountable tuple of parameter variables. Then in Meq
, there is

a sort Sϕ whose obje
ts 
onsist of 
anoni
al parameters of instan
es of ϕ.
Formally, Sϕ = My/(dϕ = 0), where dϕ is the pseudometri
 on My given

by

dϕ(a, a
′) := sup

x
|ϕ(x, a) − ϕ(x, a′)|.

(Ordinarily, one has to take the 
ompletion of My/(dϕ = 0), but the satura-
tion assumption onM guarantees that this metri
 spa
e is already 
omplete.)

As in 
lassi
al logi
, one also adds appropriate proje
tion maps to the lan-

guage. For more details on the eq-
onstru
tion in 
ontinuous logi
, in
luding

axiomatizations of T eq
, see Se
tion 5 of [8℄. In the 
ase when ϕ(x, y) is a

�nitary de�nable predi
ate, that is, when y is �nite, we say that the elements

of Sϕ are �nitary imaginaries. We let Mfeq
denote the redu
t of Meq

whi
h

retains only sorts of �nitary imaginaries. If a ∈ Meq
and b is an element of

the equivalen
e 
lass 
orresponding to a, we write π(b) = a. If A ⊆ Meq

and B ⊆ M, we write π(B) = A to indi
ate the fa
t that the elements of B
are representatives of 
lasses of elements of A.

The remainder of this se
tion will be devoted to understanding exten-

sions to M of de�nable fun
tions on small elementary submodels of M;

this material will only be used at the end of Se
tion 5. Suppose that M
is a small elementary submodel of M, A ⊆ M is a set of parameters, and

P : Mn → [0, 1] is a predi
ate de�nable in M over A. Then there exists

a unique predi
ate Q : Mn → [0, 1] de�nable in M over A whi
h has P
as its restri
tion to Mn

; see [6℄, Proposition 9.8. The predi
ate Q satis�es

the additional property that (M,P ) � (M, Q). We 
all Q the natural ex-

tension of P to M. Now suppose that f : Mn → M is A-de�nable, where
A ⊆ M . Let P : Mn+1 → [0, 1] be the A-de�nable predi
ate d(f(x), y).
Let Q : Mn+1 → [0, 1] be the natural extension of P to Mn+1

. Then,

sin
e (M,P ) � (M, Q), the zeroset of Q de�nes the graph of a fun
tion

g : Mn → M. Moreover, g is A-de�nable and extends f . (See [6℄, Proposi-
tion 9.25) We 
all g the natural extension of f to Mn

.

In Lemma 2.3 below, we seek to show that under 
ertain mild saturation

assumptions, the natural extension of f to Mn

an preserve some of the

properties of f . First, we need two lemmas, the �rst of whi
h is a general-

ization of [6℄, Proposition 7.14.

Lemma 2.1. Suppose M is a small elementary submodel of M and P,Q :
Mn → [0, 1] are predi
ates de�nable in M . Suppose that either of the follow-

ing two 
onditions hold:
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(i) M is ω1-saturated, or

(ii) M is ω-saturated and P is de�nable over a �nite set of parameters

from M .

Then the following are equivalent:

(1) For all a ∈Mn
, if P (a) = 0, then Q(a) = 0.

(2) For all ǫ > 0, there is δ > 0 su
h that for all a ∈ Mn
, (P (a) ≤ δ ⇒

(Q(a) < ǫ).
(3) There is an in
reasing, 
ontinuous fun
tion α : [0, 1] → [0, 1] with

α(0) = 0 su
h that Q(a) ≤ α(P (a)) for all a ∈Mn
.

Proof. We only need to prove the dire
tion (1) ⇒ (2), as the dire
tion

(2) ⇒ (3) follows immediately from Proposition 2.10 in [6℄ and the dire
-

tion (3) ⇒ (1) is trivial. Suppose that P (x) is the uniform limit of the

sequen
e (ϕm(x) | m ≥ 1) and Q(x) is the uniform limit of the sequen
e

(ψm(x) | m ≥ 1), where ea
h ϕm(x) and ψm(x) are formulae with pa-

rameters from M . If 
ondition (ii) in the statement of the lemma holds,

then we further assume that the parameters from ea
h of the ϕn's are


ontained in some �nite subset of M . Moreover, we may assume that

|P (x) − ϕm(x)|, |Q(x) − ψm(x)| ≤ 1
m

for ea
h m ≥ 1 and ea
h x ∈ Mn
.

Now suppose (2) fails for some ǫ > 0. Then for every m ≥ 1, there is

am ∈ Mn
su
h that P (am) ≤ 1

m
and Q(am) ≥ ǫ. Let k ≥ 1 be su
h that

ǫ > 3
k
.

Claim: The 
olle
tion of 
onditions

Γ(x) := {ψk(x) ≥
2

k
} ∪ {ϕm(x) ≤

2

m
| m ≥ 1}

is �nitely satis�able.

Proof of Claim: Consider m1, . . . ,ms ≥ 1. Set m′ := max(m1, . . . ,ms).
Then ψk(am′) ≥ Q(am′) − 1

k
≥ 2

k
and, for ea
h i ∈ {1, . . . , s}, we have

ϕmi
(am′) ≤ P (am′) + 1

mi
≤ 1

m′ +
1
mi

≤ 2
mi

.

By the 
laim and either of assumptions (i) or (ii), we have a ∈Mn
realizing

Γ(x). Then Q(a) ≥ ψk(a) −
1
k
≥ 1

k
. Also, P (a) ≤ ϕm(x) + 1

m
≤ 3

m
for

all m ≥ 1, when
e P (a) = 0. Thus, (2) fails, �nishing the proof of the

lemma. �

The import of the above lemma is the following. Working in the notation

of the lemma, suppose that P and Q satisfy (1) and either (i) or (ii) holds.

Suppose P ′
and Q′

denote the natural extensions of P and Q to Mn
. Then

it follows that, for all a ∈ Mn
, P ′(a) = 0 ⇒ Q′(a) = 0. This is be
ause (1)

is equivalent to (3), whi
h 
an be expressed by a formula in the signature

of the stru
ture (M,P,Q). Sin
e (M,P,Q) � (M, P ′, Q′), we have that (3)
holds with P ′

and Q′
repla
ing P and Q. This in turn implies that (1) holds

with P ′
and Q′

repla
ing P and Q.

Lemma 2.2. Suppose M is a small ω-saturated elementary submodel of M
and A ⊆ M is 
ountable. Let f : Mn → M be an A-de�nable fun
tion and

let g : Mn → M be the natural extension of f to Mn
. Let R :M2n → [0, 1]
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be the predi
ate de�ned by R(a, b) = d(f(a), f(b)) for all a, b ∈Mn
, whi
h is

de�nable in M over A. Let S : M2n → [0, 1] be the natural extension of R
to M2n

. Then S(a, b) = d(g(a), g(b)) for all a, b ∈ Mn
.

Proof. Let (ϕm(x, y) | m ≥ 1) be a sequen
e of formulae with parameters

from A 
onverging uniformly to the predi
ate P (x, y) := d(f(x), y). Fur-

ther assume that |P (x, y) − ϕm(x, y)| ≤ 1
m

for all (x, y) ∈ Mn+1
and all

m ≥ 1. Note that if (a, c), (b, d) ∈ Mn+1
are su
h that ϕm(a, c), ϕm(b, d) ≤

1
m
, then |R(a, b) − d(c, d)| ≤ 4

m
. By Lemma 2.1, we have that for all

(a, c), (b, d) ∈ Mn+1
, if ϕm(a, c), ϕm(b, d) ≤ 1

m
, then |S(a, b) − d(c, d)| ≤ 4

m
.

It remains to show that ϕm(a, g(a)), ϕm(b, g(b)) ≤ 1
m

for ea
h m ≥ 1.
However, this follows from the fa
t that Q(a, g(a)) = Q(b, g(b)) = 0 and

|Q(x, y)− ϕm(x, y)| ≤ 1
m

for all (x, y) ∈ Mn+1
and all m ≥ 1. �

Lemma 2.3. Suppose M is a small elementary submodel of M and A ⊆M
is 
ountable. Let f :Mn →M be an A-de�nable fun
tion and let g : Mn →
M be the natural extension of f to Mn

.

(1) Suppose M is ω-saturated and f is an isometri
 embedding. Then g
is also an isometri
 embedding.

(2) Suppose that either:

(a) M is ω1-saturated, or

(b) M is ω-saturated and A is �nite.

Further suppose that f is inje
tive. Then g is inje
tive.

Proof. De�ne the predi
ates R and S as in Lemma 2.2.

(1) Fix ǫ > 0. Then for all a, b ∈Mn
, we have

|d(a, b) − ǫ| = 0 ⇒ |R(a, b)− ǫ| = 0.

By Lemma 2.1, we have, for all a, b ∈ Mn
,

|d(a, b) − ǫ| = 0 ⇒ |S(a, b) − ǫ| = 0.

It follows that g is an isometri
 embedding.

(2) Sin
e f is inje
tive, we know that, for all a, b ∈ Mn
, if R(a, b) = 0,

then d(a, b) = 0. By Lemma 2.1, for all a, b ∈ Mn
, we have

S(a, b) = 0 ⇒ d(a, b) = 0.

It follows that g is inje
tive. �

3. Basi
 Properties of Thorn-Forking

In 
lassi
al logi
, there are two ways of de�ning thorn-independen
e: a

�geometri
� de�nition and a �formula� de�nition. Sin
e the geometri
 de�-

nition immediately makes sense in 
ontinuous logi
, we shall use it to de�ne

thorn-independen
e for 
ontinuous logi
. Afterwards, we explain an equiva-

lent formula de�nition.
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Notation: For any sets X,Y with X ⊆ Y , we set

[X,Y ] := {Z | X ⊆ Z ⊆ Y }.

We borrow the following de�nitions from Adler [1℄ to de�ne thorn-independen
e

in the 
ontinuous setting.

De�nition 3.1. Let A,B,C be small subsets of Meq
.

(1) We write A |M⌣C
B if and only if for any C ′ ∈ [C, acl(BC)], we have

acl(AC ′) ∩ acl(BC ′) = acl(C ′).
(2) We write A |þ⌣C

B if and only if for any B′ ⊇ B, there is A′ ≡BC A

with A′ |M⌣C
B′

.

For the sake of the reader who has not seen the above de�nitions, let us

take a moment to motivate them. One of the most natural ternary rela-

tions amongst small subsets of the monster model is the relation of �alge-

brai
 independen
e,� namely A is algebrai
ally independent from B over C
if acl(AC)∩ acl(BC) = acl(C). This relation is not always an independen
e

relation as it may fail to satisfy base monotoni
ity. The relation |M⌣ is an

attempt to for
e base monotoni
ity to hold. However, |M⌣ may fail to satisfy

extension, that is, nonforking extensions to supersets may not exist. Thus,

|þ⌣ is introdu
ed in order to for
e extension to hold.

In [1℄, Adler shows that the relation |M⌣ (for 
lassi
al theories) satis�es: in-

varian
e, monotoni
ity, base monotoni
ity, transitivity, normality, and anti-

re�exivity. These properties persist for |M⌣ in 
ontinuous logi
. In 
lassi
al

logi
, |M⌣ also satis�es �nite 
hara
ter, whereas in 
ontinuous logi
, |M⌣ sat-

is�es 
ountable 
hara
ter : If A0 |M⌣C
B for every 
ountable A0 ⊆ A, then

A |M⌣C
B. The proof of this is the same as in [1℄, using the fa
t that if

b ∈ acl(A), then there is a 
ountable A0 ⊆ A su
h that b ∈ acl(A0). Adler

shows that |þ⌣ satis�es invarian
e, monotoni
ity, base monotoni
ity, transi-

tivity, normality, and anti-re�exivity; these properties remain true for |þ⌣ in


ontinuous logi
. In [1℄, it is also shown that |þ⌣ has �nite 
hara
ter pro-

vided |M⌣ has �nite 
hara
ter and |þ⌣ has lo
al 
hara
ter. Using Morley

sequen
es indexed by ω1 instead of ω, Adler's arguments show that, in 
on-

tinuous logi
, |þ⌣ satis�es 
ountable 
hara
ter provided |M⌣ satis�es 
ountable


hara
ter and |þ⌣ satis�es lo
al 
hara
ter.

In Remark 4.1 of [1℄, it is shown that, in 
lassi
al logi
, if |⌣ is any stri
t

independen
e relation, then |⌣ ⇒ |þ⌣. This proof does not use �nite 
hara
-

ter and so remains true in 
ontinuous logi
. Let us summarize this dis
ussion

with the following theorem, where a 
ountable independen
e relation is an

independen
e relation satisfying 
ountable 
hara
ter instead of �nite 
har-

a
ter.

Theorem 3.2. The relation |þ⌣ is a stri
t 
ountable independen
e relation

if and only if it has lo
al 
hara
ter if and only if there is a stri
t 
ountable
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independen
e relation at all. If |þ⌣ is a stri
t 
ountable independen
e relation,

then it is the weakest.

De�nition 3.3. T is said to be rosy if |þ⌣ satis�es lo
al 
hara
ter. T is

said to be real rosy (resp. rosy with respe
t to �nitary imaginaries)

if |þ⌣ satis�es lo
al 
hara
ter when restri
ted to the real sorts (resp. sorts of

�nitary imaginaries).

Corollary 3.4. Simple 
ontinuous theories are rosy.

Proof. If T is simple, then dividing independen
e is a stri
t independen
e

relation for T eq
. �

Corollary 3.5. If T is a 
lassi
al theory viewed as a 
ontinuous theory, then

T is rosy as a 
lassi
al theory if and only if T is rosy with respe
t to �nitary

imaginaries as a 
ontinuous theory.

