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Abstract

We introduce the Hausdorff measure for definable sets in an o-
minimal structure, and prove the Cauchy-Crofton and co-area formu-
lae for the o-minimal Hausdorff measure. We also prove that every
definable set can be partitioned into “basic rectifiable sets”, and that
the Whitney arc property holds for basic rectifiable sets.
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1 Introduction

Let K be an o-minimal structure expanding a field. We introduce, for every
e € N, the e-dimensional Hausdorff measure for definable sets, which is the
generalization of the usual Hausdorff measure for real sets [Morgan88]. We
also show that every definable set can be partitioned into “basic e-rectifiable
sets” (§3]). Moreover, we generalize some well known result from geometric
measure theory, such as the Cauchy-Crofton formula (which computes the
Hausdorff measure of a set as the average number of points of intersection
with hyperplanes of complementary dimension) and the co-area formula (a
generalization of Fubini’s theorem), to the o-minimal context.

The measure defined in [BO04] is the starting point for our construction
of the Hausdorff measure. A theorem of [BP98] allows us to prove that
integration using the Berarducci-Otero measure satisfies properties analogous
to the ones for integration over the reals (for example, the change of variable
formula). If K is sufficiently saturated, the Berarducci-Otero measure of a
bounded definable set X is Lr(st(X)), where Lg is the Lebesgue measure
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and st is the standard-part map. However, the naive definition of Hausdorff
measure given by

HX) = Hp(st(X)) (1)
does not work (because the resulting “measure” is not additive: see Exam-
ple 5.8). The correct definition for the e-dimensional Hausdorff measure is
defining it first for basic e-rectifiable sets via ([Il), and then extending it to
definable sets by using a partition into basic e-rectifiable pieces. Such a par-
tition is obtained by using partitions into M,-cells ([K92], [P0§], [VR06]),
a consequence of which is the Whitney arc property for basic e-rectifiable

sets ().

2 Lebesgue measure on o-minimal structures

The definitions of measure theory are taken from [Halmos50].

Let R := RU {£o0} be the extended real line. Let K be a N;-saturated
o-minimal structure, expanding a field. Let K be the set of finite elements
of K. Let st : K™ — R” be the function mapping Z to the n-tuple of standard
parts of the components of Z.

For every n € N, let L be the n-dimensional Lebesgue measure (on R™).
If n is clear from context we drop the superscript. Let L7 be the o-minimal
measure on K" defined in [BO04]. More precisely, L7 is a measure on the
o-ring R, generated by the definable subsets of Io("; thus, (K", R,,L7}) is a
measure space. Moreover, since K" e R,, R, is actually a o-algebra.

Notice that L] can be extended in a natural way to a measure £ on
the o-ring B, generated by the definable subsets of K™ of finite diameter.
Finally, we denote by L£" the completion of L%, and if n is clear from context
we drop the superscript. Notice that the o-ring B,, is not a o-algebra.

Remark 2.1 ([BO04, Thm. 4.3]). If C € K™ is definable, then £*(C) is the
Lebesgue measure of st(C) .

Definition 2.2. For A C K" and f : K® — K™ we define st(f) : A — R™
by st(f)(x) = st(f(x)).
Remark 2.3. If A C K" and f : A — K are definable, then st(f) is an

L"-measurable function.

Definition 2.4. Let A C K™ and f : A — K be definable. If st(f) is
L™-integrable we will denote its integral by

[raes [iwan [f@acw o [



Remark 2.5. If A C K" and f : A — K are definable, then st(f) is
L-integrable.

Let R be the structure on R generated by the sets of the form st(U),
where U varies among the definable subsets of K™. By [BP98], Ry is o-
minimal.

Remark 2.6. Let U C K™ be definable. Then, dim(st(U)) < dim(U).

Proof. Let dim(U) = d. After a cell decomposition, we can assume that U
is the graph of a definable continuous function f: V — K" with V C K¢
open cell. We can then conclude by applying the method in [HPP0S], Lemma
10.3]. O

Definition 2.7. A function f is Lipschitz if there is C' € K such that, for
all z,y € dom(f), we have |f(z) — f(y)| < C|z — y| (notice the condition on
C being finite). An invertible function f is bi-Lipschitz if both f and f~!
are Lipschitz.

Remark 2.8. Let U C K™ and f:U— K be definable, with f > 0. Then,

[ e = (e e Ux K0 <y < f@)).

Lemma 2.9 (Change of variables). Let U,V C K™ be open and definable,
and let A C U be definable. Let f: U — V be definable and bi-Lipschitz and
g:V — K be definable, then

/g:A/\detDﬂgof.

f(A)

Before proving the above lemma, we need some preliminary definitions
and results.

