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EXPANSIONS WHICH INTRODUCE NO NEW OPEN SETS

GARETH BOXALL AND PHILIPP HIERONYMI

Abstract. We consider the question of when an expansion of a topological structure has the

property that every open set definable in the expansion is definable in the original structure.

This question is related to and inspired by recent work of Dolich, Miller and Steinhorn on the

property of having o-minimal open core. We answer the question in a fairly general setting and

provide conditions which in practice are often easy to check. We give a further characterisation

in the special case of an expansion by a generic predicate.

1. Introduction

Let M be a many-sorted first-order topological structure in the sense of [19]. So for each

sort S of M there is a distinguished formula ϕS(x, ȳ) such that x is of sort S and the family

of definable sets obtained by varying the parameters ȳ forms a basis for a topology on MS

(where MS is the set of realisations of the sort S). When we speak of a set being definable

in M we mean that it is a subset of some product MS1
× ... ×MSn and that it is first-order

definable over some parameters. Each productMS1
× ...×MSn is equipped with the appropriate

product topology and so it makes sense to ask, for any definable set, whether or not it is open.

Throughout this paper M∗ is an expansion of M in which there are no new sorts. We consider

the question “when is it the case that every open set definable in M∗ is definable in M?”.

This question is inspired by recent work of Dolich, Miller and Steinhorn in [6] and [7] on the

property of having o-minimal open core. This property makes sense in the special case whereM

is a one-sorted expansion of a model of the theory of dense linear orderings without endpoints

and ϕ(x, ȳ) is “y1 < x < y2”. The open core of such an M is a relational structure which has

the same underlying set as M and a predicate for each open set which is definable in M . The

property of having o-minimal open core is an interesting generalisation of o-minimality which

is studied extensively in [6]. There is also earlier work of Miller and Speissegger in [17].

Two important classes of structures which are not o-minimal but which have o-minimal open

core receive special attention in [6]. They are dense pairs of o-minimal ordered groups, as

studied by van den Dries in [10], and expansions of o-minimal structures by a generic predicate,

in the sense of Chatzidakis and Pillay in [5]. In both cases the structure arises as an expansion

of an o-minimal structure and it is proved in [6] that every open set definable in the expansion

is definable in the original structure. So the question which we are addressing is intimately

connected with the issue of having o-minimal open core. Our answer has the benefit of working

outside the ordered setting.

We assume throughout that M∗ is κ-saturated and strongly κ-homogeneous for some suffi-

ciently large κ. We fix a set C in M such that |C| < κ. It is clear that if N∗ ≺ M∗, N is the
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reduct of N∗ to the language of M and C is a set in N then the condition that every open set

definable over C in N∗ is definable over C in N is equivalent to the condition that every open

set definable over C in M∗ is definable over C in M . Bearing this in mind it should be clear

how to apply to N and N∗ the results which we shall state for M and M∗.

We denote by BS1...Sn

b̄
the subset of MS1

× ...×MSn defined by the formula ϕS1
(x1, b̄1)∧ ...∧

ϕSn(xn, b̄n), where b̄ = b̄1...b̄n. We make use of the following two assumptions, the second of

which is borrowed from Definition 4.6 of [3].

Assumption (I): for any sorts S1, ..., Sn of M and ā ∈ U ⊆MS1
× ...×MSn such that U is open,

{b̄ : ā ∈ BS1...Sn

b̄
⊆ U} has non-empty interior.

Assumption (II): for any sorts S1, ..., Sn ofM and ā ∈MS1
× ...×MSn , {b̄ : ā ∈ BS1...Sn

b̄
} is open.

Under assumption (I) we provide necessary and sufficient conditions for it to be the case

that every open set definable over C in M∗ is definable over C in M . This is Theorem 2.2.

Using somewhat similar methods we show that, under assumptions (I) and (II), it is enough to

consider only open sets U such that U is equal to the interior of its closure. This is Theorem

2.3.