Proof. This follows from the fa
t that Meq
(in the 
lassi
al sense) is the

same as Mfeq
and, for A ⊆ Mfeq

, the algebrai
 
losure of A is the same in

either stru
ture. �

We next seek to provide a formula de�nition for thorn-independen
e.

First, we will need some de�nitions.

De�nition 3.6. Suppose that B is a small subset ofMeq
and c is a 
ountable

tuple from Meq
.

(1) We let Ind(c/B) denote the set of B-indis
ernible sequen
es of real-
izations of tp(c/B).

(2) If I ∈ Ind(c/B), let d(I) := d(c′, c′′) for any c′, c′′ ∈ I.
(3) We let χ(c/B) := max{d(I) | I ∈ Ind(c/B)}.

Remarks 3.7. Suppose that B and D are small subsets of Meq
and c is a


ountable tuple from Meq
.

(1) If B ⊆ D, then χ(c/D) ≤ χ(c/B).
(2) Lemma 4.9 in [8℄ shows that χ(c/B) = 0 if and only if tp(c/B) is

algebrai
.

(3) Sin
e the metri
 on 
ountably in�nite tuples is sensitive to the enu-

meration of the tuple, it is possible that if c is 
ountably in�nite and

c′ is a rearrangement of c, then χ(c/B) may not equal χ(c′/B). How-
ever, χ(c/B) = 0 if and only if χ(c′/B) = 0 as a tuple is algebrai


over B if and only if ea
h 
omponent of the tuple is algebrai
 over

B.

De�nition 3.8. Suppose ϕ(x, y) is a formula, ǫ > 0, c is a 
ountable tuple

from Meq
, and B is a small subset of Meq

.

(1) We say that ϕ(x, c) strongly ǫ-k-divides over B if:

• ǫ ≤ χ(c/B), and
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• whenever c1, . . . , ck |= tp(c/B) satisfy d(ci, cj) ≥ ǫ for all
1 ≤ i < j ≤ k, we have

|= inf
x

max
1≤i≤k

ϕ(x, ci) = 1.

(2) We say that ϕ(x, c) strongly ǫ-divides over B if it strongly ǫ-k-
divides over B for some k ≥ 1.

(3) We say that ϕ(x, c) strongly ǫ-k-divides over B in the naïve

sense if:

• ǫ ≤ χ(c/B), and
• whenever c1, · · · , ck |= tp(c/B) satisfy d(ci, cj) ≥ ǫ for all
1 ≤ i < j ≤ k, we have, for every a ∈ Mx, that

max
1≤i≤k

ϕ(a, ci) > 0.

We say that ϕ(x, c) strongly ǫ-divides over B in the naïve sense

if it strongly ǫ-k-divides over B in the naïve sense for some k ≥ 1.

Using our 
onventions from above, when saying that ϕ(x, c, d) strongly ǫ-
divides over B, we only 
onsider B-
onjugates of c whi
h are ǫ-apart; d must
remain �xed. The next proposition is the key link between the geometri


and formula de�nitions of thorn-independen
e.

Proposition 3.9. Let A and C be small parametersets from Meq
and let b

be a 
ountable tuple from Meq
. Then the following are equivalent:

(1) b ∈ acl(AC) \ acl(C);
(2) b /∈ acl(C) and for every ǫ with 0 < ǫ ≤ χ(b/C), there is a formula

ϕǫ(x, b) su
h that the 
ondition �ϕǫ(x, b) = 0� is in tp(A/bC) and

su
h that ϕǫ(x, b) strongly ǫ-divides over C in the naïve sense.

(3) b /∈ acl(C) and for every ǫ with 0 < ǫ ≤ χ(b/C), there is a formula

ϕǫ(x, b) su
h that the 
ondition �ϕǫ(x, b)� is in tp(A/bC) and su
h

that ϕǫ(x, b) strongly ǫ-divides over C.

Proof. (1) ⇒ (2): Suppose that (2) fails. If b ∈ acl(C), then (1) fails.

Assume that b /∈ acl(C). We aim to show that b /∈ acl(AC). We argue

as in the proof of Lemma 2.1.3(4) in [13℄. By assumption, there is ǫ with
0 < ǫ ≤ χ(b/C) su
h that ϕ(x, b) doesn't strongly ǫ-divide over C in the

naïve sense for any formula ϕ(x, b) su
h that the 
ondition �ϕ(x, b) = 0� is
in tp(A/bC). Let p(X, y) := tp(A, b/C) and q(y) := tp(b/C).
Claim: The set of (Leq)ω-
onditions

Γ(X, (yi)i<ω) :=
⋃

i<ω

p(X, yi) ∪
⋃

i<ω

q(yi) ∪ {d(yi, yj) ≥ ǫ | i < j < ω}

is satis�able.

It is enough to prove that, for any ϕ(x, y) for whi
h the 
ondition �ϕ(x, b) =
0� is in p(X, b) and any n < ω, we have

{max
i≤n

ϕ(x, yi) = 0} ∪
⋃

i≤n

q(yi) ∪ {d(yi, yj) ≥ ǫ | i < j ≤ n}
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is satis�able. Sin
e b /∈ acl(C) and ϕ(x, b) doesn't strongly ǫ-divide over

C in the naïve sense, we have b0, . . . , bn |= q su
h that d(bi, bj) ≥ ǫ for all
i < j ≤ n and maxi≤n ϕ(c, bi) = 0 for some c. This �nishes the proof of the

laim.

Let (A, (bi)i<ω) realize Γ(X, (yi)i<ω). Sin
e A
′b0 ≡C Ab, we may assume

A′b0 = Ab. It then follows that b′ |= tp(b/AC) for all i < ω. Sin
e (bi)i<ω


an 
ontain no 
onvergent subsequen
e, the set of realizations of tp(b/AC)
in Meq


annot be 
ompa
t, when
e b /∈ acl(AC).
(2) ⇒ (3): Suppose (2) holds and �x ǫ with 0 < ǫ ≤ χ(b/C). Suppose

ϕǫ(x, b) is a formula su
h that the 
ondition �ϕǫ(x, b) = 0� is in tp(A/bC)
and su
h that ϕǫ(x, b) strongly ǫ-k-divides over C in the naïve sense. By


ompa
tness, we 
an �nd r ∈ (0, 1] su
h that infxmaxi<k ϕǫ(x, bi) ≥ c for all
b0, . . . , bk−1 |= tp(b/C) with d(bi, bj) ≥ ǫ for all i < j < k. Let ϕ′

ǫ :=
1
r
⊙ϕǫ.

Then the 
ondition �ϕ′
ǫ(x, b) = 0� is in tp(A/bC) and ϕ′

ǫ(x, b) strongly ǫ-k-
divides over C.

(3) ⇒ (1): Suppose that (3) holds and yet b /∈ acl(AC), i.e. the set X
of realizations of tp(b/AC) in Meq

is not 
ompa
t. Note that X is 
losed,

and hen
e 
omplete. It follows that X is not totally bounded, i.e. there

is ǫ > 0 su
h that X 
annot be 
overed by �nitely many balls of radius ǫ.
Without loss of generality, we may assume that ǫ ≤ χ(b/C). Let ϕǫ(x, b) be
su
h that the 
ondition �ϕǫ(x, b) = 0� is in tp(A/bC) and su
h that ϕǫ(x, b)
strongly ǫ-k-divides over C. Choose b1, . . . , bk ∈ X with d(bi, bj) ≥ ǫ. Then
ϕǫ(A, bi) = 0 for ea
h i ∈ {1, . . . , k}, 
ontradi
ting strong ǫ-k-dividing. �

Motivated by the above proposition, we make the following de�nitions.

De�nition 3.10. Let A,B,C be small subsets of Meq
.

(1) If b is a 
ountable tuple, then tp(A/bC) strongly divides over C
if b ∈ acl(AC) \ acl(C).

(2) tp(A/BC) strongly divides over C if tp(A/bC) strongly divides

over C for some 
ountable b ⊆ B.
(3) If b is a 
ountable tuple, then tp(A/bC) thorn-divides over C if

there is a D ⊇ C su
h that b /∈ acl(D) and su
h that, for every ǫ with
0 < ǫ ≤ χ(b/D), there is a formula ϕǫ(x, b) su
h that the 
ondition

�ϕǫ(x, b) = 0� is in tp(A/bC) and ϕǫ(x, b) strongly ǫ-divides over D.

(4) tp(A/BC) thorn-divides over C if tp(A/bC) thorn-divides over C
for some 
ountable b ⊆ B.

(5) tp(A/BC) thorn-forks over C if there is E ⊇ BC su
h that every

extension of tp(A/BC) to E thorn-divides over C.

The following is the 
ontinuous analog of Theorem 3.3 in [2℄.

Theorem 3.11. Suppose |I⌣ is an automorphism-invariant ternary relation

on small subsets of Meq
satisfying, for all small A,B,C,D:

(1) for all 
ountable b, if b ∈ acl(AC) \ acl(C), then A 6 | I⌣C
b;

(2) if A |I⌣B
D and B ⊆ C ⊆ D, then A |I⌣C

D and A |I⌣B
C;
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(3) if A |I⌣C
B and BC ⊆ D, then there is A′ ≡BC A su
h that A′ |I⌣C

D.

(4) if A |I⌣C
BC, then A |I⌣C

B.

Then for all A,B,C, if A |I⌣C
B, then tp(A/BC) does not thorn-fork over

C.

Proof. Let us �rst show that thorn-dividing implies I-dependen
e. Suppose
that tp(A/BC) thorn-divides over C but, towards a 
ontradi
tion, A |I⌣C

B.

Let b ⊆ B be 
ountable so that tp(A/bC) thorn-divides over C. We then

have D ⊇ C su
h that b /∈ acl(D) and for every ǫ ∈ (0, χ(b/D)], there is a

formula ϕǫ(x, b) su
h that the 
ondition �ϕǫ(x, b) = 0� is in tp(A/bC) and
ϕǫ(x, b) strongly ǫ-divides over D.

Claim: D 
an be 
hosen so that A |I⌣C
bD.

By (3), we have A |I⌣C
BC. By (2), we have A |I⌣C

bC. By (4), we

have A |I⌣C
b. By (2), there is a′ ≡bC a su
h that a′ |I⌣C

bD. Take σ ∈

Aut(Meq|bC) su
h that σ(a′) = a. Sin
e a |I⌣C
bσ(D), σ(D) ⊇ C, and

χ(b/σ(D)) = χ(b/D), we have ϕǫ(x, b) still strongly ǫ-divides over σ(D).
This �nishes the proof of the 
laim.

By the Claim and (2), we have A |I⌣D
bD, and by (4), we have A |I⌣D

b.

However, by Proposition 3.9, we have b ∈ acl(AD) \ acl(D), so by (1), we

have A 6 | I⌣D
b, a 
ontradi
tion.

Now suppose that A |I⌣C
B. We wish to show that tp(A/BC) does not

thorn-fork over C. Fix E ⊇ BC. By (2), we have A′ ≡BC A su
h that

A′ |I⌣C
E. By the �rst part of the proof, we have tp(A′/E) does not thorn-

divide over C. Sin
e tp(A/BC) has an extension to every superset of BC
whi
h does not thorn-divide over C, it follows that tp(A/BC) does not

thorn-fork over C. �

In establishing the equivalen
e of the geometri
 and formula de�nitions of

thorn-independen
e, the following te
hni
al lemma will be useful.

Lemma 3.12. Suppose that b is 
ountable and tp(A/bC) thorn-divides over
C, witnessed by D ⊇ C. Then we 
an �nd D′ ∈ [C,D] witnessing that

tp(A/bC) thorn-divides over C and satisfying |D′ \ C| ≤ ℵ0.

Proof. Fix ǫ ∈ (0, χ(b/D)]. Choose ϕǫ(x, b) su
h that the 
ondition �ϕǫ(x, b) =
0� is in tp(A/bC) and ϕǫ(x, b) strongly ǫ-k-divides over D for some k ≥ 1.
By 
ompa
tness, there is a �nite dǫ ⊆ D and a formula ψ(y, dǫ) su
h that

ψ(b, dǫ) = 0 and whenever b0, . . . , bk−1 are su
h that ψ(bi, dǫ) = 0 and

d(bi, bj) ≥ ǫ for all i < j < k, we have infxmax1≤i≤kǫ 2 ⊙ ϕǫ(x, bi) = 1.
Let D′ := C ∪

⋃
{dǫ | ǫ ∈ (0, χ(c/D)] ∩ Q}. It follows that this D′

has the

desired property. �

A version of the following proposition appears in [1℄ for 
lassi
al theories.

Proposition 3.13. Let A and C be arbitrary small subsets of Meq
. Let

M be a small elementary submodel of Meq
su
h that C ⊆ M and M is

(|T |+ |C|)+-saturated. Then the following are equivalent:
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(1) A |M⌣C
M ;

(2) for all C ′ ∈ [C,M ], we have acl(AC ′) ∩M = acl(C ′);
(3) for all C ′ ∈ [C,M ], we have tp(A/M) does not strongly divide over

C ′
;

(4) tp(A/M) does not thorn-divide over C.

Proof. (1) ⇔ (2) is immediate.

(2) ⇒ (3): Suppose there is C ′ ∈ [C,M ] su
h that tp(A/M) strongly

divides over C ′
. Choose b ⊆ M 
ountable su
h that tp(A/bC ′) strongly di-

vides over C ′
, i.e. b ∈ acl(AC ′)\acl(C ′). Writing b = (bi)i<ω, by Proposition

2.8(2) of [10℄, there is i < ω su
h that bi ∈ acl(AC ′) \ acl(C ′), 
ontradi
ting
(2).

