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ON PROPERTIES OF (WEAKLY) SMALL GROUPS
CEDRIC MILLIET

ABSTRACT. A group is small if it has countably many complete n-types over
the empty set for each natural number n. More generally, a group G is weakly
small if it has countably many complete 1-types over every finite subset of G.
We show here that in a weakly small group, subgroups which are definable with
parameters lying in a finitely generated algebraic closure satisfy the descending
chain conditions for their traces in any finitely generated algebraic closure. An
infinite weakly small group has an infinite abelian subgroup, which may not be
definable. A small nilpotent group is the central product of a definable divisible
group with a definable one of bounded exponent. In a group with simple theory,
any set of pairwise commuting elements is contained in a definable finite-by-
abelian subgroup. First corollary : a weakly small group with simple theory
has an infinite definable finite-by-abelian subgoup. Secondly, in a group with
simple theory, a normal solvable group A of derived length n is contained in
an A-definable almost solvable group of class n.

A connected group of Morley rank 1 is abelian [20, Reineke]. Better, in an omega-
stable group, a definable connected group of minimal Morley rank is abelian. This
implies that every infinite omega-stable group has a definable infinite abelian sub-
group [0l Cherlin]. Berline and Lascar generalised this result to superstable groups
in [4]. More recently, Poizat introduced d-minimal structures (englobing minimal
ones) and structures with finite Cantor rank (including both d-minimal and finite
Morley ranked structures). Poizat proved a d-minimal group to be abelian-by-finite
[I7]. He went further showing that an infinite group of finite Cantor rank has a
definable abelian infinite subgroup [18]. More generally, we show in this paper that
an infinite weakly small group has an infinite abelian subgroup, which may not be
definable however.

We then turn to weakly small groups with a simple theory. Recall that an Ry-
categorical superstable group is abelian-by-finite [3, Baur, Cherlin and Macintyre].
In [23], Wagner showed any small stable infinite group to have a definable infinite
abelian subgroup of the same cardinality. Later on, Evans and Wagner proved that
an Ng-categorical supersimple group is finite-by-abelian-by-finite and has finite SU-
rank [7]. We shall show that an infinite group the theory of which is small and simple
has an infinite definable finite-by-abelian subgroup. However we still do not known
whether a stable group must have an infinite abelian subgroup or not.
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Definition 1. A theory is small if it has countably many n-types without param-
eters for every natural number n. A structure is small if its theory is so.

Note that smallness is preserved by interpretation, and by adding finitely many
parameters to the language. Small theories arise when one wishes to count the
number of pairwise non-isomorphic countable models of a complete first order the-
ory in a countable language. If such a theory has fewer than the maximal number
of pairwise non-isomorphic models, it is indeed small. Note that Ng-categorical
theories and omega-stable theories are small.

Definition 2. (Belegradek) A structure is weakly small if it has countably many
1-types over a for any finite tuple a coming from the structure.

Weakly small structures were introduced by Belegradek to give a common general-
isation of small and minimal structures. A weakly small Rp-saturated structure is
small.

Definition 3. (Poizat [I7]) An infinite structure is d-minimal if any of its partitions
has no more than d infinite definable subsets.

Provided that its language be countable, a d-minimal structure is weakly small
as there are at most d non algebraic types over every finite parameter set, and
fewer algebraic types than the countably many formulae. Note that weak smallness
neither is a property of the theory, nor allows the use of compactness, nor guarantees
that the set of 2-types be countable. It allows arguments using formulae in one free
variable only. Those formulae, the parameters of which lie in a fixed finite set, are
ranked by the Cantor rank and degree.

Examples. A non weakly small group. Let G be the sum over all prime numbers
p of cyclic groups of order p. For every set of prime numbers P, the type saying
that "z is p-divisible if and only if p is in P" is finitely consistent. This produces as
many complete types as there are sets of primes, preventing G from being weakly
small.

A non minimal, d-minimal group. Recall that a minimal group is abelian [20]
Reineke], and a d-minimal group is abelian-by-finite [I'7, Poizat]. Let M be a
minimal group, and F' a finite group of order d. Any semi-direct product M x F
with a predicate interpreting M will do.

A non d-minimal, non small, weakly small group. Let p be a prime, and G the sum
over all natural numbers n of the cyclic groups of order p”. The theory of G is the
the theory of a Z-module, and eliminates quantifiers up to positive-prime formulae.
So every definable subset of GG is a boolean combination of cosets of subgroups of
the form p"G, or p"ax = 0. This allows only countably many 1-types over every
finite subset, thus G is weakly small. But Fact [£1] shows that it is not small.

1. THE CANTOR RANK

Given a structure M, a set A of parameters lying inside M, and an A-definable
subset X of M, we define the Cantor rank of X over A by the following induction :

CBA(X) > 0if X is not empty,
CBA(X) > o+ 1 if there are infinitely many disjoint A-definable subsets
of X having Cantor rank over A at least .
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CBA(X) > A for a limit ordinal \, if CB4(X) is at least « for every « less
than A.

If the structure is weakly small and if A is a finite set, this transfinite process
eventually stops, and X has an ordinal Cantor rank over A.

The Cantor rank CBa(p) of a complete 1-type p in M over A is the least Cantor
rank of the A-definable sets implied by p. It is also the derivation rank of p in the
topological space S1(A) (sometimes plus 1, depending on the definition taken for
the Cantor-Bendixson rank).

The Cantor degree of X over A is the greatest natural number d such that there
is a partition of X into d A-definable sets having maximal Cantor rank over A.
We shall write dCB4(X) for this degree. It is also the number of complete types
over A having maximal Cantor rank over A.

