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Abstract. We investigate the isomorphism types of combina-
torial geometries arising from Hrushovski’s flat strongly minimal
structures and answer some questions from Hrushovski’s original
paper.

1. Introduction

In this paper, we investigate the isomorphism types of combinatorial
geometries arising from Hrushovski’s flat strongly minimal structures
and answer some questions from Hrushovski’s original paper [5]. It is a
sequel to [2], but can be read independently of it. In order to describe
the main results it will be convenient to summarise some of the results
from the previous paper.

Suppose L is a relational language with, for convenience, all relation
symbols of arity at least 3 and at most one relation symbol of each arity.
Denote by k(L) the maximum of the arities of the relation symbols in
L (allowing k(L) to be ∞ if this is unbounded). The basic Hrushovski
construction defines the predimension of a finite L-structure to be its
size minus the number of basic relations on the structure. The class
C0(L) consists of the finite L-structures in which this is non-negative
on all substructures. There is then an associated notion of dimension
d and the notion of self-sufficiency (denoted by ≤) of a substructure.
All of this is reviewed in detail in Section 2 below. The class (C0,≤)
has an associated generic structure M0(L) which also carries a di-
mension function d giving it the structure of an infinite-dimensional
pregeometry. The associated (combinatorial) geometry is denoted by
G(M0(L)).

In [2] we showed that:

(1) The collection of finite subgeometries of G(M0(L)) does not
depend on L (Theorem 3.8 of [2]).

(2) For languages L, L′, the geometries G(M0(L)) and G(M0(L
′))

are isomorphic iff the maximum arities k(L) and k(L′) are equal.
1
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(Theorem 3.1 of [2] for⇐ and see also Section 4.2 here; Theorem
4.3 of [2] gives ⇒.)

(3) The localization of G(M0(L)) over any finite set is isomorphic
to G(M0(L)) (Theorem 5.5 of [2]).

For the strongly minimal set construction of [5], one takes a certain
function µ (see section 2 here) and considers a subclass Cµ(L) of C0(L).
For appropriate µ there is a generic structure Mµ(L) for the class
(Cµ(L),≤) which is strongly minimal. The dimension function given by
the predimension is the same as the dimension in the strongly minimal
set and we are interested in the geometry of this. Our main result here
is that this process of ‘collapse’ is irrelevant to the geometry: under
rather general conditions on µ we prove:

(4) The geometry G(Mµ(L)) of the strongly minimal set is isomor-
phic to the geometry G(M0(L)) (Theorem 3.1).

Sections 5.1 and 5.2 of Hrushovski’s paper [5] give variations on the
construction which produce strongly minimal sets with geometries dif-
ferent from the G(M0(L)). However, we show, answering a question
from [5] (see also Section 3 of [4]):

(5) the geometries of the strongly minimal sets in Sections 5.1 and
5.2 of [5] have localizations (over a finite set) which are isomor-
phic to one of the geometries G(M0(L)) (for appropriate L)
(see Section 4.1 here).

The first version of the result in (4) was proved by the second Au-
thor in his thesis [3]: this was for the case where L has a single 3-ary
relation symbol (as in the original paper [5]). The somewhat different
method of proof used in Sections 3 and 4 here was found later. It has
the advantage of being simpler and more readily adaptable to general-
ization and proving the result in (5), however, the class of µ-functions
to which it is applicable is slightly more restricted than the result from
[3]: Theorem 6.2.1 of [3] assumes only that µ ≥ 1.

In summary, for each k = 3, 4, . . . ,∞ we have a countably-infinite
dimensional geometry Gk isomorphic to G(M0(L)) where L has max-
imum arity k, and these are pairwise non-isomorphic. The geometry
of each of the new (countable, saturated) strongly minimal sets in [5]
has a localization isomorphic to one of these Gk. Thus, whilst there
is some diversity amongst the strongly minimal structures which can
be produced by these constructions, the range of geometries which can
be produced appears to be rather limited. It would therefore be very
interesting to have a characterization of the geometries Gk in terms of
a ‘geometric’ condition (such as flatness, as in 4.2 of [5], for example)
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and a condition on the automorphism group (such as homogeneity, but
possibly with a stronger assumption).

Acknowledgement: Some of the results of this paper were produced
whilst the second Author was supported as an Early Stage Researcher
by the Marie Curie Research Training Network MODNET, funded by
grant MRTN-CT-2004-512234 MODNET from the CEC.

2. Hrushovski constructions

We give a brief description of Hrushovski’s constructions from [5].
Other presentations can be found in [7] and [1]. The book [6] of Pillay
contains all necessary background material on pregeometries and model
theory. The notation, terminology and level of generality is mostly
consistent with that used in [2].

2.1. Predimension and pregeometries. Let L be a relational lan-
guage consisting of relation symbols (Ri : i ∈ I) with Ri of arity ni ≥ 3.
We suppose there are only finitely many relations of each arity here.

We work with L-structures A where each each Ri is symmetric: so
we regard the interpretation RA

i of Ri in A as a set of ni-sets. (By
modifying the language, the arguments we give below can be adapted
to deal with the case of ni-tuples of not-necessarily-distinct elements:
see Section 4.3 here.)

For finite A we let the predimension of A be δ(A) = |A|−
∑

i∈I |Ri
A|

(of course this depends on L but this will be clear from the context).
We let C0(L) be the set of finite L-structures A such that δ(A′) ≥ 0

for all A′ ⊆ A.
Suppose A ⊆ B ∈ C0(L). We write A ≤ B and say that A is self-

sufficient in B if for all B′ with A ⊆ B′ ⊆ B we have δ(A) ≤ δ(B′).
We will assume that the reader is familiar with the basic properties
(such as transitivity) of this notion.

