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SMALL REPRESENTATIONS OF SL2 IN THE FINITE MORLEY RANK

CATEGORY

GREGORY CHERLIN AND ADRIEN DELORO

Abstract. We study definable irreducible actions of SL2(K) on an abelian group of Morley rank

≤ 3rk(K) and prove they are rational representations of the group.

In this article we consider representations of SL2 which are interpretable in finite
Morley rank theories, meaning that inside a universe of finite Morley rank we shall
study the following definable objects: a group G isomorphic to SL2, an abelian
group V , and an action of G on V ; V is thus a definable G-module on which G
acts definably. Our goal will be to identify V with a standard G-module, under an
assumption on its Morley rank. (A word on this notion will be said shortly, after
we have stated the results.)
It will be convenient to work with a faithful representation, possibly replacing
SL2 by the quotient PSL2, and we shall write G ≃ (P)SL2 to cover both cases.

Theorem. In a universe of finite Morley rank, consider the following definable
objects: a field K, a groupG ≃ (P)SL2(K), an abelian groupV , and a faithful action
of G on V for which V is G-minimal. Assume rkV ≤ 3 rkK. Then V bears a
structure of K-vector space such that:

• either V ≃ K
2 is the natural module for G ≃ SL2(K), or

• V ≃ K
3 is the irreducible 3-dimensional representation of G ≃ PSL2(K) with

charK 6= 2.

The characteristic 0 case essentially reduces to a theorem of Loveys and Wagner
(Fact 1.2 below), or the following consequence of it:

Lemma 1.4. In a universe of finite Morley rank, consider the following definable

objects: a field K, a quasi-simple algebraic group G over K, a torsion-free abelian
group V , and a faithful action of G on V for which V is G-minimal. Then V ⋊G is
algebraic.

In earlier versions of this article we relied on the following proposition, which the
reader will now find in an appendix (the notion of unipotence there is not quite the
algebraic one).
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Proposition. In a universe of finite Morley rank, consider the following definable
objects: a field K of characteristic p, a group G ≃ (P)SL2(K), an abelian group V ,
and a non-trivial action of G on V . Then for v generic in V , C ◦

G(v) is toral or
unipotent (possibly trivial ).

Our theorem involves the Morley rank of a structure; the reader should bear
in mind that this is an abstract analog of the Zariski dimension, which can be
axiomatized by some natural properties [4]. The Morley rank is however not
necessarily related to any geometry or topology, being a purely model-theoretic
notion. Yet in general if a field K has Morley rank k and V is an algebraic variety
of Zariski dimension d over K, then its Morley rank is dk. The rank hypothesis in
theTheoremwould thus amount, if the configurationwere known tobe algebraic, to
assuming that dimV ≤ dimG ; but of course the possibility for a field to have a finite
Morley rank k > 1 makes algebraic geometry less general than our context. More
precisely, model theorists have constructed what they call “red fields” [1]: fields of
finiteMorley rank with a definable subgroup of the additive group. These exist only
in positive characteristic but horribly complicate matters, as our proof will confirm.
We work in a ranked universe as in [4]. Indeed, the semi-direct product V ⋊ G
is a ranked group in the sense of Borovik and Poizat [9, Corollaire 2.14 and
Théorème 2.15]. We shall not go too deeply into purely model-theoretic argu-
ments but will merely use the natural, intuitive properties of Morley rank as a
notion of dimension.
Let us now say a word about the proof of the Theorem. As we have mentioned,
there is no geometry a priori onV ⋊G , and our efforts will be devoted to retrieving
a suitable vector space structure on V which arises from the action of G . Model-
theoretically speaking, the main tool is Zilber’s so-called Field Theorem (Fact 1.9
below), which enables one to find an (algebraically closed) field inside a solvable,
non-nilpotent, infinite group of finite Morley rank. A major difficulty is that
the action of an algebraic torus of G will not induce a vector space structure on
all of V . And even if such a good structure exists, this does not mean that G
itself is linear on V . The 2-dimensional case relies on a theorem by Timmesfeld
(Fact 1.1 below); as for dimension 3, we extend the field action manually and some
curious computations will, in the end, prove linearity of G . Once we haveG acting
linearly on V , we can apply the classification of linear representations given in
[3, Théorème 10.3] to adjust the linear structure so that action becomes algebraic.
On the other hand, the detailed analysis leading to the linearity contains enough
information to arrive at the same conclusion directly.
Now that we have said what the present paper is, let us say what it is not: it does
not relate directly to the classification project for simple groups of finite Morley
rank, although some rudimentary aspects of representation theory have been used
there, via the amalgam method.
We heartily thank Borovik for directing our attention to the final section of [3],
and to the referee for an elegant simplification of our original, at times clumsy
analysis.