(3) ⇒ (2): Suppose there is C ′ ∈ [C,M ] and b ∈ M su
h that b ∈
acl(AC ′)\acl(C ′). Then tp(A/bC ′) strongly divides over C ′

, when
e tp(A/M)
strongly divides over C ′

.

(3) ⇒ (4): Suppose that tp(A/M) thorn-divides over C. Choose b ⊆ M

ountable su
h that tp(A/bC) thorn-divides over C. By Lemma 3.12, we


an �nd a 
ountable d ⊆ Meq
su
h that b /∈ acl(Cd) and for every ǫ ∈

(0, χ(b/Cd)], there is a formula ϕǫ(x, b) su
h that the 
ondition �ϕǫ(x, b) = 0�
is in tp(A/bC) and ϕǫ(x, b) strongly ǫ-divides over Cd. Let d

′ ⊆M be su
h

that d′ ≡bC d; this is possible by the saturation assumption on M . Now

noti
e that tp(A/bCd′) strongly divides over Cd′, when
e tp(A/M) strongly
divides over Cd′, 
ontradi
ting (3).

(4) ⇒ (3): Suppose that there is C ′ ∈ [C,M ] su
h that tp(A/M) strongly
divides over C ′

. Let b ⊆ M be 
ountable su
h that tp(A/bC ′) strongly di-

vides over C ′
. Arguing as in Lemma 3.12, we may �nd 
ountable d ⊆ C ′

su
h that tp(A/bCd) strongly divides over Cd. We now show that tp(A/bdC)
thorn-divides over C, when
e tp(A/M) thorn-divides over C, �nishing the

proof of the proposition. Sin
e the metri
 on 
ountably in�nite tuples is

sensitive to the enumeration of the tuple, we must spe
ify the enumera-

tion of bd. We �x the enumeration bd = (b0, d0, b1, d1, . . .). Noti
e that if

b′d, b′′d |= tp(bd/Cd), then d(b′d, b′′d) ≤ d(b′, b′′). In parti
ular, this shows

that χ(bd/Cd) ≤ χ(b/Cd). Note also that bd /∈ acl(Cd) as b /∈ acl(Cd).
Fix ǫ ∈ (0, χ(bd/Cd)]. Let ϕ(x, b) be a formula su
h that the 
ondition

�ϕ(x, b) = 0� is in tp(A/bCd) and su
h that ϕ(x, b) strongly ǫ-k-divides
over Cd for some k ≥ 1; this is possible sin
e tp(A/bCd) strongly di-

vides over Cd. Now suppose b0d, . . . , bk−1d |= tp(bd/Cd) are su
h that

d(bid, bjd) ≥ ǫ for all i < j < k. Then d(bi, bj) ≥ ǫ for all i < j < k, when
e
infxmaxi<k ϕ(x, bi, d) = 1. Thus, Cd witnesses that tp(a/bdC) thorn-divides
over C. �

Corollary 3.14. For all small A,B,C ⊆ Meq
, we have A |þ⌣C

B if and only

if tp(A/BC) does not thorn-fork over C.

Proof. First suppose that tp(A/BC) thorn-forks over C. Let E ⊇ BC be

su
h that every extension of tp(A/BC) to E thorn-divides over C. Let
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M ⊇ E be a small elementary submodel of Meq
whi
h is (|T | + |C|)+-

saturated. Then every extension of tp(A/BC) to M thorn-divides over

C. By Proposition 3.13, we see that A′ 6 |M⌣C
M for every A′ |= tp(A/BC),

when
e A 6 | þ⌣C
B.

Now suppose that A 6 | þ⌣C
B. Let E ⊇ BC be su
h that A′ 6 |M⌣C

E for every

A′ |= tp(A/BC). Let M ⊇ E be a small elementary submodel of Meq
whi
h

is (|T |+ |C|)+-saturated. Then by monotoni
ity of |M⌣, we have A′ 6 |M⌣C
M for

every A′ |= tp(A/BC). By Proposition 3.13, we see that every extension of

tp(A/BC) toM thorn-divides over C. It follows that tp(A/BC) thorn-forks
over C. �

One 
an de�ne what it means for a de�nable predi
ate Φ(x, b) to strongly
ǫ-k-divide over a parameterset just as in the 
ase of formulae. A priori,

it appears that we may get a di�erent notion of thorn-forking if we allowed

de�nable predi
ates to witness strong dividing. However, this is not the 
ase,

as we now explain. Suppose A and C are small subsets of Meq
and b is a


ountable tuple from Meq
. Say that tp(A/bC) thorn∗-divides over C if there

is a small D ⊇ C su
h that b /∈ acl(D) and for every ǫ with 0 < ǫ ≤ χ(b/D),
there is a de�nable predi
ate Φǫ(x, b) with parameters from Cb su
h that

Φǫ(A, b) = 0 and Φǫ(x, b) strongly ǫ-divides over D. For small A,B,C, one
de�nes what it means for tp(A/BC) to thorn∗-divide over C and thorn

∗
-fork

over C in the obvious ways.

Lemma 3.15. For small A,B,C, tp(A/BC) thorn∗-divides (-forks) over C
if and only if it thorn-divides (-forks) over C.

Proof. The (⇐) dire
tion is immediate. For the (⇒) dire
tion, suppose

tp(A/BC) thorn∗-divides over C. Let b ⊆ B be a 
ountable tuple su
h that

tp(A/bC) thorn∗-divides over C, witnessed by D ⊇ C. Fix ǫ ∈ (0, χ(b/D)].
Let Φǫ(x, b) be a de�nable predi
ate with parameters from Cb su
h that

Φǫ(A, b) = 0 and Φǫ(x, b) strongly ǫ-divides overD. Let ϕ̃ǫ(x, b) be an L(Cb)-
formula su
h that supx |Φǫ(x, b)−ϕ̃ǫ(x, b)| ≤

1
4 . Let ϕǫ(x, b) := 4⊙(ϕ̃ǫ(x, b)−.

1
2). Note that ϕ̃ǫ(A, b) ≤

1
4 , when
e ϕǫ(A, b) = 0. It remains to show that

ϕǫ(x, b) strongly ǫ-divides over D. Suppose Φǫ(x, b) strongly ǫ-k-divides
over D. Let b1, . . . , bk |= tp(b/D) be ǫ-apart. Fix e ∈ (Meq)x. Choose

i ∈ {1, . . . , k} su
h that Φǫ(e, bi) = 1. For this i, we have ϕ̃ǫ(e, bi) ≥
3
4 , so

ϕ̃ǫ(e, bi)−.
1
2 ≥ 1

4 , when
e ϕǫ(e, bi) = 1. �

Let us end this se
tion with the de�nition of superrosiness, whi
h is meant

to mimi
 the de�nition of supersimpli
ity for 
ontinuous logi
.

De�nition 3.16. Suppose that T is rosy. Then we say that T is superrosy

if for any �nite tuple a from Meq
, any small B ⊆ Meq

, and any ǫ > 0,
there is a �nite tuple c whi
h is similar to a and a �nite B0 ⊆ B su
h that

d(a, c) < ǫ and c |þ⌣B0

B.
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4. Weak Elimination of Finitary Imaginaries

In this se
tion, we dis
uss what it means for a 
ontinuous theory to weakly

eliminate �nitary imaginaries. We then show that a real rosy (
ontinuous)

theory whi
h weakly eliminates �nitary imaginaries is rosy with respe
t to

�nitary imaginaries. In fa
t, our proof will show that in 
lassi
al logi
, a

real rosy theory whi
h admits weak elimination of imaginaries is rosy, whi
h

is a fa
t that, to our knowledge, has not yet appeared in the literature on


lassi
al rosy theories.

The following lemma is the 
ontinuous analog of the dis
ussion on weak

elimination of imaginaries from [14℄, pages 321-323.

Lemma 4.1. The following 
onditions are equivalent:

(1) For every �nitary de�nable predi
ate ϕ(x, a) with real parameters,

there is a �nite tuple c from M su
h that:

• ϕ(x, a) is a c-de�nable predi
ate, and

• if B is a real parameterset for whi
h ϕ(x, a) is also a B-de�nable

predi
ate, then c ∈ acl(B).
(2) For every �nitary de�nable predi
ate ϕ(x, a) with real parameters,

there is a �nite tuple c from M su
h that:

• ϕ(x, a) is a c-de�nable predi
ate, and

• if d is a �nite tuple from M for whi
h ϕ(x, a) is also a d-
de�nable predi
ate, then c ∈ acl(d).

(3) For every �nitary de�nable predi
ate ϕ(x, a) with real parameters,

there is a de�nable predi
ate P (x, c), c a �nite tuple from M, su
h

that ϕ(x, a) ≡ P (x, c) and the set

{c′ | c′ ≡ c and ϕ(x, a) ≡ P (x, c′)}

is 
ompa
t.

(4) For every �nitary imaginary e ∈ Mfeq
, there is a �nite tuple c from

M su
h that e ∈ dcl(c) and c ∈ acl(e).

Proof. (1) ⇒ (2) is trivial. (2) ⇒ (3): Fix a �nitary de�nable predi
ate

ϕ(x, a) and let c be as in (2) for ϕ(x, a). Let P (x, c) be a c-de�nable predi
ate
for whi
h ϕ(x, a) ≡ P (x, c). We 
laim that this P (x, c) is as desired. Set

X := {c′ | c′ ≡ c and ϕ(x, a) ≡ P (x, c′)}.

Let p(c) := tp(c/∅). Then X = p(M) ∩ Z(supx |ϕ(x, a) − P (x, z)|), when
e
X is 
losed and hen
e 
omplete. Suppose that X is not 
ompa
t. It follows

that X is not totally bounded. Choose ǫ > 0 su
h that X 
annot be 
overed

by �nitely many balls of radius ǫ. By the Compa
tness Theorem, it follows

that X 
annot be 
overed by a small number of balls of radius ǫ. Sin
e acl(c)
is the union of a small number of sets, ea
h of whi
h 
an be 
overed by �nitely

many balls of radius ǫ, it follows that X * acl(c). Let c′ ∈ X \ acl(c). Take
σ ∈ Aut(M) su
h that σ(c′) = c. Set c′′ := σ(c). Sin
e P (x, c) ≡ P (x, c′),
we have P (x, c′′) ≡ P (x, c), when
e ϕ(x, a) is de�ned over c′′. It follows that
c ∈ acl(c′′). However, applying σ−1

, we get c′ ∈ acl(c), a 
ontradi
tion.
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(3) ⇒ (4): Let e ∈ Mfeq
be a �nitary imaginary. Let ϕ(x, y) be a �nitary

de�nable predi
ate su
h that e is the 
anoni
al parameter for ϕ(x, a). Let

P (x, c) be as in (3) for ϕ(x, a). We 
laim that c is the desired tuple. First

suppose that σ ∈ Aut(Mfeq|c). Then

ϕ(x, a) ≡ P (x, c) ≡ P (x, σ(c)) ≡ ϕ(x, σ(a)),

when
e σ(e) = e. It follows that e ∈ dcl(c). Now suppose that σ ∈
Aut(Mfeq|e). Then P (x, c) ≡ ϕ(x, a) ≡ ϕ(x, σ(a)) ≡ P (x, σ(c)). This

implies that

Y := {σ(c) | σ ∈ Aut(Mfeq|e)} ⊆ X := {c′ | c′ ≡ c and ϕ(x, a) ≡ P (x, c′)}.

Sin
e X is 
ompa
t and Y is 
losed (it is the set of realizations of tp(c/e)),
it follows that Y is 
ompa
t, i.e. that c ∈ acl(e).

(4) ⇒ (1): Let ϕ(x, a) be a �nitary de�nable predi
ate and let e ∈ Mfeq

be a 
anoni
al parameter for ϕ(x, a). Let c be a �nite tuple from M su
h

that e ∈ dcl(c) and c ∈ acl(e). We 
laim that this c is as desired. Suppose

σ ∈ Aut(M|c). Then σ(e) = e, when
e ϕ(x, a) ≡ ϕ(x, σ(a)). Thus, ϕ(x, a)
is de�ned over c. Now suppose that ϕ(x, a) is de�ned over B. Let σ ∈
Aut(M|B). Then ϕ(x, a) ≡ ϕ(x, σ(a)), i.e. σ(e) = e. It follows that

e ∈ dcl(B), and sin
e c ∈ acl(e), we have c ∈ acl(B). �

De�nition 4.2. Say that T has weak elimination of �nitary imaginar-

ies if any of the equivalent 
onditions of the previous lemma hold.

The following lemma is the 
ontinuous analog of a 
lassi
al lemma due

to Las
ar. The 
lassi
al version 
an be used to show that the theory of the

in�nite set has weak elimination of imaginaries. We will use it in the next

se
tion to show that the theory of the Urysohn sphere has weak elimination

of �nitary imaginaries.

Lemma 4.3. Suppose the following two 
onditions hold:

(1) There is no stri
tly de
reasing sequen
e A0 ) A1 ) A2 ) . . ., where
ea
h An is the real algebrai
 
losure of a �nite set of real elements.

(2) If A and B are ea
h the real algebrai
 
losure of a �nite subset of M
and ϕ(x, a) is a �nitary de�nable predi
ate whi
h is de�ned over A
and also de�ned over B, then ϕ(x, a) is de�ned over A ∩B.

Then T has weak elimination of �nitary imaginaries.