Let C̄0(L) be the class of L-structures all of whose finite substructures
lie in C0(L). We can extend the notion of self-sufficiency to this class
in a natural way.

Note that if A ⊆ B ∈ C̄0(L) is finite then there is a finite A′ with
A ⊆ A′ ⊆ B and δ(A′) as small as possible. In this case A′ ≤ B and
it can be shown that there is a smallest finite set C ≤ B with A ⊆ C.
We define the dimension dB(A) of A (in B) to be the minimum value
of δ(A′) for all finite subsets A′ of B which contain A.

We define the d-closure of A in B to be:

clB(A) = {c ∈ B : dB(Ac) = dB(A)}
where, as usual, Ac is shorthand for A ∪ {c}.
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These notions can be relativized: if A, C ⊆ B ∈ C0(L) define δ(A/C)
to be δ(A ∪ C)− δ(C) and dB(A/C) = dB(A ∪ C)− dB(C).

We can coherently extend the definition of d-closure to infinite sub-
sets A of B by saying that the d-closure of A is the union of the d-
closures of finite subsets of A. It can be shown that (B, clB) is a prege-
ometry and the dimension function (as cardinality of a basis) equals dB

on finite subsets of B. We use the notation PG(B) instead of (B, clB),
and denote by G(B) the associated (combinatorial) geometry: so the
elements of G(B) are the sets clB(x)\ clB(∅) for x ∈ B \ clB(∅) and the
closure on G(B) is that induced by clB. Note that if A ≤ B ∈ C̄0(L)
then for X ⊆ A we have dA(X) = dB(X). Thus G can be regarded as
a functor from (C̄0(L),≤) to the class of geometries (with embeddings
of geometries as morphisms).

If Y ⊆ B ∈ C̄0(L) then the localization of PG(B) over Y is the
pregeometry with closure operation clYB(Z) = clB(Y ∪ Z). The cor-
responding geometry is denoted by GY (B). Note that the dimension
function here is given by the relative dimension dB(./Y ).

It will be convenient to fix a first order language for the class of pre-
geometries. A reasonable choice for this is the language LPI = {In :
n ≥ 1} where each In is an n-ary relational symbol. A pregeometry
(P, cl) will be seen as a structure in this language by taking IP

n to be the
set of independent n-tuples in P . Notice that we can recover a prege-
ometry just by knowing its finite independent sets. Note also that the
isomorphism type of a pregeometry is determined by the isomorphism
type of its associated geometry and the size of the equivalence classes
of interdependence. In the case where these are all countably infinite,
it therefore makes no difference whether we consider the geometry or
the pregeometry.

2.2. Self-sufficient amalgamation classes. If B1, B2 ∈ C̄0(L) have
a common substructure A then the free amalgam E of B1 and B2 over A
consists of the disjoint union of B1 and B2 over A and RE

i = RB1
i ∪RB2

i

for each i ∈ I. It is well known that if A ≤ B1 then B2 ≤ E, so
E ∈ C̄0(L), and (C0,≤) is an amalgamation class. It can also be shown
that if A is d-closed in B1 then B2 is d-closed in E.

Suppose Y ≤ Z ∈ C0(L) and Y 6= Z. Following [5], we say that
this is an algebraic extension if δ(Y ) = δ(Z). It is a simply algebraic
extension if also δ(Z ′) > δ(Y ) whenever Y ⊂ Z ′ ⊂ Z. It is a minimally
simply algebraic (msa) extension if additionally Y ′ ⊆ Y ′ ∪ (Z \ Y ) is
not simply algebraic whenever Y ′ ⊂ Y .

The following is trivial, but crucial for us:
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Lemma 2.1. Suppose Y ≤ Z is a msa extension. Then for every
y ∈ Y there is some w ∈

⋃
i∈I RZ

i and z ∈ Z \ Y such that y, z ∈ w.
Moreover, if Z \ Y is not a singleton and z ∈ Z \ Y , then there are at
least two elements of

⋃
i∈I RZ

i which contain z.

Proof. Suppose this does not hold for some y ∈ Y . Let Y ′ = Y \ {y}.
Then for every U ⊆ Z \Y we have δ(Y ′∪U)−δ(Y ′) = δ(Y ∪U)−δ(Y ).
So Y ′ ⊆ Y ′ ∪ (Z \ Y ) is simply algebraic: contradiction. Similarly, for
the ‘moreover’ part, if z is in at most one relation in

⋃
i∈I RZ

i , then
δ(Z \ {z}) ≤ δ(Z), which contradicts the simple algebraicity. �

We let µ be a function from the set of isomorphism types of min-
imally simply algebraic extensions in C0(L) to the natural numbers.
The subclass Cµ(L) consists of structures in C0(L) which, for each msa
Y ≤ Z in C0(L), omit the atomic type consisting of µ(Y, Z)+1 disjoint
copies of Z over Y .

We will work with µ where the following holds:

Assumption 2.2 (Assumed Amalgamation Lemma). (i) If A ≤
B1, B2 ∈ Cµ(L) and the free amalgam of B1 and B2 over A
is not in Cµ(L), then there exists Y ⊆ A and minimally sim-
ply algebraic extensions Y ≤ Zi ∈ Bi (for i = 1, 2) which are
isomorphic over Y and Zi \ Y ⊆ Bi \ A.

(ii) The class (Cµ(L),≤) is an amalgamation class (see below).

Note that (ii) here follows from (i) (cf. the proof of Lemma 4 in [5]),
and by Section 2 of [5], (i) holds if µ(Y, Z) ≥ δ(Y ) for all msa Y ≤ Z
in C0(L).