§1. Preparatory remarks. The proof of our Theorem is in §2; for the moment,
we gather and make observations of a more general nature.
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In a sense, the starting point of the work was the following characterization
of the natural SL2-module due to Timmesfeld. An action satisfying the second
assumption is usually called quadratic (since unipotent elements act quadratically).

Fact 1.1. [12, Chapter I, Theorem 3.4] Let K be a field andG ≃ (P)SL2(K). Let
V be a faithfulG-module. Suppose the following:

(i) CV (G) = 0.
(ii) [U,U,V ] = 1, where U is a maximal algebraic unipotent subgroup of G .

Let 0 6= v ∈ CV (U ) andW = 〈vG〉. Then there exists a field action of K onW such
thatW is the naturalG-module. In particular G ≃ SL2(K).

We shall say that an algebraic group is simple if it is simple, group-wise speaking.
If the group is perfect, has finite center, and the quotient is simple infinite, we call
it quasi-simple.
We shall use the non-standard notation (+) to denote quasi-direct sum, i.e.,
the sum of two subgroups (of a fixed abelian group) which have a finite, possibly
non-trivial, intersection.
In §1.1 we shall apply some model theory to linearize actions on a torsion-free
module; the rest of the paper deals with the positive characteristic setting. In §1.2
we recast some classical remarks on actions of finite Morley rank, notably Zilber’s
Field Theorem. This leads us to §1.3, where we give a general three-fields argument
for theories of finite Morley rank. Eventually, a closer analysis of the action of tori
will be made in §1.4.

1.1. Algebraicity in characteristic 0. We first deal with actions on torsion-free
groups, simply using a general result of Loveys andWagner. Let us specialize [7] to
our context.
Given a group K acting on a connected group of finite Morley rank H , H is
said to beK-minimal if no non-trivial definable connected proper subgroup ofH is
K-invariant.

Fact 1.2 (special case of [7, Theorem 4]). In a universe of finiteMorley rank, con-
sider the following definable objects: an abelian, torsion-free group A, an infinite
group S, and a faithful action of S on A for which A is S-minimal. Then there is a
subgroupA1 ≤ A and a field K such thatA1 ≃ K+ definably, A ≃ K

n
+, and S embeds

intoGLn(K) for some n.

The claim that A ≃ K
n
+ is not in the actual statement of [7, Theorem 4], but

obvious from its proof. We shall also need the following result.

Fact 1.3. [8, Theorem 1.4(a)] In a universe of finite Morley rank, consider the
following definable objects: a field K, and a subgroup H ≤ GLn(K) such that
H/Z(H ) is infinite and simple. IfH is irreducible on Kn, charK = 0 and some Borel
subgroup ofH is non-abelian, thenH = Z(H ) ·E for some algebraic group E ≤ H .

As a consequence, if Z(H ) is finite then H is Zariski-closed.

Lemma 1.4. In a universe of finite Morley rank, consider the following definable
objects: a field K, a quasi-simple algebraic group G over K, a torsion-free abelian
group V , and a faithful action of G on V for which V is G-minimal. Then V ⋊G is
algebraic with respect to some K-vector space structure on V .

