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WEAKLY ONE-BASED GEOMETRIC THEORIES

ALEXANDER BERENSTEIN AND EVGUENI VASSILIEV

Abstract. We study the class of weakly locally modular geometric theories
introduced in [5], a common generalization of the classes of linear SU-rank
1 and linear o-minimal theories. We �nd new conditions equivalent to weak
local modularity: weak one-basedness and the absence of type de�nable almost
quasidesigns. Among other things, we show that weak one-basedness is closed
under reducts and generic predicate expansions. We also show that a lovely
pair expansion of a non-trivial weakly one-based ω-categorical superrosy thorn
rank 1 theory interprets an in�nite vector space over a �nite �eld.

1. Introduction
It is a well known fact [21] that for a strongly minimal theory T , the following

conditions are equivalent: i) T is linear, ii) T is 1-based, iii) T is locally modular.
Furthermore, these conditions are preserved under reducts. For a simple SU -rank
one theory T the picture changes slightly, it is proved in [23, 5] that for such a
theory T , it is equivalent that: i) T is 1-based, ii) T is linear and iii) T is weakly
locally modular (see De�nition 2.1). It is also known (e.g. see [23]) that in the
SU -rank one setting local modularity is a strictly stronger condition than being 1-
based. A more general framework where we can still study the geometry associated
to the algebraic closure is the class of geometric theories. Recall that a geometric
theory is a complete theory T such that for any model M |= T , the algebraic
closure satis�es the Exchange Property and in addition T eliminates the quanti�er
∃∞. Examples include strongly minimal theories, simple SU rank 1 theories, dense
o-minimal theories and the theory of the p-adics. Inside a model of a geometric
theory, algebraic independence gives a good notion of independence for real tuples.
A key example of the behavior of linearity in o-minimal theories is the following
theory �rst introduced in [15].

Example 1.1. Let R = (R, +, <, f |(−1,1)) where f is de�ned by f(x) = πx.
Clearly, f |(−1,1) can be extended to all of R by f(x) = nf

(x

n

)
for x ∈ (−n, n),

however this extension is not uniformly de�nable, and thus in a su�ciently satu-
rated model R∗ of T = Th(R), we cannot de�ne f(x) for �in�nite" elements. As
the theory of a reduct of a vector space over Q(π), T is a linear (CF) theory, but
it is not locally modular. It is also shown in [21] that T does not have almost
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canonical bases, i.e. a smallest algebraically closed subset over which a type is free.
The theory T also fails to be 1-based, i.e. there is M |= T saturated and there are
sets A,B ⊂ M such that A 6 |̂

acleq(A)∩acleq(B)
B.

The example above shows that inside a geometric theory T , local modularity
and 1-basedness do not need to be preserved under reducts. The main reason for
the failure of the second condition is the absence of almost canonical bases in the
reduct.

The origin of the expression 1-basedness comes from the concept that in a 1-based
simple theory one element in a Morley sequence contains all the information about
the original type (in general we require a countable Morley sequence to recover all
the information). Following this idea we introduce the notion of weak 1-basedness
(see De�nition 2.3), prove that this notion coincides, in the setting of geometric
structures, with the notion weak local modularity introduced in [5] (see De�nition
2.1) and �nally show that it is preserved under reducts.

The main goal of this paper is to study the class of weakly 1-based geometric
structures. All linear o-minimal theories, including the one presented in Example
1.1, as well as linear SU rank 1 theories are examples of weakly 1-based theories.

Our work is divided as follows:
In the second section of this paper we de�ne weak local modularity, weak 1-

basedness and show that the notions coincide. We also introduce the notion of type
de�nable almost quasidesigns, prove that it coincides with weak local modularity
and use it to show that a reduct of a weakly locally modular theory is again weakly
locally modular.

In section three we study the geometry associated to a weakly 1-based geometric
theory. We follow the approach from [23] and show that a lovely pair associated to
a non-trivial weakly 1-based ω-categorical superrosy thorn rank 1 theory interprets
an in�nite vector space over a �nite �eld.

In section four we generalize the notion of weak 1-basedness to the setting of
rosy theories. We show that, under some mild assumptions, if T is a thorn rank
one rosy weakly 1-based theory, then the associated theory TP of lovely pairs of T
is again weakly 1-based.

In section �ve we concentrate on examples: we show that the expansion of a
weakly 1-based theory with a generic predicate is again weakly 1-based and prove
that divisible groups with the Mann property inside a real closed �eld with the
induced structure from the �eld are also weakly 1-based. Finally, in the last section,
we show that the dense embeddings studied by Macintyre in [16] are a special case
of lovely pairs of geometric structures.

We assume that the reader is familiar with the results on lovely pairs of geomet-
ric structures presented in [5] (although no familiarity with lovely pairs is needed
for most of section 2 and section 5). We will now recall the de�nition and basic
properties of lovely pairs.

De�nition 1.2. We say that an elementary pair of models P (M) ¹ M of a geo-
metric theory T is a lovely pair of models of T if

(1) (density/coheir property) if A ⊂ M is algebraically closed and �nite dimen-
sional and q ∈ S1(A) is non-algebraic, then there is a ∈ P (M) such that
a |= q;
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(2) (extension property) if A ⊂ M is algebraically closed and �nite dimensional
and q ∈ S1(A) is non-algebraic, then there is a ∈ M , a |= q and a 6∈
acl(A ∪ P (M)).

Any elementary pair of models extends to a lovely one. Any two lovely pairs
of models of a geometric theory are elementarily equivalent, thus giving rise to a
complete theory TP in the expanded language LP = L(T )∪{P}. The class of lovely
pairs of models of T is almost an elementary class: su�ciently saturated models of
TP are again lovely pairs.

Lovely pairs of geometric structures are a common generalization of lovely pairs
of supersimple SU-rank 1 structures [23] and (su�ciently saturated) dense pairs of
o-minimal expansions of ordered abelian groups [10].

Given a pair (M,P ) and a set A ⊂ M , we say that A is P -independent, if
A |̂

P (A)
P (M) where P (A) = A ∩ P (M). Any two P -independent tuples ~a and ~b

in a lovely pair, satisfying the same quanti�er free LP -type, have the same LP -type.
When working in lovely pairs, we will refer to the operator

scl(−) = acl(− ∪ P (M))

as the small closure. Note that a small closure of any set is algebraically closed in
the sense of TP . We write tpP and aclP for types and algebraic closure in the sense
of TP .

The following is a result of Boxall [6] (generalizing a fact from [23] to the setting
of superrosy theories of þ-rank 1):
Fact 1.3. Suppose T is a þ-rank 1 theory that eliminates ∃∞. Then TP is superrosy
of þ-rank ≤ ω. Moreover:

(1) Any de�nable �large" set in a lovely pair (M, P ) (i.e. a set de�nable over A
such that it has a realization in M\ acl(P (M) ∪A)) does not þ-divide over
∅.

(2) Any in�nite de�nable subset of P (M) does not þ-divide over ∅. In partic-
ular, P (M) has þ-rank 1 in (M, P ).

Thus, when T is rosy of thorn rank 1, TP is again super-rosy; we write |̂ P for
thorn independence in models of TP .

2. Weak local modularity, weak 1-basedness and linearity
Our goal in this section is to study, in the setting of geometric theories, ana-

logues to the notions of local modularity, 1-basedness and linearity that are well
understood in the setting of minimal stable theories [20] and SU -rank one simple
theories [23].

In [5] we studied a notion called weak local modularity using lovely pairs of
structures and provided several characterizations of it. We recall the de�nition:
De�nition 2.1. (See [5, Theorem 1]) Let T be a geometric theory. We say that
T is weakly locally modular if for M |= T saturated and A,B ⊂ M there exist
C |̂ AB such that A |̂

acl(AC)∩acl(BC)
B

In [5] we showed this notion coincided with 1-basedness for SU -rank one simple
theories and with linearity for o-minimal theories. We have also shown that weak
local modularity is equivalent to aclP = acl and to modularity of scl in models of
TP . We also proved:
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Fact 2.2. ([5, Proposition 4.8]) If T is a weakly locally modular superrosy geometric
theory of þ-rank 1, then TP has þ-rank ≤ 2.