Lemma 2.10. Let U C K" be open and let f : U — K be definable. Then
there is a Ry -definable function f : C — R, where C C st(U) is an open set,
such that

i) E = (st(U)\ C) U (CNst(K"\U)) is LE-negligible (and, therefore,
st™1(E) is L™-negligible).

i) f and f are C* on U\ st™'(E) and C, respectively.

iii) For everyx € U withst(x) € C we havest(f(z)) = f(st(z)). Moreover,

Df is finite and D(f)(stz) = st(Df(z)).
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Proof. By cell decomposition, we may assume that f is a function of class C*,
and that U is an open cell. Since dim(I'(f)) = n, we have, by Remark [2.6]
dim(st(I'(f)) < n. By cell decomposition, there is an Rg-definable, closed,
negligible set E C st(U), and definable functions g, : st(U) \ £ — R of class
C! for k =1,...,r such that st(T(f)) N ((st(U) \ E) x R) is the union of the
graphs of the functions g;. We claim that r = 1:

In fact, if g1, g are two different such functions, and say g; < g9, then
for some = € st(U) we have (x,g1(z)), (x,g2(x)) € st(['(f)). Since f is
continuous,{(z,y) : y € (q1(x),g2(x))} C st(['(f)). On the other hand,
{{z,y) : (z,y) € st(T'(f))} is the finite set {(z, g1(2)), ..., (z, g.(z))}, absurd.

By [HPPOS8, Theorem 10.4], after enlarging E by a negligible set, we
obtain i).

Let f := g;. ii) holds, and for every € U with st(x) € C we have
st(f(z)) = f(st(x)). The equality of the integrals in iv) follows from Re-
mark 2.8 To obtain the second part of iii) we will enlarge E by a negligible
set. Fori=1,...,n let

Ei=st({zeU: gi@) ¢ K}).

By [BP9§|, E; is Rg-definable. If dim(E;) = n, then E; contains an open
ball. This contradicts Lemma 2.5 of [BO04] by which every definable, one
variable function into K has finite derivative except on st71(A), for a finite
set A. It follows that each set F; is negligible and therefore, after enlarging
E, we may assume that D(f) is finite on U \ st™'(F).

It remains to prove D(f)(stz) = st(Df(z)). As before, we will enlarge
E by a negligible set. Let V := {z € R" : D(f)(x) # Df(z)}. The set V
is Ri-definable. If V' is non-negligible, then it contains an open ball and
therefore w.l.o.g. we may assume that V' is an open ball centered at 0. We

may also assume f(0) = 0. After substracting from f a linear function,
we can assume that %(0) = 0 and %(O) = 3¢ > 0 for some index i =
1,...,n. Therefore, on a smaller neighborhood of 0, we have g—i < € and

ggz > 2¢. Thus, for = along the z; axis, |f(z)| < |z|e and f(z) > 2|z|e

contradicting the first part of iii), namely, st(f(z)) = f(x). We conclude
that V' is negligible. Let £’ be a negligible set such that away from st~H(E)
the equality st(Df(z)) = Df(stx) holds. Then away from st~1(V U E’) we



have st(Df(z)) = Df(st(x)) = Df(st(z)) as wanted. By cell decomposition,
E can be further enlarged so that C' is open. O

Remark 2.11. If f~1(A) is negligible whenever A is, then, outside a negli-
gible closed set, (fog) = fog.

Proof of Lemma[Z.9. The fact that f is bi-Lipschitz implies that f is injective
(since it is also bi-Lipschitz).
Claim 1. Let C' C st(V') be Lebesgue measurable. Then,

L"(C) = / st(|det Df).
(st £)=H(C)
In fact, by the change of variables formula (on the reals!) and Lemma[2.T0]
LMC) = / |det Df|) = / st(|det Df).
7o) (st £)=1(C)

Claim 2. Let h: V — R be an integrable function. Then,

V/h:U/st(\dethDhof.

Claim [] implies that the statement is true if h is a simple function. By
continuity, the statement is true for any integrable function h.
In particular, we can apply Claim [2] to the function

A {st(g(x)) if o € f(A),

0 otherwise,

and obtain the conclusion. O

Lemma 2.12 (Fubini’s theorem). L™ is the completion of the product
measure L™ x L™. Therefore, if D is the interval [0,1] C K and given
f:D™™ — D definable,

| s ey = [ [ sy acn@ i),

Dn+m Dmpn

Proof. Follows from the definition of £™ in [BO04]. O



2.1 Measure on semialgebraic sets

Definition 2.13. We say that £ C K™ is (-semialgebraic if E is defin-
able without parameters in the language of pure fields. If £ C K" is ()
semialgebraic we denote the subset of R" defined by the same formula that
defines E by FEk.

Remark 2.14. Let E C K™ be (-semialgebraic. Then, st(E) = .

Let £ C K™ be closed and (-semialgebraic submanifold. Working in
local charts, from [BO04] one can easily define a measure £¥ on the o-ring
generated by the definable subsets of E of bounded diameter. We will denote
in the same way the completion of £L¥. Notice that £LE" = £".

Remark 2.15. Let E be a closed, ()-semialgebraic submanifold of K™ of
dimension e, F' := st(F), and C C E be definable and bounded. Then,
LE(C) = LE(st(C)), where LE is the e-dimensional Hausdorff measure on F.

One could also take the above remark as the definition of £F on E N K™.

3 Rectifiable partitions

Theorem [3.8 shows that every definable set A C K™ has a partition into
definable sets which are M,,-cells after an orthonormal change of coordinates
(where M, € Q depends only on n). In [P08], the author shows that a
permutation of the coordinates suffices. The proof of B.8] follows closely that
of [K92]. The partition in is then used in Corollary B.11] to show that
definable sets have a rectifiable partition.