2.3. Generic structures and their geometries. Suppose A is a
subclass of C0(L) such that (A,≤) is an amalgamation class: meaning
that if B ∈ A and A ≤ B then A ∈ A, and if A ≤ B1, B2 ∈ A
then there is C ∈ A and embeddings fi : Bi → C with fi(Bi) ≤ C and
f1|A = f2|A. Then there is a countable structure M∈ C̄0(L) satisfying
the following conditions:

(G1) M is the union of a chain A0 ≤ A1 ≤ A2 ≤ · · · of structures in
A.

(G2) (extension property) If A ≤ M and A ≤ B ∈ A then there
exists an embedding g : B → M such that g(B) ≤ M and
g(a) = a for all a ∈ A.

We refer to M as the generic structure of the amalgamation class
(A,≤): it is determined up to isomorphism by the properties G1 and
G2 (and G1 is automatic for countable structures in C̄0(L)). Of course,
Hrushovski’s strongly minimal sets are the generic structures Mµ(L)
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for the amalgamation classes (Cµ(L),≤). We will compare the geome-
tries of these with that of the generic structure M0(L) for the amalga-
mation class (C0(L),≤).

Suppose (A,≤) and (A′,≤) are amalgamation classes, as above. We
refer to the following as the Isomorhism Extension Property, and denote
it by A A′.

(*) Suppose A ∈ A, A′ ∈ A′ and f : G(A) → G(A′) is an isomor-
phism of geometries, and A ≤ B ∈ A. Then there is B′ ∈ A′

with A′ ≤ B′ and an isomorphism f ′ : G(B) → G(B′) which
extends f .

Lemma 2.3. Suppose (A,≤) and (A′,≤) are amalgamation classes
with generic structures M, M′ respectively. Suppose that both exten-
sion properties A A′ and A′  A hold. Then the geometries G(M)
and G(M′) are isomorphic.

Proof. We have already remarked that if A ≤ M, then the dimension
of a subset of A is the same whether computed in A or in M. Thus
G(A) is naturally a substructure of G(M). We claim that the set S of
geometry-isomorphisms

f : G(A) → G(A′)

where A ≤M, A′ ≤M′ are finite is a back-and-forth system between
G(M) and G(M′). Indeed (for the ‘forth’), given such an f : G(A) →
G(A′) and A ≤ B ≤ M, there is A′ ≤ B′ ∈ A′ and an isomorphism
f ′ : G(B) → G(B′) extending f , by our assumption A  A′. The
extension property G2 in M′ means that we can take B′ ≤ M′, as
required. Similarly we obtain the ‘back’ part from A′  A and G2 in
M. It follows that G(M) and G(M′) are isomorphic. �

3. Isomorphism of the strongly minimal set geometries

Throughout, (C0(L),≤) and (Cµ(L),≤) are the amalgamation classes
from the previous section. Note that (C0(L),≤) is an amalgamation
class and we are assuming that the amalgamation lemma 2.2 holds
for Cµ(L). We denote the generic structures by M0(L) and Mµ(L)
respectively: so the latter is Hrushovski’s strongly minimal set D(L, µ).
The geometries are denoted by G(M0(L)) etc. Our main result is:

Theorem 3.1. Suppose 2.2 holds and µ(Y, Z) ≥ 2 for all msa Y ≤
Z ∈ C0(L) with δ(Y ) ≥ 2 and µ(Y, Z) ≥ 1 when δ(Y ) = 1. Then
G(Mµ(L)) and G(M0(L)) are isomorphic geometries.
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Proof. We need to verify that the isomorphism extension property of
Lemma 2.3 holds in both directions. The main part will be to show
that C0(L) Cµ(L).

So suppose we are given A ≤ B ∈ C0(L) and A′ ∈ Cµ(L) with an
isomorphism f : G(A) → G(A′). We want to find B′ ∈ Cµ(L) with
A′ ≤ B′ and an isomorphism f ′ : G(B) → G(B′) extending f . The
main point will be to ensure that each point of B′ \ (A′ ∪ clB′(∅)) is
involved in only a small number of relations, and this gives us control
over the msa extensions in B′.

Let A0 = clA(∅) and let A1, . . . , Ar be the d-dependence classes on
A \ A0: the latter are the points of G(A). Similarly let B0 = clB(∅)
and B1, . . . , Bs the d-dependence classes on B \ B0, with Ai ⊆ Bi for
i = 1, . . . , r. List the relations on B which are not contained in A or
some B0∪Bj as ρ1, . . . , ρt. So these are finite sets. Let A′

0 = clA′(∅) and
A′

1, . . . , A
′
r be the classes of d-dependence on A′ \ A′

0, labelled so that
f(Ai) = A′

i. We construct B′
0, B

′
1, . . . , B

′
s with A′

i ⊆ B′
i for i = 0, . . . , r,

and B′ =
⋃s

i=0 B′
i in the steps below.

Terminology: If u, v ∈ E ∈ C0(L), say that u, v are adjacent in E if
there exists w ∈

⋃
i R

E
i such that u, v ∈ w.

Step 1: Construction of A′′ = A′ ∪B′
0 ∈ Cµ(L).

Take A′
0 ≤ V ∈ Cµ(L) with δ(V ) = 0 and |V \ A′

0| sufficiently large.
(For example, it is easy to show that Cµ(L) contains arbitrarily large
structures of δ-value 0; take V to be the disjoint union of A′

0 and one
of these.) Let A′′ be the free amalgam of A′ and V over A′

0 and let B′
0

be the copy of V inside this. As A′
0 is d-closed in A′ and A′

0 ≤ V it
follows from 2.2 that A′′ ∈ Cµ(L), B′

0 is d-closed in A′′ and A′ ≤ A′′.

