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Abstract

We introduce the Hausdorff measure for definable sets in an o-

minimal structure, and prove the Cauchy-Crofton and co-area formu-

lae for the o-minimal Hausdorff measure. We also prove that every

definable set can be partitioned into “basic rectifiable sets”, and that

the Whitney arc property holds for basic rectifiable sets.
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1 Introduction

Let K be an o-minimal structure expanding a field. We introduce, for every
e ∈ N, the e-dimensional Hausdorff measure for definable sets, which is the
generalization of the usual Hausdorff measure for real sets [Morgan88]. We
also show that every definable set can be partitioned into “basic e-rectifiable
sets” (§3). Moreover, we generalize some well known result from geometric
measure theory, such as the Cauchy-Crofton formula (which computes the
Hausdorff measure of a set as the average number of points of intersection
with hyperplanes of complementary dimension) and the co-area formula (a
generalization of Fubini’s theorem), to the o-minimal context.

The measure defined in [BO04] is the starting point for our construction
of the Hausdorff measure. A theorem of [BP98] allows us to prove that
integration using the Berarducci-Otero measure satisfies properties analogous
to the ones for integration over the reals (for example, the change of variable
formula). If K is sufficiently saturated, the Berarducci-Otero measure of a
bounded definable set X is LR(st(X)), where LR is the Lebesgue measure

1

http://arxiv.org/abs/1011.1629v1


and st is the standard-part map. However, the naive definition of Hausdorff
measure given by

He(X) := He
R(st(X)) (1)

does not work (because the resulting “measure” is not additive: see Exam-
ple 5.8). The correct definition for the e-dimensional Hausdorff measure is
defining it first for basic e-rectifiable sets via (1), and then extending it to
definable sets by using a partition into basic e-rectifiable pieces. Such a par-
tition is obtained by using partitions into Mn-cells ([K92], [P08], [VR06]),
a consequence of which is the Whitney arc property for basic e-rectifiable
sets (§4).

2 Lebesgue measure on o-minimal structures

The definitions of measure theory are taken from [Halmos50].
Let R̄ := R ∪ {±∞} be the extended real line. Let K be a ℵ1-saturated

o-minimal structure, expanding a field. Let K̊ be the set of finite elements
of K. Let st : Kn → R̄n be the function mapping x̄ to the n-tuple of standard
parts of the components of x̄.

For every n ∈ N, let Ln
R be the n-dimensional Lebesgue measure (on Rn).

If n is clear from context we drop the superscript. Let Ln
1 be the o-minimal

measure on K̊n defined in [BO04]. More precisely, Ln
1 is a measure on the

σ-ring Rn generated by the definable subsets of K̊n; thus, (K̊n, Rn,L
n
1) is a

measure space. Moreover, since K̊n ∈ Rn, Rn is actually a σ-algebra.
Notice that Ln

1 can be extended in a natural way to a measure Ln
2 on

the σ-ring Bn generated by the definable subsets of Kn of finite diameter.
Finally, we denote by Ln the completion of Ln

2 , and if n is clear from context
we drop the superscript. Notice that the σ-ring Bn is not a σ-algebra.

Remark 2.1 ([BO04, Thm. 4.3]). If C ⊂ K̊n is definable, then Ln(C) is the
Lebesgue measure of st(C) .

Definition 2.2. For A ⊆ Kn and f : Kn → Km we define st(f) : A → R̄m

by st(f)(x) = st(f(x)).

Remark 2.3. If A ⊆ K̊n and f : A → K are definable, then st(f) is an
Ln-measurable function.

Definition 2.4. Let A ⊆ K̊n and f : A → K be definable. If st(f) is
Ln-integrable we will denote its integral by

∫

A

f dLn;

∫

A

f(x) dx;

∫

A

f(x) dLn(x) or

∫

A

f.
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Remark 2.5. If A ⊆ K̊n and f : A → K̊ are definable, then st(f) is
L-integrable.

Let RK be the structure on R generated by the sets of the form st(U),
where U varies among the definable subsets of Kn. By [BP98], RK is o-
minimal.

Remark 2.6. Let U ⊆ K̊n be definable. Then, dim(st(U)) ≤ dim(U).

Proof. Let dim(U) = d. After a cell decomposition, we can assume that U
is the graph of a definable continuous function f : V → K̊n−d, with V ⊂ K̊d

open cell. We can then conclude by applying the method in [HPP08, Lemma
10.3].

Definition 2.7. A function f is Lipschitz if there is C ∈ K̊ such that, for
all x, y ∈ dom(f), we have |f(x)− f(y)| < C|x− y| (notice the condition on
C being finite). An invertible function f is bi-Lipschitz if both f and f−1

are Lipschitz.

Remark 2.8. Let U ⊂ K̊n and f : U → K̊ be definable, with f ≥ 0. Then,
∫

U

f dLn = Ln+1
(

{〈x̄, y〉 ∈ U ×K : 0 ≤ y ≤ f(x̄)}
)

.

Lemma 2.9 (Change of variables). Let U, V ⊆ K̊n be open and definable,
and let A ⊆ U be definable. Let f : U → V be definable and bi-Lipschitz and
g : V → K̊ be definable, then

∫

f(A)

g =

∫

A

|det Df | g ◦ f.

Before proving the above lemma, we need some preliminary definitions
and results.

Lemma 2.10. Let U ⊂ K̊n be open and let f : U → K̊ be definable. Then
there is a RK-definable function f : C → R, where C ⊂ st(U) is an open set,
such that

i) E :=
(

st(U) \ C
)

∪
(

C ∩ st(Kn \ U)
)

is Ln
R-negligible (and, therefore,

st−1(E) is Ln-negligible).

ii) f and f are C1 on U \ st−1(E) and C, respectively.

iii) For every x ∈ U with st(x) ∈ C we have st(f(x)) = f(st(x)). Moreover,
Df is finite and D(f)(st x) = st(Df(x)).
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iv)
∫

U

f =

∫

C

f.