For a natural number n, we say that a map is n-to-one if it is surjective and if
the cardinality of its fibres is bounded by n. Definable n-to-one maps preserve the
Cantor rank, and the degree variations can be bounded by the maximal size of the
finite fibres :

Lemma 1.1. Let X andY be A-definable sets, and f an A-definable map from X
toY. Then

(1) If f is onto, CBa(X) > CB4(Y).
(2) If f has bounded fibres, CBA(Y) > CBa(X).
(3) If f is n-to-one, then X and Y have the same Cantor rank over A, and

dCBA(Y) < dOBA(X) <n- dOBA(Y)

Remark 1.2. The first two points appear for one-to-one maps together with the
introduction of Morley’s rank [I2, Theorem 2.3|. Poizat extends them for n-to-one
maps in the context of groups with finite Cantor rank [I8, Lemme 1] (independently
to the author’s work). To the author’s knowledge, the result concerning the degree
is new.

Proof. We may add A to the language. For point one, we show inductively that
CB(X) is at least CB(Y). If CB(Y) > a + 1, there are infinitely many disjoint
definable sets Yy, Y7 ... in Y of rank at least . Their pre-images are disjoint and
have rank at least o by induction, so CB(X) > a + 1.

For point two, we show inductively that CB(Y) is at least CB(X). Suppose
CB(X) > a+1. In X, there are infinitely many disjoint definable sets Xg, X1, ...
of rank at least . As the fibres of f have cardinality at most n say, for every subset
I of N of cardinality n + 1, the intersection (;c; f(X;) is empty. Thus there is
a subset J of N of maximal finite cardinal with 0 in J such that (,c; f(X;) has
the same rank as f(Xo). Put Yy = (N, f(Xi). Iterating, one builds a sequence
Y0, Y1,... of definable sets such that the sets Y; and f(X;) have the same Can-
tor rank and CB(Y; NY;) < CB(Y;) for all natural numbers ¢ # j. Inductively,
one may cut off a small ranked subset from every Y; and assume that they are

pairwise disjoint. By induction hypothesis, the rank of every Y; is at least «, so
CBY)>a+1.

For the third point, if Y has degree d, then there is a partition of Y in definable sets
Y1,...,Y; with maximal rank. The pre-images of the sets Y; have maximal rank
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according to the first two points and form a partition of X, so the degree dCB(X)
is at least dCB(Y).

For the converse inequality, let Y have degree d, and let Y; be a subset of Y of
degree 1. It is enough to show that f~!(Y7) has degree at most n. Suppose there
are n + 1 disjoint definable subsets X, ..., X, of f~!(Y1) with maximal rank. As
the fibres of f have no more that n elements, the intersection (i, f(X;) is empty,
so there is a proper minimal subset I of {0,...,n} such that (,c; f(X;) has the
same rank as Y. Thus, the intersection of ;c; f(X;) and f(X;) has small rank for
every i out of I, and dCB(Y7) is at least two, a contradiction. O

Remark 1.3. In Lemma [[L1[3), to deduce that X and Y have the same Cantor
rank, the fibres of f must be bounded, and not only finite. Consider for instance
Y to be the set of all natural numbers N together with the ordering, and X to be
the set of pairs of natural numbers (x,y) so that y < . When projecting on the
second coordinate, every fibre is infinite, so CBn(X) = 2 ; when projecting on the
first coordinate, the fibres are finite, but still CBn(Y) = 1.

Note that in the proof of Lemma [[.I] one can weaken the definability assumption
on f, and simply assume that the image and pre-image by f of any definable set
are definable. For instance, we easily get :

Lemma 1.4. Let M be a model, X an A-definable subset of M, and o any auto-
morphism of the structure M. Then

CBA(X) = CByay(o(X))

Definition 1.5. Let M be a structure, and X an acl((})-definable set in M. Let €
be a monster model extending M. We consider the finite union of the conjugates
of X(€) under the action of Aut(€). We write X for its intersection with M.
Similarly, we define X to be the intersection of M with the finite intersection of
the conjugates of X (€) under the action of Aut(€).

Note that neither X nor X depend on the choice of the monster model. X is a
(-definable set containing X, whereas X is a (l-definable subset of X.

If A is a subset of B and X an A-definable set, then CB4(X) is less than or
equal to CBp(X). Note that the Cantor rank (respectively degree) of X over A
or over the definable closure of A are the same. The Cantor rank over A also does
not change when adding finitely many algebraic parameters to A, and the degree
variation can be bounded :

Lemma 1.6. Let X be a definable set without parameters, and let a be an algebraic
element of degree n over the empty set. Then

(1) CBa(X) = CBy(X)
(2) dCBy(X) < dCBz(X) < n!-dCBy(X)

Proof. We assume in the proof that the language is countable. However, this as-
sumption is not necessary (see Remark [[L9). For the first point, the Cantor rank
of a set increases when one allows new calculation parameters, so CB,(X) is at
least C'By(X). Conversely, let us show that CBy(X) is at least CB,(X). Suppose
first that CB,(X) = oo holds. Then there must be 2% types over @ in X. The
restriction map from S(X,a) to S(X,{) is n!-to-one. Indeed, if z and y have the
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same type over (), there is a monster model € and an automorphism o of ¢ with
y = o(z). If ¢(x,a) is the type of x over @, then ¢(y,o(@)) is the type of y over a.
This shows that there are 28 types over ) as well, which yields CBy(X) = oc. So,
we may assume that CB,(X) is an ordinal. Let us suppose that CB,(X) = a +1
and that the result is proved for every (-definable set of C'B,-rank a. There are in-
finitely many disjoint a-definable subsets X; of X, each of one having rank « over a.
By Lemma [[.4] and induction hypothesis, for every 4, the set X; and a conjugate
of X; have the same rank (computed over the set a of all conjugates of a). So a
conjugate of X intersects only finitely many X; in a set of maximal rank over a.
One can take off these X;, cut off a small ranked subset from the remaining X;
and assume that the conjugates of X; do not intersect any X;. Iterating, one may
assume that no conjugate of X; intersects X; when ¢ differs from j. By Lemma[[.7]
and induction hypothesis,

CB,(X;) = CBy(X;) = CBa(X;) = OBy(X;) =
As the sets X; are disjoint, CBy(X) > o + 1, so the first point is proved.