Step 2: Construction of B′
0 ∪B′

i ∈ Cµ(L).
We do this so that B′

0 is d-closed in B′
0 ∪ B′

i and δ(B′
i ∪ B′

0) = 1. (As
δ(B′

0∪A′
i) = 1, it then follows that B′

0∪A′
i ≤ B′

0∪B′
i when 1 ≤ i ≤ r.)

Let m be sufficiently large. Choose some Ri: for example R1 of arity
n ≥ 3.

Case 1: Suppose i ≤ r. Pick bi0 ∈ A′
i and let si1, . . . , sim be disjoint

(n − 2)-subsets of B′
0 \ A′

0 (we adjust the choice of V in step 1 to
accommodate this). Let B′

i = A′
i ∪ {bi1, . . . , bim} and include as new

R1-relations on B′
0 ∪ B′

i the n-sets {bi0, bij} ∪ sij for 1 ≤ j ≤ m. We
need to show that this has the required properties.

First, note that B′
0∪A′

i ≤ B′
0∪A′

i∪{bij}, so B′
0∪A′

i∪{bij} ∈ C0(L).
Suppose Y ≤ Z is a msa extension in B′

0 ∪ A′
i ∪ {bij} not contained

in B′
0 ∪ A′

i. So sij ∪ {bi0, bij} ⊆ Z. If bij 6∈ Y then Y ≤ Z \ {bij} < Z
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is algebraic, so Z \ {bij} = Y and Y = sij ∪ {bi0}. As the elements of
sij are non-adjacent to bi0 in B′

0 ∪ A′
i, it follows that there is only one

copy of Z over Y in B′
0 ∪ A′

i ∪ {bij}. If bij ∈ Y , then by Lemma 2.1
sij ∪ {bi0} 6⊆ Y . But then there is at most one copy of Z over Y in
B′

0 ∪A′
i ∪ {bij}. Note that δ(Y ) = δ(Z) ≥ δ(Z ∩ (A′

i ∪B′
0)) ≥ 1. So in

both cases we meet the requirements for B′
0 ∪ A′

i ∪ {bij} ∈ Cµ(L).
Now note that B′

0 ∪ B′
i is the free amalgam over B′

0 ∪ A′
i of the

structures B′
0 ∪ A′

i ∪ {bij} (for j = 1, . . . ,m). Each B′
0 ∪ A′

i ⊆ B′
0 ∪

A′
i ∪ {bij} is an algebraic extension and the only msa extension in

this with base in B′
0 ∪ A′

i and which is not contained in B′
0 ∪ A′

i is
sij ∪ {bi0} ≤ sij ∪ {bi0, bij}. So the amalgamation lemma 2.2 implies
that B′

0 ∪ A′
i ≤ B′

0 ∪ B′
i ∈ Cµ(L). It is clear that δ(B′

i/B
′
0 ∪ A′

i) = 0 so
δ(B′

0 ∪B′
i) = δ(B′

0 ∪ A′
i) = δ(B′

0) + 1.
Finally, note that as B′

0 is d-closed in B′
0∪A′

i and B′
0∪A′

i ≤ B′
0∪B′

i,
the d-closure of B′

0 in B′
0 ∪ B′

i does not contain bi0. It then follows
easily that B′

0 is d-closed in B′
0 ∪B′

i.

Case 2: i > r. As in Case 1, let si1, . . . , sim be (n−2)-subsets of B′
0\A′

0

with no relations on them. Let B′
i = {bi1, . . . , bim} and include as new

R1-relations on B′
0 ∪B′

i the n-sets {bij, bi(j+1)} ∪ sij for 1 ≤ j ≤ m− 1.
In this version of the construction we take the sij to be si, independent
of j.

It is clear that δ(B′
0∪B′

i) = 1 and if ∅ 6= Y ⊆ B′
i then δ(B′

0∪Y ) ≥ 1.
So B′

0 ≤ B′
0 ∪ B′

i and therefore B′
0 ∪ B′

i ∈ C0(L), and B′
0 is d-closed in

B′
0 ∪B′

i. It remains to show that B′
0 ∪B′

i ∈ Cµ(L), so suppose Y ≤ Z1

is a msa extension in B′
0 ∪B′

i. If δ(Y ) = 0 then Z1 ⊆ B′
0 and the same

is true of any copy of Z1 over Y . Similarly, if Y ⊆ B′
0 then all copies

of Z1 over Y are contained in B′
0 as this is d-closed in B′

0 ∪ B′
i. So we

can assume that δ(Y ) ≥ 1 and bij ∈ Y for some j. By Lemma 2.1, we
can assume that si ∪ {bij, bi(j−1)} ⊆ Z1.

If Z1 \Y is a singleton then there is at most one other copy Z2 of Z1

over Y , and in this case Y = Z1 ∩ Z2 = si ∪ {bij}. Note that δ(Y ) ≥ 2
here, so µ(Y, Z1) ≥ 2, by hypothesis.

Now suppose that Z1 \ Y has at least two elements. It will suffice
to prove that there is no other copy Z2 of Z1 over Y in B′

0 ∪ B′
i, so

suppose there is such a Z2. Take j maximal such that bij ∈ Z1 ∪ Z2.
By Lemma 2.1, bij is in at least two relation in Z1 ∪Z2; but bij is only
in two relations in B′

0∪B′
i and one of these also involves bi(j+1), so this

is in Z1 ∪ Z2. This contradicts the choice of j.

Step 3: Other relations on B′.
The relations on B′ not contained in A′ or some B′

0 ∪ B′
i are ρ′1, . . . ρ

′
t.

We can choose these to be subsets of B′ \ A′′ with ρ′i ∩ ρ′j = ∅ if i 6= j,
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and ρ′i ∩B′
j 6= ∅ iff ρi ∩Bj 6= ∅ (for j ≥ 1). Note that this is possible if

m is sufficiently large. We make ρ′i of the same type as ρi (that is, in
the same Rj).