Proof. By cell decomposition, we may assume that f is a function of class C1,
and that U is an open cell. Since dim(Γ(f)) = n, we have, by Remark 2.6,
dim(st(Γ(f)) ≤ n. By cell decomposition, there is an RK-definable, closed,
negligible set E ⊂ st(U), and definable functions gk : st(U) \E → R of class
C1 for k = 1, . . . , r such that st(Γ(f)) ∩ ((st(U) \E) ×R) is the union of the
graphs of the functions gi. We claim that r = 1:
In fact, if g1, g2 are two different such functions, and say g1 < g2, then
for some x ∈ st(U) we have 〈x, g1(x)〉, 〈x, g2(x)〉 ∈ st(Γ(f)). Since f is
continuous,{〈x, y〉 : y ∈ (g1(x), g2(x))} ⊂ st(Γ(f)). On the other hand,
{〈x, y〉 : 〈x, y〉 ∈ st(Γ(f))} is the finite set {〈x, g1(x)〉, . . . , 〈x, gr(x)〉}, absurd.

By [HPP08, Theorem 10.4], after enlarging E by a negligible set, we
obtain i).

Let f := g1. ii) holds, and for every x ∈ U with st(x) ∈ C we have
st(f(x)) = f(st(x)). The equality of the integrals in iv) follows from Re-
mark 2.8. To obtain the second part of iii) we will enlarge E by a negligible
set. For i = 1, . . . , n let

Ei := st
({

x ∈ U :
∂f

∂xi
(x) /∈ K̊

})

.

By [BP98], Ei is RK-definable. If dim(Ei) = n, then Ei contains an open
ball. This contradicts Lemma 2.5 of [BO04] by which every definable, one
variable function into K̊ has finite derivative except on st−1(A), for a finite
set A. It follows that each set Ei is negligible and therefore, after enlarging
E, we may assume that D(f) is finite on U \ st−1(E).

It remains to prove D(f)(stx) = st(Df(x)). As before, we will enlarge
E by a negligible set. Let V := {x ∈ Rn : D(f)(x) 6= Df(x)}. The set V
is RK-definable. If V is non-negligible, then it contains an open ball and
therefore w.l.o.g. we may assume that V is an open ball centered at 0. We
may also assume f(0) = 0. After substracting from f a linear function,

we can assume that ∂f
∂xi

(0) = 0 and ∂f
∂xi

(0) = 3ǫ > 0 for some index i =

1, . . . , n. Therefore, on a smaller neighborhood of 0, we have ∂f
∂xi

< ǫ and
∂f
∂xi

> 2ǫ. Thus, for x along the xi axis, |f(x)| < |x|ǫ and f(x) ≥ 2|x|ǫ

contradicting the first part of iii), namely, st(f(x)) = f(x). We conclude
that V is negligible. Let E ′ be a negligible set such that away from st−1(E ′)
the equality st(Df(x)) = Df(st x) holds. Then away from st−1(V ∪ E ′) we
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have st(Df(x)) = Df(st(x)) = Df(st(x)) as wanted. By cell decomposition,
E can be further enlarged so that C is open.

Remark 2.11. If f−1(A) is negligible whenever A is, then, outside a negli-
gible closed set, (f ◦ g) = f ◦ g.

Proof of Lemma 2.9. The fact that f is bi-Lipschitz implies that f is injective
(since it is also bi-Lipschitz).

Claim 1. Let C ⊂ st(V ) be Lebesgue measurable. Then,

Ln(C) =

∫

(st f)−1(C)

st(|det Df |).

In fact, by the change of variables formula (on the reals!) and Lemma 2.10,

Ln(C) =

∫

f
−1

(C)

|det Df |) =

∫

(st f)−1(C)

st(|det Df |).

Claim 2. Let h : V → R̄ be an integrable function. Then,

∫

V

h =

∫

U

st(|det Df |) h ◦ f.

Claim 1 implies that the statement is true if h is a simple function. By
continuity, the statement is true for any integrable function h.

In particular, we can apply Claim 2 to the function

h : x 7→

{

st(g(x)) if x ∈ f(A),

0 otherwise,

and obtain the conclusion.

Lemma 2.12 (Fubini’s theorem). Ln+m is the completion of the product
measure Ln × Lm. Therefore, if D is the interval [0, 1] ⊂ K and given
f : Dn+m → D definable,

∫

Dn+m

f(x, y) dLn+m(x, y) =

∫

Dm

∫

Dn

f(x, y) dLm(x) dLn(y).

Proof. Follows from the definition of Ln in [BO04].
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2.1 Measure on semialgebraic sets

Definition 2.13. We say that E ⊆ Kn is ∅-semialgebraic if E is defin-
able without parameters in the language of pure fields. If E ⊆ Kn is ∅-
semialgebraic we denote the subset of Rn defined by the same formula that
defines E by ER.

Remark 2.14. Let E ⊆ K̊n be ∅-semialgebraic. Then, st(E) = ER.

Let E ⊆ Kn be closed and ∅-semialgebraic submanifold. Working in
local charts, from [BO04] one can easily define a measure LE on the σ-ring
generated by the definable subsets of E of bounded diameter. We will denote
in the same way the completion of LE. Notice that LKn

= Ln.

Remark 2.15. Let E be a closed, ∅-semialgebraic submanifold of Kn of
dimension e, F := st(E), and C ⊆ E be definable and bounded. Then,
LE(C) = LF

R(st(C)), where LF
R is the e-dimensional Hausdorff measure on F .

One could also take the above remark as the definition of LE on E ∩ K̊n.

3 Rectifiable partitions

Theorem 3.8 shows that every definable set A ⊂ K̊n has a partition into
definable sets which are Mn-cells after an orthonormal change of coordinates
(where Mn ∈ Q depends only on n). In [P08], the author shows that a
permutation of the coordinates suffices. The proof of 3.8 follows closely that
of [K92]. The partition in 3.8 is then used in Corollary 3.11 to show that
definable sets have a rectifiable partition.