In Section 3 we apply Theorems 2.2 and 2.3 to classes of expansions which resemble the dense

pairs of o-minimal ordered groups studied in [10], [2] and [6]. We answer a question from [4]

about lovely pairs of dense o-minimal structures and prove that every open set definable in

(R, 2Z, 2Z3Z) is definable in (R, 2Z). Outside the ordered setting we prove that every open set

definable in a lovely pair of henselian valued fields of characteristic zero (and arbitrary residue

field characteristic) is definable in the underlying henselian valued field.

In Section 4 we assumeM∗ =Mg is an expansion of M by a generic predicate in the sense of

[5]. It is established in [6] that if M is an o-minimal expansion of a model of the theory of dense

linear orderings without endpoints and ϕ(x, ȳ) is “y1 < x < y2” then every open set definable in

Mg is definable inM . This is generalised in [7] to the case where the assumption of o-minimality

is replaced by the weaker assumption that M has o-minimal open core. We use Theorem 2.2

to give a characterisation of when it is the case that every open set definable over C in Mg is

definable over C in M , assuming C = aclM (C) and assumption (I). This is Theorem 4.3. We

use it to reprove this result from [7] and to obtain a similar result in which it is assumed that M

is a one-sorted geometric structure in the sense of Hrushovski and Pillay in [15], open sets are

infinite or empty and assumption (I) is true. We apply this work to henselian valued fields of

characteristic zero considered first as one-sorted structures and then as two-sorted structures.

We would like to thank Anand Pillay and the audience at the mathematical logic seminar at

Lyon 1 for some useful comments.

2. General results

For any sorts S1, ..., Sn of M , let AS1...Sn be the set of all ā ∈MS1
× ...×MSn such that the

set of realisations of tpM (ā/C) is a dense subset of an open set. For any sorts S1, ..., Sn of M ,

let A′

S1...Sn
be the set of all ā ∈ AS1...Sn such that the set of realisations of tpM∗(ā/C) is dense in

the set of realisations of tpM(ā/C). The following lemma is proved by a standard compactness

argument.
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Lemma 2.1. For any sorts S1, ..., Sn of M and any dense set D ⊆MS1
× ...×MSn, AS1...Sn∩D

is dense in MS1
× ...×MSn .

Proof. Suppose S1, ..., Sn and D ⊆MS1
× ...×MSn are such that D is dense in MS1

× ...×MSn

but AS1...Sn ∩D is not dense in MS1
× ...×MSn. Let U ⊆MS1

× ...×MSn be a non-empty open

set such that AS1...Sn ∩ D ∩ U = ∅. Enumerate as (pα)α<λ the complete types over C in the

sense of M which are realised in D∩U . It follows that, for each α < λ, the set of realisations of

pα is nowhere dense. We obtain a decreasing sequence (BS1...Sn

b̄α
)α<λ of non-empty basic open

subsets of U as follows. Let α < λ and suppose BS1...Sn

b̄β
has already been chosen for all β < α.

By compactness there is some BS1...Sn

b̄′α
⊆

⋂
β<αB

S1...Sn

b̄β
∩ U such that BS1...Sn

b̄′α
6= ∅. Given

that the set of realisations of pα is not dense in BS1...Sn

b̄′α
, choose BS1...Sn

b̄α
⊆ BS1...Sn

b̄′α
such that

BS1...Sn

b̄α
6= ∅ and pα is not realised in BS1...Sn

b̄α
. By compactness,

⋂
α<λB

S1...Sn

b̄α
has non-empty

interior. Therefore ∅ 6= D ∩
⋂

α<λB
S1...Sn

b̄α
⊆ D ∩ U . However, for all α < λ, pα is not realised

in D ∩
⋂

α<λB
S1...Sn

b̄α
. This is a contradiction. �

Theorem 2.2. Suppose assumption (I) is true. The following are equivalent:

(1) for any sorts S1, ..., Sn of M , A′

S1...Sn
is dense in MS1

× ...×MSn ,

(2) for any sorts S1, ..., Sn of M , A′

S1...Sn
= AS1...Sn,

(3) every open set definable over C in M∗ is definable over C in M .