Definition 3.1. Let L : V — W be a linear map between normed K-vector
spaces. The norm of L is given by

I = SUEIL(U)\-

For V, W in the Grassmannian of e-dimensional linear subspaces of K™,
namely G.(K™), let my and 7y € Endg(K™) be the orthogonal projections
onto V and W respectively. In this way we have a canonical embedding
G.(K™) C Endg(K"™). The distance function on the Grassmannian is
given by the inclusion above:

SV, W) = ||lmy — mw]|-



For P in G;(K™) and X € Gx(K™), define
(P, X) = |v—mx(v),

where mx is the orthogonal projection onto X, and v is a generator of P of
norm 1. Note that 6(P, X) = 0 if and only if P C X, 0 < §(P,X) <1 and
0(P,X) = 1if and only if P L X. Note also that §(P, X) is the definable
analogous of the sine of the angle between P and X.

Lemma 3.2. Let n € Nyg. Then there exists an €, € Qxq, €, < 1, such
that for any X, ..., Xoen € Gu_1(K™), there is a line P € G1(K™) such that
whenever Y, ..., Ys, € G, 1(K™) and

(X, YY) <e,, i=1,...,2n, then
I(PY;) > e, i=1,...,2n.
Proof. For € > 0 define S;(e) = {v € S" i [v — 7y, (v)] < 2¢}. If K =R, let

€n € Qo be small enough so that 2n Vol(S;(e,)) < Vol(S™ 1), where Vol is
the measure £5" " defined in §21 Then

Vol " Si(en)) < 20 Vol(S1(e,)) < Vol(5™)

and therefore o
U_, Silen) # 5" (2)

The same ¢, will necessarily satisfy (2) for any field K containing R.
Now, we choose

2n
n—1 )
ves | |i:1 Si(€n)
and let P := (v). Then

(P Y;) = |v—myv| > |v—mxv| — |mx,0 — Ty, 0| > €. O

Definition 3.3. Let € > 0. A definable embedded submanifold M of K™ is
e-flat if for each x,y € M we have 6(T'M,, TM,) < €, where T'M, denotes
the tangent space to M at z.

Lemma 3.4. Let A C K" be a definable submanifold of dimension e and
e € Rog. Then there is a cell decomposition A = Uf:o A; of A such that

for every i we have either dim(A;) < dim(A) or A; is an e-flat submanifold
of K™.



Proof. Cover G.(K™) by a finite number of balls B; of radius €/2; and consider
the Gauss map G : A — G.(K™) taking an element a of A to T'A,. Take a
cell decomposition of K¢ compatible with A and partitioning each G~(B;).
Then the e-dimensional cells contained in A are e-flat. O

Lemma 3.5. Let € € Q-q, and let A C K™ be an open definable set. Then
there are open, pairwise disjoint cells Ay, ..., A, C A such that

(i) dim(A—{JA;) <n.

(ii) For each i, there are definable, pairwise disjoint sets By, ..., By (with
k depending on i) such that

(a) k <2n;

(b) each B; is a definable subset of 0A; and an e-flat, (n—1)-dimensional,
Ct-submanifold of K™;

(c) dim(9A4; — U5, B;) <n —1.

Proof. By induction on n. The lemma is clear for n = 1. Assume that n > 1
and the lemma holds for smaller values of n.

Take a cell decomposition of A compatible with A into C'-cells. Let C
be an open cell in this decomposition; it suffices to prove the lemma for C.
Note that C' = (f, g)x, where X is an open cell in K"~ and f, g are definable
C!-functions on X. Take finite covers of I'(f) and I'(g) by open, definable
sets U; and V}, respectively, such that each U; NT'(f) and each V; NT'(g) is
e-flat (to do this, take a finite cover of the Grassmannian by e-balls and pull
it back via the Gauss maps for I'(f) and I'(g)). The collection of all sets
7m(U;) N(V;) is an open cover O of X. By the cell decomposition theorem,
there is a C'-cell decomposition of X partitioning each set in O. Let S be
an open cell in this decomposition, and let Cy := (f, g)s. It suffices to prove
the lemma for Cp. By the inductive hypothesis, we can find A,..., A7 C S
and Bj,..., B, C 0A! satistfying the conditions (i) and (ii) above (with n
replaced by n — 1). Define

Ai = (fag)Aéa Z:]-aap

Then dim(Cy — i, Ai) < n. For j = 1,...,k, the set (B} x K)N0A; is
definable. Take a C'-cell decomposition of this set, and let B; be the union
of the (n — 1)-dimensional cells in this decomposition (note that B; may be
empty). Then B; is an e-flat C'-submanifold of K™ and

dim(((B} x K)N84;) — B;) <n—1.