This completes the construction of B′. We now make a series of
claims about it.

Claim 1: Let U ⊆ {1, . . . , s}, and Y =
⋃

i∈U(Bi ∪B0), Y ′ =
⋃

i∈U(B′
i ∪

B′
0). Then Y ∩ A is d-closed in A iff Y ′ ∩ A′ is d-closed in A′, and in

this case we have δ(Y ) = δ(Y ′).

Let U0 = {i ∈ U : i ≤ r} and U1 = {i ∈ U : i > r}. Then
Y ∩ A =

⋃
i∈U0

(A0 ∪ Ai) and Y ′ ∩ A′ =
⋃

i∈U0
(A′

0 ∪ A′
i). Because f is

an isomorphism of geometries, one of these is d-closed (in A or A′) iff
the other is (remembering that a subset of a geometry is d-closed iff
any set properly containing it has bigger dimension). So suppose this
is the case. We compute that:

δ(Y ′) = δ(A′′ ∩ Y ′) + δ(Y ′/A′′ ∩ Y ′) = δ(A′′ ∩ Y ′) + |U1| − |J |
where J = {j : ρ′j ⊆ Y ′}. This follows from the fact that Y ′ consists
of |U0| sets of δ-value 0 over A′′ ∩ Y ′ and |U1| sets of δ-value 1 over
A′′ ∩ Y ′, and an extra |J | relations ρ′j between them. Moreover

δ(A′′ ∩ Y ′) = δ((A′ ∩ Y ′) ∪B′
0) = δ(A′ ∩ Y ′),

using, for example, the construction of A′′ as a free amalgam in step 1.
Thus we have

δ(Y ′) = δ(A′ ∩ Y ′) + |U1| − |J |.
Now, by construction (step 3) we have ρj ⊆ Y iff ρ′j ⊆ Y ′. So an
identical calculation shows that

δ(Y ) = δ(A ∩ Y ) + |U1| − |J |.
Now if one (and hence both) of A′ ∩ Y ′, A ∩ Y is d-closed (in A′,
A respectively) then they have the same dimension, and therefore as
they are d-closed they have the same δ-value. Thus, in this case δ(Y ) =
δ(Y ′), as required. 2Claim

Claim 2: B′ ∈ C0(L), B′
0 and B′

0 ∪ B′
i are d-closed in B′ and A′′ ≤ B′.

The map f ′ : G(B) → G(B′) given by f ′(Bi) = B′
i is an isomorphism

of geometries which extends f .

Note that (by construction step 2) if B′
0 ⊆ X ⊆ B′ then δ(X) ≥

δ(
⋃
{B′

0 ∪ B′
i : X ∩ B′

i 6= ∅}). In particular, if A′′ ⊆ X then we can
apply claim 1 to the latter to deduce that δ(X) ≥ δ(A′) = δ(A′′), using
the fact that A ≤ B. So A′′ ≤ B′ and it follows that ∅ ≤ B′.

Suppose Y ′ is d-closed in B′. Then B′
0 ⊆ Y ′ (as δ(B′

0) = 0) and as
above, Y ′ is of the form

⋃
i∈U(B′

0∪B′
i) for some U . Moreover Y ′∩A′ is
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d-closed in A′ and so we can apply claim 1. It follows from this that B′
0

is d-closed in B′ and the d-closed sets of dimension 1 are the B′
0 ∪ B′

i,
by using the fact that the corresponding statements hold in B.

It remains to show that f ′ is an isomorphism of geometries. Let Y ,
Y ′ be as in claim 1. We need to show that Y is d-closed in B iff Y ′ is
d-closed in B′. So suppose Y is d-closed in B. Then Y ∩ A is d-closed
in A and so we can apply Claim 1 to get that δ(Y ) = δ(Y ′). Suppose
for a contradiction that Y ′ is not d-closed in B′. Let Z ′ be its d-closure
in B′. So Z ′ =

⋃
i∈Q(B′

0 ∪ B′
i) for some Q with U ⊂ Q ⊆ {1, . . . , s}

and δ(Z ′) ≤ δ(Y ′). Let Z =
⋃

i∈Q(B0 ∪ Bi). So Y ⊂ Z. Because Z ′

is d-closed in B′ and therefore Z ′ ∩ A′ is d-closed in A′, we can apply
Claim 1 to get that δ(Z) = δ(Z ′). So we have

δ(Z) = δ(Z ′) ≤ δ(Y ′) = δ(Y )

and this contradicts the fact that Y is d-closed and Y ⊂ Z. Thus Y ′ is
d-closed in B′. The argument for the converse implication is the same.
2Claim

Claim 3: B′ ∈ Cµ(L).

Suppose that Y ≤ Z is a minimally simply algebraic extension in
B′. First suppose δ(Y ) = δ(Z) ≤ 1. Then Y ⊆ B′

0 ∪B′
i for some i and

as B′
0∪B′

i is d-closed in B′, any copies of Z over Y in B′ are contained
in B′

0 ∪B′
i. So there are at most µ(Y, Z) of these as B′

0 ∪B′
i ∈ Cµ(L).

Now suppose that δ(Y ) ≥ 2 and suppose for a contradiction that Zi

(for i = 1, . . . , µ(Y, Z) + 1) are disjoint copies in B′ of Z over Y ⊆ B′

(meaning that the sets Zi \ Y are disjoint, of course).
If y ∈ Y then y is in some relation in RZ

k \ RY
k (for some k ∈ I)

by Lemma 2.1. Thus y is in at least three relations in RB′

k (one in
each RZi

k \ RY
k ). By inspection of the construction one therefore sees

that y ∈ A′′ or y = bij for some i > r. In the latter case, two of the
(at most) three relations in B′ which involve bij are si ∪ {bi(j−1), bij}
and si ∪ {bi(j+1), bij}. So we can assume that the first is a subset of
Z1 (and not a subset of Y ) and the second is a subset of Z2. But this
implies that si ⊆ Y . However, there is no other relation which contains
{bij} ∪ si: contradicting the fact that Z3 is a copy of Z1 over Y .