For the second point, we may assume that X has degree 1 over the empty set.
Suppose that X has degree at least n! + 1 over a. Let X; be an a-definable subset
of X with maximal rank over @ and degree 1. The union X, of its conjugates has
degree at most n! over @, so X; and its complement in X both have maximal rank
over @, hence over the empty set, a contradiction. O

Definition 1.7. We shall call local Cantor rank of X over acl(a) its Cantor rank
over any parameter b defining X and having the same algebraic closure as a.

Remark 1.8. In Lemma [[L6 if b is another algebraic parameter, one may have
dCBup(X) > dCB.(X), so one need not have CBy(X) = CBgep)(X). In fact,
CBaci(p)(X) may not even be an ordinal. For instance, consider the unit circle
St = {x € C : |z| = 1} with a ternary relation C(a,b,c) saying that b lies on the
shortest path joining a to ¢. We add algebraic unary predicates A1, As,... to the
language, with A4,, = {z € S! : 2 = 1} for every natural number n. This structure
has C'By-rank 0, but infinite C'Bg(g)-rank.

Remark 1.9. Lemmas[T], .4 and [[.G are particular cases of a more general topolog-
ical result. Let X be any Hausdorff topological space, X’ his first Cantor derivative,
and inductively on ordinals, let X1 stand for (X)". The Cantor-Bendizson rank
of X is the least ordinal 8 such that X? is empty and oo if there is no such j.
Let us call a rough partition of X, any covering of X by open sets having maxi-
mal Cantor-Bendixson rank and small ranked pairwise intersections. The Cantor-
Bendizson degree of X is the supremum cardinal dCB(X) of the rough partitions
of X. Without compactness one could have dCB(X) > w. If X was a compact
space, one could equivalently define CB(X) (which differs by 1 from the previous
definition) by the following induction :

CB(X) > 0if X is not empty,

CB(X) > a+ 1 if there are infinitely many open subsets O1,0Oa,... of X
with CB(O;) > a and CB(O; N 0;) < « for all ¢ # j.

CB(X) > A for a limit ordinal A, if CB(X) > « for every a < A.

As an analogue of Lemma [[.T] replacing a "definable" set by an "open" set, and a
"definable" map, by either a "continuous" map or an "open" one, we easily get :
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Lemma 1.10. Let X and Y be two Hausdorff topological spaces and let f be a map
from X onto Y.

(1) If f is open and onto, then CB(X) > CB(Y).
(2) If f is continuous and has finite fibres, then CB(Y) > CB(X).
(3) If f is a continuous, open, n-to-one, then CB(X) = CB(Y) and

dCB(Y) < dCB(X) < n-dCB(Y)

To deduce Lemma [[.1] from Lemma [[.10, we only need to pass from the category of
definable sets to the category of topological spaces, and notice that an A-definable
map f from X to Y induces a continuous open map f from the (compact) Hausdorff
space of types S(X,A) to S(Y,A). Note that in Lemma [[T0(2), the map need
only have finite fibres to get preservation of the rank, whereas it needs to have
bounded fibres in Lemma [[LT(2). Note also that f must have bounded fibres to
ensure that f have finite ones. For Lemmal[ll0] consider any continuous equivalence
relation R on a Hausdorff topological space X, that is a relation such that the
canonical map X — X/R is open. If every equivalence class of R has size at most
some natural number n, as X/R is Hausdorff and as the map X — X/R is also
continuous by definition, it follows from Lemma [[LT0 that CB(X) = CB(X/R)
and the inequalities dCB(X) < dCB(X/R) < n-dCB(X) hold. Let M be any
first order structure, a an algebraic parameter of degree n, and € a monster model
extending M. Applied to the space of types over @, modulo the equivalence relation
"to be conjugated under the action of Aut(€)", the latter yields Lemma [I.6l

2. GENERAL FACTS ABOUT WEAKLY SMALL GROUPS

As an immediate corollary of Lemma [I.T] we obtain a result of Wagner :

Corollary 2.1. (Wagner [23]) If f is a definable group homomorphism of a weakly
small group G, the kernel of which has at most n elements, then f(G) has index at
most n in G.

Proof. Otherwise, one can find a finite tuple a over which at least n + 1 cosets
of f(G) are definable, so G has degree over a at least (n + 1) - dCB,(f(G)), a
contradiction with Lemma [[TT3). O

Corollary 2.2. In a weakly small group, there are at most n conjugacy classes of
elements the centraliser of which has order at most n.

Proof. Otherwise, let us pick n + 1 conjugacy classes C1, ..., Cy 41 of elements the
centraliser of which has order at most n, and choose a finite tuple a over which
these classes are definable. According to Lemma [[LT] each class C; has maximal
Cantor rank over a and degree at least dCB,(G)/n, a contradiction. O

For any set X definable in an omega-stable group, one can define the stabiliser of X
up to some small Morley ranked set. In a weakly small group, we can define a local
stabiliser up to some set of small local Cantor rank, where local means "in a finitely
generated algebraic closure". We write AAB for the symmetric difference of two
sets A and B.
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Definition 2.3. Let X be a definable set without parameters in a weakly small
group G, and let I" stand for the algebraic closure of a finite tuple g in G. One
defines the local almost stabiliser of X in I to be

Stabp(X) = {z € T : OB, ,(«XAX) < CBy(X)}
For any subroup 4 of T', we shall write Stabs(X) for Stabr(X) N 4.