Definition 3.1. Let L : V → W be a linear map between normed K-vector
spaces. The norm of L is given by

‖L‖ := sup
|v|=1

|L(v)|.

For V,W in the Grassmannian of e-dimensional linear subspaces of Kn,
namely Ge(K

n), let πV and πW ∈ EndK(Kn) be the orthogonal projections
onto V and W respectively. In this way we have a canonical embedding
Ge(K

n) ⊂ EndK(Kn). The distance function on the Grassmannian is
given by the inclusion above:

δ(V,W ) := ‖πV − πW‖.
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For P in G1(K
n) and X ∈ Gk(Kn), define

δ(P,X) := |v − πX(v)|,

where πX is the orthogonal projection onto X , and v is a generator of P of
norm 1. Note that δ(P,X) = 0 if and only if P ⊂ X , 0 ≤ δ(P,X) ≤ 1 and
δ(P,X) = 1 if and only if P ⊥ X . Note also that δ(P,X) is the definable
analogous of the sine of the angle between P and X .

Lemma 3.2. Let n ∈ N>0. Then there exists an ǫn ∈ Q>0, ǫn < 1, such
that for any X1, . . . , X2n ∈ Gn−1(K

n), there is a line P ∈ G1(K
n) such that

whenever Y1, . . . , Y2n ∈ Gn−1(K
n) and

δ(Xi, Yi) < ǫn, i = 1, . . . , 2n, then

δ(P, Yi) > ǫn, i = 1, . . . , 2n.

Proof. For ǫ > 0 define Si(ǫ) = {v ∈ Sn−1 : |v− πXi
(v)| ≤ 2ǫ}. If K = R, let

ǫn ∈ Q>0 be small enough so that 2nVol(S1(ǫn)) < Vol(Sn−1), where Vol is
the measure LSn−1

defined in §2.1. Then

Vol(
⋃2n

i=1
Si(ǫn)) ≤ 2nVol(S1(ǫn)) < Vol(Sn−1)

and therefore
⋃2n

i=1
Si(ǫn) 6= Sn−1. (2)

The same ǫn will necessarily satisfy (2) for any field K containing R.
Now, we choose

v ∈ Sn−1 −
⋃2n

i=1
Si(ǫn)

and let P := 〈v〉. Then

δ(P, Yi) = |v − πYi
v| ≥ |v − πXi

v| − |πXi
v − πYi

v| > ǫn.

Definition 3.3. Let ǫ > 0. A definable embedded submanifold M of Kn is
ǫ-flat if for each x, y ∈ M we have δ(TMx, TMy) < ǫ, where TMx denotes
the tangent space to M at x.

Lemma 3.4. Let A ⊂ Kn be a definable submanifold of dimension e and
ǫ ∈ R>0. Then there is a cell decomposition A =

⋃k
i=0Ai of A such that

for every i we have either dim(Ai) < dim(A) or Ai is an ǫ-flat submanifold
of Kn.
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Proof. Cover Ge(K
n) by a finite number of balls Bi of radius ǫ/2; and consider

the Gauss map G : A → Ge(K
n) taking an element a of A to TAa. Take a

cell decomposition of Ke compatible with A and partitioning each G−1(Bi).
Then the e-dimensional cells contained in A are ǫ-flat.

Lemma 3.5. Let ǫ ∈ Q>0, and let A ⊂ K̊n be an open definable set. Then
there are open, pairwise disjoint cells A1, . . . , Ap ⊂ A such that

(i) dim(A−
⋃

Ai) < n.

(ii) For each i, there are definable, pairwise disjoint sets B1, . . . , Bk (with
k depending on i) such that

(a) k ≤ 2n;

(b) each Bj is a definable subset of ∂Ai and an ǫ-flat, (n−1)-dimensional,
C1-submanifold of Kn;

(c) dim(∂Ai −
⋃k

j=1Bj) < n− 1.

Proof. By induction on n. The lemma is clear for n = 1. Assume that n > 1
and the lemma holds for smaller values of n.

Take a cell decomposition of A compatible with A into C1-cells. Let C
be an open cell in this decomposition; it suffices to prove the lemma for C.
Note that C = (f, g)X , where X is an open cell in Kn−1 and f, g are definable
C1-functions on X . Take finite covers of Γ(f) and Γ(g) by open, definable
sets Ui and Vj , respectively, such that each Ui ∩ Γ(f) and each Vj ∩ Γ(g) is
ǫ-flat (to do this, take a finite cover of the Grassmannian by ǫ-balls and pull
it back via the Gauss maps for Γ(f) and Γ(g)). The collection of all sets
π(Ui) ∩ π(Vj) is an open cover O of X . By the cell decomposition theorem,
there is a C1-cell decomposition of X partitioning each set in O. Let S be
an open cell in this decomposition, and let C0 := (f, g)S. It suffices to prove
the lemma for C0. By the inductive hypothesis, we can find A′

1, . . . , A
′
p ⊂ S

and B′
1, . . . , B

′
k ⊂ ∂A′

i satisfying the conditions (i) and (ii) above (with n
replaced by n− 1). Define

Ai := (f, g)A′

i
, i = 1, . . . , p.