Proof. Suppose (1). Let U be an open set definable over C in M∗. Then U ⊆MS1
× ...×MSn

for some sorts S1, ..., Sn of M . Let ā ∈ U . There is some BS1...Sn

b̄
such that ā ∈ BS1...Sn

b̄
⊆ U .

Let S′

1, ..., S
′

m be such that b̄ ∈ MS′

1
× ... ×MS′

m
. By assumption (I) we may assume b̄ is an

interior point of {b̄′ : ā ∈ BS1...Sn

b̄′
⊆ U}. By (1) we may further assume b̄ ∈ A′

S′

1
...S′

m
. Let

σ be an automorphism of the structure M which fixes C pointwise. Then σ(b̄) is an interior

point of {b̄′ : σ(ā) ∈ BS1...Sn

b̄′
}. Since b̄ ∈ A′

S′

1
...S′

m
it follows that there is some b̄′ |= tpM∗(b̄/C)

such that σ(ā) ∈ BS1...Sn

b̄′
. Since b̄′ |= tpM∗(b̄/C), BS1...Sn

b̄′
⊆ U . Therefore U is invariant under

automorphisms of the structure M which fix C pointwise. Since U is definable in M∗ and M∗

is sufficiently saturated, it follows that U is definable over C in M . Therefore (3).

Suppose not (2). Let S1, ..., Sn be such that A′

S1...Sn
6= AS1...Sn . Let ā ∈ AS1...Sn \ A′

S1...Sn
.

Let W be an open set such that the set of realisations of tpM (ā/C) is a dense subset of W .

Let BS1...Sn

b̄
be a non-empty basic open subset of W in which tpM∗(ā/C) is not realised. By

compactness there is a set X definable over C in M∗ such that ā ∈ X and X ∩ BS1...Sn

b̄
= ∅.

Let U be the interior of MS1
× ...×MSn \X. Then U is definable over C in M∗. However U is

not definable over C in M , since tpM (ā/C) is realised in BS1...Sn

b̄
⊆ U while ā /∈ U . Therefore

not (3).

(2)⇒(1) by Lemma 2.1. �

The following is something of a definable set (as opposed to type) version of Theorem 2.2.

Theorem 2.3. Suppose assumptions (I) and (II) are true. Suppose every open set which is

definable over C in M∗ and equal to the interior of its closure is definable over C in M . Then

every open set which is definable over C in M∗ is definable over C in M .

Proof. Let U ⊆MS1
× ...×MSn be an open set definable over C in M∗. Let Y = {b̄ : BS1...Sn

b̄
⊆

U}. Let V be the interior of Y . It follows from assumption (I) that U is definable over C in M
3



provided V is definable over C in M . It remains only to show that V is equal to the interior of

its closure. For this it is sufficient to show that V ⊆ Y (where V is the closure of V ). Suppose

V * Y . Let b̄ ∈ V \ Y . Then BS1...Sn

b̄
* U . Let ā ∈ BS1...Sn

b̄
\ U . By assumption (II) there is

some b̄′ ∈ V ⊆ Y such that ā ∈ BS1...Sn

b̄′
⊆ U . This is a contradiction. �

It is clear that the saturation and homogeneity assumptions are not required for Theorem

2.3.

3. Examples which resemble dense pairs

We begin this section with two corollaries. Theorem 5.2 of [14] is in a similar spirit to these

results, but it assumes that M is a dense o-minimal ordered group. The following is a corollary

of Theorem 2.2.

Corollary 3.1. Suppose assumption (I) is true. Suppose that for any sorts S1, ..., Sn of M

there is a set DS1...Sn ⊆MS1
× ...×MSn such that the following conditions are satisfied:

(1) DS1...Sn is dense in MS1
× ...×MSn ,

(2) for every ā ∈ DS1...Sn and every open set U ⊆ MS1
× ... ×MSn , if tpM (ā/C) is realised

in U then tpM (ā/C) is realised in U ∩DS1...Sn,

(3) for every ā ∈ DS1...Sn, tpM∗(ā/C) is implied by tpM (ā/C) in conjunction with “ā ∈

DS1...Sn”.

Then every open set definable over C in M∗ is definable over C in M .