Proof. By Fact 1.2, there is a field structure L and an L-vector space structure
on V such that G →֒ GL(V ) definably. By Fact 1.3 the image Ĝ of G in GL(V ) is
an algebraic subgroup of GL(V ). By [3] (or [11]) the isomorphism G → Ĝ is the
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composition of an algebraic isomorphism with an isomorphism induced by a field
isomorphism α : K ≃ L. Using α to identify K with L, we may suppose that G is
an algebraic subgroup of GL(V ), and at the same time we may view the L-vector
space structure on V as a K-vector space structure. ⊣

As a consequence, our theorem is virtually trivial in characteristic 0 (in charac-
teristic p, matters will be more difficult.)

Proof of our Theorem in characteristic 0. Let V and G be as in the state-
ment of our main result (see the introduction), and assume that V is torsion-free.
Then by Lemma 1.4, V ⋊ G is algebraic; dimKV is 2 or 3, and as irreducible
algebraic representations of (P)SL2 are well-known, the theorem is proved. ⊣

Before we move on and for the sake of pure digression, let us also mention a
simplification of an existing result allowed by Lemma 1.4.

Fact 1.5. [6, Theorem A in char. 0] Let G be a connected, non-solvable group of
finite Morley rank acting definably and faithfully on a torsion-free connected abelian
group V of Morley rank 2. Then there is an algebraically closed field K of Morley
rank 1 and characteristic 0 such that V ≃ K

2
+, and G is isomorphic to GL2(K) or

SL2(K) in its natural action.

Proof. V is clearly G-minimal. By Fact 1.2, there is an interpretable field
structureK such thatG →֒ GLn(K) withV ≃ K

n
+. Clearly the dimension must be 2,

making the rank of the field 1. So there is a fieldK of rank 1 such thatV ≃ K
2
+ and

G →֒ GL2(K). But definable subgroups of GL2(K), especially over a field of rank
1, are known: [10, Theorem 5] together with connectedness and non-solvability of
G this forces either G ≃ GL(V ) or G ≃ SL(V ). ⊣

1.2. Nilpotent and solvable actions. We start with an abstract version of a famous
theorem of Malcev.

Fact 1.6. [9, Théorème 3.18] LetG be a connected, solvable group of finiteMorley
rank acting definably and faithfully on a definable, abelian group A. If a definable
subgroup B ≤ A is G- or G ′-minimal, then B is centralized by G ′.

Lemma 1.7. In a universe of finite Morley rank, consider the following definable
objects: a reductive algebraic groupG , a nilpotent groupV , and an action ofG on V .
Let U be a unipotent subgroup of G . Then V ⋊U is nilpotent.

Proof. We may assume that U is a maximal unipotent subgroup. In this case,
and by reductivity of G , U is the commutator subgroup of the Borel subgroup
B = NG(U ) [2, top of p. 65]. Now considerH = V ⋊B andwrite F ◦(H ) = V ⋊K
with K ≤ B. The quotient H/F ◦(H ) ≃ B/K is abelian by [4, Theorem 9.21], so
U = B ′ ≤ K . ⊣

Lemma 1.8. In a universe of finite Morley rank, consider the following definable
objects: a fieldK, a quasi-simple algebraic groupG overK, an abelian groupV , and a
non-trivial action ofG for which V isG-minimal. ThenV has the same characteristic
as K.

Proof. Let p denote the characteristic of K. Fix a maximal unipotent subgroup
U ofG . By Lemma 1.7,V⋊U is nilpotent. Ifp = 0 andV is torsion or if p 6= 0 and
pV = V , thenNesin’s structure theorem for nilpotent groups [4,Theorem6.8] yields
[V,U ] = 0. As conjugates ofU generateG , the action is trivial, a contradiction. ⊣

Now comes Zilber’s celebrated Field Theorem.
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Fact 1.9. [9, Théorème 3.7] Let A be a definable abelian group with an infinite
abelian group of automorphismsM definable inside a structure of finite Morley rank.
If A isM -minimal, then there is an infinite definable field K and a definableK-vector
space structure of dimension 1 on A such thatM acts K-linearly, i.e., A ≃ K+ and
M →֒ K

× definably.