Then dim(C0 −
⋃p

i=1Ai) < n. For j = 1, . . . , k, the set (B′
j × K) ∩ ∂Ai is

definable. Take a C1-cell decomposition of this set, and let Bj be the union
of the (n− 1)-dimensional cells in this decomposition (note that Bj may be
empty). Then Bj is an ǫ-flat C1-submanifold of Kn and

dim
(

((B′
j ×K) ∩ ∂Ai) −Bj

)

< n− 1.
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Define Bk+1 := Γ(f
∣

∣A′
i) and Bk+2 := Γ(g

∣

∣A′
i); by construction these are

ǫ-flat. It is routine to see that ∂Ai ⊂ Bk+1 ∪Bk+2 ∪ (∂A′
i ×K). Thus

∂Ai −
⋃k+2

j=1 Bj ⊂ ((∂A′
i ×K) ∩ ∂Ai) −

⋃k
j=1Bj

= (
⋃k

j=1((B
′
j ×K) ∩ ∂Ai) ∪ E) −

⋃k
j=1Bj

⊂
⋃k

j=1(((B
′
j ×K) ∩ ∂Ai) − Bj) ∪ E,

where E is a definable set with dim(E) < n − 1. Therefore dim(∂Ai −
⋃k+2

j=1 Bj) < n− 1. Since k ≤ 2(n− 1), we get k + 2 ≤ 2n and the lemma is
proved.

Definition 3.6. Let U ⊆ Kn be open and let f : U → Km be definable.
Given 0 < M ∈ K, we say that f is an M-function if |Df | ≤ M . We say
that f has finite derivative if |Df | is finite.

Notice that, by ω-saturation of K, if f is definable and has finite deriva-
tive, then it is an M-function for some finite M .

Let M ∈ K>0. An M-cell is a C1-cell where the C1 functions that define
the cell are M-functions. More precisely:

Definition 3.7. Let (i1, . . . , im) be a sequence of zeros and ones, and M ∈
K>0. An (i1, . . . , im)-M-cell is a subset of Km defined inductively as follows:

(i) A (0)-M-cell is a point {r} ⊂ K, a (1)-M-cell is an interval (a, b) ⊂ K,
where a, b ∈ K.

(ii) An (i1, . . . , im, 0)-M-cell is the graph Γ(f) of a definable M-function f :
X → K of class C1, where X is an (i1, . . . , im)-M-cell; an (i1, . . . , im, 1)-
M-cell is a set

(f, g)X := {(x, r) ∈ X ×K : f(x) < r < g(x)},

where X is an (i1, . . . , im)-M-cell and f, g : X → K are definable
M-functions of class C1 on X such that for all x ∈ X , f(x) < g(x).

Theorem 3.8. Let A ⊂ K̊n be definable. Then there are definable, pairwise
disjoint sets Ai, i = 1, . . . , s, such that A =

⋃

iAi and for each Ai, there is
a change of coordinates σi ∈ On(K) such that σi(Ai) is an Mn-cell, where
Mn ∈ Q>0 is a constant depending only on n.

Proof. We will make use of the following fact:
Let ǫ ∈ [0, 1], P ∈ G1(K

n), X ∈ Gk(Kn) and and w ∈ X be a unit vector.
Suppose δ(P,X) > ǫ. If πP (w) ≥ 1/2, where πP is the orthogonal projection
onto P , then

|πP (w) − w| ≥ |πP (w) − πX(πP (w))| > |πP (w)|ǫ ≥ 1/2ǫ.
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If πP (w) < 1/2, then |w| ≤ |πP (w)| + |πp(w) − w| ≤ 1/2 + |πp(w) − w|. In
either case, we have

|πP (w) − w| ≥
1

2
ǫ. (3)

We prove the theorem by induction on n; for n = 1 the theorem is clear.
We assume that n > 1 and that the theorem holds for smaller values of n.
We also proceed by induction on d := dim(A). It’s clear for d = 0; so we
assume that d > 0 and the theorem holds for definable bounded subsets B
of Kn with dim(B) < d.

Case I: dim(A) = n. In this case A is an open, bounded, definable subset
of Kn, so by using the inductive hypothesis and Lemma 3.5, we can reduce
to the case where there are pairwise disjoint, definable B1, . . . , Bk ⊂ ∂A such
that k ≤ 2n, dim(∂A−

⋃k
j=1Bj) < n−1 and each Bj is an ǫn-flat submanifold,

where ǫn is as in Lemma 3.2. By Lemma 3.2, there is a hyperplane L such
that for each Bj and all x ∈ Bj, we have δ(L⊥, TxBj) > ǫn. Take a cell
decomposition B of Kn, with respect to orthonormal coordinates in the L,
L⊥ axis, partitioning each Bj. Let

S := {C ∈ B : dim(C) = n− 1, C ⊂
⋃k

j=1Bj}

and note that dim(∂A \
⋃

C∈S C) < n− 1. Furthermore,

BAD := {x ∈ A : π−1
L (πL(x)) ∩ ∂A 6⊂

⋃

c∈S C}

has dimension smaller than n. Let U1, . . . , Ul be the elements of {πL(C) :
C ∈ S}. Then the set

{x ∈ A : x 6∈ π−1
L (

⋃l
i=1 Ui)}

is contained in BAD, and therefore has dimension smaller than n.
By using the inductive hypothesis, we only need to find the required

partition for each of the sets A∩ π−1
L (Ui), i = 1, . . . , l. Fix i ∈ {1, . . . , l} and

let U := Ui, A
′ := A∩π−1

L (U). Take C ∈ S with πL(C) = U . Then C = Γ(φ)
for a definable C1-map φ : U → L⊥ and for all x ∈ C,

TxC = {(v,Dφ(v)) : v ∈ TπL(x)U}.

Let v ∈ TπL(x)U be a unit vector; since δ(L⊥, TxC) > ǫn and |(v,Dφ(v))| =
√

1 + |Dφ(v)|2, it follows from equation (3) that

1

2
ǫn ≤

1
√

1 + |Dφ(v)|2
|πL⊥((v,Dφ(v))) − (v,Dφ(v))| =

1
√

1 + |Dφ(v)|2
|v|.
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Therefore,

|Dφ(v)| ≤

√

4

ǫ2n
− 1.

Let Mn ∈ Q be bigger than max
{

Mn−1,
√

4
ǫ2n

− 1
}

.

We have proved that for each Cj ∈ S with πL(Cj) = U there is a definable
C1-map φj : U → K, such that |Dφj| < Mn and Cj = Γ(φj).