Define By = T(f}A;) and Byio = T(g}Ag); by construction these are
e-flat. It is routine to see that 0A; C Bgy1 U Biio U (0A] x K). Thus

0A; = UjZ By C (04 x K)noA) = U5y By
= (Ui ((B} x K)NoA) UE) — U, B;
c Ui (B x K)N0A;) — Bj) UE,
where E is a definable set with dim(F) < n — 1. Therefore dim(0A; —

Ufif B;) <n—1. Since k < 2(n — 1), we get k + 2 < 2n and the lemma is
proved. O

Definition 3.6. Let U C K" be open and let f : U — K™ be definable.
Given 0 < M € K, we say that f is an M-function if |Df| < M. We say
that f has finite derivative if |Df] is finite.

Notice that, by w-saturation of K, if f is definable and has finite deriva-
tive, then it is an M-function for some finite M.

Let M € K-y. An M-cell is a C!-cell where the C! functions that define
the cell are M-functions. More precisely:

Definition 3.7. Let (i1,...,4,) be a sequence of zeros and ones, and M €
Koo. An (iy,...,9y)-M-cell is a subset of K™ defined inductively as follows:

(i) A (0)-M-cell is a point {r} C K, a (1)-M-cell is an interval (a,b) C K,
where a, b € K.

(ii) An (d1,...,%m,0)-M-cell is the graph I'( f) of a definable M-function f :
X — K of class C!, where X is an (iy, . . ., iy )-M-cell; an (i1, . .., iy, 1)-
M-cell is a set

(f;9)x == A{(z,r) e X x K : f(z) <r < g(2)},

where X is an (iy,...,0y)-M-cell and f,g : X — K are definable
M-functions of class C! on X such that for all z € X, f(x) < g(x).

Theorem 3.8. Let A C K™ be definable. Then there are definable, pairwise
disjoint sets A;, i = 1,...,s, such that A = J, A; and for each A;, there is
a change of coordinates o; € O,(K) such that o;(A;) is an M,-cell, where
M, € Q¢ is a constant depending only on n.

Proof. We will make use of the following fact:

Let e € [0,1], P € G1(K™), X € Gi(K™) and and w € X be a unit vector.
Suppose 0(P, X) > e. If mp(w) > 1/2, where 7p is the orthogonal projection
onto P, then

mp(w) —w| = |rp(w) = mx (wp(w))| > [wp(w)le > 1/2¢.
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If mp(w) < 1/2, then |w| < |mp(w)| + |mp(w) — w| < 1/2 + |mp(w) — w|. In
either case, we have

1
|mp(w) — w| > € (3)

We prove the theorem by induction on n; for n = 1 the theorem is clear.
We assume that n > 1 and that the theorem holds for smaller values of n.
We also proceed by induction on d := dim(A). It’s clear for d = 0; so we
assume that d > 0 and the theorem holds for definable bounded subsets B
of K" with dim(B) < d.

Case I: dim(A) = n. In this case A is an open, bounded, definable subset
of K™, so by using the inductive hypothesis and Lemma [3.5], we can reduce
to the case where there are pairwise disjoint, definable By, ..., By C 0A such
that £ < 2n, dim(@A—Ule B;) < n—1 and each B; is an ¢,-flat submanifold,
where ¢, is as in Lemma By Lemma B2 there is a hyperplane L such
that for each B; and all x € B;, we have §(L*,T,B;) > €,. Take a cell
decomposition B of K", with respect to orthonormal coordinates in the L,
L+ axis, partitioning each B;. Let

S={CeB:dim(C)=n-1,CcU, B}
and note that dim(0A \ Joes C) < n — 1. Furthermore,
BAD :={z € A:n, ' (n (2)) NOA ¢ J,sC}

has dimension smaller than n. Let Ui,...,U; be the elements of {7 (C) :
C € S}. Then the set

{reAiadn (U U

is contained in BAD, and therefore has dimension smaller than n.

By using the inductive hypothesis, we only need to find the required
partition for each of the sets AN7; ' (U;),i=1,...,1. Fixi € {1,...,1} and
let U :=U;, A := ANz ' (U). Take C € S with ,(C) = U. Then C = I'(¢)
for a definable C'-map ¢ : U — L+ and for all z € C,

T,C = {(v,Dop(v)) : v € Ty, (U}

Let v € Ty, (U be a unit vector; since 6(L+, T,,C) > ¢, and |(v,Dg(v))| =
1+ |Do(v)|?, it follows from equation (3] that

1 1 1
6 < 1+|D¢(v)|2|ﬂ-Ll((va¢(v)))_(U>D¢(v))|_ 1+|ng(v)Plvl-

10




Therefore,

4
Do) < 4[5~ 1

Let M,, € Q be bigger than max {Mn,l, \ /}2 - 1} )

We have proved that for each C; € S with 7, (C;) = U there is a definable
Cl-map ¢; : U — K, such that |D¢;| < M,, and C; = T'(¢;).

By the inductive hypothesis, there is a partition P of U such that each
piece P € P is a M,,_;-cell after a change of coordinates of L. We have

A= I] (@néar,

PeP
(¢r 7¢S)P CA/

and (¢, ¢s)p is a M,-cell after a coordinate change.