Proof. Let ϕ(x, a) be a �nitary de�nable predi
ate. We will verify 
ondition

(2) of Lemma 4.1 for T . By (1), there is a �nite tuple c su
h that ϕ(x, a)
is de�ned over c and ϕ(x, a) is not de�ned over any �nite tuple c′ su
h that

acl(c′) ( acl(c). Now suppose that ϕ(x, a) is de�ned over the �nite tuple d.
We must show that c ∈ acl(d). By (2), ϕ(x, a) is de�ned over c ∩ d. By the


hoi
e of c, we must have acl(c∩d) = acl(c) whi
h implies that c ∈ acl(d). �

We now aim to show that a real rosy theory whi
h has weak elimination

of �nitary imaginaries is rosy with respe
t to �nitary imaginaries. We �rst

need a simplifying lemma.
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Lemma 4.4. Suppose that A is a set of �nitary imaginaries and A 6 | þ⌣C
D,

where C ⊆ D. Then B 6 | þ⌣C
D where B is a set of real elements for whi
h

π(B) = A.

Proof. First suppose that B |M⌣C
D. We show that A |M⌣C

D. Let C ′ ∈
[C, acl(D)]. Then

acl(BC ′) ∩ acl(DC ′) = acl(C ′).

Sin
e A ⊆ dcl(B), we have

acl(AC ′) ∩ acl(DC ′) ⊆ acl(BC ′) ∩ acl(DC ′) = acl(C ′).

This shows that A |M⌣C
D.

Now suppose that B |þ⌣C
D. Let E ⊇ D. Then there is B′ ≡D B su
h

that B′ |M⌣C
E. By the �rst part of the proof, we have π(B′) |M⌣C

E. Sin
e

π(B′) ≡D A, we see that A |þ⌣C
D. �

Notation: Suppose that T has weak elimination of �nitary imaginaries. For

a �nitary imaginary e, we let l(e) denote a real tuple su
h that e ∈ dcl(l(e))
and l(e) ∈ acl(e). We refer to l(e) as a weak 
ode for e. For a set of �nitary

imaginaries E, we let l(E) :=
⋃
{l(e) | e ∈ E}.

Lemma 4.5. Suppose that T has weak elimination of �nitary imaginaries.

Suppose B ⊆ M and D ⊆ Mfeq
are small. Further suppose that C ⊆ D is

su
h that B 6 | þ⌣C
D. Then B 6 | þ⌣ l(C)

l(D) (in the real sense).

Proof. We �rst show that if B |M⌣ l(C)
l(D), then B |M⌣C

D. Suppose that

C ′ ∈ [C, acl(D)]. Then l(C ′) ∈ [l(C), l(acl(D))] ⊆ [l(C), acl(l(D))]. Sin
e

B |M⌣C
D, we have

acl(Bl(C ′)) ∩ acl(l(D)l(C ′)) = acl(l(C ′)).

It follows that

acl(BC ′) ∩ acl(DC ′) ⊆ acl(Bl(C ′)) ∩ acl(l(D)l(C ′)) = acl(l(C ′)) ⊆ acl(C ′).

This proves that B |M⌣C
D.

Now suppose that B |þ⌣l(C)
l(D). Suppose E ⊇ D. Then sin
e l(E) ⊇

l(D), there is B′ ≡l(D) B with B′ |M⌣l(C)
l(E). By the �rst part of the proof,

we have B′ |M⌣C
E. Sin
e D ⊆ dcl(l(D)), we have that B′ ≡D B, proving

that B |þ⌣C
D. �

Remark 4.6. The �rst part of the proof of Lemma 4.5 only used that T had

geometri
 elimination of �nitary imaginaries, that is, for every e ∈ Mfeq
,

there is a �nite tuple l(e) from M su
h that e and l(e) are interalgebrai
.

Perhaps a more 
areful analysis of the se
ond part of the proof 
ould yield

that Lemma 4.5 holds under the weaker assumption of geometri
 elimination

of �nitary imaginaries. Also, in the above proof, we never used the fa
t that

ea
h weak 
ode is �nite. In fa
t, if κ(M) is regular and ea
h weak 
ode
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is small, then for a small D ⊆ Meq
, l(D) will also be small and the above

lemma will hold in this 
ase as well.

Theorem 4.7. Suppose that T has weak elimination of �nitary imaginaries

and is real rosy. Then T is rosy with respe
t to �nitary imaginaries.

Proof. Let A ⊆ Mfeq
. We need a 
ardinal κ(A) su
h that for anyD ⊆ Mfeq

,

there is C ⊆ D with |C| ≤ κ(A) and A |þ⌣C
D. Let B ⊆ M be su
h that

π(B) = A. Set κ(A) := κ(B), where κ(B) is understood to be the 
ardinal

that works for B when only 
onsidering thorn-forking in the real sense; κ(B)
exists by real rosiness. Suppose, towards a 
ontradi
tion, that A 6 | þ⌣C

D for

all C ⊆ D with |C| ≤ κ(A). Then B 6 | þ⌣C
D for all C ⊆ D with |C| ≤ κ(A)

by Lemma 4.4. By Lemma 4.5, we have B 6 | þ⌣l(C)
l(D) for all C ⊆ D with

|C| ≤ κ(B). Now suppose that E ⊆ l(D) is su
h that |E| ≤ κ(B). Let

C ⊆ D be su
h that E ⊆ l(C) and |C| ≤ κ(B). Then B 6 | þ⌣E
l(D) by base

monotoni
ity. This 
ontradi
ts the de�nition of κ(B), proving the theorem.

�

Remark 4.8. Say that T admits weak elimination of imaginaries if, for

every a ∈ Meq
, there is a 
ountable tuple b from M su
h that b ∈ dcl(a)

and a ∈ acl(b). The above line of reasoning shows that if T is real rosy and

has weak elimination of imaginaries, then T is rosy.

Corollary 4.9. Suppose that T is real superrosy and has weak elimination

of �nitary imaginaries. Then T is superrosy with respe
t to �nitary imagi-

naries.

Proof. Let a ∈ Mfeq
and B ⊆ Mfeq

be small. Let ǫ > 0 be given. Let a′ be
a tuple from M be su
h that π(a′) = a. Let δ > 0 be su
h that whenever

d(x, y) < δ, then d(π(x), π(y)) < ǫ. Sin
e T is real superrosy, there is a

tuple c′ from M su
h that d(a′, c′) < δ and a �nite C ⊆ l(B) su
h that

c′ |þ⌣C
l(B). By base monotoni
ity, we may assume that C = l(B0) for some

�nite B0 ⊆ B. By Lemma 4.5, we have that c′ |þ⌣B0

B. Let c = π(c′). By

Lemma 4.4, we have that c |þ⌣B0

B. By 
hoi
e of c′, we have that d(a, c) < ǫ,


ompleting the proof of the 
orollary. �

5. The Urysohn Sphere

In this se
tion, we present an example of an �essentially� 
ontinuous theory

whi
h is rosy (with respe
t to �nitary imaginaries) but not simple, namely

the theory of the Urysohn sphere. Before proving the main results of this

se
tion, let us set up notation and re
all some fa
ts about the model theory

of the Urysohn sphere.

De�nition 5.1. The Urysohn sphere is the unique (up to isometry) Pol-

ish metri
 spa
e of diameter ≤ 1 whi
h is universal (that is, every Polish
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metri
 spa
e of diameter ≤ 1 
an be isometri
ally embedded into it) and

ultrahomogeneous (that is, any isometry between �nite subsets of it 
an be

extended to an isometry of the whole spa
e).

We let U denote the Urysohn sphere. We let LU denotes the 
ontinuous

signature 
onsisting solely of the metri
 symbol d, whi
h is assumed to have

diameter bounded by 1. We let TU denote the LU-theory of U and we let U
denote a monster model for TU. We now 
olle
t some basi
 model theoreti


fa
ts about the Urysohn sphere, whi
h appear to have been known for a

while. Proofs of these fa
ts 
an be found in [15℄.

Fa
ts 5.2 (Henson).

(1) TU is ℵ0-
ategori
al.

(2) TU admits quanti�er-elimination.

(3) TU is the model 
ompletion of the empty L-theory and is the theory

of existentially 
losed metri
 spa
es of diameter bounded by 1.

Another fa
t about the Ursyohn sphere is that the algebrai
 
losure op-

erator is trivial. On
e again, this fa
t has been known for a while, but we

in
lude here a proof given to us by Ward Henson.

Fa
t 5.3 (Henson). For every small A ⊆ U, we have acl(A) = Ā.

Proof. The in
lusion Ā ⊆ acl(A) is true in any stru
ture. Now suppose

b /∈ Ā. Let d(b,A) denote inf{d(b, a) | a ∈ A}, a positive number. Consider

the following 
olle
tion p(xi | i < ω) of 
losed L(A)-
onditions:

{d(xi, a) = d(b, a) | a ∈ A, i < ω} ∪ {d(xi, xj) = 2⊙ d(b,A) | i < j < ω}.

It is easy to verify that these 
onditions de�ne a metri
 spa
e, when
e p 
an
be realized in U, say by (bi | i < ω). By quanti�er elimination, tp(b/A)
is determined by {d(b, a) | a ∈ A}. It follows that bi |= tp(b/A) for ea
h

i < ω. Sin
e (bi | i < ω) 
an 
ontain no 
onvergent subsequen
e, we see that

b /∈ acl(A). �

As the above fa
ts indi
ate, there appears to be an analogy between the

theory of the in�nite set in 
lassi
al logi
 and the theory of the Urysohn

sphere in 
ontinuous logi
. However, there is a serious di�eren
e between

the two theories. In 
lassi
al logi
, the theory of the in�nite set is ω-stable,
whereas TU is not even simple. This fa
t was �rst observed by Anand Pillay

and we provide here a proof 
ommuni
ated to us by Bradd Hart.

Theorem 5.4. TU is not simple.

Proof. Suppose A is a small set of elements from U whi
h are all mutually

1
2 -apart. Let p(x) be the unique 1-type over A determined by the 
onditions

{d(x, a) = 1
4 | a ∈ A}. It su�
es to show that p divides over any proper


losed subset B of A. Indeed, suppose B ( A is 
losed and a ∈ A\B. Then,
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sin
e a /∈ acl(B), we 
an �nd (ai | i < ω) ∈ Ind(a/B) su
h that d(ai, aj) = 1
for all i < j < ω. Indeed, the set of 
onditions

Γ(xi | i < ω) := {d(xi, b) =
1

2
| i < ω, b ∈ B} ∪ {d(xi, xj) = 1| i < j < ω}

is �nitely satis�able, and hen
e realized in U. By quanti�er elimination in

TU, we have (ai | i < ω) ∈ Ind(a/B). We now see that {d(x, ai) =
1
4 | i < ω}

is in
onsistent, when
e the formula d(x, a) = 1
4 divides over B. �

Remark 5.5. There are a few more model-theoreti
 fa
ts about TU that are

known but have not yet appeared in the literature. First, sin
e the random

graph is a �subspa
e� of U, we see that TU is an independent theory (in a

rather strong sense). Berenstein and Usvyatsov have observed that TU has

SOP3. Also, Usvyatsov has shown that TU does not have the stri
t order

property.

We now aim to prove that TU is real rosy. Until further noti
e, the inde-

penden
e relations |M⌣ and |þ⌣ will be restri
ted to the real sorts. Suppose

that A,B,C are small subsets of U. Then:

A |M⌣
C

B ⇔ for all C ′ ∈ [C,B ∪ C](A ∪C ′) ∩ (B ∪C ′) = C ′)

⇔ for all C ′ ∈ [C,B ∪ C](A ∩B ⊆ C ′)

⇔ A ∩B ⊆ C.

Lemma 5.6. In TU, |M⌣ satis�es extension, i.e. |M⌣ = |þ⌣.

Proof. Sin
e |M⌣ satis�es invarian
e, monotoni
ity, transitivity, normality,

and symmetry, by Remark 1.2(3) of [1℄, it su�
es to 
he
k that |M⌣ satis-

�es full existen
e, that is, for any small A,B,C ⊆ U, we 
an �nd A′ ≡C A
su
h that A′ |M⌣C

B. Let A,B,C ⊆ U be small. Without loss of generality,

we may assume that A,B,C are 
losed. Indeed, suppose we �nd A′′ ≡C B

with A′′ |M⌣C
B. Let A′ ⊆ A′′


orrespond to A, so A′′ = A′
. Then this A′

is

as desired.

Let (ai | i ∈ I) enumerate A \ C. For ea
h i ∈ I, set

ǫi := inf{d(ai, c) | c ∈ C} > 0.

Let p(X,C) := tp(A/C), where X = (xi | i ∈ I ′), I ⊆ I ′, and (xi | i ∈ I)

orresponds to the enumeration of A \C. Let (bj | j ∈ J) enumerate B \C.
For i ∈ I and j ∈ J , set δi,j := max(d(ai, bj), ǫi). Set

Σ := Σ(X) := p(X,C) ∪ {|d(xi, bj)− δi,j | = 0 | i ∈ I, j ∈ J}.

Claim: Σ is satis�able.

Proof of Claim: Let S := {xi | i ∈ I} ∪B ∪C. Let ρ : S2 → R be de�ned

as follows:
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• ρ ↾ (B ∪ C)2 = d ↾ (B ∪ C)2;
• ρ(xi1 , xi2) = d(ai1 , ai2) for all i1, i2 ∈ I;
• ρ(xi, bj) = δi,j for all i ∈ I and all j ∈ J ;
• ρ(xi, c) = d(ai, c) for all i ∈ I.