Proof. For any sorts S1, ..., Sn of M , let ā ∈ AS1...Sn ∩DS1...Sn. Let W be an open set such that

the set of realisations of tpM (ā/C) is a dense subset of W . Let U ⊆ W be a non-empty open

subset. Then tpM(ā/C) is realised in U . By (2) there is some ā′ ∈ U ∩DS1...Sn such that ā′ |=

tpM (ā/C). By (3), ā′ |= tpM∗(ā/C). Therefore ā ∈ A′

S1...Sn
. So AS1...Sn ∩DS1...Sn ⊆ A′

S1...Sn
. It

follows by (1) and Lemma 2.1 that A′

S1...Sn
is dense in MS1

× ... ×MSn . The result follows by

Theorem 2.2. �

The following is a corollary of Theorem 2.3.

Corollary 3.2. Suppose assumptions (I) and (II) are true. Suppose that for any sorts S1, ..., Sn

of M there is a set DS1...Sn ⊆MS1
× ...×MSn such that the following conditions are satisfied:

(1) DS1...Sn is dense in MS1
× ...×MSn ,

(2) for every X ⊆MS1
× ...×MSn which is definable over C in M , either X is nowhere dense

or X has non-empty interior,

(3) for every X ⊆ MS1
× ... × MSn which is definable over C in M∗, there exists Y ⊆

MS1
× ...×MSn which is definable over C in M and such that X ∩DS1...Sn = Y ∩DS1...Sn.

Then every open set definable over C in M∗ is definable over C in M .

Proof. For any sorts S1, ..., Sn of M , let U ⊆ MS1
× ...×MSn be open and definable over C in

M∗. By (3) there is a set Y ⊆ MS1
× ... ×MSn which is definable over C in M and such that

U ∩ AS1...Sn ∩ DS1...Sn = Y ∩ AS1...Sn ∩ DS1...Sn. Let V be the interior of Y . Let Z be either

V \ Y or Y \ V . Suppose Z ∩AS1...Sn ∩DS1...Sn 6= ∅. Let ā ∈ Z ∩AS1...Sn ∩DS1...Sn . Since Z is

definable over C in M , it follows that the set of all realisations of tpM (ā/C) is contained in Z.

Therefore Z is not nowhere dense. Since Z has empty interior, this contradicts (2). Therefore

V ∩ AS1...Sn ∩ DS1...Sn = Y ∩ AS1...Sn ∩DS1...Sn = U ∩ AS1...Sn ∩ DS1...Sn. By (1) and Lemma
4



2.1, AS1...Sn ∩DS1...Sn is dense in MS1
× ...×MSn . Since U and V are both open, it follows that

U = V . By Theorem 2.3 we may assume that U is the interior of U . Then U is definable over

C in M . �

For the rest of this section we assume that M andM∗ are one-sorted. We adapt our notation

accordingly. For example, AS1...Sn becomes An. Algebraic closure in the sense of M is denoted

by aclM . We recall the following definition from [15].

Definition 3.3. M is geometric if

(1) M is infinite,

(2) Th(M) eliminates ∃∞ and

(3) aclM is a pregeometry on M .

The second condition is sometimes called “uniform finiteness”. Suppose M is geometric and

M∗ is a lovely pair of models of Th(M). So M∗ expands M by a single unary predicate P such

that P (M) ≺ M as structures in the language of M and, for every finite A ⊆ M and every

infinite X ⊆ M such that X is definable in M , X ∩ P (M) 6= ∅ and X * aclM (P (M) ∪ A).

This situation (without the topological aspect which we are assuming here) is investigated by

Berenstein and Vassiliev in [4]. Among other things, it is known to generalise the dense pairs

of o-minimal ordered groups studied in [10]. The following corollary generalises a result in [6].

Corollary 3.4. Suppose M is geometric and the expansion M∗ is a lovely pair of models of

Th(M). Suppose assumption (I) is true and every open set is infinite or empty. Suppose C is

aclM -independent from P (M) over C ∩ P (M). Then every open set definable over C in M∗ is

definable over C in M .