Corollary 2.4. Stabp(X) is a subgroup of I'. If X is invariant by conjugation
under elements of T', then Stabr(X) is normal in T.

Proof. Let a and b be in Stabr(X). The sets X, aX and bX have the same types of
maximal rank computed over g,a,b, so CBg 4,(aXAbX) is smaller than CBy(X).
As the rank is preserved under definable bijections, and when adding algebraic
parameters, we have

CByap(aXAbX) = CByap(b"'aXAX)=CB,p-1,(b"'aXAX)
so b~ 'a belongs to Stabr(X). O

Recall that for a definable generic set X of an omega-stable group G, the stabiliser
of X has finite index in G. For a weakly small group, we have a local version of
this fact :

Proposition 2.5. Let G be a weakly small group, g a finite tuple of G, and X a
g-definable subset of X. If § is a subgroup of dcl(g) and if X has mazimal Cantor
rank over g, then Stabs(X) has finite index in §.

Proof. Let m and [ be the degree over g of G and X respectively. In G, there are
m types of maximal rank over g which we call its generic types over g. Thus, for
translates of X by elements of §, there are at most C!, choices for their generic
types. If one chooses C! 4 1 cosets of X, at least two of them will have the same
generic types. (I

Weakly small groups definable over a finitely generated algebraic closure satisfy a
local descending chain condition :

Lemma 2.6. Let G be a weakly small group, and Ho < Hy two subgroups of G
definable without parameters.

(1) If HyNacl(D) is properly contained in Hy N acl((), then either CB(Hz) <
CB(H,), or dCB(H,) < dCB(H,).

(2) If Hy and Hs have the same Cantor rank, then Ho Nacl(()) has finite index
in Hy Nacl(0).

Proof. If b is an element of acl() in H; \ Hs, the set bH, is definable without
parameters, and is disjoint from Hs. This proves the first point. If H; and Hy have
the same Cantor rank, one has

CB(Hs) = CBy(Hz) = CBy(bHs) = CBy(bHz2) = CB(bHs)

It follows that C'B (bH>) is maximal in Hi, so there must be only finitely many
choices for bH>, and thus for bHo. O

Theorem 2.7. In a weakly small group, the trace over acl(d) of a descending chain
of acl(D)-definable subgroups becomes stationary after finitely many steps.
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Proof. Let G1 > G2 > ... be a descending chain of acl())-definable subgroups.
According to Lemma [[.6(1), the local Cantor rank becomes constant after some
index n. Then G; N acl() has finite index in G, N acl(()) for every i > n after
Lemma [Z6[2). Let a be some algebraic tuple such that G, is a-definable. By
Lemma [[L0[(1), we may add the parameter a in the language and assume without
loss of generality that G,, is (-definable. The intersection of the G; N acl(() when
1 > n is the intersection of finitely many of them by Lemmal[Z0[1) : it is a subgroup
of G, Nacl(®) of finite index, contained in G; for every i > n. The sequence of
indexes [G,, Nacl(B) : G; Nacl(B)] is thus bounded, and bounds the length of the
chain Gy Nacl(B) > Gy Nacl(B) > .... O

Remark 2.8. We shall call this result the weakly small chain condition. Note that
Theorem 2.7 is trivial for an Wgp-categorical group, and also if one replaces the
algebraic closure by the definable closure.

The weakly small chain condition can be slightly generalised as follows.

Let X be a set, and E, F two equivalence relations on X. We write F' < E if F
is finer than F, and F' < E whenever F strictly refines E. If Y is a subset of X,
the relation E may be restricted to Y. We write E | Y this restriction. For every
a in X, we write aF for the equivalence class of a, and denote the cardinal of the
equivalence classes of F in X by |X/E|. If F < E, we call indezx of F in E (in X)
the cardinal [E : F] defined by sup{|aE/(F | aE)|:a € X}. Note that [E: F] =1
if and only if £ = F. Moreover, if G is a third equivalence relation on X with
G<F<E,then [E:G]<[E:F]-[F:G|.

Theorem 2.9. In a weakly small structure X, let Fy, E1, ... be a descending chain
of acl(()-definable equivalence relations on X, defined respectively over the algebraic
tuples €y, €1, . ... Assume that for all natural numbersi and all a,b in X, the classes
aE; and bE; are in {a,b, &;}-definable bijection. Assume also that for all i, a and b,
the class aF; and bE; are in {a,b}-definable bijection. Then, the trace over acl(d)
of E; becomes constant after finitely many steps.

Proof. We begin by the analogue of Lemma

Lemma 2.10. Let X be a weakly small structure, and E < F two ()-definable
equivalence relation on X such that for every a,b in X, the classes aFE and bE
(respectively aF and bF') are in {a,b}-definable bijection.

(1) If F laam< E laco), then for every a in acl(D), either CB,(aF) <
CBy(aE), or dCB,(aF) < dCB,(aFE).

(2) If for some a in acl(D), the classes aE and aF have the same local Cantor
rank, then the index [E | acl(Q) : F | acl(D)] is finite.