Note that in the SU-rank 1 case [23], weak local modularity of T is actually
equivalent to SU-rank of T being ≤ 2.

We now introduce a notion that is an analogue of 1-basedness in the setting of
geometric theories.

De�nition 2.3. Let T be a geometric theory. We say that T is weakly 1-based
if whenever M |= T is saturated, ~a ∈ M and B ⊂ M , there is ~a′ |= tp(~a/B)
independent from ~a over B, such that ~a |̂

~a′
B.

In the stable or simple setting, a rank one theory is locally modular if and only
if it is 1-based. The proof uses the notion of canonical bases. An analogue of his
notion can be de�ned in the setting of geometric structures, see for example [21]:

De�nition 2.4. Let T be a geometric theory and let M |= T be saturated.
We say T has almost canonical bases if whenever A ⊂ M is algebraically closed
and a1, . . . , an ∈ M , there is a smallest B ⊂ A algebraically closed such that
tp(a1, . . . , an/A) is free over B.

The main problem with this notion is that almost canonical bases need not exist
in geometric structures (see [21] and Example 1.1). When they exists, the proofs
in [23] that show the equivalence of local modularity and 1-basedness for SU -rank
one simple theories can be used almost word-by-word to prove the equivalence of
weak local modularity and weak 1-basedness in the setting of geometric theories.
Instead, we will show that weak local modularity agrees with weak 1-basedness
using stronger formulations of weak 1-basedness.

We start with a technical lemma.

Lemma 2.5. Let T be a geometric theory and let M |= T be saturated. Let ~a ∈ M ,
B ⊂ M and ~a′ ∈ M be such that tp(~a/B) = tp(~a′/B), ~a |̂

B
~a′ and ~a |̂

~a′
B. Then

~a′ |̂
~a

B.

Proof. We can write ~a = ~a1~a2, where ~a1 is an independent tuple over B and ~a2 ∈
acl(~a1, B). In the same way write ~a′ = ~a′1~a

′
2 with tp(~a1,~a2/B) = tp(~a′1,~a

′
2/B). Note

that dim(~a1~a2~a
′
1~a
′
2) = dim(~a1~a2)+dim(~a′1~a

′
2/~a1~a2) = dim(~a′1~a

′
2)+dim(~a1~a2/~a

′
1~a
′
2),

so dim(~a′/~a) = dim(~a/~a′) = dim(~a/B~a′) = dim(~a/B) = |~a1| = |~a′1|. Thus
dim(~a′/~a) = |~a′1| = dim(~a′/B~a) and ~a′ |̂

~a
B. ¤

Proposition 2.6. Let T be a geometric theory and let M |= T be saturated. Then
the following conditions are equivalent:

(1) T is weakly 1-based.
(2) Whenever ~a ∈ M , B ⊂ M , there is C |̂

B
~a such that for all ~a′ |=

tp(~a/ acl(BC)) independent from ~a over BC, we have ~a |̂
~a′

B.
(3) Whenever ~a ∈ M , B ⊂ M , there is C |̂

B
~a such that for all ~a′ |=

tp(~a/ acl(BC)) independent from ~a over BC, we have ~a |̂
~a′

BC.

Proof. (1) =⇒ (2). Let ~a ∈ M and B ⊂ M . Since T is weakly 1-based, there
exists ~a′ |= tp(~a/B) such that ~a′ |̂

B
~a and ~a′ |̂

~a
B. Let C = ~a′1.

Claim Whenever ~c |= tp(~a/ acl(BC)) is independent from ~a over BC, we have
~a is independent from B over ~c.
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Let ~c |= tp(~a/ acl(BC)) be such that ~c |̂
BC

~a. Since ~a |̂
~a′

B, we have ~cB |̂
~a′

~a
and thus

B |̂
~a′~c

~a (∗)

Since ~a |̂
~a′

B and ~c |= tp(~a/BC) we get ~c |̂
~a′

B. Using Lemma 2.5 this implies
~a′ |̂

~c
B and together with (∗) we get B |̂

~c
~a.

(2) =⇒ (3). This direction is mostly forking calculus. With the assumptions
from (3), we can show using condition (2) that ~a |̂

~a′
B. On the other hand, we

have ~a |̂
BC

~a′ and ~a |̂
B

C, so by transitivity ~a |̂
B

C~a′ and thus ~a |̂
B~a′

BC.
This fact together with ~a |̂

~a′
B gives us ~a |̂

~a′
BC as desired.

(3) =⇒ (1) is clear. ¤

Theorem 2.7. Let T be a geometric theory. Then the following conditions are
equivalent:

(1) T is weakly 1-based.
(2) T is weakly locally modular.

Proof. (2) =⇒ (1). Let M |= T be saturated. Let ~a1,~a1 ∈ M and B ⊂ M be
such that ~a1 is an independent tuple over B and ~a2 ∈ acl(B,~a1). Since T is weakly
locally modular, there exists C |̂ ~a1~a2B such that ~a1~a2 |̂

acl(~a1~a2C)∩acl(BC)
BC

Let ~a′1~a
′
2 |= tp(~a1~a2/ acl(BC)) be independent from ~a1~a2 over acl(BC). Then

acl(~a1~a2C) ∩ acl(BC) = acl(~a′1~a
′
2C) ∩ acl(BC), so ~a1~a2 |̂

acl(~a′1~a
′
2C)∩acl(BC)

BC. It
is also clear that ~a1~a2 |̂

BC
~a′1~a

′
2BC. Thus

tp(~a1~a2/ acl(~a′1~a
′
2C) ∩ acl(BC)) ⊂ tp(~a1~a2/ acl(BC)) ⊂ tp(~a1~a2/ acl(~a′1~a

′
2BC))

is a chain of free extensions, so ~a1~a2 |̂
acl(~a′1~a

′
2C)∩acl(BC)

~a′1~a
′
2BC and thus ~a1~a2 |̂

~a′1~a
′
2C

B.
On the other hand, since C |̂ ~a′1~a

′
2B, we have ~a′1~a

′
2C |̂

~a′1~a
′
2
~a′1~a

′
2B, and by sym-

metry and transitivity of independence ~a1~a2 |̂
~a′1~a

′
2
B as we wanted.

(1) =⇒ (2). LetM |= T be saturated. Let ~a,~b ∈ M and B ⊂ M be such that ~a

is an independent tuple over B and ~b ∈ acl(B,~a). Since T is weakly 1-based there
exists ~a′~b′ |= tp(~a~b/B) such that ~a~b |̂

B
~a′~b′ and ~a~b |̂

~a′~b′
B. Let C = ~a′, notice

that C |̂ B~a~b and ~a~b |̂
~a′~b′

BC.
Claim ~a~b |̂

acl(~a~bC)∩acl(BC)
B.

First note that~b′ ∈ acl(B~a′). Since ~a~b |̂
~a′~b′

B by Lemma 2.5 we have ~a′~b′ |̂
~a~b

B

and thus~b′ ∈ acl(~a′~a~b). Thus ~a′~b′ ∈ acl(~a~bC)∩acl(BC) and we get ~a~b |̂
acl(~a~bC)∩acl(BC)

B

as desired. ¤

Remark 2.8. By Theorem 4.3, [5], in the de�nition of weak local modularity we
can assume that one of the two sets is in fact a 2-tuple, i.e. we require that for
any ab and a set B such that a ∈ acl(Bb), there exists a C |̂ ∅Bab such that
a ∈ acl(Cbd) for some d ∈ acl(BC). Therefore in the proof of ((1) =⇒ (2)) above
we can assume that ~a and ~b are 1-tuples. Thus in the de�nition of weak 1-basedness
and in the conditions (2) and (3) in 2.6 we may assume that ~a is a 2-tuple.
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Now we will connect weak 1-basedness with the notion of quasidesign. It is
well-known that a stable theory is 1-based if and only if T has no complete-type-
de�nable quasidesign (see [20]). In our setting, we need to introduce the following
modi�cation.
De�nition 2.9. We say that a partial type r(~x, ~y) over a set A de�nes a partial
almost quasidesign, if

(1) there are ~b, ~c such that |= r(~b,~c), ~b 6∈ acl(~c,A) and ~c 6∈ acl(~b,A);
(2) whenever ~c 6∈ acl(~c′, A) and ~c′ 6∈ acl(~c,A), r(~x,~c) ∧ r(~x, ~c′) is �nite.