Thus Y ⊆ A′′. As A′′ ∈ Cµ(L) not all of the Zi are subsets of A′′, so
we can assume that Z1 6⊆ A′′. As A′′ ≤ B′ we have Y ⊆ A′′ ∩ Z1 ≤ Z1

so (by the simplicity of the extension) Z1 ∩ A′′ = Y .
Note that Z1 is in the d-closure of Y so we cannot have Y ⊆ B′

0. Let
y ∈ Y \B′

0. This is adjacent in Z1 to some z ∈ Z1 \ Y . So y ∈ A′′ \B′
0

is adjacent in B′ to z ∈ B′ \ A′′. Inspection of the construction shows
that y = bi0 (for some i ≤ r) and z = bij. Then the adjacency of y and
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z in Z1 forces sij ⊆ Z1, and so sij ⊆ Y (as A′′ ∩ Z1 = Y ). But then
Y ≤ Y ∪ {bij} is a simply algebraic extension in Z1. As Y ≤ Z1 is a
minimally simply algebraic extension, this implies Y = {bi0} ∪ sij and
Z1 = {bi0, bij} ∪ sij. However, there is no other relation in B′ which
contains this Y (by construction), so we have a contradiction. 2Claim

Claims 2 and 3 finish the proof of the isomorphism extension property
C0(L) Cµ(L).

For the other direction, we can use the same construction (it is a
special case of the the above as Cµ(L) ⊆ C0(L)). Of course, in this case
we do not need Claim 3. �

4. Further isomorphisms

4.1. Localization of non-isomorphic geometries. In this subsec-
tion the language L has just a single 3-ary relation R. We often sup-
press L in the notation.

In 5.2 of [5] Hrushovski varies his strongly minimal set construc-
tion to produce examples where the model-theoretic structure of the
strongly minimal set can be read off from the geometry: lines of the ge-
ometry have three points, and colinear points correspond to instances
of the ternary relation. He thereby produces continuum-many non-
isomorphic geometries of (countable, saturated) strongly minimal struc-
tures, but asks whether these examples are locally isomorphic. We show
that this is the case: in fact, localizing any of them over a 4-dimensional
set gives a geometry isomorphic to G(M0(L)), the geometry of the
generic structure for (C0(L),≤).

In 5.2 of [5], Hrushovski considers

K0 = {A ∈ C0(L) : B ≤ A for all B ⊆ A with |B| ≤ 3}.
We state the following without proof:

Lemma 4.1. With the above notation:

(i) If A ≤ B1, B2 ∈ K0 and the free amalgam of B1 and B2 over
A is not in K0, then there exist a, a′ ∈ A and bi ∈ Bi \ A with
R(a, a′, bi) holding in Bi (for i = 1, 2).

(ii) The class (K0,≤) is an amalgamation class.

More generally, given a function µ as before, we can consider Kµ =
K0 ∩ Cµ(L) and for appropriate µ, the class (Kµ,≤) will satisfy As-
sumption 2.2. In fact, we only need to define µ(Y, Z) for δ(Y ) ≥ 3.
For suppose Y ≤ Z is a minimally simply algebraic extension in K0

and δ(Y ) = δ(Z) ≤ 2. Then Z has at most 3 elements: otherwise
there is a subset W ⊆ Z of size 3 with W 6∈ RZ , and then W is not
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self-sufficient in Z, contradicting the definition of K0. It follows that
the value of µ(Y, Z) is irrelevant for such Y ≤ Z: the multiplicity is
already controlled by the definition of K0.

Denote the generic structure of (Kµ,≤) by Nµ. The d-closure of two
points in Nµ has size 3 (as above), so certainly G(Nµ) and G(M0(L))
are non-isomorphic. In fact, we can recover the relation R from the
geometry G(Nµ) as the 3-sets with dimension 2. Thus different µ give
different geometries.

We show:

Theorem 4.2. Suppose µ(Y, Z) ≥ 3 for all msa Y ≤ Z in K0 with
δ(Y ) ≥ 3. Let X ≤ Nµ and d(X) = 4. Then the localization GX(Nµ)
is isomorphic to G(M0(L)).

Proof. Suppose we are given A ≤ B ∈ C0(L) and X ≤ A′ ∈ Kµ with
X consisting of 4 points (and no relations) and an isomorphism f :
G(A) → GX(A′). We want to find B′ ∈ Kµ with A′ ≤ B′ and an
isomorphism f ′ : G(B) → GX(B′) extending f . This is very similar
to the the construction of B′ in the proof of Theorem 3.1 and we will
only indicate what needs to be modified and provide extra argument
as required.

Let A0 = clA(∅) and let A1, . . . , Ar be the d-dependence classes on
A \ A0: the latter are the points of G(A). Similarly let B0 = clB(∅)
and B1, . . . , Bs the d-dependence classes on B \ B0, with Ai ⊆ Bi for
i = 1, . . . , r. List the relations on B which are not contained in A or
some B0 ∪ Bj as ρ1, . . . , ρt. So these are 3-sets and note that each of
them intersects three different Bi. Let A′

0 = clA′(X) and A′
1, . . . , A

′
r

be the classes of d-dependence over X on A′ \ A′
0, labelled so that

f(Ai) = A′
i. We construct B′

0, B
′
1, . . . , B

′
s with A′

i ⊆ B′
i for i = 0, . . . , r,

and B′ =
⋃s

i=0 B′
i in the following way.