Proof of LemmalZI0. As F | acl(B) < E | acl(D), one class e(E | acl(f))) must
split into at least two disjoint classes e(F' [ acl((})) and a(F | acl(@)). We may add
this new constant e to the language and assume that eF and eF are ()-definable.
The sets aF and eF are two (-definable disjoint subset of eE having same local
Cantor rank, so the first point is proved. If aE and aF have the same local Cantor
rank, then aF and aF do have the same rank over (), so there are only finitely many
choices for aF, and thus for aF. (|
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According to Lemma [[Tl and Lemma [2:I0(1), the local Cantor rank of the F;-class
of every algebraic element becomes constant after finitely many steps, so we may
assume it is constant from Ey. Then the index [Ey [ acl(0) : E; | acl(®)] is finite
for every i after Lemma[ZT0(2). Adding finitely many parameters to the language,
we may assume that Ey is O-definable. The conjunction of the E; | acl (0) is the
conjunction of finitely many by Lemma 2I0(1). It follows that the sequence of
indexes [Eg [ acl() : E; | acl()] must be bounded. O

3. A PROPERTY OF WEAKLY SMALL GROUPS

Proposition 3.1. An infinite group whose centre has infinite index, and with only
one non-central conjugacy class, is not weakly small.

Remark 3.2. This is the analogue of the stable case [16, Théoréme 3.10] stating
that an infinite group with only one non-trivial conjugacy class is unstable, which
itself comes from the minimal case |20, Reineke].

Proof. Note that the group has no second centre. Moding out the centre, we may
suppose that the centre is trivial. If there is a non-trivial involution, every element
is an involution and the group is abelian, a contradiction. Any non-trivial element
g is conjugated to g~ by some element, say h. So h is non-trivial and conjugated
to h2, which equals h* for some k. Write § for the definable closure of h and k. Since
g is in C'(h*) and gh # hg, the element h belongs to (C(C(h))Nd)\ (C(C(R*))N4).
It follows that the chain

c(C(h))nés>CCHF)NSE>CCH)NG>---

is infinite, contradicting the weakly small chain condition 2.7 O

Let G be any group. We say that a subgroup H of G is proper if it is not G.

Proposition 3.3. An infinite non-abelian weakly small group has proper centralis-
ers of cardinality greater than n for each natural number n.

Proof. For a contradiction, let G be a weakly small counter example with all proper
centralisers finite of bounded size n. Note that G has finite exponent, and a finite
centre.

(1) The group G has finitely many conjugacy classes.

As the centralisers have bounded size, we apply Corollary We may also add a
member a; of each class to the language and assume that every conjugacy class is
(-definable.

(2) We may assume every proper normal subgroup of G to be central.

We claim that a normal subgroup must be central or have finite index in G : a nor-
mal subgroup is the union of conjugacy classes, hence is (-definable. By Lemma[L.1]
the conjugacy class of a non central element, a{’ say, must have maximal Cantor
rank over (). It follows from Lemmal[[T|(3) that any proper infinite normal subgroup
has index at most n. One may replace G by a minimal union C' of conjugacy classes
(with at least one of them non-central) closed under multiplication : as the group
C has finite index in G, every possible non-central proper normal subgroup H in
C has finite index in G, and would give birth to a subgroup N of H, normal in G,
and of finite index in G, contradicting the minimality of C'.
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(3) We may assume that the centre of G is trivial.

Should G/Z(G) be abelian, G/Z(G) would be be finite, as G has only finitely
many conjugacy classes. This is not possible as G is infinite. It follows that the
second centre Z3(G) of G is a proper normal subgroup in G. By (2), one has
Z3(G) = Z(G). Moding out by the centre (which preserves weak smallness as well
as the assumption that the centralisers have bounded size), we may assume that
the centre of G is trivial.

(4) The group G is not locally finite.

Assume that G be locally finite. Since it has finite exponent, there is a prime number
p such that for every natural number n, there is a finite subgroup H of G whose
cardinality is divisible by p™. Then H has Sylow subgroup S of cardinality at least
p™. But S has a non-trivial centre, the centraliser of any element of which contains
the whole Sylow, a contradiction. Thus, one can consider a finitely generated
infinite algebraic closure T'.

(5) The group T has finitely many conjugacy classes.
Any z in T’ can be written af. As C(a;) is finite, y is algebraic over a; and x.
(6) One may assume the proper normal subgroups of T to be trivial.

By (2) and (3), no proper union of conjugacy classes C1,...,Cy, (in the sense of G)
is closed under multiplication. We may add finitely many parameters witnessing
this fact to the language.

(7) For every conjugacy class a©, the group Stabr(a®) equals T.

The local stabiliser of a“ in I is a normal subgroup of I' by Corollary 24l It must
be non-trivial according to Proposition [Z0] hence equals T by (6).

(8) G has only one non-central conjugacy class.

We use an argument of Poizat in [I7], which we shall call Poizat’s symmetry argu-
ment. Let a = a; and b = a; be representatives of any two non-trivial conjugacy
classes (in particular, a, b are in T'). For every conjugate xbz ' of b except a set of
small Cantor rank over a and b, the elements axbz~' and b are conjugates. As a sur-
jection with bounded fibres preserves the rank, for all  except a set of small rank,
axbz~! and b are conjugates. Symmetrically, for all  except a set of small rank,
z 'axb and a are conjugates : one can find some x such that axbz~' and z~'axb
are conjugated respectively to b and a. Thus, b and a lie in the same conjugacy
class.

(9) Final contradiction.

G is an infinite group with bounded exponent and only one non-trivial conjugacy
class. Such a group does not exist [20, [I7, Reineke]. For instance, as a group of
exponent 2 is abelian, the group should have exponent a prime p # 2. If  # 1, the
elements x and 2! would be conjugated under some element y of order 2 modulo
the centraliser of z, which prevents the group from having exponent p. (I

Theorem 3.4. A small infinite Ng-saturated group has an infinite abelian subgroup.