If r is complete, we refer to such partial quasidesign as complete. In the complete
case, we can replace �there are� by �for any� in (1). Clearly, any partial quasidesign
gives rise to a complete one, if we take tp(~b~c/A) where ~b and ~c come from (1).
Proposition 2.10. The following are equivalent for any geometric theory T .

(1) T is weakly 1-based
(2) T does not have a partial almost quasidesign
(3) T does not have a complete almost quasidesign

Proof. (1 → 2) Suppose T is weakly 1-based, and r(~x, ~y) de�nes a partial almost
quasidesign. Adding the parameters of r to the language, we may assume that r is
de�ned over ∅. Take ~b and ~c such that |= r(~b,~c), ~b 6∈ acl(~c) and ~c 6∈ acl(~b). By weak
1-basedness we can �nd ~c′ |= tp(~c/~b) such that ~c′ |̂ ~b

~c and ~c |̂ ~c′
~b. Then |= r(~b, ~c′),

~c 6∈ acl(~c′) and ~c′ 6∈ acl(~c), and therefore r(~x,~c) ∧ r(~x, ~c′) is �nite. But this means
that ~b ∈ acl(~c, ~c′), a contradiction with ~b 6∈ acl(~c′) and ~c |̂ ~c′

~b.

(2 → 3) Trivial.

(3 → 1) Suppose T is not weakly 1-based. Adding constants to the language if
necessary, by remark 2.8 we may assume that this is witnessed by tp(ab/cd) where
dim(cd) = 2. So for any a′b′ ≡cd ab such that a′b′ |̂

cd
ab we have dim(aba′b′) = 4.

Let r(xy, zt) = tp(ab, cd).

We claim that if a′b′ realizes tp(ab) and acl(a′b′) 6= acl(ab) then r(ab, zt)∧r(a′b′, zt)
has �nitely many realizations. In other words, if a′b′ ≡cd ab and acl(ab) 6= acl(a′b′),
then c, d ∈ acl(aba′b′).

Case 1: a |̂
cd

a′. Then a′b′ |̂
cd

ab, so dim(aba′b′) = 4. Now
dim(aba′b′cd) = dim(aba′b′/cd) + dim(cd) = 2 + 2 = 4 = dim(aba′b′),

hence c, d ∈ acl(aba′b′).

Case 2: acl(acd) = acl(a′cd). Since acl(ab) 6= acl(a′b′), a′ or b′ is not in acl(ab).
Thus either dim(aba′) = 3 or dim(abb′) = 3. Either way, since dim(aba′b′cd) = 3,
we get c, d ∈ acl(aba′b′).

Now, r(xy, zt) is a complete almost quasidesign, as needed. ¤
We can now summarize our results on equivalent de�nitions of weak local mod-

ularity / weak 1-basedness by putting them together with the results form [5].
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Theorem 2.11. The following are equivalent for any geometric theory T

(1) T is weakly locally modular;
(2) T is weakly one-based;
(3) T does not have a partial (complete) almost quasidesign;
(4) in any lovely pair (M,P ) of models of T , aclP = acl;
(5) in any lovely pair (M, P ) of models of T , the small closure operator scl =

acl(− ∪ P ) induces a modular pregeometry
From now on we will use the terms weakly 1-based and weakly locally modular

interchangeably.
It is known (see e.g.[18]) that reducts of geometric theories are geometric. It is

also known (see [20]) that 1-basedness is preserved by reducts in the cases of super-
stable theories of �nite U-rank and stable groups (given that the group operation is
intact). In the case of SU-rank 1 structures, the fact that 1-basedness is preserved
by reducts follows from its characterization in [23]: reduct of a lovely pair is again
lovely, and TP having SU-rank ≤ 2 is also preserved. In the o-minimal group case,
it is known (see [15]) that linear structures are exactly the reducts of ordered vec-
tor spaces over division rings, and thus linearity is preserved under reducts as well.
Here we generalize these facts to the case of geometric theories.
Proposition 2.12. Weak 1-basedness is preserved by reducts.
Proof. Suppose T− ⊂ T is a reduct. We are working in a su�ciently saturated
model of T . Its reduct is a su�ciently saturated model of T−. If T− is not weakly
1-based, it has a complete almost quasidesign r(~x, ~y). Adding parameters to the
language we may assume that r is over ∅. We claim that r is a partial almost
quasidesign in the sense of T . Part (2) of the de�nition is clear since acl−(A) is a
subset of acl(A) for any set A. Suppose part (1) fails in T . Thus in T r(~x, ~y) implies
that ~x ∈ acl(~y) or ~y ∈ acl(~x). By compactness, r(~x, ~y) implies (in T ) a formula
φ(~x, ~y) ∨ ψ(~x, ~y), where φ and ψ witness ~x ∈ acl(~y) and ~y ∈ acl(~x) respectively.

Now, for any ~b and ~c such that |= r(~b,~c), ~b 6∈ acl−(~c) and ~c 6∈ acl−(~b) (since r is
complete in T−). Then for any ~b~c |= r(~x, ~y) we have either |= φ(~b,~c) (i.e. ~b ∈ acl(~c))
or |= ψ(~b,~c) (i.e. ~c ∈ acl(~b)), or both.

On the other hand, whenever |= r(~b,~c), there are in�nitely many ~c′ and ~b′ such
that |= r(~b, ~c′) and |= r(~b′,~c). Now, for all but �nitely many ~c′ we have |= φ(~b, ~c′)
witnessing ~b ∈ acl(~c′) (since ψ(~b, ~y) has �nitely many solutions). Similarly, for all
but �nitely many ~b′ we have |= ψ(~b′,~c) witnessing ~c ∈ acl(~b′) (since ψ(~x,~c) has
�nitely many solutions).

Thus for any n we can build a sequence ~b0~c0
~b1~c1

~b2~c2 . . .~bn~cn such that
|= r(~bi,~ci),

|= r(~bi+1,~ci),
~bi ∈ acl(~ci),

~ci ∈ acl(~bi+1),
~bi+1 6∈ acl(~ci),
~ci 6∈ acl(bi).

Thus we have strict embeddings
acl(~b0) ⊂ acl(~c0) ⊂ acl(~b1) ⊂ acl(~c1) ⊂ . . . ⊂ acl(~bn) ⊂ acl(~cn).
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Contradiction with �niteness of dim(~c). ¤

Our next goal is to compare weak local modularity with linearity. We start by
recalling the de�nition from [18]:

De�nition 2.13. Let T be a geometric theory and let M |= T be saturated. By
a curve we mean a one dimensional subset of M2. A family F of plane curves is
said to be de�nable if it can be written as a family of �bers of a de�nable subset of
M2×Mk, where the parameter set is the subset of Mk. A family F of plane curves
is said to be interpretable if it can be written as a family of �bers of a de�nable
subset of M2 × (Mk/E), where E is a de�nable equivalence relation. We say F is
normal if any two curves from F which are given by di�erent parameters intersect
at most �nitely many times. We say that T is linear if every interpretable normal
family of plane curves has dimension ≤ 1.

On has to be careful with the previous de�nition. In order for the dimension of
an interpretable family of plane curves to be de�ned, we need to extend the notion
of dimension from real tuples to imaginary tuples. In [13] Gagelman showed that
the geometric theories T where the notion of independence extends to the set of
imaginary elements are those that are surgical. Recall that a geometric theory T
is surgical if whenever X ⊂ Mn is de�nable and dim(X) = m then there is no
de�nable equivalence relation E on X that has in�nitely many classes of dimension
m. The results from [13] together with the fact that thorn forking is the weakest
notion of independence [12], show that T is surgical if and only if T is rosy of thorn
rank one.

We will divide our discussion on normal families of plane curves into two cases.
We will �rst deal with de�nable families in the setting of geometric theories. Then
we will deal with the case of interpretable families when the underlying theory is
rosy of thorn rank one.

For the following results we will use the tools of lovely pairs developed in [5]. In
particular, we will use the fact that a theory T is weakly locally modular if and
only if the small closure in a saturated model of TP is modular.

Lemma 2.14. Let T be a geometric theory and let M be a saturated model of T .
If M has a de�nable normal family of plane curves of dimension ≥ 2 then T is not
weakly locally modular.