Case II: dim(A) < n. In this case, by Lemma [B.4] we can partition A
into cells which are ¢,-flat. Therefore we may assume that A is an ¢,-flat
submanifold, where ¢, is as in Lemma As in case I, there is a hyperplane
L such that A is the graph of a function f: U — K, U C L and [Df| < M,,.
By the inductive hypothesis, we can partition U into M,,_;-cells. The graphs
of f over the cells in this partition give the required partition of A. O

Definition 3.9. Let A € K™ and e < n. A is basic e-rectifiable with
bound M if, after a permutation of coordinates, A is the graph of an M-
function f : U — K" ¢, where U C K€ is an open M-cell for some finite M.

Lemma 3.10. Let A C K™ be an M-cell of dimension e. Then, A is a
basic e-rectifiable set, and the bound of A can be chosen depending only on
M and n.

Proof. We proceed by induction on n. If n =0 or n = 1 the result is trivial,
so assume n > 2. By definition, there exists an M-cell B C K™ ! such that

(1) either A = I'(g) for some M-function g : B — K, or
(2) A= (g,h)p for some M-functions g,h : B — K, with g < h.

By inductive hypothesis, there exists an open L-cell C' C K¢ (for some d and
some L > M depending only on M and on n), and an L-function f : C' —
K" 174 such that B = T'(f).

In case (1) d = e. Define [ : C'— K" ¢ by l(x) = (f(x), g(z, f(x))). It is
easy to see that [ is an L’-function for some L’ depending only on M and n,

and that A =T'(]).
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In case (2), d = e—1. Define g := gof, h = ho f, and B := (§,h)c. Given
(Z,y) € B, define I(Z,y) := f(Z). We have that B is an open e-dimensional
L-cell, I : B — K™ °is an L-function, and A = I'(). O

Corollary 3.11. Let A C K" be definable of dimension at most e. Then
there is a partition A = Uf:o A; such that dim(Ag) < e and A; is a basic
e-rectifiable set for i > 0. Moreover, the bounds of each A; can be chosen to
depend only on n (and not on A). We call (Ao, ..., Ax) a basic e-rectifiable
partition of A.

Proof. Apply Theorem B.8 and 310l O

Notice that a similar result has also been proved in [PW06, Theorem 2.3]
(where they also take arbitrarily small bounds): however, in [PW06] they
don’t require that the functions parametrizing the set A are injective (which
is essential for our later uses).

4 Whitney decomposition

The fact that the functions that define an M-cell are actually Lipschitz func-
tion follows from the following property of M-cells:

Every pair of points x,y in an M-cell C C K™ can be connected by a
definable C! curve v : [0,1] — C with |y(t)] < N|z — y|, where N is a
constant depending only on M and n which is finite if M is (Lemma
or [VRO6] 3.10 & 3.11).

The same property implies that a N-function f on an M-cell is Lipschitz
where the Lipschitz constant is finite if M and N are (Corollary .5]). This
last property will be needed for defining Hausdorff measure.

Remark 4.1. Let U C K™ be open and definable, and f : U — K be an
M-function (for some finite M). It is not true in general that f is L-Lipschitz
for some finite L: this is the reason why we needed to prove Theorem [3.8

Definition 4.2. Let A € K", B C K™ be definable sets. Let A C A X
([0,1] x B) € K™ x K*™ be a definable set such that for every z € A, the
fiber over x

Ao :={y €1[0,1] x B: (z,y) € A\}

is a curve A\, : [0,1] — B. We view A as describing the family of curves
{Az}zea. Such a family is a definable family of curves (in B, parametrized

by A).
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An L-cell is an L-Lipschitz cell if the functions that define the L-cell are
L-Lipschitz.

Lemma 4.3. Fiz L € K- andn € Nog. Then, there is a constant K(n, L) €
K-y depending only on n and L, that is finite if L is, such that for every L-
Lipschitz cell C C K™ there is a definable family of curvesy C C?*x([0,1]xC)
such that: For all z,y € C, vy, : [0,1] = C is a C*-curve with

(1) Yey(0) = 2,794y (1) = y;
(i) |72y ()| < K(n, L)|z —y|, for all t € [0,1].

Proof. By induction on n. For n = 1 the lemma is clear. Take n > 1, and
assume that the lemma holds for n. Let C € K"™*! be an L-Lipschitz cell.
Then C = T'(f) or C' = (g,h)x for some L-Lipschitz cell X € K" ! and
definable, C1, L-Lipschitz functions f, g, h with ¢ < h, and |Df|, |Dg|, |Dh| <
L. By induction, there are a constant k := K(n—1, L) and a definable family
of C'-curves 8 in X with the required properties. Let 7, : K"T' — K™ be
the projection onto the first n coordinates.

If C = T(f), we lift 8 to C via f: fix xz,y € C and let ~,,(t) =
(a(t), f(a(t))), where for all t € [0,1] a(t) := Br, (). (y)(t). Then we have
Ity ()] < (1+ L)kl — y].

If C = (g,h)x, we lift 5 as follows: Fix z,y € C and let a := Br,, ()7 ()-
Let 7 : K™™' — K be the projection onto the last coordinate and take
u,v € (0,1) with

Let I(t) := tvo+ (1 —t)u, for t € [0,1]. We define 7, ,(t) := (a(t), l(t)h(a(t)) +
(1 =1(t))g(a(t))), and note that

Ve (O] < Elz =yl + [(v = w)(h(a(t) — g(a(t)))] + 2LEk[x -y,

I))|7 [Dg(e/(1))] < Lo/ (1)].