By the inductive hypothesis, there is a partition P of U such that each
piece P ∈ P is a Mn−1-cell after a change of coordinates of L. We have

A′ =
∐

P∈P
(φr ,φs)P⊂A′

(φr, φs)P ,

and (φr, φs)P is a Mn-cell after a coordinate change.
Case II: dim(A) < n. In this case, by Lemma 3.4, we can partition A

into cells which are ǫn-flat. Therefore we may assume that A is an ǫn-flat
submanifold, where ǫn is as in Lemma 3.2. As in case I, there is a hyperplane
L such that A is the graph of a function f : U → K, U ⊂ L and |Df | < Mn.
By the inductive hypothesis, we can partition U into Mn−1-cells. The graphs
of f over the cells in this partition give the required partition of A.

Definition 3.9. Let A ⊆ Kn and e ≤ n. A is basic e-rectifiable with
bound M if, after a permutation of coordinates, A is the graph of an M-
function f : U → Kn−e, where U ⊂ Ke is an open M-cell for some finite M .

Lemma 3.10. Let A ⊂ K̊n be an M-cell of dimension e. Then, A is a
basic e-rectifiable set, and the bound of A can be chosen depending only on
M and n.

Proof. We proceed by induction on n. If n = 0 or n = 1 the result is trivial,
so assume n ≥ 2. By definition, there exists an M-cell B ⊂ K̊n−1 such that

(1) either A = Γ(g) for some M-function g : B → K̊, or

(2) A = (g, h)B for some M-functions g, h : B → K̊, with g < h.

By inductive hypothesis, there exists an open L-cell C ⊂ Kd (for some d and
some L ≥ M depending only on M and on n), and an L-function f : C →
Kn−1−d, such that B = Γ(f).

In case (1) d = e. Define l : C → Kn−e by l(x) = 〈f(x), g(x, f(x))〉. It is
easy to see that l is an L′-function for some L′ depending only on M and n,
and that A = Γ(l).
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In case (2), d = e−1. Define g̃ := g◦f , h̃ := h◦f , and B̃ := (g̃, h̃)C . Given
〈x̄, y〉 ∈ B̃, define l(x̄, y) := f(x̄). We have that B̃ is an open e-dimensional
L-cell, l : B̃ → Kn−e is an L-function, and A = Γ(l).

Corollary 3.11. Let A ⊆ Kn be definable of dimension at most e. Then
there is a partition A =

⋃k
i=0Ai such that dim(A0) < e and Ai is a basic

e-rectifiable set for i > 0. Moreover, the bounds of each Ai can be chosen to
depend only on n (and not on A). We call (A0, . . . , Ak) a basic e-rectifiable
partition of A.

Proof. Apply Theorem 3.8 and 3.10.

Notice that a similar result has also been proved in [PW06, Theorem 2.3]
(where they also take arbitrarily small bounds): however, in [PW06] they
don’t require that the functions parametrizing the set A are injective (which
is essential for our later uses).

4 Whitney decomposition

The fact that the functions that define an M-cell are actually Lipschitz func-
tion follows from the following property of M-cells:

Every pair of points x, y in an M-cell C ⊂ Kn can be connected by a
definable C1 curve γ : [0, 1] → C with |γ′(t)| < N |x − y|, where N is a
constant depending only on M and n which is finite if M is (Lemma 4.3
or [VR06] 3.10 & 3.11).

The same property implies that a N -function f on an M-cell is Lipschitz
where the Lipschitz constant is finite if M and N are (Corollary 4.5). This
last property will be needed for defining Hausdorff measure.

Remark 4.1. Let U ⊂ K̊n be open and definable, and f : U → K̊ be an
M-function (for some finite M). It is not true in general that f is L-Lipschitz
for some finite L: this is the reason why we needed to prove Theorem 3.8.

Definition 4.2. Let A ⊂ Kn, B ⊂ Km be definable sets. Let λ ⊂ A ×
([0, 1] × B) ⊂ Kn ×K1+m be a definable set such that for every x ∈ A, the
fiber over x

λx := {y ∈ [0, 1] × B : 〈x, y〉 ∈ λ}

is a curve λx : [0, 1] → B. We view λ as describing the family of curves
{λx}x∈A. Such a family is a definable family of curves (in B, parametrized
by A).

12



An L-cell is an L-Lipschitz cell if the functions that define the L-cell are
L-Lipschitz.

Lemma 4.3. Fix L ∈ K>0 and n ∈ N>0. Then, there is a constant K(n, L) ∈
K>0 depending only on n and L, that is finite if L is, such that for every L-
Lipschitz cell C ⊂ Kn there is a definable family of curves γ ⊂ C2×([0, 1]×C)
such that: For all x, y ∈ C, γx,y : [0, 1] → C is a C1-curve with

(i) γxy(0) = x, γxy(1) = y;

(ii) |γ′xy(t)| ≤ K(n, L)|x− y|, for all t ∈ [0, 1].

Proof. By induction on n. For n = 1 the lemma is clear. Take n ≥ 1, and
assume that the lemma holds for n. Let C ⊂ Kn+1 be an L-Lipschitz cell.
Then C = Γ(f) or C = (g, h)X for some L-Lipschitz cell X ⊂ Kn−1 and
definable, C1, L-Lipschitz functions f, g, h with g < h, and |Df |, |Dg|, |Dh| ≤
L. By induction, there are a constant k := K(n−1, L) and a definable family
of C1-curves β in X with the required properties. Let πn : Kn+1 → Kn be
the projection onto the first n coordinates.

If C = Γ(f), we lift β to C via f : fix x, y ∈ C and let γx,y(t) :=
(α(t), f(α(t))), where for all t ∈ [0, 1] α(t) := βπn(x),πn(y)(t). Then we have
|γ′xy(t)| ≤ (1 + L)k|x− y|.