Proof. We may assume that there is N ¹ M such that (M,N) is a lovely pair of
models of T and we write P instead of N . For A ⊂ M we write scl(A) for acl(A,P ).
Assume that T is weakly locally modular so scl is modular. By hypothesis there is a
2-dimensional normal family of plane curves, say given by {C(x, y,~a,~b) : ~a ∈ θ(~z,~b)}
where θ(~z,~b) de�nes a subset of Mk and dim(θ(~z,~b)) = 2. We may assume that θ
is de�ned over ∅.

We may assume that θ(~a) = θ(a1, a2,~a3) and that whenever θ(a1, a2,~a3) holds
then ~a3 ∈ acl(a1, a2). Let ~a = (a1, a2,~a3) ∈ θ be generic over P , let c, d ∈ M
be such that C(c, d, a1, a2,~a3) and choose c independent from a1a2P . Let X =
scl(c, d), Y = scl(a1, a2). Since scl is modular and dim(X ∪ Y/P ) = 3 we must
have dim(X ∩ Y/P ) = 1. Let t be real such that scl(t) = X ∩ Y . Note that
d ∈ scl(c, t) and that dim(a1a2/tP ) = 1. Let ~p ∈ P be such that d ∈ acl(c, t, ~p),
dim(a1a2/t~p) = 1. Note that by genericity of (a1, a2) we have t ∈ acl(a1, a2, ~p).
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Let (a′1, a
′
2,~a

′
3) |= tp(a1, a2,~a3/t, c, d, ~p) be independent from c, t, a1, a2, ~p over

c, t, ~p. Then whenever c′ |= tp(c/a1, a2,~a3, a
′
1, a

′
2,~a

′
3, ~p) we have that

∃y(C(c′, y, a1, a2,~a3) ∧ C(c′, y, a′1, a
′
2,~a

′
3)).

Since the type tp(c/a1, a2,~a3, a
′
1, a

′
2,~a

′
3, ~p) is not algebraic, the family of plane curves

is not normal, a contradiction. ¤

Lemma 2.15. Let T be a thorn rank one rosy theory and let M be a saturated
model of T . If M has a interpretable normal family of plane curves of dimension
≥ 2 then scl is not modular.

Proof. As before we may assume that (M, P ) is a lovely pair of models of T . By
hypothesis there is a 2-dimensional normal family of plane curves, say given by
{C(x, y, â) : â ∈ θ} where θ(ẑ) de�nes a subset of Meq and dim(θ(ẑ)) = 2. We may
assume that θ is de�ned over ∅. Let a be a base for â, so â = aE for some de�nable
equivalence relation E. We may write a = (a1, . . . , ak, . . . , an), where a1, . . . , ak

are independent and ak+1, . . . , an ∈ acl(a1, . . . , ak). By the extension property, we
may choose a such that dim(a/P ) = k. Let c, d ∈ M be such that C(c, d, â) and
choose c independent from a, P . Let X = scl(c, d), Y = scl(a). Since scl is modular
and dim(X ∪Y/P ) = 1+dim(Y/P ) we must have dim(X ∩Y/P ) = 1. Let t be real
such that scl(t) = X ∩ Y . Note that d ∈ scl(c, t) and that dim(a/tP ) < dim(a/P ).
Without loss of generality we may assume that ak ∈ acl(a1, . . . , ak−1, t, P ). Let
~p ∈ P be such that d ∈ acl(c, t, ~p), ak ∈ acl(a<k, t, ~p), by the exchange property we
have t ∈ acl(a1, . . . , ak, ~p).

Let b |= tp(a/ acl(t, c, d, ~p)) be independent from c, t, a, ~p over c, t, ~p. Let b̂ =
bE , so we get â |̂

ct~p
b̂ and c 6∈ acl(a, b, t, ~p). Since dim(â/ct~p) = dim(â/cd~p) =

dim(â/cd) = 1, we must have â 6= b̂. Then whenever c′ |= tp(c/a, b, ~p) we have
that there is y satisfying C(c′, y, â) and C(c′, y, b̂). Since the type tp(c/a, b, ~p) is
not algebraic, the family of plane curves is not normal, a contradiction. ¤

We will prove below a partial converse to the previous results using the proof of
Proposition 2.10.

De�nition 2.16. Let T be a geometric theory and let M be a saturated model of
T . Let F = {ψ(z, t,~a,~b) : ~a |= ϕ(~x,~b)} be a family of plane curves. We say that F
is generically normal if whenever ~a,~a′ |= ϕ(~x,~b) are such that dim(~a/~a′~b) ≥ 1, we
have that ψ(z, t,~a,~b) ∧ ψ(z, t,~a′,~b) is �nite. We say that T is generically linear if
every generically normal family of plane curves has dimension ≤ 1.

Proposition 2.17. Let T be a geometric theory. If T not weakly 1-based, then T
is not generically linear.

Proof. Let M be a saturated model of T . Assume T is not weakly 1-based, so
this fact is witnessed by tp(a1a2/cd~b) where dim(cd/~b) = 2. So for any a′1a

′
2 ≡cd~b

a1a2 such that a′1a
′
2 |̂

cd~b
a1a2 we have dim(a1a2a

′
1a
′
2) = 4. Let r(zt, x1x2) =

tp(cd, a1a2/~b). As in the proof of Proposition 2.10, we have that if a′1a
′
2 realizes

tp(a1a2/~b) and acl(a′1a
′
2
~b) 6= acl(a1a2

~b) then r(zt, a1a2) ∧ r(zt, a′1a
′
2) has �nitely

many realizations. By compactness there is a uniform bound m for these realiza-
tions. Choose a formula ψ(z, t, x1, x2,~b) ∈ r(z, t, x1, x2) such that ψ(z, t, a1, a2,~b) is
one dimensional and such that whenever a′1a

′
2 realizes tp(a1a2/~b) and acl(a′1a

′
2
~b) 6=
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acl(a1a2
~b) then ψ(z, t, a1a2,~b) ∧ ψ(z, t, a′1a

′
2,

~b) has at most m realizations. By
compactness, there is a formula ϕ(x1, x2,~b) ∈ tp(a1, a2/~b), such that if a′1a

′
2 re-

alizes ϕ(x1, x2,~b) then ψ(z, t, a′1, a
′
2,

~b) is one dimensional (in the variables z, t).
Making ϕ(x1, x2,~b) and ψ(z, t, x1, x2,~b) smaller if necessary, whenever a1a2, a′1a

′
2

are realizations of ϕ(x1, x2,~b) such that acl(a1a2
~b) 6= acl(a′1a

′
2
~b) we have that

ψ(z, t, a1, a2,~b) ∧ ψ(z, t, a′1, a
′
2,

~b) has at most m realizations. Thus, generically
{ψ(z, t, a1, a2,~b) : (a1, a2) |= ϕ(x1, x2,~b)} is a 2-dimensional family of plane curves
and T is not generically linear. ¤

3. ω-categorical case
One of the main consequences of one-basedness in (non-trivial) stable, and to

some extent, simple geometric theories was de�nability or type-de�nability of in-
�nite groups in T eq. In the o-minimal case, groups appear naturally in the linear
case, as a consequence of the Trichotomy theorem. It is well-known that the ge-
ometry of a non-trivial locally modular (one-based) strongly minimal structure is
projective or a�ne over a division ring, and the corresponding vector space is ac-
tually de�nable. This is no longer the case for a non-trivial 1-based SU-rank 1
theory, but De Piro and Kim [9] show, using canonical bases, that an ω-categorical
non-trivial 1-based SU-rank 1 theory interprets an in�nite vector space over a �-
nite �eld. Thus our best hope at this point is to obtain a group in the case of an
ω-categorical non-trivial weakly 1-based geometric theory. In the case of geometric
theories, since canonical bases are not readily available, we use the lovely pairs
approach developed in [23].

First we note that the weak 1-basedness assumption implies the preservation of
ω-categoricity when passing to the theory of lovely pairs.