Proof. By Proposition [3.3] and saturation, such a group is either abelian, or has
an infinite proper centraliser. Iterating, one either ends on an infinite abelian
centraliser after finitely many steps or builds an infinite chain of pairwise commuting
elements. These elements generate an infinite abelian subgroup. O



ON PROPERTIES OF (WEAKLY) SMALL GROUPS 11

Appealing to Hall-Kulatilaka-Kargapolov, who use Feit-Thomson’s Theorem, one
can say much more, and manage without the compactness theorem. Recall

Fact 3.5 (Hall-Kulatilaka-Kargapolov [10]). An infinite locally finite group has an
infinite abelian subgroup.

Theorem 3.6. A weakly small infinite group has an infinite abelian subgroup.

Proof. We need just show that any weakly small infinite group is either abelian
or has an infinite proper centraliser : if this is the case, iterating, one either gets
an infinite abelian centraliser or builds an infinite chain of pairwise commuting
elements.

So let G be a non abelian counter-example. Every non central element of G has
finite centraliser, and G has a finite centre. The group G cannot have an infinite
abelian subgroup. According to Hall-Kulatilaka-Kargapolov, G is not locally finite.
By Lemma [[T](3), an infinite finitely generated subgroup « splits into finitely many
conjugacy classes (in the sense of G). By Lemma [[T] these classes have maximal
Cantor rank over v. By Proposition 2.5, the almost stabiliser of every such class
is a normal subgroup of finite index in 7. After Poizat’s symmetry argument, the
intersection of almost stabilisers of all conjugacy classes meeting v consists of a
(finite) central subgroup Z together with C,, N+, where C, is a conjugacy class in
G. It is easy to see that (. is the same for all finitely generated infinite subgroups
v, so we can denote this unique conjugacy class by C'. We conclude that CU Z is a
subgroup of G. Replacing G by the later, we are back to the case where all proper
centralisers have bounded size, a contradiction with Proposition ([l

Remark 3.7. The initial proof of Theorem [3.4] used Hall-Kulatilaka-Kargapolov.
The author is grateful to Poizat who adapted the proof to a weakly small group
and made clarifying remarks.

Remark 3.8. One cannot expect the infinite abelian group to be definable, as
Plotkin found infinite Ng-categorical groups without infinite definable abelian sub-
groups [15].

4. SMALL NILPOTENT GROUPS

We now switch to small nilpotent groups. Let us first recall that the structure of
small abelian pure groups is already known :

Fact 4.1. (Wagner [24]) A small abelian group is the direct sum of a definable
divisible group with one of bounded exponent.

Remark 4.2. The group of bounded exponent need not be definable, but it is con-
tained in a definable group of bounded exponent.

Remark 4.3. Since Priifer and Baer, one knows that a divisible abelian group is
isomorphic to direct sums of copies of Q and Priifer groups, whereas an abelian
group of bounded exponent is isomorphic to a direct sum of cyclic groups [9]. It
follows that the theory of a small pure group has countably many denumerable
pairwise non-isomorphic models ; thus, Vaught’s conjecture holds for the theory
of a pure abelian group. More generally, Vaught’s conjecture holds for every com-
plete first order theory of module over a countable Dedekind ring (and thus for a
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module over Z), as well as for several classes of modules over countable rings [19,
Puninskaya).

Remark 4.4. Fact I does not hold for a weakly small abelian group : consider the
sum over n of cyclic groups of order p™. But one may say :

Proposition 4.5. In a weakly small abelian group, for every natural number n,
any element is the sum of an n-divisible element with one of finite order.

Proof. For a contradiction, let us suppose that there be an element x and a natural
number n such that xz ¢ G™ for any z having finite order. If there is some y in
G and some natural number k such that =% = y*+1)n this yields z = y"(y "x)
with (y_"x)’m = 1, a contradiction. Then, for every natural number k, one has
zFr e GFn\ GRHDP . This implies that the chain G N acl(z) > G™ Nacl(z) >
G?™ Nacl(xz) > --- is strictly decreasing and contradicts the weakly small chain
condition. ]

In an abelian group, every divisible group is a direct summand [2, Theorem 1].
This may not be true for a central divisible subgroup of an arbitrary group, even
if the ambient group is nilpotent. For instance, consider the subgroup of GL3(C)
the elements of which are upper triangular matrices with 1 entries on the main
diagonal ; it is a nilpotent group whose centre Z is divisible, isomorphic to C*, but
Z is no direct summand. However, we claim the following :

Proposition 4.6. Let G be a group, and D a divisible subgroup of the centre. There
exists a subset A of G, invariant under conjugation and containing every power of
its elements, with in addition

G=D-A and DNA={1}

Proof. If Ay C Ay C --- is an increasing chain of subsets each of which contains
all its powers and such that A; N D is trivial, then | J A; still contains all its powers
and | JA; N D is trivial too. By Zorn’s Lemma there is a maximal subset A with
these properties. We show that D - A equals G. Otherwise, there exists an x not in
D - A. By maximality of A, there is a natural number n greater than 1, and some
d in D so that ™ equals d. We may choose n minimal with this property. Let e be
an nth root of d~! in D, and let y equal ze. Then 3™ equals one, and y is not in
D - A. But the set of powers of y intersects D by maximality of A : there is some
natural number m < n such that y™ lie in D, and so does ™, a contradiction with
the choice of n. (|

In [13, Nesin], it is shown that an omega-stable nilpotent group is the central
product of a definable group with one of bounded exponent. We show that this
also holds for a small nilpotent group. Recall that a group G is the central product of
two of its normal subgroups, if it is the product of these subgroups and if moreover
their intersection lies in the centre of GG. For a group G and a subset A of G, we
shall write A™ for the set of the nth-powers of A, and G’ for the derived subgroup
of G. The following algebraic facts about nilpotent groups can be found in [5]
Chapter 1].