The reader should keep in mind that if K is a field of finite Morley rank, then
any infinite subgroup of K× additively generatesK. Now another word on fields of
finite Morley rank.

Lemma 1.10. In a universe of finite Morley rank, let A,T be definable, abelian,
infinite groups such that A is T -minimal and the action is faithful. Let K be a
definable group normalizing A and T . Then K centralizes T .

Proof. We let K act on EndA by sϕ(a) := (s(aϕ
−1

))ϕ . By assumption, K nor-
malizes the image ofT in EndA, which additively generates a definable algebraically
closed field. As there are no definable groups of automorphisms of a field of finite
Morley rank [4, Theorem 8.3], K acts trivially on T . ⊣

1.3. A three fields configuration. The following lemma will appear at a crucial
moment in the proof of ourmain theorem, when dealing with theCartan subalgebra
of the adjoint representation of (P)SL2.

Lemma 1.11. In a universe of finite Morley rank, consider the following definable
objects: three infinite fields K1,K2,K3, a connected group T acting on the underlying
additive groups, and a map B : K1 ×K2 → K3.
Suppose that for each i = 1, 2, 3, T/CT (Ki) acts on (Ki ,+) as an infinite subgroup
of K×

i . Suppose further that C
◦
T (K1) is non-trivial in its action on (K2,+). If B is

bi-additive and globally T -covariant (in the sense that B(kt1, k
t
2) = B(k1, k2)

t), then
either B is identically 0 or gives rise to a definable isomorphism K1 ≃ K3.

Proof. For the sake of clarity we shall write k1 ⊗ k2 for B(k1, k2). Moreover,
we shall drop field multiplication operations. Last but not least, the action of t
on ki will be denoted by t · ki ; as T/CT (Ki) acts as a subgroup of K

×
i , one has

t · (kik′i ) = (t · ki)k
′
i , which allows simply writing t · kik

′
i .

Let T1 = C ◦
T (K1) and Θ be its image in K

×
2 ; by assumption, Θ 6= 1. It follows

that Θ additively generates K2.
First suppose that there exist (k1, k2) ∈ K1 × K2 both non-zero such that
k1 ⊗ k2 = 0. By T1-covariance and right additivity, it follows that k1 ⊗ K2 = 0.
Now by T -covariance and left additivity, K1 ⊗K2 = 0: B is identically zero.
We may therefore suppose that for any (k1, k2) ∈ K1 × K2 both non-zero,
k1 ⊗ k2 6= 0. So any k2 ∈ K2 \ {0} induces a function fk2 : K1 → K3 given by

fk2(k1) = (k1 ⊗ k2)/(1⊗ k2).

We claim that this function does not depend on the choice of k2 6= 0. Let k
′
2 ∈ K2

be non-zero. As Θ additively generatesK2, there are finitely many ti ∈ T1 such that
k′2 =

∑

i ti · k2. Let k1 ∈ K1. Then by T1-covariance,

k1 ⊗ k
′
2 =

∑

i

[

ti · (k1 ⊗ k2)
]

=
∑

i

[

ti · (1 ⊗ k2)fk2(k1)
]

= fk2(k1)
∑

i

[

ti · (1⊗ k2)
]

= fk2(k1)(1⊗ k
′
2).
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Since k′2 6= 0, 1⊗ k
′
2 6= 0, and dividing one finds fk′2(k1) = fk2(k1), as desired.