The following is a generalization of Proposition 5.15 from [23], and its proof also
improves the estimate on the size of a P -independent extension from Lemma 5.14.
of [23].
Proposition 3.1. Let T be an ω-categorical weakly 1-based geometric theory. Then
TP is ω-categorical.
Proof. Let ~a~b be a tuple of length n in a lovely pair, such that ~a ∈ acl(~bP ) and ~b

is independent over P . Let ~p ∈ P be such that ~a ∈ acl(~b~p). By weak 1-basedness,
there is ~a′~b′ |= tp(~a~b/p̄) such that ~a~b |̂

~p
~a′~b′ and ~a~b |̂

~a′~b′
~p. Then ~b′ is independent

over p̄~a~b, so we may assume that ~b′ ∈ P . It follows that ~a′ ∈ P ~a~b |̂
~a′~b′

P . Thus
any n-tuple can be extended to a P -independent set of size 2n (in fact, by its
own L-conjugate). Then by uniform local �niteness of acl in T , there is a function
f : ω → ω such that any n tuple embeds in a P -independent algebraically closed set
of size f(n). Since for such sets LP -type is determined by quanti�er free LP -type,
we have �nitely many n-types in TP for any n. Thus TP is ω-categorical. ¤

As in [23], if T is a non-trivial weakly locally modular geometric theory, then the
geometry of the small closure (the quotient geometry, or the associated geometry of
(M, acl(−∪P (M)))) is split into a disjoint union of in�nite-dimensional projective
geometries over division rings (and possibly a trivial geometry) by the equivalence
relation "x = y or |cl(x, y)| ≥ 3".

If T is weakly 1-based and ω-categorical, then by the above proposition, TP

is also ω-categorical and the relations y ∈ acl(y1, . . . , yn, P ) and the equivalence
10



relation acl(x, P ) = acl(y, P ) are LP -de�nable. Thus the geometry of the small
closure is interpretable in TP and the relations x ∈ cl(y1, . . . , yn) on its elements are
de�nable in (TP )eq. Clearly, the equivalence relation "x = y or |cl(x, y)| ≥ 3" is also
de�nable, and thus each of the projective geometries over division rings mentioned
above, viewed as a structure where the only relations are given by x ∈ cl(y1, . . . , yn),
n ≥ 1, is de�nable in (TP )eq (as a quotient of the home sort). Note that each of
these geometries is an ω-categorical structure, and in the superrosy thorn-rank 1
case, by Fact 2.2 it is superrosy of thorn-rank at most 2.

Let (V, +, λ·)λ∈F be an in�nite dimensional vector space over a division ring F .
By Geom(V ) we denote the associated geometry of (V, Span) viewed as a structure
(G, x ∈ cl(y1, . . . , yn))n≥1. Note that a ∈ cl(b̄) does not imply a ∈ acl(b̄) in this
language unless F is �nite.

Our goal is to show that the division rings above are actually �nite �elds. Then
Geom(V ) is a non-trivial ω-categorical strongly minimal structure, and it is well-
known that such a theory interprets an in�nite group (namely, a vector space over
a �nite �eld).

The following proposition shows that for an in�nite F , Th(Geom(V )) has a
thorn-forking chains of any �nite length. It follows that if T is a weakly 1-based
superrosy theory of thorn-rank 1, then all the division rings above are �nite (since,
as noted above, hence Geom(V ), will have thorn-rank at most 2 ), and thus TP

interprets an in�nite group (a vector space over a �nite �eld).
When working in Geom(V ), for any v ∈ V , by v∗ we denote Span(v) as an

element of Geom(V ).
Proposition 3.2. Suppose V is a vector space over an in�nite division ring. Let
v1, . . . , vn ∈ V be linearly independent. Let uk = v1+v2+. . .+vk. Then for any 1 <
k ≤ n, tp((u∗n/v∗1 , . . . , v∗n, u∗2, . . . , u

∗
k) thorn-divides over {v∗1 , . . . , v∗n, u∗2, . . . , u

∗
k−1}.

Proof. Note that u∗n satis�es the formula
φ(x, u∗k, v∗k+1, . . . , v

∗
n) = x ∈ cl(u∗k, v∗k+1, . . . , v

∗
n) ∧ x 6∈ cl(v∗k+1, . . . , v

∗
n).

We will show that φ(x) strongly divides over {v∗1 , . . . , v∗n, u∗2, . . . , u
∗
k−1}. We are

now working in a saturated elementary extension G of Geom(V ).
CLAIM: {φ(x, a, b1, . . . , bn−k)|a~b |= tp(u∗k, v∗k+1, . . . , v

∗
n/v∗1 , . . . , v∗n, u∗2, . . . , u

∗
k−1)}

is 2-inconsistent.
Proof of the Claim: Note that for any a~b as above, b1 = v∗k+1, . . . , bn−k = v∗n

and a satis�es ψ(y, u∗k−1, v
∗
k) = y ∈ cl(u∗k−1, v

∗
k) (since this holds for u∗k). Now, if

a, a′ ∈ G are two distinct realizations of ψ(y, u∗k−1, v
∗
k), then

φ(x, a, v∗k+1, . . . , v
∗
n) ∧ φ(x, a′, v∗k+1, . . . , v

∗
n)

is inconsistent. Indeed, we may assume that a, a′ ∈ Geom(V ), so a = w∗1 and
a′ = w∗2 for some linearly independent w1, w2 ∈ V . Now, if φ(x,w∗1 , v∗k+1, . . . , v

∗
n)∧

φ(x,w∗2 , v∗k+1, . . . , v
∗
n) is realized by some p∗ (where p ∈ V ), then from the de�nition

of φ,
p = γ1w1 + µ1vk+1 + . . . + µn−kvn = γ2w2 + ξ1vk+1 + . . . + ξn−1vn,

where γ1, γ2 6= 0. Thus, γ1w1 − γ2w2 ∈ Span(vk+1, . . . , vn). On the other hand,
γ1w1 − γ2w2 6= 0 (by linear independence of w1 and w2) and γ1w1 − γ2w2 ∈
Span(v1, . . . , vk−1, vk) since w∗1 , w∗2 ∈ cl(u∗k−1, v

∗
k). Thus Span(v1, . . . , vk−1, vk)

and Span(vk+1, . . . , vn) have a non-zero vector in their intersection, a contradiction
11



with the linear independence of v1, . . . , vn. This proves the Claim, and hence φ(x)
strongly divides over {v∗1 , . . . , v∗n, u∗2, . . . , u

∗
k−1}, as needed. ¤

Corollary 3.3. If T is a ω-categorical weakly 1-based thorn rank one theory, then
TP interprets an in�nite group.

The assumption of T being superrosy of thorn rank one seems quite arti�-
cial, and we therefore conjecture that the above result holds for any ω-categorical
weakly one-based geometric theory. A key issue here is to understand the theory
Th(Geom(V )) when V is in�nite-dimensional over an in�nite division ring. So far
we know that Th(Geom(V )) has in�nite thorn-forking (even thorn-dividing) chains,
and any model of Th(Geom(V )) is an in�nite-dimensional projective geometry over
an in�nite (and possibly di�erent) division ring. However the following questions
remain open.
Question 3.4. Let V be an in�nite-dimensional vector space over an in�nite divi-
sion ring, and let T = Th(Geom(V )).

(1) Is T ω-categorical?
(2) Is T stable?
(3) Does T have trivial algebraic closure?
(4) Does T have quanti�er elimination?
(5) What happens when we vary the (in�nite) division ring?

4. Independence in TP for T weakly 1-based
We know from Fact 1.3, that for T a rosy theory of thorn rank one, the associated

theory TP of lovely pairs of models of T is again rosy of thorn rank ≤ ω. It is an
interesting question which other properties of T are preserved in T . We start by
generalizing the notion of weak 1-based theories to the setting of rosy theories.
De�nition 4.1. Let T be a rosy theory. We say that T is weakly 1-based if whenever
M |= T is saturated, B ⊂ M and ~a ∈ M there is a superset C of B independent
from ~a over B such that whenever ~a′ |= tp(~a/C) is independent from ~a over C, we
have ~a |̂

~a′
B.

Note that for a simple T , a canonical base argument shows that weak 1-basedness
coincides with 1-basedness. The goal of this section is to show that whenever T
is weakly 1-based rosy rank one theory then TP is again weakly 1-based. We only
succeeded in doing this under some extra assumptions.
Lemma 4.2. Let T be a weakly 1-based rosy theory. Let M |= T be su�ciently
saturated, let ~a ∈ M , B ⊂ M and let C ⊃ B be such that ~a |̂

B
C and whenever

~a′ |= tp(~a/C) is independent from ~a over C, we have ~a |̂
~a′

B. Let D |= tp(C/B~a),
then whenever ~a′ |= tp(~a/D) is independent from ~a over D, we have ~a |̂

~a′
B.