Proof. For all n < ω, let Dn = {ā ∈ Mn : ā is aclM -independent over P (M) ∪ C}. Since

non-empty basic open sets are infinite and definable in M , it follows from the definition of

lovely pairs and compactness that Dn is dense in Mn. This gives condition (1) of Corollary 3.1.

Let ā ∈ Dn and let U be an open set such that tpM (ā/C) is realised in U . Let b̄ ∈ Mm and

ā′ ∈ Mn be such that ā′ ∈ Bn
b̄
⊆ U and ā′ |= tpM (ā/C). By assumption (I), compactness and

the fact that non-empty open sets are infinite, we may assume b̄ is aclM -independent over Cā′.

It follows, by condition (3) of Definition 3.3, that ā′ is aclM -independent over Cb̄. Then, by the

definition of lovely pairs and compactness, tpM(ā′/Cb̄) is realised in Dn. This gives condition

(2) of Corollary 3.1. Condition (3) of Corollary 3.1 is proved in [4]. �

The case of Corollary 3.4 in whichM expands a model of the theory of dense linear orderings

without endpoints and ϕ(x, ȳ) is “y1 < x < y2” answers a question from [4]. It is proved in

[6] that if M∗ is a dense pair of o-minimal ordered groups in the sense of [10] then every open

set definable in M∗ is definable in M . Suppose M is a henselian valued field of characteristic

zero (by which we mean that the field has characteristic zero and the residue field has arbitrary

characteristic). Suppose the language of M is the language of rings together with a unary

predicate for the valuation ring O. As in [19], take ϕ(x, ȳ) to be “x−y1
y2

∈ O”. It is known, and

follows from work of van den Dries in [9], that M is geometric. It is clear that assumption (I)

is true and open sets are infinite or empty. So Corollary 3.4 applies and we conclude that every

open set definable in a lovely pair of models of Th(M) is definable in the underlying henselian

valued field.
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Some other examples of expansions which resemble dense pairs are referred to in [6]. These

include (R,U), the real field expanded by a predicate for the group of complex roots of unity

(studied by Zilber in [20]), and (R, 2Z3Z), the real field expanded by a predicate for the group

2Z3Z (studied by van den Dries and Günaydın in [11]). These examples are considered in greater

generality in [1] and [11], but we do not wish to go into the details of that here. It is known that

any open set definable in (R,U) or (R, 2Z3Z) is definable in R (see [2], [6] and [14]). We reprove

this here. Let N = R and N∗ = (N,P (N)) where P (N) = U or P (N) = 2Z3Z. Suppose M∗

elementarily extends N∗ and M is the reduct of M∗ to the language of N . Suppose C ≺ N∗

and C is countable. For all n < ω, let Dn = {ā ∈Mn : ā is aclM -independent over P (M)∪C}.

We check the conditions of Corollary 3.2. Condition (1) is true for N in place of M and Dn

restricted to Nn, by the well known fact that the complement of any countable subset of R is

dense in R. It follows, using compactness, that condition (1) is true for M and Dn. Condition

(2) is a well known property of real-closed fields. Condition (3) is proved in [20] and [11]. So

the conclusion of Corollary 3.2 follows and it remains true when M is replaced by N and M∗

is replaced by N∗.

A more complicated example involves taking N = (R, 2Z) and N∗ = (R, 2Z, 2Z3Z). This

expansion is studied by Günaydın in [13], the structure (R, 2Z) having previously been studied

by van den Dries in [8]. Let P (N) = 2Z3Z. Suppose M∗ elementarily extends N∗ and M is

the reduct of M∗ to the language of N . Let M ′ be the reduct of M to the language of R.

Suppose C ≺ N∗ and C is countable. For all n < ω, let Dn = {ā ∈Mn : ā is aclM ′-independent

over P (M) ∪ C}. We check the conditions of Corollary 3.2. Condition (1) is true by the same

reasoning as in the previous example. Condition (2) follows from the quantifier elimination

proved in [8] (see [16]). Condition (3) is proved in [13]. The conclusion of Corollary 3.2 follows

and so every open set definable in (R, 2Z, 2Z3Z) is definable in (R, 2Z). This answers a question

asked by Chris Miller and discussed at a meeting at the Fields Institute in Toronto in January

2009. A positive answer was expected at the time. The example was of interest as an instance

of the phenomenon of a non-d-minimal structure which has d-minimal but not o-minimal open

core. We refer the reader to [16] for background and more on d-minimality.