Fact 4.7. In a nilpotent group, any divisible subgroup commutes with elements of
finite order.



ON PROPERTIES OF (WEAKLY) SMALL GROUPS 13

Fact 4.8. Let G be a nilpotent group of nilpotent class c. If G/G' has exponent n,
the exponent of G is a natural number dividing n°.

Proposition 4.9. Let G be a nilpotent small group, and D a divisible subgroup
containing G" for some mon-zero natural number n. Then G equals the product
D - F where the group F' has bounded exponent.

Proof. Note that since D is divisible and G™ C D, we get G™ = D. By induction on
the nilpotency class of G. If G is abelian, Baer’s Theorem [2] concludes. Suppose
that the result holds for any small nilpotent group of class ¢, and that G is nilpotent
of class ¢ + 1, and let Z(G) be the centre of G. The group G/Z(G) is nilpotent
of class ¢. The quotient (D - Z(G))/Z(G) is a divisible subgroup and contains
(G/Z(G))". By induction hypothesis, G/Z(G) equals the product (D-Z(G)/Z(G))-
(C/Z(G)) with C/Z(G) of finite exponent, say m. On the other hand, the centre
is the sum of a divisible subgroup Dy with a subgroup Fy of finite exponent, say
I. So C' is included in Dy. By Proposition @6} there is some set A closed under
power operation, such that C = Dy - A and Dy N A = {1} ; but A" is included in
DgN A, so A has finite exponent, and

G=D-Z(G) Dy- A= (D Dy) - (Fpy-A)

Note that since we have Dy C G™ = D, we get G = D - B where B is a set having
finite exponent. Let F be the group generated by B. The abelian group F/F’is
generated by (B - F')/F’ and has bounded exponent. Fact .8 implies that F' has
bounded exponent. (I

Theorem 4.10. A small nilpotent group is the central product of a definable divis-
ible group with a definable one of bounded exponent.

Proof. If G is a small abelian group, it is the direct product of a divisible definable
group D and of one group F of finite exponent n by Fact {1l So it is the product
of D and the definable group of every elements of order n. By induction on the
nilpotency class, if G is nilpotent of class ¢ 4+ 1, then G/Z(G) is the central sum
of some divisible definable normal subgroup A/Z(G) and some group B/Z(G) of
finite exponent n. Besides, Z(G) equals Dy @ Fy where Fy has exponent m and Dy
is definable and divisible. We write D for A?™ - Dy.

Claim. D is a definable divisible normal subgroup of G.

Proof of Claim. Let x be an element in A and ¢ a natural number. As As A/Z(G)
is divisible there is some y in A with 27'y? in Z(G). Then =2 (y*™)4 is in Dy.
As Dy is central and divisible, this proves that A?™ . Dy is a divisible part. Let us
show that it is a group. Let a,b be in A. As A/Z(G) is normal in G/Z(G), there
exists a central element z such that ab = baz. Moreover, we have z = dj f for some
dp in Dy and f§* = 1. We obtain

a2mb2m — (ab)2mz(2m—1)+(2m—2)+»~+1 — (ab)2mzm(2m—l) — (ab)2md70n(2m71)

A is a subgroup of G so ab is in A, and a®™b*™ belongs to A2™ - Dy. A similar
argument shows that D is normal in G. O

By Fact £ the set G*™" is included in D, so we may apply Proposition 3 : there
is a group B of bounded exponent p such that G = D - B. We may assume B to be
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definable and normal by replacing it with the set {x € G : P = 1} (the fact that
{z € G : 2P =1} is a normal subgroup of G follows from Fact [4.7). O

5. GROUPS IN A SMALL AND SIMPLE THEORY

We shall not define what a simple structure is, but refer the interested reader to [25]
Wagner|. We just recall the uniform descending chain condition up to finite index
in a group with simple theory :

Fact 5.1. (Wagner [25, Theorem 4.2.12]) In a group with simple theory, a descend-
ing chain of intersections of a family H1, Hy ... of subgroups defined respectively by
formulae f(x,a1), f(x,az2)... where f(x,y) is a fized formula, becomes stationary
after finitely many steps, up to finite index.

Recall that two subgroups of a given group are commensurable if the index of their
intersection is finite in both of them.

Fact 5.2. (Schlichting [21] 25]) Let G be a group and $ a family of uniformly com-
mensurable subgroups. There is a subgroup N of G commensurable with members
of H and invariant under the action of the automorphisms group of G stabilising
the family $ setwise. The inclusions ﬂHesﬁ C N C 9* hold. Moreover, N is a
finite extension of a finite intersection of elements in $. In particular, if $ consists
of definable groups then N 1is also definable.

We now turn to small simple groups. The first step towards the existence of a
definable finite-by-abelian subgroup is to appeal to Theorem [3.4l Note that in a
stable group, every set of pairwise commuting elements is trivially contained in
a definable abelian subgroup. Shelah showed that this also holds in a dependent
group [22]. The second step is the following :

Proposition 5.3. In a group with simple theory, every abelian subgroup A is con-
tained in an A-definable finite-by-abelian subgroup.