Proof. Clear. ¤

Remark 4.3. Let M |= T be su�ciently saturated, let ~a ∈ M , B ⊂ M and
assume that there is a set C ⊃ B with ~a |̂

B
C such that whenever ~a′ |= tp(~a/C)

is independent from ~a over C, we have ~a |̂
~a′

B. Also assume that ~b ∈ M and
that there is a set D ⊃ B with ~a~b |̂

B
D such that whenever ~a′~b′ |= tp(~a~b/D) is

independent from ~a~b over D, we have ~a~b |̂
~a′~b′

B. Let C ′ ≡B~a C be such that
12



C ′ |̂
B~a

D~b and let E = D ∪ C ′. Then whenever ~a′~b′ |= tp(~a~b/E) is independent
from ~a~b over E, we have ~a~b |̂

~a′~b′
B and ~a |̂

~a′
B.

Proof. Let C ′ ≡B~a C be such that C ′ |̂
B~a

D~b and let E = D ∪ C ′. Note that
C ′ |̂

B
~a. By transitivity we get C ′ |̂

B
D~a~b and C ′ |̂

BD
~a~b. Applying symmetry

and transitivity we get ~a~b |̂
B

E. Let ~a′~b′ |= tp(~a~b/E) be such that ~a′~b′ |̂
E

~a~b.
In particular, since ~a~b |̂

D
E, we have ~a′~b′ |= tp(~a~b/D) and ~a′~b′ |̂

D
~a~b. Thus

~a~b |̂
~a′~b′

B. We also have ~a′ |̂
E

~a and ~a |̂
C′

E, so ~a′ |̂
C′

~a. By Lemma 4.2
~a |̂

~a′
B. ¤

Notation 4.4. Let (M, P ) |= TP be a saturated model. We use the word indepen-
dence for acl-independence and we write |̂ for the acl-independence relation. We
use the word TP -independent for þ-independence in models of TP and we write the
corresponding independence relation as |̂ P .

We will need the following result from the proof of [5, Proposition 4.8]
Fact 4.5. Let T be a weakly locally modular thorn rank one theory and let (M, P ) |=
TP . Let a ∈ M , A ⊂ B ⊂ M and assume that a ∈ acl(AP ) \ acl(A) and that
a ∈ acl(BP ) \ acl(B). Then tpP (a/B) does not þ-fork over A.
Notation 4.6. Let a1, . . . , an ∈ M . We write a<1 for ∅ and for 1 < i ≤ n + 1, we
write a<i for (a1, . . . , ai−1).

We will also assume the following condition:
Assumption 4.7. Let T be a weakly 1-based geometric thorn rank one theory and
let (M,P ) |= TP . Let A ⊂ B ⊂ M and let ~a = (a1, . . . , an, an+1, . . . , am, am+1, . . . , al) ∈
M , where (a1, . . . , an) is a P ∪ A-independent tuple, for i = n + 1, . . . , m ai ∈
acl(a<iPA) \ acl(a<iA) and for i = m + 1, . . . , l ai ∈ acl(a<iA).

Then tpP (~a/B) does not thorn fork over A if and only if (a1, . . . , an) is a P ∪B-
independent tuple and for i = n + 1, . . . , m ai ∈ acl(a<i, P,B) \ acl(a<i, B).

In the above assumption, we know that the right property always implies the
left property, we assume left to right.
Proposition 4.8. Assume that T is a weakly 1-based geometric thorn rank one
theory satisfying assumption 4.7. Then TP is also weakly 1-based.
Proof. Let (M,P ) |= TP be saturated, let ~a ∈ M be a �nite tuple and let A ⊂ M be
a set. We will write ~a = (a1, . . . , an, an+1, . . . , am, am+1, . . . , al) where (a1, . . . , an)
is a P ∪A-independent tuple, for i = n + 1, . . . , m ai ∈ acl(a<iPA) \ acl(a<iA) and
for i = m + 1, . . . , l ai ∈ acl(a<iA). We need to �nd a superset E ⊃ A such that
~a |̂ P

A
E and whenever ~a′ |= tpP (~a/E) is such that ~a |̂ P

E
~a′ then ~a |̂ P

~a′
A.

Let ~p = (p1, . . . , pt) ∈ P be an independent tuple over A such that an+1, . . . , am ∈
acl(a1, . . . , an, p1, . . . , pt, A). By hypothesis, there is a set D ⊃ A such that ~a~p |̂

A
D

and whenever ~a′~p′ |= tp(~a~p/D) is such that ~a~p |̂
D

~a′~p′, then ~a~p |̂
~a′~p′

A. Again by
hypothesis, there is a set C ⊃ A such that ~a |̂

A
C and whenever ~a′ |= tp(~a/C) is

such that ~a |̂
C

~a′, then ~a |̂
~a′

A. By the previous remark, we can �nd E such that
E |̂

A
~a~p and whenever ~a′~p′ |= tp(~a~p/E) is independent from ~a~p over E, we have

~a~p |̂
~a′~p′

A and ~a |̂
~a′

A. (0)
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By Lemma 4.2 we may choose E such that E |̂
A~a~p

P .
Claim ~a |̂ P

A
E

From the previous conditions, we have ~a~p |̂
A

E and E |̂
A

~a~pP . Thus a1, . . . , an

is a P ∪ E-independent tuple, ai ∈ acl(a<i, p1, . . . , pt, E) \ acl(a<i, E) for i = n +
1, . . . , m. Since T is weakly locally modular, the claim follows from Fact 4.5.

Now let ~a′ |= tpP (~a/E) be such that ~a′ |̂ P

E
~a.

Claim ~a |̂ P

~a′
A

By Assumption 4.7 a1, . . . , an is an E~a′ ∪ P -independent n-tuple, so it is also a
~a′∪P -independent n-tuple. Since ~a′ |̂ P

E
~a we have ~a′ |̂

E
~a and thus by (0) ~a |̂

~a′
A.

In particular, this shows that am+1, . . . , al ∈ acl(a1, . . . , am,~a′). It remains to show
that an+1, . . . , am ∈ acl(a1, . . . , an,~a′, P ).

Let ~q = (q1, . . . , qt) |= tpP (p1, . . . , pt/E~a) be such that ~q |̂ P

~aE
~a′. By transitivity,

we get ~a~q |̂ P

E
~a′. Now let ~q′ ∈ P be such that tpP (~a~q/E) = tpP (~a′~q′/E), we may

choose ~q′ such that ~q′ |̂ P

E~a′
~a~q and by symmetry and transitivity we get ~a~q |̂ P

E
~a′~q′.

From this we conclude ~a~q |̂
E

~a′~q′ and by (0) ~a~q |̂
~a′~q′

A. Since an+1, . . . , am ∈
acl(a1, . . . , an, ~q, A), we get am+1, . . . , al ∈ acl(a1, . . . , an,~a′, ~q, ~q′) as desired.

¤

Corollary 4.9. Let T be the theory of an o-minimal ordered vector space and let
TP be the corresponding theory of lovely pairs. Then TP is weakly 1-based.

Proof. Since the algebraic closure coincides with the linear span, assumption 4.7
holds and thus by Proposition 4.8 the result follows. ¤

Corollary 4.10. Let T be an SU -rank one theory and let TP be the corresponding
theory of lovely pairs. Then TP is weakly 1-based.

Proof. Since T is simple of SU -rank one, T is 1-based, TP is supersimple and forking
and thorn forking coincide in models of TP . By [23, Corollary 3.9] assumption 4.7
holds and thus by Proposition 4.8 the result follows. ¤

Note that the previous result is known in a more general context. It is proved in
[3] that if T is simple 1-based and the theory TP of lovely pairs is �rst order, then
TP is again 1-based.

We know from section 2 that in the geometric case, weak 1-basedness is preserved
by reducts. As we mentioned earlier, it is known that reducts of 1-based superstable
theories of �nite U-rank are 1-based.