If C = (g, h)X, we lift β as follows: Fix x, y ∈ C and let α := βπn(x),πn(y).
Let π : Kn+1 → K be the projection onto the last coordinate and take
u, v ∈ (0, 1) with

π(x) = uh(α(0)) + (1 − u)g(α(0))

π(y) = vh(α(1)) + (1 − v)g(α(1)).

Let l(t) := tv+(1− t)u, for t ∈ [0, 1]. We define γx,y(t) := (α(t), l(t)h(α(t))+
(1 − l(t))g(α(t))), and note that

|γ′xy(t)| ≤ k|x− y| + |(v − u)(h(α(t)) − g(α(t)))| + 2Lk|x− y|,

since l(t), 1− l(t) are between 0 and 1 and |Dh(α′(t))|, |Dg(α′(t))| ≤ L|α′(t)|.
Let f := h− g. We want to bound |(v − u)f(α(t))|, which equals

|πy− πx− v(f(α(1))− f(α(t))) + u(f(α(0))− f(α(t))) + g(α(0))− g(α(1))|.

But

|f(α(1)) − f(α(t))| ≤ L|α(1) − α(t)| = L|1 − t|

∣

∣

∣

∣

α(1) − α(t)

1 − t

∣

∣

∣

∣

≤ L|α′(t0)|
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for some t0 between t and 1. Similarly, |f(α(0)) − f(α(t))| ≤ L|α′(t1)|, for
some t1 between t and 1. Since u, v ∈ [0, 1], we get

|(v − u)f(α(t))| ≤ |πy − πx| + 2Lk|x− y| + L|x− y|;

thus |γ′xy(t)| ≤ K(n, L)|x− y| for some constant K(n, L) depending only on
n and L which is finite if L is. The collection of the curves γxy for x, y ∈ C
constitutes the required family of curves.

Theorem 4.4. Let L > 0, and let C ⊂ Kn be an L-cell. Then C is a
k(n, L)-Lipschitz cell, where k(n, L) depends only on n and L, and is finite
if L is.

Proof. By induction on n; the theorem is clear for n = 1. Assume that n > 1
and that the theorem holds for n− 1. Then C = Γ(f) or C = (g, h)X, where
X ⊂ Kn−1 is a k(n − 1, L)-Lipschitz cell and f, g, h are C1-functions on X
such that |Df |, |Dg|, |Dh| ≤ L. We need to show that f, g, h are Lipschitz.

Since X is a k-Lipschitz cell, k := k(n− 1, L), it follows from Lemma 4.3
that there is a constant K(n− 1, k) such that whenever x, y ∈ X , there is a
definable, C1-curve γ joining x and y with |γ′(t)| ≤ K(n− 1, k)|x− y| for all
t ∈ [0, 1]. Let g := f ◦ γ, and let t0 ∈ (0, 1) be such that

|f(x) − f(y)| = |g′(t0)| = |Df(γ′(t0))| ≤ L|γ′(t0)| ≤ LK(n− 1, k)|x− y|.

Thus f is LK(n− 1, k)-Lipschitz. We set k(n, L) := LK(n− 1, k).

Corollary 4.5. Let C be an M-cell and f be a definable M-function. Then
f is Lipschitz, and with finite Lipschitz constant if M is finite.

Proof. By Theorem 4.4, C has a definable family of curves as in Lemma 4.3.
The result therefore follows from the mean value theorem.

Definition 4.6. A definable set A ⊂ Kn satisfies the Whitney arc property
if there is a constant K ∈ K̊>0 such that for all x, y ∈ A there is a definable
curve γ : [0, 1] → A with γ(0) = x, γ(1) = y and length(γ) :=

∫ 1

0
|γ′| ≤

K|x− y|.

Lemma 4.7. Let C ⊂ K̊n be an M-cell, M ∈ K̊. Then, C satisfies the
Whitney arc property.

Proof. It follows from Theorem 4.4 and Lemma 4.3.

Theorem 4.8. Let A ⊂ K̊n be definable. Then, A can be partitioned into
finitely many definable sets, each of them satisfying the Whitney arc property.

Proof. This follows from Lemma 4.7, Theorem 3.8 and the fact that the
Whitney arc property is invariant under an orthonormal change of coordi-
nates.
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5 Hausdorff measure

For an introduction to geometric measure theory, and in particular to the
Hausdorff measure, see [Morgan88].

Definition 5.1. Let U ⊆ Kn be open and let f : U → K̊m be a definable
function. If a ∈ U , e ≤ n and M is the set of the e × e minors of Df(a) we
define

Jef(a) =

{

+∞ if f is not differentiable at a or rank(Df(a)) > e,
√

∑

m∈M m2 otherwise;

(cf. [Morgan88, §3.6]).

Notice that if e = n = m, then Jnf = |det(Df)|.

Definition 5.2. Let U ⊆ K̊e be an open M-cell for some M ∈ N, and let f :
U → K̊m be a definable function with finite derivative. Let F : U → K̊m+e

be F (x) := 〈x, f(x)〉 and C := Γ(f) = F (U) (notice that C has bounded
diameter). We define

He(C) :=

∫

U

JeF dLe.

Lemma 5.3. If C ⊆ K̊n is basic e-rectifiable, then He(C) = He
R(st(C)),

where He
R is the e-dimensional Hausdorff measure on Rn.

Proof. Let A ⊂ K̊e and f : A → K̊n−e be as in Definition 3.9, and F :
A → K̊n as in Definition 5.2. Let B := st(A). Then, using the real Area
formula [Morgan88],

∫

A

JeF dLe =

∫

B

Je(F ) dLe
R = He

R(F (B)) = He
R(st(C)).

Definition 5.4. Let A ⊆ K̊n be definable of dimension at most e, and
(A0, . . . , Ak) be a basic e-rectifiable partition of A. Define

He(A) :=
∑k

i=1
He(Ai),

where He(Ai) is defined using 5.2.