, which equals

since [(t),1 —I(t) are between 0 and 1 and |Dh(o/(t
Let f :=h —g. We want to bound |(v — u) f(«(t))

[y — 72 —o(f(a(1)) = fa?) +u(f(a(0)) = f(a(t)) + g((0)) — g(a(1))].

But

[f((1)) = fla(®))] < Lla(1) = a(t)] = L|T1 -1 —

=) < o)
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for some ty between ¢ and 1. Similarly, |f(«(0)) — f(a(t))| < L|d/(t1)], for
some t; between ¢ and 1. Since u,v € [0, 1], we get

(v —u)f(a(®)] < [y — ma| + 2Lklx — y[ + Llz —y;

thus |v,,(t)] < K(n, L)|z — y| for some constant K(n, L) depending only on
n and L which is finite if L is. The collection of the curves v, for z,y € C
constitutes the required family of curves. O

Theorem 4.4. Let L > 0, and let C C K" be an L-cell. Then C is a
k(n, L)-Lipschitz cell, where k(n, L) depends only on n and L, and is finite
if L is.
Proof. By induction on n; the theorem is clear for n = 1. Assume that n > 1
and that the theorem holds for n — 1. Then C' = T'(f) or C' = (g, h)x, where
X c K™ 'is a k(n — 1, L)-Lipschitz cell and f, g, h are C!'-functions on X
such that |[Df|,|Dg|,|Dh| < L. We need to show that f, g, h are Lipschitz.
Since X is a k-Lipschitz cell, k := k(n — 1, L), it follows from Lemma
that there is a constant K (n — 1, k) such that whenever x,y € X, there is a
definable, C'-curve v joining z and y with |7/(t)] < K(n —1,k)|x — y| for all
t € [0,1]. Let g := f o+, and let ty € (0,1) be such that

() = F)] = 19'(to)] = DS (¥ (t0))] < LI7'(to)] < LK (n =1, k)| —y.
Thus f is LK (n — 1, k)-Lipschitz. We set k(n, L) := LK(n — 1, k). O

Corollary 4.5. Let C be an M-cell and f be a definable M -function. Then
f 1s Lipschitz, and with finite Lipschitz constant if M 1s finite.

Proof. By Theorem [4.4], C' has a definable family of curves as in Lemma
The result therefore follows from the mean value theorem. O

Definition 4.6. A definable set A C K™ satisfies the Whitney arc property
if there is a constant K € K-, such that for all x,y € A there is a definable
curve v : [0,1] — A with v(0) = z, v(1) = y and length(y) := fol Y| <
K|z —yl.

Lemma 4.7. Let C C K" be an M-cell, M € K. Then, C' satisfies the
Whitney arc property.

Proof. Tt follows from Theorem [£4] and Lemma [£.3] O

Theorem 4.8. Let A C K" be definable. Then, A can be partitioned into
finitely many definable sets, each of them satisfying the Whitney arc property.

Proof. This follows from Lemma A7, Theorem [3.8 and the fact that the
Whitney arc property is invariant under an orthonormal change of coordi-
nates. U

14



5 Hausdorff measure

For an introduction to geometric measure theory, and in particular to the
Hausdorff measure, see [Morgan8§].

Definition 5.1. Let U C K" be open and let f : U — K™ be a definable
function. If @ € U, e < n and M is the set of the e x e minors of Df(a) we
define

+oo if f is not differentiable at a or rank(Df(a)) > e,
V2 omen M? otherwise;
(cf. [Morgan88|, 3.6]).

Notice that if e = n = m, then J,f = |det(Df)|.

Jef<a> = {

Definition 5.2. Let U C K¢ be an open M-cell for some M € N, and let f :
U — K™ be a definable function with finite derivative. Let F : U — K™+e
be F(z) := (x, f(z)) and C := I'(f) = F(U) (notice that C' has bounded
diameter). We define

HE(C) = / JFdce,
U

Lemma 5.3. If C C K" is basic e-rectifiable, then H(C) = Hg(st(C)),

where Hg is the e-dimensional Hausdorff measure on R™.

Proof. Let A C K¢ and f:A—= K" ¢ be as in Definition B9 and F :
A — K™ as in Definition Let B := st(A). Then, using the real Area
formula [Morgan8§],

/ J.F dLe = / J.(F) dLs = He(F(B)) = HE(st(C)).

A B

O

Definition 5.4. Let A C K™ be definable of dimension at most e, and
(Ao, ..., Ag) be a basic e-rectifiable partition of A. Define

H(A) = H(A,

where H¢(A;) is defined using 5.2

Lemma 5.5. If A is as in the above definition, then H¢(A) does not depend
on the choice of the basic e-rectifiable partition (Ao, ..., Ax).