It su�
es to show that (S, ρ) is a metri
 spa
e. Indeed, suppose that Σ0 ⊆ Σ
is �nite. Let S0 ⊆ S be �nite su
h that the parameters and variables o

uring

in Σ0 are from S0. Sin
e (S0, ρ) is a �nite metri
 spa
e of diameter bounded

by 1, it is isometri
ally embeddable in U. By the strong homogeneity of

U, we may assume that the embedding ι : S0 → U is su
h that ι(y) = y
for all y ∈ S0 ∩ (B ∪ C). Let X0 ⊂ X be the variables appearing in S0.
Sin
e TU admits quanti�er elimination, it follows that ι(X0) realizes Σ0. By


ompa
tness, Σ is satis�able.

In order to 
he
k that (S, ρ) is a metri
 spa
e, we must show that, for any

s1, s2, s3 ∈ S, we have ρ(s1, s2) ≤ ρ(s1, s3) + ρ(s2, s3). We distinguish this

into 
ases, depending on what part of S the si's 
ome from. For example,

Case ABC is the 
ase when s1 ∈ X, s2 ∈ B \ C, and s3 ∈ C. There are 15


ases for whi
h there is either no A or no B; these 
ases are trivially true.

Let us turn our attention to the remaining 12 
ases.

Consider Case ACB=Case CAB. We must show that ρ(xi, c) ≤ ρ(xi, b) +
ρ(b, c). However, we have ρ(xi, c) = d(ai, c) ≤ d(ai, b) + d(b, c) ≤ ρ(xi, b) +
ρ(b, c). It is easily veri�ed that this same argument handles Cases BCA,

CBA, BBA, and AAB.

Next 
onsider Case ABC=Case BAC. We need to show that ρ(xi, b) ≤
ρ(xi, c) + ρ(c, b) = d(ai, c) + d(c, b). If ρ(xi, b) = d(ai, b), then the result is


lear. Otherwise ρ(xi, b) = ǫi ≤ d(ai, c), and the result is on
e again 
lear.

Next 
onsider Case ABB=Case BAB. We need to show that ρ(xi, b) ≤
ρ(xi, b

′) + ρ(b, b′). If ρ(xi, b) = d(ai, b), then we have ρ(xi, b) = d(ai, b) ≤
d(ai, b

′) + d(b, b′) ≤ ρ(xi, b
′) + ρ(b, b′). Otherwise, ρ(xi, b) = ǫi ≤ ρ(xi, b

′),
and the inequality on
e again holds.

Finally, 
onsider Case ABA=Case BAA. We need to show that ρ(xi1 , b) ≤
ρ(xi1 , xi2) + ρ(xi2 , b). Set r := ρ(xi1 , xi2) = d(ai1 , ai2). First suppose that

ρ(xi1 , b) = d(ai1 , b). Then ρ(xi1 , b) = d(ai1 , b) ≤ r + d(ai2 , b) ≤ r + ρ(xi2 , b).
Now suppose that ρ(xi1 , b) = ǫi. To handle this 
ase, we need to �rst observe

that ǫi1 ≤ r+ǫi2 . Indeed, let c ∈ C be arbitrary. Then d(ai1 , c) ≤ r+d(ai2 , c).
It follows that d(ai1 , c) ≤ d + ǫi2 . Sin
e ǫi1 ≤ d(ai1 , c), we have that ǫi1 ≤
r + ǫi2 . But now ρ(xi1 , b) = ǫi1 ≤ r + ǫi2 ≤ r + ρ(xi2 , b). This �nishes the

proof of this 
ase as well as the proof of the 
laim.

By the Claim, we 
an �nd A′ |= Σ(X). We 
laim that this A′
is as desired.

Indeed, suppose that e ∈ (A′ ∩B) \C. Let i ∈ I be su
h that e 
orresponds
to xi. Then 0 = d(e, e) = d(xi, e) ≥ ǫi > 0, a 
ontradi
tion. �

Theorem 5.7. TU is real rosy.
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Proof. We must show that |þ⌣ satis�es lo
al 
hara
ter. By the previous

lemma, this amounts to showing that |M⌣ satis�es lo
al 
hara
ter. Let A

and B be small subsets of U. For ea
h x ∈ A ∩B, let Bx ⊆ B be 
ountable

su
h that x ∈ Bx. Let C :=
⋃
{Bx | x ∈ A ∩ B}. Then A ∩ B ⊆ C, i.e.

A |M⌣C
B. Sin
e |C| ≤ |A| · ℵ0, |M⌣ has lo
al 
hara
ter. �

Corollary 5.8. TU is real superrosy.

Proof. Let a ∈ Un
, B ⊆ U small, and ǫ > 0. Write a = (a1, . . . , an). Fix

i ∈ {1, . . . , n}. If ai ∈ acl(B) = B, set ci to be an element of B su
h that

d(ai, ci) < ǫ. If ai /∈ acl(B), set ci := ai. Let c = (c1, . . . , cn) ∈ Mn
. Let

B0 = {c1, . . . , cn}∩B. Then c |þ⌣B0

B, �nishing the proof of the 
orollary. �

In order to prove that TU has weak elimination of �nitary imaginaries, we

will need the following fa
t due to Julien Melleray.

Fa
t 5.9 ([12℄). Let A and B be �nite subsets of U. Let G := Aut(U|A∩B)
and H := the subgroup of G generated by Aut(U|A) ∪ Aut(U|B). Then H
is dense in G with respe
t to the topology of pointwise 
onvergen
e.

Lemma 5.10. TU has weak elimination of �nitary imaginaries.

Proof. We verify properties (1) and (2) of Lemma 4.3 for TU. Sin
e real

algebrai
 
losures of �nite subsets of U are �nite, property (1) is 
lear. We

now verify (2). Let A and B be �nite subsets of U. Let ϕ(x) be a �nitary

de�nable predi
ate whi
h is de�ned over A and de�ned over B. We must

show that ϕ(x) is de�ned over A∩B. On
e again, let G = Aut(U|A∩B) and
H = the subgroup of G generated by Aut(U|A) ∪ Aut(U|B). Fix a ∈ Ux.

Note that if τ ∈ H, then ϕ(τ(a)) = ϕ(a). Now suppose that τ ∈ G. By Fa
t

5.9, there is a sequen
e (τi | i < ω) from H su
h that τi(a) → τ(a). Sin
e ϕ
is 
ontinuous, we have ϕ(τ(a)) = limϕ(τi(a)) = ϕ(a). Sin
e a was arbitrary,
this shows that ϕ(τ(x)) ≡ ϕ(x). Sin
e τ ∈ G was arbitrary, we have that

ϕ(x) is de�ned over A ∩B, 
ompleting the proof of the lemma. �

Corollary 5.11. TU is rosy with respe
t to �nitary imaginaries.

Proof. This is immediate from Theorem 4.7, Theorem 5.7, and Lemma 5.10.

�

Corollary 5.12. TU is superrosy with respe
t to �nitary imaginaries.

Proof. This is immediate from Corollary 4.9, Corollary 5.8, and Lemma 5.10.

�

We end this se
tion with an appli
ation of the fa
t that TU is real rosy.

For p ∈ S(A), one de�nes Uþ(p) as in 
lassi
al model theory. If X is an A-
de�nable set, one de�nes Uþ(X) := sup{Uþ(a/A) | a ∈ X}. If Uþ(X) < ω,
then there is a ∈ X su
h that Uþ(X) = Uþ(a/A). The Las
ar inequalities

for Uþ

-rank also hold in this 
ontext.
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Proposition 5.13. Suppose f : Mn → M is an inje
tive A-de�nable
fun
tion, where A ⊆ Meq

is small. Suppose that Uþ(M) < ω. Then

Uþ(Mn) ≤ Uþ(f(Mn)).

Proof. Let a ∈ Mn
be su
h that Uþ(Mn) = Uþ(a/A). Let b := f(a). Then

sin
e a and b are interde�nable over A, we have, by the Las
ar inequal-

ities, that Uþ(b/A) = Uþ(ab/A) = Uþ(a/A). Consequently, we see that

Uþ(Mn) = Uþ(a/A) = Uþ(b/A) ≤ Uþ(f(Mn)). �

De�ne Uþ

real and U
þ

feq to be the foundation rank of |þ⌣ when restri
ted to the

real sorts and �nitary imaginary sorts respe
tively. The previous proposition


ontinues to hold when Uþ

is repla
ed by Uþ

real or U
þ

feq.

Lemma 5.14. For ea
h n > 0, we have Uþ

real(U
n) = n.

Proof. We prove this by indu
tion on n. First suppose that n = 1. Let p
be the unique element of S1(∅). Sin
e p is 
onsistent, we have Uþ(p) ≥ 0.

Let a |= p. Sin
e tp(a/a) þ-forks over ∅, we see that Uþ

real(p) ≥ 1. Suppose

Uþ

real(p) ≥ 2. Then there would be b and A su
h that Uþ

real(b/A) ≥ 1 and

tp(b/A) þ-forks over ∅, i.e. b ∈ Ā. Sin
e b ∈ acl(A), tp(b/A) 
annot have

a þ-forking extension, 
ontradi
ting Uþ

real(b/A) ≥ 1. Thus Uþ

real(p) = 1 for

the unique type in S1(∅), when
e U
þ(U) = 1. Now suppose that n > 1.

Let a ∈ Un−1
be su
h that Uþ

real(U
n−1) = Uþ

real(a/∅). Let b ∈ U be su
h

that b does not equal any of the 
oordinates of a. Then a |þ⌣ b, so by the

Las
ar inequalities, Uþ

real(ab) = Uþ

real(a) + Uþ

real(b) = (n − 1) + 1 = n. It

follows that Uþ

real(U
n) ≥ n. However, for any c ∈ Un−1

and d ∈ U, we

have Uþ

real(cd) ≤ Uþ

real(c/d) ⊕ Uþ

real(d) ≤ n, when
e Uþ

real(U
n) ≤ n. Thus,

Uþ

real(U
n) = n. �

Corollary 5.15. For ea
h n > 0, we have Uþ

feq(U
n) = n.

Proof. To prove the 
orollary, it su�
es to show that, for any a ∈ Un
, we

have Uþ

feq(a/∅) ≤ Uþ

real(a/∅). However, this follows immediately from Lemma

4.5. �

By the universality property of the Urysohn sphere, we have that, for

n > 1, Un
isometri
ally embeds into U. The next 
orollary shows that this


annot be done de�nably.

Corollary 5.16.

(1) For any n ≥ 2, there does not exist a de�nable isometri
 embedding

f : Un → U.

(2) For any n ≥ 2, there does not exist an A-de�nable inje
tive fun
tion

f : Un → U, where A ⊆ U is �nite..

Proof. In either 
ase, if su
h an f existed, then by Lemma 2.3, the natural

extension g : Un → U of f to Un
would be inje
tive. By Proposition 5.13,
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we would have

n = Uþ

real(U
n) ≤ Uþ

real(g(U
n)) ≤ Uþ

real(U) = 1,

a 
ontradi
tion. �

Ward Henson has a more elementary proof that, assuming κ(U) > 2ℵ0
,

there 
an be no de�nable, inje
tive fun
tion f : Un → U for any n ≥ 2. It

su�
es to treat the 
ase n = 2, as if n > 2, we spe
ify the extra 
oordinates

arbitrarily in U, getting a de�nable inje
tive fun
tion U2 → U. Let A be a


losed separable set on whi
h f is de�nable. For any a ∈ U2
, we have f(a) ∈

dcl(Aa) = Aa. So, if f(a) /∈ A, then f(a) equals one of the 
oordinates of a.
Sin
e f is inje
tive, |f−1(A)| ≤ 2ℵ0

. Let S be a 
ontinuum sized subset of U
su
h that f−1(A) ⊆ S2

. Then on (U \ S)2, the fun
tion f is always equal to

one of its 
oordinates. Let F ⊆ U \ S have 
ardinality 2. Then |f(F 2)| ≤ 2.
However, sin
e f is inje
tive, |f(F 2)| = 4. This 
ontradi
tion proves that

su
h an f 
ould not exist.

6. Other Notions of Thorn-forking

In this se
tion, we dis
uss other natural ways of de�ning thorn-forking in


ontinuous logi
 and show that they also yield well-behaved independen
e

relations. Throughout this se
tion, we work in Meq
.

De�nition 6.1. Let ϕ(x, y) be a formula.

(1) We say that ϕ(x, c) maximally strongly divides over B if it

strongly χ(c/B)-divides over B.
(2) We say that ϕ(x, c) maximally þ-divides over B if there is D ⊇ B

so that ϕ(x, c) maximally strongly divides over D.

(3) We say that the partial type π(x) (in possibly in�nitely many vari-

ables) maximally þ-forks over B if there is a 
ardinal λ < κ(M)
and formulae ϕi(x, ci), i < λ < κ(M), su
h that ea
h ϕi(x, ci) max-

imally þ-divides over B and su
h that

Z(π(x)) ⊆
⋃

i<λ

Z(ϕi(x, ci)).

(4) We say that A |mþ⌣C
B if tp(A/BC) does not maximally þ-fork over

C.
(5) We say that ϕ(x, c) maximally strongly divides over B in the

naïve sense if it strongly χ(c/B)-divides over B in the naïve sense.

One 
an then de�ne maximally þ-dividing in the naïve sense

and maximally þ-forking in the naïve sense in the obvious way.

Lemma 6.2. For every A,B,C, we have A |mþ⌣C
B if and only A |mþ⌣C

B in

the naïve sense.