Lemma 5.5. If A is as in the above definition, then He(A) does not depend
on the choice of the basic e-rectifiable partition (A0, . . . , Ak).
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Proof. It suffices to prove the following: if C is a basic e-rectifiable set and
(A0, . . . , Ak) is a basic e-rectifiable partition of C, then He(C) =

∑k
i=1H

e(Ai),
where He(C) and He(Ai) are defined using 5.2. For every i = 1, . . . , n let
U and Vi be M-cells, f : U → Kn−e and gi : Vi → Kn−e be definable
functions with finite derivative, σi be a permutation of variables of Kn,
F : Ke → Kn defined by F (x) := (x, f(x)), and Gi : Ke → Kn defined
by G(x) = σi(x, gi(x)) such that C = F (U) and Ai = Gi(Vi). Define
Ui := F−1(Ai) ⊆ U , and Hi := G−1

i ◦ F : Ui → Vi. Notice that each Hi

is a bi-Lipschitz bijection, that U is the disjoint union of the Ui, and that
dim(U0) < e. Hence,

He(C) =

∫

U

JeF dLe =
∑n

i=1

∫

Ui

JeF dLe =
∑n

i=1

∫

Ui

Je(Gi ◦Hi) dLe =

=
∑n

i=1

∫

Ui

(Je(Gi)◦Hi)·|det(DHi)|dL
e =

∑n

i=1

∫

Vi

JeGidL
e =

∑n

i=1
He(Ai),

where we used Lemma 2.9, the fact that each σi is a linear function with
determinant ±1, and that Je(G ◦H) = (Je(G) ◦H) · |det(DH)|.

Lemma 5.6. He does not depend on n. That is, let m ≥ n, and A ⊂ K̊n

definable, and ψ : Kn → Km be the embedding x 7→ (x, 0). Then, He(A) =
He(ψ(A)).

Proof. Obvious from the definition and Lemma 5.5.

Notice that H0(C) is the cardinality of C.
It is clear that He can be extended to the σ-ring generated by the definable

subsets of Kn of finite diameter and dimension at most e; we will also denote
the completion of this extension by He.

Lemma 5.7. He is a measure on the σ-ring generated by the definable subsets
of Kn of bounded diameter and dimension at most e.

Proof. Since K is ℵ1-saturated, it suffices to show that, for every A and B
disjoint definable subsets of Kn of finite diameter and dimension at most e,
He(A∪B) = He(A)+He(B). But this follows immediately from Lemma 5.5.

Example 5.8. In Lemma 5.3, the assumption that C is basic e-rectifiable
is necessary. For instance, take ǫ > 0 infinitesimal, and X be the following
subset of K2

X :=
(

[0, 1] × {0}
)

∪ {〈x, y〉 : 0 ≤ x ≤ 1 & y = ǫx}.
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Then, st(X) = [0, 1]×{0}, and thus H1(X) = 2, while H1
R(st(X)) = 1. This

is the source of complication in the theory, and one of the reasons why we
had to wait until this section to introduce He.

6 Cauchy-Crofton formula

Give e ≤ n, define

β := Γ
(

e+1
2

)

Γ
(

n−e+1
2

)

Γ
(

n+1
2

)−1
π−1/2.

Definition 6.1. Let AGe(K
n) be the Grassmannian of affine e-dimensional

subspaces ofKn and let AGe(R
n) be the Grassmannian of affine e-dimensional

subspaces of Rn. Fix an embedding of AGe(R
n) into some Rm, such that

AGe(R
n) is a ∅-semialgebraic closed submanifold of Rm, and the restriction

to AGe(R
n) of the dim(AGe(R

n))-dimensional Hausdorff measure coincides
with the Haar measure on AGe(R

n).

Definition 6.2. Given A ⊆ Kn and E ∈ AGn−e(K
n), let fA(E) := #(A∩E).

Theorem 6.3 (Cauchy-Crofton Formula). Let A ⊆ K̊n be definable of di-
mension e. Then,

He(A) =
1

β

∫

AGn−e(Kn)

fA dLAGn−e(K
n).

We prove the theorem by reducing it to the known case of K = R. This
is done by showing that #(A ∩E) equals #(stA ∩ stE) almost everywhere.

Definition 6.4. Let f : U → K̊m be definable, with U ⊂ K̊n open. Let
E ⊂ Rn and f be as in Lemma 2.10. We say that b ∈ Rn is an S-regular
point of f if

i) b ∈ st(U) \ E;

ii) b is a regular point of f .

Otherwise, we say that b is an S-singular point and f(b) is an S-singular
value of f . If c ∈ Rm is not an S-singular value, we say that c is an S-regular
value of f .

Remark 6.5. Let S be the set of S-regular points of f . Then, S is open
and definable in RK .
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Lemma 6.6 (Morse-Sard). Assume that m ≥ n. Then, the set of S-singular
values of f is Lm

R -negligible,

Proof. By Lemma 2.10, E is negligible; since E is also RK-definable, it has
empty interior and therefore dim(E) < n. Since m ≥ n, it follows that f(E)
is negligible. The set of S-singular values of f is the union of f(E) and the
set of singular values of f ; it is therefore negligible.

Lemma 6.7 (Implicit Function). Assume that m = n. Let b ∈ Rn. If b is
an S-regular point of f then, for every y ∈ st−1(f(b)) there exists a unique
x ∈ st−1(b) such that f(x) = y.

Proof. Choose x0 ∈ st−1(b). Let A := (Df(x0))
−1. Since b is a regular point

of f , ‖A‖ is finite. Thus we can choose r, ρ ∈ Q>0 such that B := B(b; ρ) is
contained in the set of S-regular points of f , and

‖Df(b′) − Df(b)‖ <
1

2n‖A‖
, for every b′ ∈ B

r ≤
ρ

2‖A‖
.

Moreover, we can pick ρ such that B′ := B(x0; ρ) ⊂ U . Given y ∈ Kn such
that |y − f(x0)| < r, consider the mapping

Ty : B′ → Kn

Ty(x) := x + A · (y − f(x)).