4. Adding a generic predicate

We drop the assumption that M is one-sorted. Throughout this section we assume that

M∗ =Mg is an expansion of M by a generic predicate as defined by Chatzidakis and Pillay in

[5]. Let G(M) be the set of realisations of this generic predicate. So there is an infinite set X

such that X is ∅-definable in M , G(M) ⊆ X and the following two facts, which we recall from

[5], are true.

Fact 4.1. Let n < ω and let a1...an = ā ∈ Xn be such that, for all i ∈ {1, ..., n}, ai /∈ aclM (C).

Let J ⊆ {1, ..., n}. Then there is some ā′ = a′1...a
′

n such that ā′ |= tpM(ā/C) and a′i ∈ G(M) if

and only if i ∈ J .

Fact 4.2. Let ā and ā′ be tuples fromM of length less than κ. Suppose there is an automorphism

σ of the structure M such that σ fixes C pointwise, σ(ā) = ā′ and, for all b ∈ X ∩ aclM (Cā),

b ∈ G(M) if and only if σ(b) ∈ G(M). Then tpM∗(ā/C) = tpM∗(ā′/C).

Recall from [18] that a consistent formula ψ(ȳ, d̄) in the language of M strongly divides over

C if d̄ * aclM (C) and {ψ(ȳ, d̄′) : d̄′ |= tpM(d̄/C)} is k-inconsistent for some k < ω. Using
6



compactness it is observed in [18] that, in this case, there is a set Z which is definable over C

in M and such that d̄ ∈ Z and {ψ(ȳ, d̄′) : d̄′ ∈ Z} is k-inconsistent.

Theorem 4.3. Suppose C = aclM (C) and assumption (I) is true. The following are equivalent:

(1) for every n < ω, d̄ ∈ Xn and formula ψ(ȳ, d̄) in the language of M , if ψ(ȳ, d̄) defines a

non-empty open set then ψ(ȳ, d̄) does not strongly divide over C,

(2) every open set definable over C in Mg is definable over C in M .

Proof. Suppose not (2). By Theorem 2.2 there are sorts S1, ..., Sn of M such that A′

S1...Sn
6=

AS1...Sn. Let ā ∈ AS1...Sn \ A′

S1...Sn
. Let W be an open set such that the set of realisations of

tpM (ā/C) is a dense subset of W . Let BS1...Sn

b̄
⊆ W be non-empty and such that tpM∗(ā/C)

is not realised in BS1...Sn

b̄
. Let (âi)i<λ be an enumeration of X ∩ aclM (Cā) \ C. By Fact 4.2,

for every ā′â′0â
′

1... |= tpM(āâ0â1.../C) such that ā′ ∈ BS1...Sn

b̄
, there is some i < λ such that

âi ∈ G(M) if and only if â′i /∈ G(M). It follows by Fact 4.1 and compactness that, for every

ā′â′0â
′

1... |= tpM (āâ0â1.../C) such that ā′ ∈ BS1...Sn

b̄
, there is some i < λ such that â′i ∈ aclM (Cb̄).

Therefore, by compactness, there exist a subtuple (i1, ..., im) of λ and a tuple (D1, ...,Dm) of

finite subsets of X such that, for every ā′â′0â
′

1... |= tpM(āâ0â1.../C) such that ā′ ∈ BS1...Sn

b̄
,

there is some j ∈ {1, ...,m} such that â′ij ∈ Dj .

Keeping (i1, ..., im) fixed, we may assume |D1| is minimal and that, subject to this, |D2| is

minimal and so on. We may assume b̄ has been chosen so that this remains true even when b̄

is replaced by b̄′ for some ∅ 6= BS1...Sn

b̄′
⊆ BS1...Sn

b̄
. We may also assume each Dj is non-empty.