So let f: K1 → K3 be this function. Clearly f(k1) = f1(k1) = (k1 ⊗ 1)/(1⊗ 1)
is additive; we now show that it is multiplicative.
As the image of T in K×

1 is by assumption non-trivial, it additively generatesK1.
It therefore suffices to show that f is multiplicative on (the image of) T . We shall
denote by t̄ the elements induced by t in K×

1 and in K
×
2 ; in context, there is no risk

of confusion. Let s, t ∈ T . Then

f(s̄ t̄) = (s̄ t̄ ⊗ 1)/(1⊗ 1)

= t · (s̄ ⊗ t̄−1)/(1⊗ 1)

= t ·
[

(s̄ ⊗ t̄−1)/(1⊗ t̄−1)
] [

(1⊗ t̄−1)/(1⊗ 1)
]

= t ·
[

ft̄−1(s̄)(1 ⊗ t̄
−1)/(1⊗ 1)

]

= f(s̄)
[

t · (1⊗ t̄−1)/(1⊗ 1)
]

= f(s̄)
[

(t̄ ⊗ 1)/(1⊗ 1)
]

= f(s̄)f(t̄).

So the function f: K1 → K3 is a non-zero definable ring homomorphism between
two infinite definable fields of finite Morley rank. It follows that it is a definable
isomorphism. ⊣

1.4. Around tori. We return to abelian-by-abelian situations, trying to capture
the behavior of semi-simple elements. The logician’s approach to this topic relies on
the following notion [5]. A good torus is a definable, abelian, divisible group with
no torsion-free definable section; the latter condition being equivalent to: every
definable subgroup is the definable hull of its torsion subgroup. We shall call a
subgroup or an element of a group of finite Morley rank toral if it is contained in a
good torus.
The following theorem of Wagner states that in finite Morley rank, the multi-
plicative group of a field of characteristic p is a good torus.

Fact 1.12. [13, Corollary 9] LetK be a field of finiteMorley rank of characteristic
p > 0. Then K× has no torsion-free definable section.

Lemma 1.13. In a universe of finite Morley rank, consider the following definable
objects: two infinite, abelian groups K and H , and a faithful action of K on H
for which H is K-minimal. Suppose that H has exponent p and that K contains a
non-trivial q-torus for each q 6= p. Then rkH = rkK .

Proof. By Zilber’s Field Theorem, there is a field structure L such thatH ≃ L+

andK →֒ L
×. In particular, charL = p. NowL

×/K is torsion-free, so byWagner’s
Theorem, K cannot be proper in L×. Hence rkK = rkL = rkH . ⊣

Recall that TorG stands for the set of torsion elements of a group G .

Lemma 1.14. In a universe of finite Morley rank, consider the following definable
objects: a field K of characteristic p, a subgroup Θ ≤ K

×, a connected abelian
groupV , and an action of Θ onV . Then there is è ∈ TorΘ such thatCV (Θ) = CV (è)
and [V,Θ] = [V, è].

Proof. By Wagner’s Theorem (Fact 1.12), Θ = d (TorΘ). By the descending
chain condition on centralizers, CV (Θ) = CV (TorΘ) = CV (è1, . . . , èn) for torsion
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elements, and we take a generator è0 of the finite cyclic group 〈è1, . . . , èn〉: one has
CV (Θ) = CV (è0), and this holds true of any root of è0.
Now the group [V,TorΘ] is definable and connected (a consequence of Zilber’s
indecomposability theorem [4, Theorem 5.26]), so

Σ = {t ∈ Θ: [V, t] ≤ [V,TorΘ]}

is a definable subgroup of Θ containing TorΘ. Again, as Θ = d (TorΘ), it follows
that Σ = Θ, that is [V,Θ] = [V,TorΘ]. We turn to the lattice of definable, connected
groups {[V, t] : t ∈ TorΘ}: if t1 is a root of t2, then [V, t1] ≥ [V, t2]. So by the
ascending chain condition, there is è ∈ TorΘ such that [V, è] = [V,TorΘ] = [V,Θ].
We may assume that è is a root of è0, and we are done. ⊣

And now for a little bit of cohomology.

Fact 1.15. Let A be a connected, abelian group of finite Morley rank of bounded
exponent andα a definable automorphismof finite order coprime to the exponent ofA.
Then A = CA(α)⊕ [A,α]. Moreover, ifA0 < A is a definable, connected, α-invariant
subgroup, then [A,α] ∩ A0 = [A0, α].