Ty is definable and Lipschitz, with Lipschitz constant 1/2. Therefore, for
every y ∈ B(f(x0); r) there exists a unique x ∈ B′ such that Ty(x) = x.
Thus, there is a unique x ∈ B with f(x) = y. It remains to show that, given
y ∈ st−1(f(b)) and x ∈ B′ such that f(x) = y, we have x ∈ st−1(b). We can
verify that

T y : B → B

T y(b
′) = b′ + (Df(b))−1 · (f(b) − f(b′))

is also a contraction, and therefore it has a unique fixed point, namely b.
Since T y(st(x)) = st(x), we must have st(x) = b.

Remark 6.8. Let U ⊂ K̊m. If f : U → K̊n is definable and M-Lipschitz
(for some finite M), n ≥ m and E is Lm

R -negligible, then the set f(st−1(E))
is Ln-negligible.

Proof. We can cover E with a polyrectangle Y whose measure is an arbitrar-
ily small rational number λ and such that Y covers st−1(E). Since f(Y ) has
measure at most CMnλ (C depends only on m and n) the result follows.
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Lemma 6.9. Let A ⊆ K̊n be a basic e-rectifiable set of dimension e. Con-
sider V := Ke as embedded in Kn via the map x 7→ 〈x, 0〉. Identify each
p ∈ V with the (n − e)-dimensional affine space which is orthogonal to V
and intersects V in p. Then, for almost every p ∈ V , we have #(p ∩ A) =
#(st(p) ∩ st(A)).

Proof. Let π : Kn → V be the orthogonal projection. Let U ⊂ K̊e be an
open M-cell and f : U → Kn−e be a definable M-function (M finite) such
that A = Γ(f). Let F (x) := 〈x, f(x)〉. Let h := π ◦F : U → V , and consider
h : C → st(V ), C ⊂ st(U) as in Lemma 2.10. For almost every p ∈ V ,

#(p∩A) = #(h−1(p)), and #(st p∩ stA) = #(h
−1

(st p)) because F : U → A
and F : C → Im(F ) are bijections. Thus, it suffices to prove that, for almost

every p ∈ V , #(h−1(p)) = #(h
−1

(st p)). Let E be as in Lemma 2.10. By
Remark 6.8, h(st−1(E)) is Le-negligible. Let S be the set of S-singular values
of h, by Lemma 6.6, S is negligible.

Let p ∈ V \ (st−1(S) ∪ h(st−1(E)). Then for every x in h−1(p), st(x)
is an S-regular point of h, and therefore Lemma 6.7 implies #(h−1(p)) =

#(h
−1

(st p)).

Notice that the above lemma does not hold if A is only definable, instead
of basic e-rectifiable.

Proof of Theorem 6.3. By Corollary 3.11, w.l.o.g. A is basic e-rectifiable. Let
B := st(A), and fB(F ) := #(B∩F ), for every F ∈ AGe(R

n). By Lemma 6.9,

∫

AGn−e(Kn)

fA dLAGn−e(K
n) =

∫

AGn−e(Rn)

fB dLAGn−e(R
n).

By the usual Cauchy-Crofton formula [Morgan88, 3.16], the right-hand side in
the above identity is equal to He

R(B) = He(A), where we applied Lemma 5.3.

7 Further properties of Hausdorff measure

and the Co-area formula

Theorem 7.1. Let e ≤ n and C ⊆ Kn be bounded and definable of dimension
at most e.

1. He is invariant under isometries.

2. For every r ∈ K̊, He(rC) = st(r)eHe(C).
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3. If C is ∅-semialgebraic, then He(C) = He(CR) = He(st(C)).

4. if dim(C) < e, then He(C) = 0; the converse is not true.

5. He(C) < +∞.

6. If
(

C(r)
)

r∈Kd
is a definable family of bounded subsets of Kn, then there

exists a natural number M such that Hn(C(r)) < M for every r ∈ Kd.

7. If K ′ is either an elementary extension or an o-minimal expansion
of K, then He(CK ′) = He(C).

8. If n = e, then He(C) = Ln(C).

9. If C is a subset of an e-dimensional affine space E, then He(C) =
LE(C).

Proof.

(1) Use the Cauchy-Crofton formula.

(2), (4) and (7) Apply the definition of He and Lemma 5.5.

(3) Apply Corollary 3.11 to CR and use Lemma 5.3.

(5) and (6) Apply the Cauchy-Crofton formula: see [Dries03].

(8) Apply Lemma 5.3.

(9) Since He is invariant under isometries, w.l.o.g. E is the coordinate
space Ke. By Lemma 5.6, the measure He inside Kn is equal to the
measure He inside Ke, and the latter is equal to Le. The conclusion
follows from Remark 2.1.

The following theorem is the adaption to o-minimal structures of the Co-
area formula, a well-known generalization of Fubini’s theorem. Let D :=
[0, 1] ⊂ K.

Theorem 7.2 (Co-area Formula). Let A ⊂ Dm be definable, and f : Dm →
Dn be a definable Lipschitz function, with m ≥ n. Then, Jnf is Lm

K-
integrable, and

∫

A

Jnf dLm =

∫

Dn

Hm−n(A ∩ f−1(y)) dLn(y).
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Sketch of Proof. W.l.o.g., A is an open subset of Dm. By Lemma 6.6, w.l.o.g.
all points of A are S-regular for f . Apply the real co-area formula [Morgan88]
to g := f and B := st(A), and obtain

∫

A

Jnf dLm =

∫

B

Jng dLm
R =

∫

Dn

R

Hm−n
R (B ∩ g−1(z)) dLn

R(z).

By the Implicit Function Theorem and Lemma 5.3, for almost every y ∈ Dn
R,

we have
Hm−n(A ∩ f−1(y)) = Hm−n

R (B ∩ g−1(st y)).
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