It is easy to check that (D1, ...,Dm) is uniquely determined by (i1, ..., im), (|D1|, ..., |Dm|) and

the fact that, for every ā′â′0â
′

1... |= tpM(āâ0â1.../C) such that ā′ ∈ BS1...Sn

b̄
, there is some

j ∈ {1, ...,m} such that â′ij ∈ Dj. By compactness there is a formula ψ′(ȳ, z̄) over C in the

language of M such that, for every b̄′ such that ∅ 6= BS1...Sn

b̄′
⊆ BS1...Sn

b̄
, ψ′(b̄′, z̄) defines the set

of all enumerations of D1 ∪ ... ∪ Dm. Let d̄ be such an enumeration. By assumption (I), the

set defined by ψ′(ȳ, d̄) has non-empty interior. Let ψ(ȳ, z̄) be a formula over C in the language

of M such that M |= ψ(ȳ, z̄) → ψ′(ȳ, z̄) and ψ(ȳ, d̄) defines the interior of the set defined by

ψ′(ȳ, d̄). Let k be the number of permutations of d̄. We may assume that, for every tuple b̄′,

ψ(b̄′, z̄) has at most k realisations. Since âij /∈ C = aclM (C) for every j ∈ {1, ...,m}, we have

d̄ * aclM (C) and clearly {ψ(ȳ, d̄′) : d̄′ |= tpM (d̄/C)} is k-inconsistent. Therefore not (1).

Suppose not (1). Suppose d1...dn = d̄ ∈ Xn and ψ(ȳ, d̄) defines a non-empty open set

and strongly divides over C. We may assume d1 /∈ aclM (C). Let Z ⊆ Xn be definable over

C in M and such that d̄ ∈ Z, ψ(ȳ, d̄′) defines a non-empty open set for every d̄′ ∈ Z and

{ψ(ȳ, d̄′) : d̄′ ∈ Z} is k-inconsistent for some k < ω. We may assume Z and k are such that k

is minimal. Using Fact 4.1 it follows that
∨
{ψ(ȳ, d̄1) ∧ ... ∧ ψ(ȳ, d̄k−1) : d̄1, ..., d̄k−1 are distinct

members of Z and d11, ..., d
k−1

1
∈ G(M)} defines a non-empty union of non-empty open sets

which is therefore non-empty and open. Let U be this union. So U is definable over C in

Mg. Let d̄1, ..., d̄k−1 be distinct realisations of tpM(d̄/C) such that {ψ(ȳ, d̄1), ..., ψ(ȳ, d̄k−1)} is

consistent and d11, ..., d
k−1
1

∈ G(M). By Fact 4.1 there is some d̄′1...d̄′k−1 |= tpM(d̄1...d̄k−1/C)

such that d′11 /∈ G(M). It follows that the non-empty set defined by ψ(ȳ, d̄1)∧ ...∧ψ(ȳ, d̄k−1) is

contained in U and the non-empty set defined by ψ(ȳ, d̄′1) ∧ ... ∧ ψ(ȳ, d̄′k−1) is disjoint from U .

So U is not definable over C in M . Therefore not (2). �

The following is a result of Dolich, Miller and Steinhorn from [7].

7



Corollary 4.4. Suppose M is a one-sorted expansion of a model of the theory of dense linear

orderings without endpoints and ϕ(x, ȳ) is “y1 < x < y2”. If M has o-minimal open core then

every open set definable in Mg is definable in M .

Proof. Assume C = aclM (C). Suppose condition (1) of Theorem 4.3 is not satisfied. Let d̄ ∈ Xn

and let ψ(ȳ, d̄) be a formula in the language of M such that ψ(ȳ, d̄) defines a non-empty open

set and strongly divides over C. Let Z ⊆ Xn be definable over C in M and such that d̄ ∈ Z,

ψ(ȳ, d̄′) defines a non-empty open set for every d̄′ ∈ Z and {ψ(ȳ, d̄′) : d̄′ ∈ Z} is k-inconsistent

for some k < ω. We may assume Z and k are such that k is minimal. Then the set defined by
∨
{ψ(ȳ, d̄1) ∧ ... ∧ ψ(ȳ, d̄k−1) : d̄1, ..., d̄k−1 are distinct members of Z} is definable over C in M

and is an infinite union of pair-wise disjoint non-empty open sets each of which is definable in

M . This contradicts the fact that M has o-minimal open core. �

The following corollary generalises the o-minimal special case of the previous one.