Proof. The ba
kwards dire
tion being obvious, suppose A 6 |mþ⌣C
B in the naïve

sense. Choose formulae ϕi(x, c
i), i < λ, and parameter sets Di, i < λ, ea
h



24 CLIFTON EALY AND ISAAC GOLDBRING


ontaining C, su
h that ea
h ϕi(x, c
i) strongly χ(ci/Di)-ki-divides over Di

in the naïve sense, and su
h that

Z(tp(A/BC)) ⊆
⋃

i<λ

Z(ϕi(x, c
i)).

By saturation, for ea
h i < λ we 
an �nd ηi > 0 su
h that for any ci1, . . . , c
i
ki

realizing tp(ci/Di) whi
h are at least χ(ci/Di)-apart, we have

inf
x

max
1≤j≤ki

ϕi(x, c
i
j) ≥ ηi.

Let ψi(x, c
i) := 1

ηi
⊙ϕi(x, c

i). Then Z(ψi(x, c
i)) = Z(ϕi(x, c

i)) and ψi(x, c
i)

maximally strongly divides over Di, when
e we 
an 
on
lude that A 6 |mþ⌣C
B.
�

Lemma 6.3. A partial type π(x) maximally þ-forks over B if and only

if there exists n > 0 and formulae ϕi(x, ci), i = 1, . . . , n, ea
h of whi
h

maximally þ-divides over B, su
h that Z(π(x)) ⊆
⋃n

i=1 Z(ϕi(x, ci)).

Proof. Suppose Z(π(x)) ⊆
⋃

i<λ Z(ψi(x, ci)), where ea
h ψi(x, ci)maximally

strongly divides over Di ⊇ B. By 
ompa
tness, we have i1, . . . , in < λ su
h

that

Z(π(x)) ⊆
n⋃

j=1

Z(ψij (x, cij )−
. 1

2
).

But then the formulae ϕj(x, cij ) := 2ψij −
. 1 maximally strongly divide over

Di and Z(π(x)) ⊆
⋃n

j=1Z(ϕj(x, cij )). �

Lemma 6.4. Suppose p ∈ S(C). Then p maximally þ-forks over B if and

only if there exists an L(C)-formula ϕ(x, c) su
h that the 
ondition “ϕ(x, c) =
0” is in p and there exists formulae ϕi(x, ci), i = 1, . . . , n, ea
h of whi
h

maximally þ-divide over B, su
h that Z(ϕ(x, c)) ⊆
⋃n

i=1Z(ϕi(x, ci)).

Proof. This is proven in the exa
t same way as in the proof of Lemma 6.3. �

Lemma 6.5.

(1) If the formula ϕ(x, c) maximally strongly divides over B, then it di-

vides over B.

(2) Suppose A |⌣C
B. Then A |mþ⌣C

B.

Proof. (1)⇒(2) follows from Lemma 6.3, so we need only prove (1). However

any I ∈ Ind(c/B) with d(I) = χ(c/B) witnesses that ϕ(x, c) divides over

B. �

Lemma 6.6. Suppose the formula ϕ(x, c) maximally þ-divides over B, wit-

nessed by maximal strong dividing over D ⊇ B. Then there exists a �nite

tuple d ∈ D so that the formula 2 ⊙ ϕ(x, c) maximally strongly divides over

Bd. Consequently, a partial type π(x) maximally þ-forks over B if and only
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if there exists ϕi(x, ci), i = 1, . . . , n, and �nite tuples d1, . . . , dn, so that ea
h

ϕi(x, ci) maximally strongly divides over Bdi and su
h that

Z(π(x)) ⊆
n⋃

i=1

Z(ϕi(x, ci))).

Proof. Let p(x) := tp(c/D) and r := χ(c/D). Let k be su
h that ϕ(x, c)
maximally strongly r-k-divides over D. Then the 
olle
tion of formulae

p(y1) ∪ . . . ∪ p(yk) ∪ {d(yi, yj) ≥ r |1 ≤ i < j ≤ k} ∪ {inf
x

max
1≤i≤k

ϕ(x, yi) ≤
1

2
}

is in
onsistent. Hen
e we have a formula ψ(x,B, d), where d is a �nite tuple

from D \B, su
h that the 
ondition “ψ(x,B, d) = 0” is in tp(c/D) and su
h

that, for all c1, . . . , ck ∈ Z(ψ) whi
h are pairwise at least r-apart, we have

infxmax1≤i≤k ϕ(x, ci) >
1
2 . Sin
e χ(c/Bd) ≥ χ(c/D) = r, it follows that

2⊙ ϕ(x, c) maximally strongly divides over Bd.
�

Remark 6.7. The proof of the above lemma also shows that, like in 
lassi
al

logi
, the �k-in
onsisten
y� in the maximal strong dividing of ϕ(x, c) over B
is witnessed by the zeroset of a single formula ψ(x) with parameters from B
for whi
h ψ(c) = 0; see Remark 2.1.2 in [13℄ for the statement of this in the


lassi
al setting.

Proposition 6.8. Suppose A,B,C,D are small parameter sets. The follow-

ing properties of |mþ⌣ hold in any theory:

(1) Automorphism Invarian
e: For any automorphism σ, if A |mþ⌣C
B,

then σ(A) |mþ⌣σ(C)
σ(B).

(2) Extension: If B ⊆ C ⊆ D and A |mþ⌣B
C, then there is A′ ≡C A su
h

that A′ |mþ⌣B
D.

(3) Monotoni
ity: If B ⊆ C ⊆ D and A |mþ⌣B
D, then A |mþ⌣C

D.

(4) Partial Right Transitivity: If B ⊆ C ⊆ D and A |mþ⌣B
D, then A |mþ⌣C

D

and A |mþ⌣B
C.

(5) Finite Chara
ter: A |mþ⌣C
B if and only if a |mþ⌣C

b for all �nite tuples

a and b from A and B respe
tively.

(6) Base Extension: If A |mþ⌣C
B, there isD′ ≡BC D su
h that A |mþ⌣CD′

B.

(7) If C ⊆ B, we have A |mþ⌣C
B if and only if A |mþ⌣C

acl(B).

Proof. (1) is 
lear. For (2), suppose {pi | i < λ} enumerate the extensions

of p := tp(A/C) to D. Suppose, towards a 
ontradi
tion, that ea
h pi
maximally þ-forks over B. Then for ea
h i, there are formulae ϕi,j(x, ci,j),
j = 1, . . . , ni, su
h that ea
h ϕi,j(x, ci,j) maximally þ-divides over B and

Z(pi) ⊆
⋃ni

j=1Z(ϕi,j(x, ci,j)). But then

Z(p) ⊆
⋃

{Z(ϕi,j(x, ci,j)) | i < λ, j < ni},

when
e p maximally þ-forks over C, a 
ontradi
tion.
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(3) This follows from the fa
t that if ϕ(x, c) maximally þ-divides over C,
then it maximally þ-divides over B.

(4) The �rst 
laim is just monotoni
ity and the se
ond 
laim follows from

the fa
t that tp(A/C) ⊆ tp(A/D).
(5) First suppose that A 6 |mþ⌣C

B. Then we have a formula ϕ(x, b, c) whi
h

maximally þ-forks over C and su
h that the 
ondition ϕ(x, b, c) = 0 is in

tp(A/BC). Let a be a tuple from A su
h that ϕ(a, b, c) = 0. Then ϕ(x, b, c)
witnesses that a 6 |mþ⌣C

b. Now suppose A |mþ⌣C
B and a and b are �nite tuples

from A and B respe
tively. Then sin
e tp(a/bC) ⊆ tp(A/BC), we have

a |mþ⌣C
b.

(6) By extension, we 
an �nd A′ |= tp(A/BC) with A′ |mþ⌣C
BD. But then

by monotoni
ity, we have A′ |mþ⌣CD
B. By automorphism invarian
e, we have

D′ ≡BC D su
h that A |mþ⌣CD′
B.

(7) One dire
tion is 
lear by monotoni
ity. Now let a be a �nite tuple

from A and suppose a 6 |mþ⌣C
acl(B). Choose an L(acl(B))-formula ϕ(x, d)

whi
h maximally þ-forks over C and su
h that ϕ(a, d) = 0. By Lemma 1.8

in [10℄, d ∈ bdd(B), when
e we may enumerate Z(tp(d/B)) = {di | i < λ},
where λ < κ(M). Note that ea
h ϕ(x, di) maximally þ-forks over C. From
this and the fa
t that

Z(tp(a/B)) ⊆
⋃

i<λ

Z(ϕ(x, di)),

we see that a 6 |mþ⌣C
B. �

The following lemma is the analog of Proposition 3.9 for maximal strong

dividing.

Lemma 6.9. Suppose ϕ(x, c) maximally strongly divides over B and ϕ(a, c) =
0. Then χ(c/Ba) < χ(c/B).

Proof. Suppose I ∈ Ind(c/Ba). Then sin
e ϕ(a, c′) = 0 for ea
h c′ ∈ I, we
must have d(I) < χ(c/B), else we 
ontradi
t strong dividing. �

Using the pre
eding lemma, we prove the next theorem exa
tly like we

proved Theorem 3.11.

Theorem 6.10. Suppose |I⌣ is an automorphism ternary relation on small

subsets of M satisfying:

(1) for all �nite tuples b, if χ(b/AC) < χ(b/C), then A 6 | I⌣C
b;

(2) for all A,B,C,D, if A |I⌣B
D and B ⊆ C ⊆ D, then A |I⌣C

D and

A |I⌣B
C;

(3) for all A,B,C,D, if A |I⌣C
B and D ⊇ BC, then there is A′ ≡BC A

su
h that A′ |I⌣C
D.

(4) for all A,B,C, if A |I⌣C
BC, then A |I⌣C

B.

Then for all A,B,C, A |I⌣C
B ⇒ A |mþ⌣C

B.
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The proof of the following lemma has a similar proof to the proof of Lemma

2.1.8 in [13℄.

Lemma 6.11. Suppose a |mþ⌣A
b. Then χ(b/Aa) = χ(b/A).

Proof. The result is obvious if χ(b/A) = 0, so let us assume that χ(b/A) > 0.
It su�
es to 
onstru
t I ∈ Ind(b/Aa) with d(I) = χ(b/A). Let p(x, y) :=
tp(a, b/A). Note that, by Lemma 6.2, there is no L(Ab)-formula ϕ(x, b) su
h
that ϕ(a, b) = 0 and ϕ(x, b) maximally strongly divides over A in the naïve

sense. Hen
e, for every su
h formula ϕ(x, b) and k < ω, there are b1, . . . , bk
realizing tp(b/A) whi
h are at least χ(b/A)-apart and for whi
h there exists

c su
h that ϕ(c, bi) = 0 for all i = 1, . . . , k. It thus follows by 
ompa
tness

that the set of 
onditions⋃

i<ω

p(x, yi) ∪ {d(yi, yj) ≥ χ(b/A) | i < j < ω}

is 
onsistent, say realized by a1, J1. By Ramsey's theorem and 
ompa
tness,

we 
an �nd an Aa1-indis
ernible sequen
e J2 with a1b
′
realizing p(x, y) for

ea
h b′ ∈ J2 and su
h that d(J2) = χ(b/A). Fix b′ ∈ J2. Let σ ∈ Aut(M/A)
be su
h that σ(a1) = a and σ(b′) = b. Then I := σ(J2) is as desired. �

The proof of the following lemma is essentially the same as in the 
lassi
al


ase; see [13℄ Lemma 2.1.6.

Lemma 6.12. In any 
ontinuous theory T , |mþ⌣ satis�es Partial Left Transi-

tivity: For any tuples a, b, c and any parameter set A, if a |þ⌣A
c and b |mþ⌣Aa

c,

then ab |mþ⌣A
c.

Proof. Suppose that a |þ⌣A
c and b |mþ⌣Aa

c. As in the proof in the 
lassi
al


ase, it is enough to show that there is no L(Ac)-formula ϕ(x, y, c) su
h that

ϕ(a, b, c) = 0 and ϕ(x, y, c)maximally þ-divides over A (This redu
tion in the


lassi
al 
ase only uses Extension and automorphisms). Suppose, towards a


ontradi
tion, that there is an L(Ac)-formula ϕ(x, y, c) with ϕ(a, b, c) = 0
and ϕ(x, y, c) maximally þ-divides over A, say maximally strongly divides

over Ad. By base extension, we 
an �nd d′ |= tp(d/Ac) for whi
h a |mþ⌣Ad′
c.

Sin
e ϕ(x, y, c) still maximally strongly divides over Ad′, we may assume

d = d′, i.e. that a |mþ⌣Ad
c. By Lemma 6.11, we know that χ(c/Ada) =

χ(c/Ad). Hen
e, we have that ϕ(a, y, c) maximally strongly divides over

Ada, and hen
e maximally þ-divides over Aa. This 
ontradi
ts the fa
t that
b |mþ⌣Aa

c. �

De�nition 6.13. We say that T is maximally rosy if |mþ⌣ satis�es lo
al


hara
ter.

Lemma 6.14. In a maximally rosy theory, |mþ⌣ satis�es Existen
e: for all

A,B, we have A |mþ⌣B
B.

Proof. If not, then the 
onstant sequen
e (tp(A/B)) 
ontradi
ts lo
al 
har-
a
ter. �
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From existen
e, one 
an quite easily get that, in maximally rosy theories,

|mþ⌣ is an independen
e relation. In parti
ular, by Theorem 2.5 in [1℄, |mþ⌣
satis�es symmetry in maximally rosy theories.

Lemma 6.15. In a maximally rosy theory, |mþ⌣ satis�es Anti-re�exivity: for

all A,B, we have A |mþ⌣B
A if and only if A ⊆ acl(B).