Question 4.11. Is a reduct of a weakly 1-based superrosy theory of �nite thorn
rank again weakly 1-based?

By Fact 2.2, for a weakly 1-based superrosy þ-rank 1 geometric theory T , TP is
superrosy of þ-rank ≤ 2. We also know from [15], that linear o-minimal structures
with global addition are precisely the reducts of ordered vector spaces. Since the
reducts of lovely pairs are again lovely, a positive answer to the above question, to-
gether with Corollary 4.9, would imply preservation of weak 1-basedness (linearity)
when passing to TP in the additive o-minimal case.
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5. Examples
5.1. Adding a generic predicate. In this section we assume the reader is familiar
with the work of Chatzidakis and Pillay in random predicates [8]. We will show
that if a theory is geometric and weakly 1-based then any of its completions with
a random predicate is again weakly 1-based.

Fix T a complete theory in a language L. We will assume that L contains a
unary predicate symbol S (which could be equality) and we let LR be the language
L augmented with a new unary predicate symbol R (we use the letter R instead
of the usual notation P , since we use P in earlier parts of the paper to denote a
predicate in a lovely pair). It is proved in [8] that the theory T∪{∀xR(x) =⇒ S(x)}
has a model companion TR,S . The theory TR,S may not be complete.

Our results rely heavily on the following facts:

Fact 5.1. [8, Corollary 2.6,(3)] The algebraic closure in models of TR,S coincides
with the algebraic closure in the sense of T .

For models of TR,S we will write acl for the algebraic closure.

Fact 5.2. [8, Remark 2.12,(4)] If T eliminates ∃∞ then TR,S also eliminates ∃∞.

First observe that since T is geometric, acl has the exchange property in models
of TR,S and thus TR,S is pregeometric. Also, by the previous fact, TR,S eliminates
∃∞, so in fact TR,S is a geometric theory.

Lemma 5.3. Assume that T is a geometric theory which is weakly 1-based. Then
any completion of TR,S is weakly 1-based.

Proof. Let M |= TR,S be saturated, let ~a ∈ M and let B ⊂ M be a set. By
hypothesis there is a superset C of B with ~a |̂

B
C such that whenever ~a′ |= tp(~a/C)

is acl-independent from ~a over C, we have ~a |̂
~a′

B. Since algebraic independence
in the sense of T and TR,S coincide, C is a witness for the desired property in
TR,S . ¤

5.2. The structure induced on the predicate of a lovely pair. In this section
we study the structure induced on the predicate of the lovely pair by the large model.
Our presentation follows closely the one from Pillay and Vassiliev [22]. Let T be
a geometric theory in a language L with quanti�er elimination and let (M, P ) be
a lovely pair of models of T . For each L-formula ϕ(x) with parameters in M , we
introduce a new predicate symbol Rϕ(x). Let L∗ be the resulting language. We
denote by M∗ the structure M with the natural interpretation for the new relations
and P ∗ the substructure with universe P . Finally T ∗ stands for the theory of P ∗.
Note that the language L∗ and the theory T ∗ depend on the choice of M . We
denote the algebraic closure in models if T by acl and in models of T ∗ by acl∗.

We will characterize acl∗ in terms of acl and M , prove that T ∗ is also a geometric
theory and that if T is weakly 1-based then T ∗ is again weakly 1-based.

Following [2, 22], we say that (M, P ) eliminates the quanti�er ∃y ∈ P if for every
formula ϕ(~x, ~y, ~z) and ~a ∈ M there exists a formula ψ(~x, ~w) and ~b ∈ M such that
for all ~c ∈ P ,

M |= ψ(~c,~b) if and only if (M,P ) |= ∃d ∈ Pϕ(~c, d,~a)
It is clear that (M,P ) eliminates the quanti�er ∃y ∈ P if and only if T ∗ has

quanti�er elimination.
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Lemma 5.4. The theory T ∗ eliminates quanti�ers.
Proof. Note that T ∗ is a reduct of ThM (M,P ), the theory of the pair with all the el-
ements of M added as constants. Take a saturated extension (N,P ) of ThM (M, P ).
Then the reduct of P (N) to the language of T ∗ is a saturated model of T ∗.

Now, (N, P ) is still a lovely pair, and M is P -independent in (N,P ). So any two
tuples in P (N) realizing the same quanti�er free types in T ∗, and hence the same
L-type over M , actually realize the same LP -type over M , and hence the same T ∗-
type. By saturation of P (N) as a model of T ∗, T ∗ has quanti�er elimination. ¤

Lemma 5.5. Assume that T is a geometric theory. Then T ∗ is also geometric.
Furthermore acl∗ coincides with aclM restricted to P .
Proof. Let (N, P ) be a saturated model of ThM (M, P ). Let B ⊂ P (N), a ∈ P (N).
Since T ∗ eliminates quanti�ers, a ∈ acl∗(B) if and only if there is an L-formula
ϕ(x, ~y, ~z) and tuples ~m ∈ M , ~b ∈ B such that M |= ϕ(a,~b, ~m) and the formula
ϕ(x,~b, ~m) has �nitely many realizations in P (N). The last condition is equivalent
to ϕ(x,~b, ~m) being algebraic in T . It follows that for any B ⊂ P (N), acl∗(B) =
aclM (B)∩P (N), and since aclM satis�es the exchange property in N , same is true
for acl∗.

To show that T ∗ eliminates ∃∞, consider any L∗-formula ψ(x, ~y). By quanti�er
elimination in T ∗, it is equivalent to an L-formula ϕ(x, ~y, ~m) with parameters ~m ∈
M . For any ~b ∈ P (N), ψ(x,~b) is algebraic if and only if ϕ(x,~b, ~m) has �nitely
many solutions in P (N), which is equivalent to algebraicity of ϕ(x,~b, ~m) in N .
Since T eliminates ∃∞, ϕ(x,~b, ~m) is algebraic if and only if N |= θ(~b, ~m) for some
L-formula θ(~y, ~z). Let Rθ(~y) correspond to θ(~y, ~m). Thus for any ~b ∈ P (N), ψ(x,~b)
is algebraic if and only if Rθ(~b) holds in P (N) viewed as a model of T ∗, as needed.

¤

Since T ∗ is again geometric, T ∗ has a notion of independence induced by acl∗. As
before, we let (N, P ) be a saturated model of ThM (M, P ). For A,B, C ⊂ P (N) sets,
we write A |̂ ∗

B
C to mean that A is acl∗-independent from C over B. Note that

by [22, Theorem 2.3] when T is simple of SU -rank one, our notion of independence
coincides with non-forking in T ∗.
Lemma 5.6. Assume that T is a geometric theory which is weakly 1-based. Then
T ∗ is weakly 1-based.
Proof. Let (N, P ) be a saturated model of ThM (M,P ). Let ~a ∈ P (N) and let
B ⊂ P (N) be a set. By hypothesis there is a superset C of BM such that ~a |̂

BM
C

and whenever ~a′ |= tp(~a/C) is independent from ~a over C, we have ~a |̂
~a′

BM .
Since acl∗ = aclM , C is a witness for the desired property in T ∗. ¤

5.3. Fields expanded with a group having the Mann property. In this
section we deal with the theory of a dense divisible multiplicative subgroup with
the Mann property of a real closed �eld K as presented by van den Dries and
Günaydin in [11]. These structures are analyzed by adding a predicate G to the
real closed �eld, where G is interpreted as the multiplicative group and considering
the new structure (K, G). A description of de�nable sets of K and of G in such a
structure can be found in [11]. It was proved by Berenstein, Ealy and Günaydin [4]
that such a pair (K,G) is super-rosy of þ-rank ω and that þ-rank(G) = 1 (seen as a
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de�nable subset of the pair). In particular, G as a subset of the structure (K,G) is
a pregeometry. Our goal is to show that the theory of G with the induced structure
is weakly 1-based.