Corollary 4.5. Suppose M is geometric (as in Definition 3.3, so M is one-sorted). Suppose

assumption (I) is true and every open set is infinite or empty. Then every open set definable

in Mg is definable in M .

Proof. Assume C = aclM (C). Suppose condition (1) of Theorem 4.3 is not satisfied. Let d̄ ∈ Xn

and let ψ(ȳ, d̄) be a formula in the language of M such that ψ(ȳ, d̄) defines a non-empty open

set and strongly divides over C. By compactness and the fact that non-empty open sets are

infinite, there is a tuple b̄ such that M |= ψ(b̄, d̄) and b̄ is aclM -independent over Cd̄. Since

ψ(ȳ, d̄) strongly divides over C, d̄ ⊆ aclM (Cb̄) by Remark 3.2 of [12]. Since d̄ * aclM (C), this

contradicts condition (3) of Definition 3.3. �

If M is a henselian valued field of characteristic zero (and arbitrary residue field characteris-

tic), considered as a one-sorted structure as in Section 3, then it follows by Corollary 4.5 that

every open set definable in Mg is definable in M . Now supposeM is the same henselian valued

field but this time considered as a two-sorted structure: one sort S1 for the field, equipped

with the language of rings, one sort S2 for the value group together with ∞, equipped with the

language of ordered groups, and the valuation map v between the two sorts. The topology on

MS1
is as before only this time we take the formula ϕS1

(x, ȳ) to be “v(x − y1) > y2”, where x

and y1 are of sort S1 and y2 is of sort S2. We take ϕS2
(x, ȳ) to be “y1 < x < y2”, where all

three variables are of sort S2. It is clear that assumption (I) is true for this structure.

Let ψ(ȳ, d̄) be a formula in the language of M such that d̄ ∈ Mn
S1

for some n < ω, ψ(ȳ, d̄)

defines a non-empty open set and ψ(ȳ, d̄) strongly divides over C = aclM (C). We may assume

ȳ = y1...ykyk+1...ym where y1, ..., yk are of sort S1 and yk+1, ..., ym are of sort S2. Let ψ
′(ȳ′, d̄) be

a formula which defines the set of all b1...bkb
′

k+1
...b′m such thatM |= ψ(b1...bkv(b

′

k+1
)...v(b′m), d̄).

Since v is continuous, ψ′(ȳ′, d̄) defines an open set. Let C1 and C2 be such that C1 ⊆ MS1
,

C2 ⊆ MS2
and C = C1 ∪ C2. Let C ′

2 ⊆ MS1
be such that |C ′

2| < κ and v(C ′

2) = C2. Let

C ′ = C1 ∪ C
′

2. It is known that the two-sorted structure which we are considering has the one-

sorted structure, which we were considering, as a reduct on the sort S1 and that the two-sorted

structure is ∅-interpretable in the one-sorted structure. So ψ′(ȳ′, d̄) is equivalent to a formula in

the one-sorted structure. Suppose ψ(ȳ, d̄) strongly divides over C in the two-sorted structure. It

is clear that then ψ′(ȳ′, d̄) strongly divides over C in the two-sorted structure. We may assume

C ′

2 has been chosen so that d̄ is not algebraic over C ′ in either structure. It follows that ψ′(ȳ′, d̄)
8



strongly divides in the one-sorted structure over the algebraic closure of C ′ in the one-sorted

structure. This contradicts Theorem 4.3 for the one-sorted structure. Therefore condition (1)

of Theorem 4.3 is true for the two-sorted structure, provided X is a subset of a power MS1
. So

no new open sets are introduced when expanding the field sort by a generic predicate.
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