Step 1: Construction of A′′ = A′ ∪B′
0 ∈ Kµ.

This is as before, but we need to take V ∈ Kµ: we can do this because
algebraic extensions of X can be arbitrarily large.

Step 2: Construction of B′
0 ∪B′

i ∈ Kµ.
The construction is as in Theorem 3.1 for i ≤ r. In the case i > r we
vary the construction by taking the sij to be distinct. The proofs that
B′

0 is d-closed in B′
0 ∪ B′

i are as before; as are the arguments which
show that if Y ≤ Z is a msa extension in K0 with δ(Y ) ≥ 3 then there
are at most µ(Y, Z) copies of Z over Y in B′

0 ∪ B′
i. So it remains to

show that B′
0 ∪B′

i ∈ K0.
If i ≤ r, then using the amalgmation lemma 4.1 as in Step 2, Case 1

of Theorem 3.1, it will suffice to show that B′
0 ∪ A′

i ∪ {bij} ∈ K0. This
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is the free amalgam of {sij, bi0, bij} and B′
0 ∪ A′

i over {sij, bi0}. So we
can apply 4.1 (because {sij, bi0} is in no relation in B′

0 ∪ A′
i).

Now suppose i > r. We analyse the possibilities for δ(Y ) when
Y ⊆ B′

0 ∪B′
i, Y 6⊆ B′

0 and |Y | > 1. As Y ∩B′
0 is d-closed in Y we have

δ(Y ) > δ(Y ∩B′
0). If Y ∩B′

0 = ∅ then by the construction, δ(Y ) = |Y |.
If Y ∩ B′

0 is a singleton then Y has at most one relation (because the
sij are distinct), so δ(Y ) > 1 and δ(Y ) ≥ |Y | − 1. In the remaining
case, δ(Y ∩ B′

0) ≥ 2 (as B′
0 ∈ K0), so δ(Y ) ≥ 3. Thus, Y consists of

2 points, or is 3 points in a relation, or has δ(Y ) ≥ 3. It follows that
B′

0 ∪B′
i ∈ K0.

Step 3: Other relations on B′.
As before.

Claim 1: Let U ⊆ {1, . . . , s}, and Y =
⋃

i∈U(Bi ∪B0), Y ′ =
⋃

i∈U(B′
i ∪

B′
0). Then Y ∩ A is d-closed in A iff Y ′ ∩ A′ is d-closed in A′, and in

this case we have δ(Y ) = δ(Y ′/B′
0).

The same proof works, noting that in B′ we work over B′
0.

Claim 2: B′ ∈ C0(L), B′
0 and B′

0 ∪ B′
i are d-closed in B′ and A′′ ≤ B′.

The map f ′ : G(B) → GX(B′) given by f ′(Bi) = B′
i is an isomorphism

of geometries which extends f .
This is as before, using the modified version of Claim 1.

Claim 3: If i 6= j then B′
0 ∪B′

i ∪B′
j ∈ Kµ and B′

0 ∪B′
i ∪B′

j ≤ B′.

By construction B′
0∪B′

i∪B′
j is the free amalgam of B′

0∪B′
i and B′

0∪B′
j

over B′
0, and B′

0 is d-closed in each. So the first statement follows from
the assumed amalgamation lemma. The second statement follows from
Claim 1: because each B0 ∪ Bi is d-closed in B, the union of at least
two of these has δ-value at least 2. 2Claim

Claim 4: B′ ∈ K0.

We need to show that if D ⊆ B′ has size at most 3 then D ≤ B′. If
|D| ≤ 2 then D ⊆ B′

0 ∪B′
i ∪B′

j for some i, j and it follows from Claim
3 that D ≤ B′

0 ∪ B′
i ∪ B′

j ≤ B′. So suppose D has size 3 and D ⊆ C
with δ(C) < δ(D). We must have δ(C) = 2 (as any two points of D
are self-sufficient in C and have δ-value 2). As A′′ ∈ K0 there is an i
such that C ∩ (B′

i \ A′′) 6= ∅. Note that C is not contained in B′
0 ∪ B′

i

(because this is in Kµ), so as B′
0 is d-closed in B′

0 ∪B′
i and the latter is

d-closed in B′, we have

0 ≤ δ(C ∩B′
0) < δ(C ∩ (B′

0 ∪B′
i)) < δ(C) = 2.

Thus δ(C ∩B′
0) = 0, so C ∩B′

0 = ∅.
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It then follows from Step 2 of the construction that there is no ad-
jacency in C between points of C ∩ A′′ and points of C \ A′′. Let
q = |{j : ρ′j ⊆ C}|. Then (using A′′ ≤ B′; so C ∩ A′′ ≤ C)

2 ≥ δ(C/C ∩ A′′) = |C \ A′′| − q ≥ 2q

as the ρ′j are disjoint. If q = 0 then C is C ∩ A′′ together with some
isolated points, and this is in Kµ (so not possible in this situation). If
q = 1 then C consists of 3 points in a single relation and this has no
subset of the form required for D. 2Claim

Claim 5: B′ ∈ Kµ

We already know that B′ ∈ K0, so we need to show that B′ ∈ Cµ(L),
at least as far as msa extensions Y ≤ Z with δ(Y ) ≥ 3 are concerned.
So suppose Z1, . . . , Z4 are disjoint copies of Z over Y in B′. Then each
element y ∈ Y is in at least 4 relations (using 2.1, as before), so by
construction, y ∈ A′′. Thus Y ⊆ A′′ and the rest of the proof is just as
in Claim 3 of Theorem 3.1. 2Claim