15



Proof. 1t suffices to prove the following: if C' is a basic e-rectifiable set and
(A, . . ., Ag) is a basic e-rectifiable partition of C', then H¢(C) = 32 H(A,),
where H¢(C') and H(A;) are defined using For every i = 1,...,n let
U and V; be M-cells, f : U — K" ¢ and g; : V; — K" ¢ be definable
functions with finite derivative, o; be a permutation of variables of K™,
F : K¢ — K" defined by F(z) := (z, f(z)), and G; : K¢ — K" defined
by G(z) = oi(z,gi(z)) such that C = F(U) and A; = G;(V;). Define
Uy == F7Y(A;) C U, and H; := G;' o F : U; — V;. Notice that each H;
is a bi-Lipschitz bijection, that U is the disjoint union of the U;, and that
dim(Uy) < e. Hence,

HE(C) = / JFdLe =3 / JFdLe =3 / J.(Gy 0 Hy) dLe =

U; Ui

-y / JoH,)|det(DH,)dLe = 3" /JGdLe S ony

where we used Lemma 2.9 the fact that each o; is a linear function with
determinant +1, and that J.(G o H) = (J.(G) o H) - |det(DH)]. O

Lemma 5.6. H¢ does not depend on n. That is, let m > n, and A C Kn
definable, and ¢ : K™ — K™ be the embedding x — (x,0). Then, H¢(A) =
H((A)).

Proof. Obvious from the definition and Lemma [5.5] O

Notice that H°(C) is the cardinality of C'.

It is clear that H* can be extended to the o-ring generated by the definable
subsets of K" of finite diameter and dimension at most e; we will also denote
the completion of this extension by H°.

Lemma 5.7. H€ is a measure on the o-ring generated by the definable subsets
of K™ of bounded diameter and dimension at most e.

Proof. Since K is Nj-saturated, it suffices to show that, for every A and B
disjoint definable subsets of K™ of finite diameter and dimension at most e,
H(AUB) = H(A)+H(B). But this follows immediately from Lemma [5.5

O

Example 5.8. In Lemma [£.3] the assumption that C' is basic e-rectifiable
is necessary. For instance, take € > 0 infinitesimal, and X be the following
subset of K2

X = ([0,1]x{0}) U{(z,y): 0< 2 <1&y=ex}.
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Then, st(X) = [0,1] x {0}, and thus H'(X) = 2, while Hj(st(X)) = 1. This
is the source of complication in the theory, and one of the reasons why we
had to wait until this section to introduce H°.

6 Cauchy-Crofton formula
Give e < n, define

5= D(5)D (25 r(24) e

Definition 6.1. Let AG.(K"™) be the Grassmannian of affine e-dimensional
subspaces of K™ and let AG.(R™) be the Grassmannian of affine e-dimensional
subspaces of R". Fix an embedding of AG.(R") into some R™, such that
AG.(R") is a (-semialgebraic closed submanifold of R™, and the restriction
to AG.(R") of the dim(AG.(R"))-dimensional Hausdorff measure coincides
with the Haar measure on AG.(R").

Definition 6.2. Given A C K" and E € AG,,_.(K"), let f4o(E) := #(ANE).
Theorem 6.3 (Cauchy-Crofton Formula). Let A C K™ be definable of di-
mension e. Then,
He(A) =+ / fadLAG-e (),
AG e (K™)

We prove the theorem by reducing it to the known case of K = R. This
is done by showing that #(A N E) equals #(st A Nst F) almost everywhere.

Definition 6.4. Let [ : U — K™ be definable, with U C K" open. Let
E C R™ and f be as in Lemma R.T0 We say that b € R" is an S-regular
point of f if

i) best(U)\ E;
ii) b is a regular point of f.

Otherwise, we say that b is an S-singular point and f(b) is an S-singular
value of f. If ¢ € R™ is not an S-singular value, we say that ¢ is an S-regular
value of f.

Remark 6.5. Let S be the set of S-regular points of f. Then, S is open
and definable in Rg.
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Lemma 6.6 (Morse-Sard). Assume that m > n. Then, the set of S-singular
values of f is Ly -negligible,

Proof. By Lemma 2,10, E is negligible; since F is also Rg-definable, it has
empty interior and therefore dim(E) < n. Since m > n, it follows that f(E)
is negligible. The set of S-singular values of f is the union of f(F) and the
set of singular values of f; it is therefore negligible. O

Lemma 6.7 (Implicit Function). Assume that m = n. Let b € R". Ifb is
an S-regular point of f then, for every y € st™1(f(b)) there exists a unique
x € st™1(b) such that f(x) =vy.

Proof. Choose xy € st™'(b). Let A := (Df(x0))~". Since b is a regular point
of f, [[A]l is finite. Thus we can choose r, p € Q¢ such that B := B(b; p) is
contained in the set of S-regular points of f, and

— — 1
IDfF(Y) —Df(b)|| < =——, foreveryd € B
20| A

p
r<
2[|Af

Moreover, we can pick p such that B’ := B(xzg; p) C U. Given y € K™ such
that |y — f(zo)| < r, consider the mapping

T, : B — K"
Ty(x) =z +A-(y— f(2)).