Proof. First suppose that A * acl(B), i.e. that χ(a/B) > 0 for some a ∈ A.
Sin
e the formula d(x, a) maximally strongly divides over B in the naïve

sense, we see that a 6 |mþ⌣B
a in the naïve sense. Hen
e, by Lemma 6.2, we see

that a 6 |mþ⌣B
a. By �nite 
hara
ter, we 
on
lude that A 6 |mþ⌣B

A. (Note that this

dire
tion did not use the maximal rosiness assumption.)

Now suppose A ⊆ acl(B). By existen
e, we have A |mþ⌣B
B. By Lemma 6.8

(7), we see that A |mþ⌣B
acl(B). By monotoni
ity, we 
on
lude that A |mþ⌣B

A.
�

Remark 6.16. In maximally rosy theories, we have that |mþ⌣ is a stri
t

independen
e relation. The fa
t that |mþ⌣ satis�es �nite 
hara
ter might

make some want to favor it over |þ⌣. However, being maximally rosy seems

like quite a strong 
ondition on a theory. For example, one 
an show that

a 
lassi
al rosy theory T need not be maximally rosy when viewed as a


ontinuous theory.

De�nition 6.17.

(1) Say that ϕ(x, c) þ-ǫ-divides over A if there is B ⊇ A su
h that

ϕ(x, c) strongly-ǫ-divides over B. Say that π(x) þ-ǫ-forks over A if

there exists λ < κ(M) and formulae ϕi(x, c
i), i < λ, ea
h of whi
h

þ-ǫ-divide over A, and su
h that Z(π(x)) ⊆
⋃n

i=1Z(ϕi(x)). Let

|þ,ǫ⌣ denote the 
orresponding independen
e relation. Say that T is

ǫ-rosy if |þ,ǫ⌣ satis�es lo
al 
hara
ter.

(2) Say A |sþ⌣C
B, read A is strongly thorn-independent from B over

C, if there exists ǫ > 0 su
h that A |þ,ǫ⌣C
B. Say that T is strongly

rosy if |sþ⌣ satis�es lo
al 
hara
ter.

Lemma 6.18. Suppose a |þ,ǫ⌣A
b. If χ(b/A) ≥ ǫ, then χ(b/Aa) ≥ ǫ.

Proof. Exa
tly as in the proof of Lemma 6.11. �

Lemma 6.19. |þ,ǫ⌣ satis�es Partial Left Transitivity.

Proof. Follows from the previous lemma in the exa
t same way that Partial

Left Transitivity for |mþ⌣ followed from Lemma 6.11. �

It is straightforward to 
he
k that |þ,ǫ⌣ satis�es all of the other properties of

a stri
t independen
e relation in an ǫ-rosy theory. In a strongly rosy theory,

|sþ⌣ satis�es all of the axioms of a stri
t 
ountable independen
e relation. To
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verify 
ountable 
hara
ter, suppose that A,B,C are small parametersets.

Suppose that A0 ⊆ A and B0 ⊆ B are 
ountable. Then

A |sþ⌣
C

B ⇒ A |þ,ǫ⌣
C

B( some ǫ > 0) ⇒ A0 |þ,ǫ⌣
C

B0 ⇒ A0 |sþ⌣
C

B0.

Next suppose that A 6 | sþ⌣C
B. Then for every n > 0, we have A 6 | þ,

1

n⌣C
B.

Thus, for every n > 0, we have ϕn(x, bn) ∈ tp(A/BC) whi
h þ-

1
n
-forks over

C. Let an ∈ A be su
h that ϕn(an, bn) = 0. Let A0 =
⋃

n>0 an and let

B0 :=
⋃

n>0 bn. Then A0 6 | sþ⌣C
B0. Indeed, given ǫ > 0, 
hoose n su
h that

1
n
< ǫ. Then ϕn(x, bn) þ-ǫ-forks over C and ϕn(x, bn) ∈ tp(A0/B0C).

Lemma 6.20. For any ǫ > 0, we have

|⌣ ⇒ |þ,ǫ⌣ ⇒ |sþ⌣ ⇒ |þ⌣
and

|⌣ ⇒ |mþ⌣ ⇒ |þ⌣ .

Consequently we have

simple⇒ ǫ− rosy ⇒ strongly rosy ⇒ rosy

and

simple⇒ maximally rosy ⇒ rosy.

Proof. It is 
lear that strong ǫ-dividing implies dividing. This takes 
are of

ea
h of the �rst impli
ations. The se
ond impli
ation of the �rst line is true

by de�nition. The remaining two impli
ations follow from the fa
t that |þ⌣
is weakest amongst the stri
t 
ountable independen
e relations. �

Note that if ǫ < ǫ′, then strong ǫ-dividing implies strong ǫ′-dividing, so ǫ′-rosy
implies ǫ-rosy. We thus make the following de�nition.

De�nition 6.21. þ(T ) := sup{ǫ | T is ǫ-rosy}.

Question 6.22. Note that if þ(T ) > 0, then T is strongly rosy. Is the


onverse true? What 
an we say about theories for whi
h þ(T ) = 1?

Question 6.23. It appears that the argument showing that TU is not simple

also shows that TU is not maximally rosy. Are there natural examples of

maximally rosy theories or strongly rosy theories?

7. Keisler Randomizations and Rosiness

In [11℄, Keisler introdu
ed the notion of the randomization of a theory T ,
denoted TR

. The models of TR
are essentially spa
es of M -valued random

variables, where M |= T . In [7℄, the randomization of a 
lassi
al theory was

phrased in the framework of 
ontinuous logi
 and its properties were further

studied. In [11℄, [7℄, and [4℄, theorems of the form �T is P if and only if

TR
is P � were proven, where P stands for any of the following properties:

ω-
ategori
al, ω-stable, stable, NIP. However, in [3℄, it is shown that if T
is simple, unstable, then TR

is not simple. It is a natural question to ask
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whether T is rosy if and only if TR
is rosy with respe
t to �nitary imaginaries.

Sin
e the dire
tion �TR
is P implies T is P � is generally trivial, we tried to

prove that if TR
is rosy with respe
t to �nitary imaginaries, then T is rosy.

We were unable to prove that and instead were only able to prove that T is

rosy provided TR
is maximally rosy with respe
t to �nitary imaginaries. We

devote this se
tion to proving this fa
t.

In this se
tion, we assume that the reader is familiar with the basi
 prop-

erties of the Keisler randomization pro
ess. We refer the reader to [7℄ for

information about the randomization theory. We also borrow notation from

the aforementioned paper. The set-up for this se
tion di�ers from earlier

parts of this paper. Let L be a 
ountable 
lassi
al signature and let T be a


omplete L-theory. Let M |= T be a monster model. Let κ > |M |2
ℵ0

be a


ardinal and let M be a monster model of TR
(in the 1-sorted language LR

)

whi
h is κ-saturated and strongly κ-homogeneous. By Corollary 2.8 of [7℄,

we may assume that M is the stru
ture asso
iated to some full randomiza-

tion K of M based on the atomless �nitely-additive measure spa
e (Ω,B, µ).
We may further assume that (Ω,B, µ) is σ-additive; see Theorem 3.6 of [3℄,

noting that in our situation, the so-
alled auxiliary sort is the same as our

boolean algebra sort. Let MC be the substru
ture of M whi
h is the stru
-

ture asso
iated to the elements of K with 
ountable range. From now on,

for any a ∈ M , we write a for the element of MC whi
h is the equivalen
e


lass of the element of K with 
onstant value a. We do the same for tuples

and parameter sets from M .

Lemma 7.1. Let c be a �nite tuple from M and let B ⊆ M be 
ountable.

Suppose C ∈ K is su
h that C |= tp(c/B). Then C(ω) |= tp(c/B) for almost

all ω ∈ Ω.

Proof. Let ψ(x, b) ∈ tp(c/B). Then the 
ondition PJψ(X,b)K = 1 is in

tp(
/B), when
e PJψ(C,b)K = 1. Sin
e tp(c/B) is 
ountable and (Ω,B, µ)
is σ-additive, we a
hieve the desired result. �

Lemma 7.2. Suppose c is a �nite tuple from M and B ⊆ M is a small

parameterset su
h that c /∈ acl(B). Then χ(c/B) = 1.

Proof. Let (ci : i ∈ ω) be a non
onstant B-indis
ernible sequen
e of realiza-
tions of tp(c/B). Then setting I := (ci : i ∈ ω), we see that I ∈ Ind(c/B)
with d(I) = 1. Indeed, sin
e TR

admits (strong) quanti�er elimination

(see [7℄, Theorem 2.9), tp(ci1 , . . . , cin/B) is determined by the values of

PJψ(ci1, . . . , cin )K as ψ ranges over all L-formulae with n free variables.

But Jψ(ci1 , . . . , cin )K = Jψ(cj1 , . . . , cjn )K whenever i1 < · · · < in < ω and

j1 < · · · < jn < ω by indis
ernibility of (ci : i ∈ ω). �

In order to prove the main lemma relating strong dividing in T and max-

imal strong dividing in TR
, we �rst need to prove a Ramsey-theoreti
 fa
t
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for Boolean algebras equipped with a �nitely-additive measure (Lemma 7.5

below). We had a rather lengthly (nonstandard) proof of the desired fa
t,

but we are grateful to Konstantin Slutsky for showing us the mu
h simpler

proof that appears below.

Lemma 7.3. Suppose B is a boolean algebra and µ : B → [0, 1] is a �nitely-

additive measure. Then for any m > 0 and any set of distin
t elements

{a1, . . . , a2m} from B with µ(ai) ≥
1
m

for ea
h i ∈ {1, . . . , 2m}, there exists

i, j ∈ {1, . . . , 2m} satisfying µ(ai ∧ aj) ≥
1

3m2 .

Proof. Suppose, towards a 
ontradi
tion, that we have distin
t elements

a1, . . . , a2m from B su
h that µ(ai) ≥ 1
m

for all i ∈ {1, . . . , 2m} and yet

µ(ai∧aj) <
1

3m2 for all distin
t i, j ∈ {1, . . . , 2m}. By the in
lusion-ex
lusion
formula, we have

1 ≥ µ(a1 ∨ · · · ∨ a2m) ≥
2m∑

i=1

µ(ai)−
∑

i<j

µ(ai ∧ aj)

> 2−

(
2m

2

)
1

3m2

> 2−
2

3
> 1.

This 
ontradi
tion �nishes the proof of the lemma. �

Lemma 7.4. Suppose that B is a boolean algebra and µ : B → [0, 1] is a

�nitely-additive measure. Let k ≥ 2 be a natural number and let m > 0. Then
there exists a su�
iently large natural number l := l(k,m) and a positive

natural number c(k,m) su
h that whenever {a1, . . . , al} is a set of l distin
t
elements of B for whi
h µ(ai) ≥ 1

m
for ea
h i ∈ {1, . . . , l}, then there are

distin
t i1, . . . , ik ∈ {1, . . . , l} su
h that µ(
∧k

j=1 aij ) ≥
1

c(k,m) .

Proof. By indu
tion on k. The previous lemma shows that the 
ase k = 2
holds by taking l(2,m) := 2m and c(2,m) := 3m2

. Now suppose that

k > 2. We 
laim that the 
hoi
es l(k,m) := 2 · c(k − 1,m) · l(k − 1,m) and
c(k,m) := c(2, 3c(k − 1,m)2) are as desired. Let l = l(k,m) and suppose

that {a1, · · · , al} is a set of l distin
t elements of B. Then there is a set

{bi | 1 ≤ i ≤ 2 · c(k − 1,m)} of distin
t elements of B su
h that:

• ea
h bi =
∧k−1

j=1 aij for some distin
t i1, . . . , ik−1 ∈ {1, . . . , l},

• if i, i′ ∈ {1, . . . , 2 · c(k − 1,m)} are distin
t, then ij 6= i′j′ for all

j, j′ ∈ {1, . . . , k − 1}, and
• µ(bi) ≥

1
c(k−1,m) .

By the 
ase k = 2, there are i, j ∈ {1, . . . , 2·c(k−1,m)} su
h that µ(bi∧bj) ≥
1

3c(k−1,m)2
. This �nishes the proof of the lemma. �
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Lemma 7.5. Suppose B is a boolean algebra and µ : B → [0, 1] is a �nitely-

additive measure. Let k ≥ 2 be a natural number and let r ∈ (0, 1). Then

there exists a su�
iently large natural number l = l(k, r) su
h that whenever

{a1, . . . , al} is a set of l distin
t elements of B for whi
h µ(ai) ≥ r for

ea
h i ∈ {1, . . . , l}, then there are distin
t i1, . . . , ik ∈ {1, . . . , l} su
h that

µ(
∧k

j=1 bij ) > 0.

Proof. Immediate from the pre
eding lemma. �

Lemma 7.6. Suppose ϕ(x, y) is an L-formula, c is a �nite tuple from M ,

and B ⊆M is 
ountable. Suppose ϕ(x, c) strongly divides over B. Then, for

any r ∈ (0, 1), we have r−. PJϕ(X, c)K maximally strongly divides over B in

the naïve sense.