Proof. Let G be this group and € a sufficiently saturated elementary extension of
G. We work inside €. By Fact[B5l there exists a finite intersection H of centralisers
of elements in A such that H is minimal up to finite index. The group H contains
A, and the centraliser of every element in A has finite index in H. Consider the
almost centre Z*(H) of H consisting of elements in H the centraliser of which has
finite index in H. We claim that Z*(H) is a definable group. It is a subgroup
containing A. According to |25, Lemma 4.1.15], a definable subgroup B of € has
finite index in € if and only if the equality D¢ (B, ¢, k) = D¢ (€, ¢, k) holds for every
formula ¢ and natural number k. So we have the following equality

Z*(H)={h€ H:D¢(Cy(h),p, k) > De(H, ¢, k), ¢ formula, k natural number}

Recall that for a partial type m(x, A), the sentence "Deg(m(z, A), 0, k) > n" is a
type-definable condition on A as stated in [25] Remark 4.1.5], so the group Z*(H)
is type-definable. By compactness and saturation, centralisers of elements in Z*(H)
have bounded index in H, and conjugacy classes in Z*(H) are finite of bounded
size. The first observation implies that Z*(H) is definable, and the second one
together with [I4] Theorem 3.1] show that the derived subgroup of Z*(H) is finite.
Note that H and Z*(H) are A-definable, hence Z*(H) computed in G fulfills our
purpose. (I
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Corollary 5.4. A weakly small infinite group the theory of which is simple has an
infinite definable finite-by-abelian subgroup.

Proof. Follows from Theorem and Proposition O

Remark 5.5. CorollaryB.4lstates the best possible result as there are Ry-categorical
simple groups without infinite abelian definable subgroups. For instance, infinite
extra-special groups of exponent p are Rg-categorical [8] Felgner|, and supersimple
of SU-rank 1 as they can be interpreted in an infinite dimensional vector space
over F,, endowed with a non degenerate skew-symmetric bilinear form. They have
no infinite definable abelian subgroup by [15, Plotkin].

Corollary 5.6. A weakly small supersimple group of SU-rank 1 is finite-by-abelian-
by-finite.

As noticed by Aldama in his thesis [I], Shelah’s result concerning abelian subsets
of a dependent group extends to a nilpotent subset of a dependent group. Actually
Aldama also shows that in a dependent group G any solvable group A is surrounded
by a definable solvable group of same derived length, provided that A be normal
in G. We are interested in analogues of these results in the context of a group with
simple theory. We propose the following definition :

Definition 5.7. A group G is almost solvable of class n for some natural number n,
if there is a decreasing sequence of subgroups G; such that

Go=G>G >G> > >G> Gy ={1}

and such that the index [G} : Gi41] is finite, with G; being normal in G for all i.
We call the sequence G; an almost derived series.

An almost solvable group of class zero is a finite-by-abelian group. We may write

H < G to mean that H < G and [G : H] is finite.
f

Corollary 5.8. In a group with simple theory, let A be a solvable subgroup of
derived length n. If A is a normal subgroup, There is an A-definable almost solvable
group of class n containing A such that the members of the almost derived series
are A-definable.

Proof. Let us show it by induction on the derived length n. Without loss of gen-
erality, we may work in a monster model € extending the ambient group. When
n equals 0, this is Proposition Suppose that the result holds until n — 1. By
induction hypothesis, there is an A-definable almost solvable group G of derived
length n — 1 containing A’ with an A-definable almost derived series, meaning that
there are A-definable normal subgroups Gy, ..., Gy of G such that

G=G G >G> >G,_ >G,={l}
f f

We shall now use an argument of Wagner in [I1]. Put P = Gg x G1--- X G, <
¢ x -+ x €. By Fact Bl there is a finite intersection H of A-conjugates of P which
is minimal up to finite index. Let us write $) for the set of A-conjugates of H.
We claim that the elements of $) are uniformly commensurable. To see that, we
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consider the almost normaliser {g € € : HY and H are commensurable} of H in
€. We write it N§(H). By [25, Lemma 4.1.15], we have :

Ng(H)={g9€€:De(HNH ¢,k) > De(H, ¢, k), formula, k natural number}

It follows from [25, Remark 4.1.5] that Ng(H) is an A-type-definable group. By
compactness and saturation, two Ng(H)-conjugates of H are uniformly commen-
surable. N§(H) is in fact a definable group. As N§(H) contains A, the elements of
$ are uniformly commensurable. We may now apply Fact 5.2 and be able to find
an A-definable group P4 < € X --+ X € commensurable with H and invariant by
conjugation under elements of A. We enumerate the coordinates of P4 from 0 to
n, we write 7 the projection on the kth coordinate and put Py = 7 (Pa) for every
kin {0,...,n}. As P4 is a finite extension of a finite intersection I of elements in
$), the group Py contains A’. We still have

REPREPE=P P, = {1}
! f

We claim that every P is again normal in Py. As Gy normalises P, the group
mo(H ) normalises H. As A is a normal subgroup of €, it follows that conjugations
by elements from mo(H) stabilise $) setwise. By Fact 52 7o(H) normalises Pjy.
Let a be in A. Similarly, mo(H®) normalises P4. As Py C my($)* by Fact 5.2, P,
normalises P4 hence Py for every k. Now Py contains A" so the the group PyA/ Py
is abelian. According to Proposition[5.3] there is an A-definable group M such that

PyA/Py < M/Py < (ﬁ Na(P;))/Po
1=0

where M’/ Py is finite. Thus, M is the desired almost solvable group of derived
length n. O

Question. We may define a group G to be almost nilpotent of class n if there
exists a decreasing sequence of subgroups G; such that

Go =G> [G,Go >G> [G,Gi] >G> - [G,Gy] > Gryr = {1}

and such that the index [[G,G;] : Gi41] is finite and G; is normal in G for all i.
In a group with simple theory, is any nilpotent subgroup of class n contained in a
definable almost nilpotent group of class n?
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