T, is definable and Lipschitz, with Lipschitz constant 1/2. Therefore, for
every y € B(f(xo);r) there exists a unique x € B’ such that T, (z) = =.
Thus, there is a unique € B with f(z) = y. It remains to show that, given
y € st™(f(b)) and x € B’ such that f(z) =y, we have x € st~'(b). We can
verify that

Ty :B— B
Ty () =0 + (Df(b)~" - (f(b) = F(V))
is also a contraction, and therefore it has a unique fixed point, namely b.

Since T, (st(z)) = st(x), we must have st(z) = b. O

Remark 6.8. Let U C K™. If f:U— K" is definable and M-Lipschitz
(for some finite M), n > m and E is LZ-negligible, then the set f(st™*(F))
is L™-negligible.

Proof. We can cover E with a polyrectangle Y whose measure is an arbitrar-
ily small rational number A and such that Y covers st™!(E). Since f(Y') has
measure at most CM"\ (C depends only on m and n) the result follows. [
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Lemma 6.9. Let A C K™ be a basic e-rectifiable set of dimension e. Con-
sider V := K¢ as embedded in K™ via the map x — (x,0). Identify each
p € V with the (n — e)-dimensional affine space which is orthogonal to V
and intersects V' in p. Then, for almost every p € V, we have #(p N A) =

#(st(p) Nst(A)).

Proof. Let m : K™ — V be the orthogonal projection. Let U C K¢ be an
open M-cell and f : U — K" ¢ be a definable M-function (M finite) such
that A =T'(f). Let F(z) := (z, f(x)). Let h:=7moF : U — V, and consider
h:C — st(V), C C st(U) as in Lemma ZI0. For almost every p € V,

#(pNA) =#(h"'(p)), and #(stpNstA) = #(h 1(s’cp)) because F : U — A

and F' : C'— Im(F) are bijections. Thus, it suffices to prove that, for almost

every p € V, #(h7!(p)) = #(E_l(stp)). Let E be as in Lemma [2.I0. By
Remark 6.8 h(st™!(F)) is L%negligible. Let S be the set of S-singular values
of h, by Lemma [6.6, S is negligible.

Let p € V \ (st7™}(S)U h(st7'(E)). Then for every z in h=1(p), st(z)
is an S-regular point of h, and therefore Lemma implies #(h~!(p)) =

#(h " (stp)). 0

Notice that the above lemma does not hold if A is only definable, instead
of basic e-rectifiable.

Proof of Theorem[6.3. By Corollary B.11] w.l.0.g. A is basic e-rectifiable. Let
B :=st(A), and fg(F) := #(BNF), for every F' € AG.(R"). By Lemmal6.9]

/ fa ALAGn—e(K™) — / fp ALAGn—e(RY)

AGp—e(K™) AGp—c(R™)

By the usual Cauchy-Crofton formula [Morgan88| 3.16], the right-hand side in
the above identity is equal to Hg(B) = H¢(A), where we applied Lemma[5.3]
O

7 Further properties of Hausdorff measure
and the Co-area formula

Theorem 7.1. Lete < n and C C K" be bounded and definable of dimension
at most e.

1. HE s invariant under isometries.

2. For every r € K, He(rC) = st(r)*H(C).
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S & e

If C is O-semialgebraic, then H(C') = H(Cr) = He(st(C)).
if dim(C) < e, then H(C') = 0; the converse is not true.
He(C) < +o0.

If (C(r))reKd 1s a definable family of bounded subsets of K™, then there
exists a natural number M such that H"(C(r)) < M for everyr € K.

If K' is either an elementary extension or an o-minimal expansion
of K, then H(Ck:) = H*(C).

If n=e, then H(C) = L™(C).

If C is a subset of an e-dimensional affine space E, then H¢(C) =
LE(C).

Proof.

1

3

Use the Cauchy-Crofton formula.

Apply Corollary B. 11l to Cr and use Lemma [5.3l

(2), (4) and (7) Apply the definition of H® and Lemma
5

(
(
(
(5) and (
(
(

6

9

)
)
)
)
)
)

Apply the Cauchy-Crofton formula: see [Dries03].

8) Apply Lemma 5.3

Since H¢ is invariant under isometries, w.l.o.g. E is the coordinate
space K¢. By Lemma 0.0, the measure H¢ inside K™ is equal to the
measure H¢ inside K€, and the latter is equal to £°. The conclusion
follows from Remark 2.1l O

The following theorem is the adaption to o-minimal structures of the Co-
area formula, a well-known generalization of Fubini’s theorem. Let D :=

0,1] € K.

Theorem 7.2 (Co-area Formula). Let A C D™ be definable, and f : D™ —
D" be a definable Lipschitz function, with m > n. Then, J,f is L}-
integrable, and

/ Jof AL = / HP (AN F ) AL ().

A
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Sketch of Proof. W.l.o.g., Ais an open subset of D™. By Lemma[6.6] w.l.o.g.
all points of A are S-regular for f. Apply the real co-area formula [Morgan8§]
to g := f and B := st(A), and obtain

/Jnf dLm = / Jng ALR = /Hﬁg”(B Ng '(2)) dCp(2).
A B Dr

By the Implicit Function Theorem and Lemma [5.3] for almost every y € Dg,
we have

H™M AN (y) =Hg (B Ng(sty)). O
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