Claims 2 and 5 finish the proof of one direction of the isomorphism
extension property. For the other direction, suppose we are given X ≤
A ≤ B ∈ Kµ and A′ ∈ C0(L) with an isomorphism f : GX(A) → G(A′).
We want A′ ≤ B′ ∈ C0(L) and an isomorphism f ′ : GX(B) → G(B′)
extending f . Let X̄ consist of X with the four 3-sets as relations. So
δ(X̄) = 0. Let Ā consist of A with X replaced by X̄. Define B̄ similarly.
Then Ā ≤ B̄ ∈ C0(L) (as in the First Changing Lemma, Lemma 4.1
of [2]). Moreover, as in the Fourth Changing Lemma (Lemma 5.3
of [2]), the map h : GX(B) → G(B̄) given by clB(Xb) 7→ clB̄(b) is
an isomorphism of geometries sending GX(A) to G(Ā). So we have
an isomorphism of geometries f̄ : G(Ā) → G(A′) (given by f̄ = f ◦
(h|A)−1), and Ā ≤ B̄ ∈ C0(L), and it will suffice to find B′ ∈ C0(L) and
f̄ ′ : G(B̄) → G(B′) extending f̄ . We do this using the construction as
at the end of the proof of Theorem 3.1. �

Remark 4.3. The result is also true with d(X) = 3: all we really used
was that acl(X) is infinite in the generic structure. The final paragraph
of the above proof needs some slight modification in this case.

Remark 4.4. Note that K0 can be considered as Kµ where µ(Y, Z) is
formally given the value ∞ for all msa Y ≤ Z ∈ K0. Thus the above
argument also shows that the geometry of N0, the generic for (K0,≤),
is locally isomorphic to G(M0(L)).

Remark 4.5. Another variation is given in 5.1 of [5]. Let k ≥ 2 and
consider the language L with a single (k + 1)-ary relation symbol R.
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Let
C ′0(L) = {A ∈ C0(L) : δ(B) ≥ min(|B|, k) ∀B ⊆ A}.

So if C ⊆ A ∈ C ′0(L) and |C| ≤ k then C ≤ A. Hrushovski observes
that (C ′0(L),≤) is a free amalgamation class and that the assumed
amalgamation lemma 2.2 holds for (C ′µ,≤), for suitable µ ≥ 2. The
generic structures here are strongly minimal and any k points are in-
dependent. So the geometries are again different from that of M0(L).
However, they are again locally isomorphic. To see this we proceed as
in Theorem 4.2, but take X to be a set of size k. The construction and
proof are essentially the same as before, except for in Claim 4 where
to show that B′ ∈ C ′0(L) we modify the argument as follows.

Suppose C ⊆ B′ has δ(C) < k and |C| ≥ k + 1. Then for some i we
have:

0 ≤ δ(C ∩B′
0) < δ(C ∩ (B′

0 ∪B′
i)) < δ(C) ≤ k − 1.

So δ(C ∩ B′
0) ≤ k − 3 and therefore |C ∩ B′

0| ≤ k − 3. Then by
construction there is no adjacency in C between points of C ∩ A′′ and
points of C \ A′′. So (with q as before):

k − 1 ≥ δ(C/C ∩ A′′) = |C \ A′′| − q ≥ kq.

Thus q = 0 and we have a contradiction.

4.2. Changing the language and predimension. Recall that the
language L consists of relation symbols {Ri : i ∈ I} with Ri of arity
ni (and only finitely many symbols of each arity). Suppose that L0 =
{Ri : I ∈ I0} is a sublanguage with the property that for every i ∈ I
there is j ∈ I0 such that ni ≤ nj. For example, if I is finite we can
take L0 to consist of a relation symbol of maximal arity in L. The
following is essentially Theorem 3.1 of [2], but working with sets rather
than tuples: we omit most of the details of the proof.

Theorem 4.6. The geometries G(M0(L)) and G(M0(L0)) are iso-
morphic.

Proof. We can use the construction in Theorem 3.1 to show that C0(L) 
C0(L0) holds. In step 3 of the construction, if ρi is a k-set then we take
ρ′i to be a k′-set with k′ ≥ k: the condition on L0 allows us to do this.
Claims 1 and 2 of Theorem 3.1 then go through exactly as previously.
The direction C0(L0) C0(L) follows as in Theorem 3.1. �

Remark 4.7. Theorem 3.1 of [2] works with a predimension of the
form:

δα(A) = |A| −
∑
i∈I

αi|RA
i |,
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where the αi are natural numbers. We can adapt the argument here
to deal with such predimensions. For example, suppose I is finite and
R1 is of maximal arity and α1 = 1. Let L0 consist of R1. Then, as in
Theorem 3.1 of [2], G(M0(L)) is isomorphic to G(M0(L0)). To show
that Cα

0 (L)  C0(L0) (where Cα
0 (L) is defined using the predimension

δα) we perform the same construction except that in step 3, if ρj is of
type Ri then we add αi corresponding ρ′j (but still disjoint etc).

4.3. Sets versus tuples. We have chosen to work with structures A
where the relations RA

i are sets of ni-sets. As was done in [2] we could
also have worked more generally with structures A where the RA

i are
sets of ni-tuples and the predimension is still given by |A| −

∑
i |RA

i |.
Let Ĉ0(L) denote the class of these finite structures with ∅ ≤ A.

Theorem 4.8. The geometries of the generic structures of the amal-
gamation classes (C0,≤) and (Ĉ0(L),≤) are isomorphic.

Proof. This is the usual sort of proof using the construction. For ex-
ample, to show Ĉ0(L) C0(L) we replace an ni-tuple ρj (in RB

i \ RA)
by an ni-set, using the new d-dependent points to eliminate repetitions
of points in the tuple or different enumerations of the same set. �
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