We proceed as in the previous subsection. For each L-formula ϕ(x) with pa-
rameters in K, we introduce a new predicate symbol Rϕ. Let L∗ be the resulting
language. We denote by K∗ the structure K with the natural interpretation for
the new relations and G∗ the substructure with universe G. Finally let T ∗ be the
theory of G∗, it is important to note that the theory T ∗ depends on the underlying
�eld K. We denote the algebraic closure in models if T by acl and in models of T ∗

by acl∗.
As in the previous section it can be proved that T ∗ has quanti�er elimination

and that acl(− ∪K) = acl∗(−). In particular T ∗ is a geometric theory.
Our work depends on the following facts:

Fact 5.7 (Theorem 7.2 [11]). Let K be a real closed �eld and let G be a dense
divisible multiplicative subgroup of K>0 having the Mann property. Then if X ⊂
Gn is de�nable, there is Y ⊂ Kn de�nable in K (seen as an ordered �eld) such
X = Y ∩Gn.

This fact remains true in a saturated model of ThK(K, G), since we only added
new constants to the language.

From the previous fact it easily follows that if ~a ∈ G∗, B ⊂ K ∪ G∗ and
dim(~a/B) < dim(~a), then there is a polynomial f(~y) ∈ Q(B)[y] such that f(~a) = 0.
In particular, we need to understand the solutions of algebraic varieties in G∗. This
is characterized in [11]
De�nition 5.8. For any n-tuple k = (k1, . . . , kn) ∈ Zn consider the character χk :
(K×)n → K× given by χk(x1, . . . , xn) = xk1

1 · · ·xkn
n . We let D(n, d) be the �nite

collection of subgroups of (K×)n that are the intersection of kernels of characters
χk with |k| = |k1|+ · · ·+ |kn| ≤ d.
Proposition 5.9. Let f1, . . . , fm ∈ K[X1, . . . , Xn] have degree ≤ d, and let V =
{x ∈ Kn : f1(x) = · · · = fm(x) = 0}. Suppose G has the Mann property. Then
V ∩Gn is a �nite union of cosets of subgroups D ∩Gn of Gn with D ∈ D(n, d).
Proof. This proposition is proved in [11, Proposition 5.8] when K is an algebraically
closed �eld. The same proof, that only depends on the Mann property, holds when
K is a real closed �eld. ¤

The conclusion of the proposition is also true for a saturated model of ThK(K, G)
since the statement is an elementary property.
Proposition 5.10. Let K be a real closed �eld and let G be a dense divisible
multiplicative subgroup of K>0 having the Mann property. Then the theory of G∗

is weakly 1-based.
Proof. We work in a saturated model (K∗, G∗) of ThK(K,G) in the language L∗.
Assume as above that ~a ∈ G∗, B ⊂ K ∪ G∗ and dim(~a/B) < dim(~a). Let V
be a variety of dimension dim(~a/B) de�nable over B such that ~a ∈ V . Then
V ∩ (G∗)n is equivalent to a disjunction ∨i≤t~ci(Di ∩ (G∗)n), where each Di is the
intersection of kernels of characters and thus Di ∩ (G∗)n is a ∅-de�nable subgroup
of (G∗)n. Assume Di is the kernel of the characters χij(x1, . . . , xn), j ≤ mi and
that ~ci = (ci1, . . . , cin). Then χij(a1, . . . , an) = χij(ci1, . . . , cin) so we may assume
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that ~ci ∈ (G∗)n. After taking a non thorn-forking extension of tp∗(~c1, . . . ,~ct/B) we
may further assume that ~c1, . . . ,~ct are free from a1, . . . , an over B.

Let C = B ∪ {~c1, . . . ,~ct} and let (a′1, . . . , a
′
n) |= tp(a1, . . . , an/C) be such that

(a′1, . . . , a
′
n) |̂ þ

C
(a1, . . . , an). Then we have χji(a1, . . . , an) = χji(ci1, . . . , cin) =

χji(a′1, . . . , a
′
n) for some i ≤ t and all j ≤ mi, so ~ci(Di ∩ (G∗)n) is de�nable over

{a′1, . . . , a′n} and dim(a1, . . . , an/a′1, . . . , a
′
n) ≤ dim(a1, . . . , an/C) = dim(a1, . . . , an/B).

In particular, (a1, . . . , an) |̂ þ
(a′1,...,a′n)

B. ¤

6. Lovely pairs and dense embeddings
In this section we relate the notion of lovely pairs of geometric structures to that

of dense embeddings developed by Macintyre in [16]. We will review some of the
notions introduced in [16] and prove that for the geometric theories T considered
in [16], Macintyre's theory T d of dense embeddings of models of T coincides with
the theory TP of lovely pairs of models of T .

We start with reviewing some de�nitions. Let T be a pregeometric theory.
De�nition 6.1. Let N, M |= T with N ¹ M , N 6= M . We say that (M,N) is a
Vaughtian pair if for some formula ϕ(x,~a) with parameters ~a ∈ N with in�nitely
many solutions in N we have ϕ(N) = ϕ(M). We say that T has a Vaughtian pair
if there are N, M |= T such that (M, N) is a Vaughtian pair.
Lemma 6.2. Let (M, P ) |= TP . Then (M,P (M) is not a Vaughtian pair.
Proof. Let ϕ(x,~a) be an -formula with parameters in P (M) with in�nitely many
solutions, so P (M) |= ∃∞xϕ(x,~a). Let (M ′, P ) º (M,P ) be saturated, so (M ′, P )
is a lovely pair of models of T . Let p(x) be a complete non-algebraic type over ~a
containing ϕ(x,~a). Since (M ′, P ) is a lovely pair, there is a realization b of p(x) in
M ′ which is free from P (M ′). In particular, b ∈ ϕ(M ′) \ ϕ(P (M ′)), so (M ′, P ) |=
∃xϕ(x,~a) ∧ ¬P (x). Thus (M,P ) |= ∃xϕ(x,~a) ∧ ¬P (x) and ϕ(M,~a) 6= ϕ(P (M),~a)
as we wanted. ¤

Thus, the class of models that we consider when dealing with lovely pairs are
not Vaughtian pairs, but the underlying theory T under consideration may have
Vaughtian pairs as shown by the following example:
Example 6.3. Consider the theory DLO of dense linear orders without endpoints.
Let M = R and let N = (R ∩ (−∞, 0]) ∪Q+. Then (M, N) is a Vaughtian pair
Fact 6.4. Assume that T does not have Vaughtian pairs. Then T eliminates the
quanti�ers ∃∞.
Proof. See Lemma 5 in [16]. ¤

The pregeometric theories T considered in [16] do not have Vaughtian pairs. First
of all this implies that under this extra assumption T is geometric, so the tools from
lovely pairs developed in [5] apply. On the other hand the example above shows
that the family of theories under consideration in [16] is strickly smaller than the
class of geometric theories.

The notion of dense pairs in [16] is word by word the notion that we call in
De�nition 1.2 the density/coheir property. In order to conclude that the dense
embeddings are lovely pairs, we need to show that the extension property holds in
saturated models of dense embeddings.

18



Fact 6.5. Suppose T satis�es the assumptions 1−6 listed in [16] and let (M, N) |=
T d. Suppose that card(M) = dim(M/N) = dim(N) ≥ |L|. Then there is a basis X
of M over N and a basis Y of N such that for every in�nite de�nable set D over
M , X ∩D 6= ∅ and Y ∩D 6= ∅.
Proof. See Lemma 8 in [16]. ¤

Lemma 6.6. Suppose T satis�es the assumptions 1− 6 listed in [16]. Let (M, N)
be a saturated model of T d. Let ~m be a tuple of elements in M and let ϕ(x, ~m)
be an L-formula with in�nitely many realizations. Then there is a realization of
ϕ(x, ~m) in M which is free from ~m ∪N .
Proof. Let X be as in the previous fact. Let X0 ⊂ X �nite and Y0 ⊂ Y �nite such
that ~m ⊂ acl(X0 ∪ Y0). Let ψ(x, ~m,X0, Y0) = ϕ(x, ~m) ∧y∈X0∪Y0 (x 6= y). By the
fact there is an a ∈ X satisfying ψ. Since X is a basis of M over N , a 6∈ acl(X0, N)
and M |= ϕ(a, ~m) as we wanted. ¤

Proposition 6.7. Suppose T satis�es the assumptions 1 − 6 listed in [16]. Let
(M, N) be a saturated model of T d. Then (M, N) is a lovely pair of models of T .
Proof. As pointed out earlier, such theories T are geometric. The assumption that
P (M) is dense in M translates to the coheir property. Finally the previous lemma
implies the extension property. ¤
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