Proof. Let k be su
h that ϕ(x, c) strongly k-divides over B. Let l = l(k, r)
be as in Lemma 7.5. We show that r −. PJϕ(X, c)K maximally strongly l-
divides over B in the naïve sense. Let C1, . . . , Cl |= tp(c/B) be 1-apart.
Then, for almost all ω ∈ Ω, C1(ω), . . . , Cl(ω) are l distin
t realizations of

tp(c/B). Fix X ∈ Kn
, where n := |x|. Suppose, towards a 
ontradi
tion,

that r −. PJϕ(X,Ci)K = 0 for all i = 1, . . . , l. Then by the de�ning property

of l, we see that there are i1, . . . , ik so that

{ω ∈ Ω | M |= ϕ(X(ω), Cij (ω)), j = 1, . . . , k}

has positive measure. A positive measure subset of these ω's has the further
property that Ci1(ω), . . . , Cik(ω) are k distin
t realizations of tp(c/B). This
then 
ontradi
ts the fa
t that ϕ(x, c) strongly k-divides over B. �

Lemma 7.7. Suppose ϕ(x, y) is an L-formula, c is a tuple from M , and

B ⊆M is 
ountable. Suppose ϕ(x, c) þ-divides over B. Then r−. PJϕ(X, c)K
maximally þ-divides over B in the naïve sense for any r ∈ (0, 1].

Proof. Suppose ϕ(x, c) strongly divides over Bd. Then r−. PJϕ(X, c)K max-

imally strongly divides over Bd in the naïve sense, when
e r −. PJϕ(X, c)K
maximally þ-divides over B in the naïve sense. �

Theorem 7.8. Suppose a is a tuple from M and B ⊆ C ⊆M are parameter

sets su
h that B is 
ountable and C is small. Then a |mþ⌣B
C implies that

a |þ⌣B
C.

Proof. Suppose ϕ(x, c) ∈ tp(a/C) þ-forks over B. Then there are L-formulae
ϕ1(x, c1), . . . , ϕ(x, cn), ea
h of whi
h þ-divide over B, so that

M |= ∀x(ϕ(x, c) →
n∨

i=1

ϕi(x, ci)).

We then have

Z(1− PJϕ(X, c)K) ⊆
n⋃

i=1

Z(
1

n
−. PJϕi(X, ci)K),
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and sin
e ea
h of

1
n
−. PJϕi(X, ci)K maximally þ-divides over B in the naïve

sense by Lemma 7.7, we see that 1 − PJϕ(X, c)K maximally þ-forks over B

in the naïve sense. Sin
e the 
ondition “1− PJϕ(X, c)K = 0” is in tp(a/C),
it follows that a 6 |mþ⌣B

C in the naïve sense, and hen
e a 6 |mþ⌣B
C by Lemma

6.2. �

Corollary 7.9. Suppose TR
is maximally real rosy. Then T is real rosy.

Proof. Let a be a tuple from M and let C ⊆ M be small. Sin
e TR
is

maximally real rosy, there is a 
ountable B ⊆ C so that a |mþ⌣B
C. By the

pre
eding theorem, we see that a |þ⌣B
C, when
e it follows that T is real

rosy. �

We now try to extend Corollary 7.9 to in
lude imaginaries. We �rst note

that given a L-formula E(x, y) whi
h de�nes an equivalen
e relation onMX ,

the LR
-formula ρE(X,Y ) := PJ¬E(x, y)K, de�nes a pseudometri
 on MX .

It follows that we 
an asso
iate to every element e of M eq
an element τ(e)

of M
feq
. Indeed, suppose that c is a �nite tuple from M and πE(c) is its

equivalen
e 
lass under the 0-de�nable equivalen
e relation E. Let πρE (c)
denote the equivalen
e 
lass of c under the equivalen
e relation ρE = 0. We

then set τ(πE(c)) := πρE (c).
Suppose ψ(x1, . . . , xm) is an Leq

-formula, where ea
h xi is a variable rang-

ing over Ei-equivalen
e 
lasses. Fix r ∈ [0, 1]. We then set ψ̃r(X1, . . . ,Xm)
to be the (LR)feq-formula

inf
X1

· · · inf
Xm

max( max
1≤i≤m

(d(πρEi
(Xi),Xi)), r −. PJψeq(X1, . . . ,Xm)K).

(Re
all that ψeq(x1, . . . , xm) is an L-formula su
h that, for all a1, . . . , am, we
have M eq |= ψ(πE1

(a1), . . . , πEm(a
m)) if and only if M |= ψeq(a1, . . . , am).)

Lemma 7.10. Suppose e ∈M eq
and B ⊆M eq

is 
ountable. Suppose C ∈ K
is su
h that πρE (C) |= tp(τ(e)/τ(B)). Then πE(C(ω)) |= tp(e/B) for almost

all ω ∈ Ω.

Proof. Fix ψ(x, b) ∈ tp(e/B). Let e′ and b′ be representatives of the 
lasses
of e and b respe
tively. Then M |= ψeq(e′, b′), when
e

PJψeq(e′, b′)K = 1.

It thus follows that ψ̃1(τ(e), τ(b)) = 0, so ψ̃1(πρE (C), τ(b)) = 0. It fol-

lows that there are D,F su
h that πρE (C) = πρE (D), τ(b) = πρ(F ), and
PJψeq(D,F )K = 1. So for almost all ω, M eq |= ψ(πE(D(ω)), π(F (ω)),
when
e M eq |= ψ(πE(C(ω)), b) for almost all ω. The lemma follows from

the fa
t that tp(e/B) is 
ountable. �

Lemma 7.11. Suppose c ∈M eq
and B ⊆M eq

is a small parameterset su
h

that c /∈ acl(B). Then χ(τ(c)/τ(B)) = 1.

Proof. Let (ci : i < ω) be a non
onstant B-indis
ernible sequen
e of realiza-
tions of tp(c)/B). The lemma follows from the fa
t that (τ(ci) : i < ω) is a
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τ(B)-indis
ernible sequen
e of realizations of tp(τ(c)/τ(B)), whi
h we leave

to the reader as an exer
ise. �

Lemma 7.12. Suppose c ∈ M eq
and B ⊆ M eq

is 
ountable. Further sup-

pose that the Leq
-formula ϕ(x, c) strongly divides over B. Then ϕ̃r(X, τ(c))

maximally strongly divides over τ(B) in the naïve sense for any r ∈ (0, 1).

Proof. Let k be su
h that ϕ(x, c) strongly k-divides over B. Let l = l(k, r)
be as in Lemma 7.5. We show that ϕ̃r(x, τ(c)) maximally strongly l-divides
over τ(B) in the naïve sense. Let πρE(C1), . . . , πρE (Cl) |= tp(τ(c)/τ(B)) be
1-apart. Then for almost all ω ∈ Ω, we have that πE(C1(ω)), . . . , πE(Cl(ω))
are l distin
t realizations of tp(c/B). Suppose, towards a 
ontradi
tion, that
X ∈ Kn

is su
h that ϕ̃r(πρ(X), πρE (Ci)) = 0 for all i = 1, . . . , l. Arguing as

in Lemma 7.10, we see that there are i1, . . . , ik so that

{ω ∈ Ω | |= ϕ(π(X(ω)), πE(Cij (ω)), j = 1, . . . , k}

has positive measure. A positive measure subset of these ω's have the fur-

ther property that πE(Ci1(ω)), . . . , πE(Cik(ω)) are k distin
t realizations of

tp(c/B). This 
ontradi
ts the fa
t that ϕ(x, c) strongly k-divides over B. �

Lemma 7.13. Suppose ϕ(x, y) is an Leq
-formula, c is a tuple from M ,

and B ⊆ M is 
ountable. Suppose ϕ(x, π(c)) þ-divides over π(B). Then

ϕ̃r(x, σ(c)) maximally þ-divides over σ(B) in the naïve sense for any r ∈
(0, 1].

Proof. This follows from the previous lemma in exa
tly the same way as in

the real 
ase. �

Theorem 7.14. Suppose a ∈ M eq
and B ⊆ C ⊆ M eq

are parameter sets

su
h that B is 
ountable and C is small. Then τ(a) |mþ⌣τ(B)
τ(C) implies that

a |þ⌣B
C.

Proof. Suppose ϕ(x, c) ∈ tp(a/C) þ-forks over B. Then there are Leq
-

formulae ϕ1(x, c1), . . . , ϕn(x, cn), ea
h of whi
h þ-divide over B, so that

M eq |= ∀x(ϕ(x, π(c)) →
∨n

i=1 ϕi(x, π(ci))). But then

Z(ϕ̃1(X, τ(c)) ⊆
n⋃

i=1

Z((ϕ̃i) 1

n
(X, τ(ci)))

and sin
e ea
h of (ϕ̃i) 1

n
(X, τ(ci)) maximally þ-divides over τ(B) in the naïve

sense, we see that ϕ̃1(X, τ(c)) maximally þ-forks over τ(B) in the naïve sense.
Sin
e “ϕ̃1(X, τ(c)) = 0” is in tp(τ(a)/τ(C)), it follows that τ(a) 6 |mþ⌣τ(B)

τ(C)

in the naïve sense, and hen
e τ(a) 6 |mþ⌣τ(B)
τ(C) by Lemma 6.2. �

Corollary 7.15. Suppose TR
is maximally rosy with respe
t to �nitary imag-

inaries. Then T is rosy.

Proof. Take a ∈ M eq
and let C ⊆ M eq

be small. Sin
e TR
is maximally

rosy with respe
t to �nitary imaginaries, there is a 
ountable τ(B) ⊆ τ(C)
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so that τ(a) |mþ⌣τ(B)
τ(C). By the pre
eding theorem, we see that a |þ⌣B

C,

when
e it follows that T is rosy. �

Can we strengthen Corollary 7.15 by weakening the hypothesis from �TR

is maximally rosy with respe
t to �nitary imaginaries� to �TR
is rosy with

respe
t to �nitary imaginaries?� To follow the same style of proof as in this

se
tion, it appears that we would need a positive answer to the following

Ramsey-theoreti
 question:

Suppose B is a boolean algebra and µ : B → [0, 1] is a �nitely-additive

measure. Let m1,m2 ≥ 1 and k ≥ 2 be �xed. Does there exist a natural

number l = l(k,m1,m2) su
h that whenever {a1, . . . , al} is a set of distin
t

elements of B and {bij | 1 ≤ i < j ≤ l} is a set of elements of B su
h that

µ(ai) ≥
1
m1

for all i ∈ {1, . . . , l} and µ(bij) ≥
1
m2

for all i, j ∈ {1, . . . , l} with

i < j, then there are distin
t i1, . . . , ik ∈ {1, . . . , l} su
h that

µ(

k∧

j=1

aij ∧
∧

i<j∈{i1,...,ik}

bij) > 0?

However, this question has a negative answer: If B ⊆ P([0, 1]), then ea
h

ai 
ould be a subset of [0, 12 ] and ea
h bij 
ould be a subset of (12 , 1].

Referen
es

[1℄ H. Adler, A geometri
 introdu
tion to forking and thorn-forking, preprint.

[2℄ C. Ealy and A. Onshuus, Chara
terizing rosy theories, J. Symboli
 Logi
, 72 (2007),

no. 3, pgs. 919-940.

[3℄ I. Ben Yaa
ov, On theories of random variables, submitted.

[4℄ I. Ben Yaa
ov, Continuous and random Vapnik-Chervonenkis 
lasses, to appear in the

Israel Journal of Mathemati
s.

[5℄ I. Ben Yaa
ov, Simpli
ity in 
ompa
t abstra
t theories, Journal of Mathemati
al Logi
,

volume 3 (2003), no. 2, 163-191.

[6℄ I. Ben Yaa
ov, A. Berenstein, C. W. Henson, A. Usvyatsov, Model theory for metri


stru
tures, Model theory with appli
ations to algebra and analysis. Vol. 2, pgs. 315-

427, London Math. So
. Le
ture Note Ser. (350), Cambridge Univ. Press, Cambridge,

2008.

[7℄ I. Ben Yaa
ov and H.J. Keisler, Randomizations of models as metri
 stru
tures, to

appear in Con�uentes Mathemati
i.

[8℄ I. Ben Yaa
ov and A. Usvyatsov, Continuous �rst order logi
 and lo
al stability, to

appear in the Transa
tions of the Ameri
an Mathemati
al So
iety.

[9℄ S. Carlisle, Model theory of R-trees, Ph.D. Thesis, University of Illinois at Urbana-

Champaign, 2009.

[10℄ C. W. Henson and H. Tellez, Algebrai
 
losure in 
ontinuous logi
, Rev. Colombiana

Mat. Vol. 41 (2001) pp. 279-285.

[11℄ H. Jerome Keisler, Randomizing a model, Advan
es in Mathemati
s 143 (1999), no.

1, pgs. 124-158.

[12℄ J. Melleray, Topology of the isometry group of the Urysohn spa
e, preprint.

[13℄ A. Onshuus, Properties and 
onsequen
es of thorn-independen
e, J. Symboli
 Logi
,

71(2006), no. 1, pgs. 1-21.



36 CLIFTON EALY AND ISAAC GOLDBRING

[14℄ B. Poizat, A 
ourse in model theory: An introdu
tion to 
ontemporary mathemati
al

logi
, Universitext, Springer-Verlag, New York, 2000.

[15℄ A. Usvyatsov, Generi
 separable metri
 stru
tures, Topology Appl. 155 (2008), no.

14, pgs. 1607-1617.

[16℄ F. Wagner, Simple theories, Kluwer A
ademi
 Publishers, Dordre
ht 2000.

Western Illinois University, Department of Mathemati
s, 476 Morgan

Hall, 1 University Cir
le, Ma
omb, IL 61455

E-mail address: CF-Ealy�wiu.edu

University of California, Los Angeles, Department of Mathemati
s, 520

Portola Plaza, Box 951555, Los Angeles, CA 90095-1555, USA

E-mail address: isaa
�math.u
la.edu

URL: www.math.u
la.edu/~isaa