Proof. Let adα and Trα be the adjoint and trace maps, that is:

adα(x) = x
α − x and Trα(x) = x + · · ·+ xα

n−1

where n is the order of α. It is easily seen, as A has no n-torsion, that we have
ker adα ∩ ker Trα = 0. In particular, rkA ≥ rk (ker adα) + rk (ker Trα). More-
over, im adα ≤ ker Trα and imTrα ≤ ker adα . It follows therefore that rkA ≥
rk (ker adα)+rk (ker Trα) ≥ rk (ker adα)+rk (im adα) = rkA, so im adα = kerTrα .
Hence A = ker adα ⊕ ker Trα = ker adα ⊕ im adα = CA(α)⊕ [A,α].
Let a0 ∈ A0; then a0 ∈ adα(A0) iff Trα(a0) = 0 iff a0 ∈ adα(A). ⊣

Lemma 1.16. In a universe of finite Morley rank, consider the following definable
objects: a field K of characteristic p, a subgroup T of K×, a connected abelian
p-group A, and an action of T on A. Then A = CA(T ) ⊕ [A,T ]. Let A0 < A
be a definable, connected, T -invariant subgroup. Then CA(T ) covers CA/A0(T ) and
CT (A) = CT (A0, A/A0).

Proof. We may apply Lemma 1.14 and find a torsion element t0 ∈ T such
that CA(T ) = CA(t0) and [A,T ] = [A, t0]. We use Fact 1.15 and deduce that
A = CA(T )⊕ [A,T ].
If x ∈ Amaps to an element in CA/A0(t0), then denoting the canonical projection
by ð one has ð ◦ adt0(x) = adt0 ◦ ð(x) = 0. Hence adt0(x) ∈ A0 and by Fact 1.15
there is x0 ∈ A0 such that adt0(x) = adt0(x0), whence x ∈ x0 + ker adt0 , and
ker adt0 = CA(t0).
Let Θ = CT (A0, A/A0); Θ is definable. Then CA(Θ) covers CA/A0(Θ) = A/A0; it
follows that A = CA(Θ) + A0 ≤ CA(Θ). ⊣

§2. Proof of the theorem. We now attack our main result.

Theorem. In a universe of finite Morley rank, consider the following definable
objects: a field K, a groupG ≃ (P)SL2(K), an abelian groupV , and a faithful action
of G on V for which V is G-minimal. Assume rkV ≤ 3 rkK. Then V bears a
structure of K-vector space such that:
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• either V ≃ K
2 is the natural module for G ≃ SL2(K), or

• V ≃ K
3 is the irreducible 3-dimensional representation of G ≃ PSL2(K) with

charK 6= 2.

Let us begin with something completely different: a piece of notation and an
observation regarding (P)SL2.

Notation 1. Let G ≃ (P)SL2. Fix a Borel subgroup B of G and let U = B ′ be
its unipotent radical. Let T be an algebraic torus such that B = U ⋊ T . Let i be
the involution in T , and æ ∈ NG (T ) a 2-element invertingT (the order of æ depends
on the isomorphism type of G).

Fact 2.1. A definable, connected subgroup of (P)SL2 is toral, has only unipotent
elements, or contains a maximal unipotent subgroup of (P)SL2.

Proof. Let K be a definable, connected subgroup. We may assume that K is
proper; as K is then solvable (see for instance [10, Théorème 4]), up to conjugacy
K ≤ B. Let U1 = U ∩K ; if K is not toral, thenU1 6= 1. If some elements in K are
not unipotent, that is ifK > U1, thenwemay splitK = U1⋊T1 for some non-trivial,
connected toral subgroup; so fixing u ∈ U#1 one has K ≥ 〈uK〉 ≥ 〈uT1〉 = U , as
observed after Fact 1.9. ⊣

The time has now come to start the proof.

Notation 2. In a universe of finite Morley rank, consider the following definable
objects: a field K, a group G ≃ (P)SL2(K), an abelian group V , and a non-trivial
action of G on V for which V is G-minimal. Let k = rkK and assume rkV ≤ 3k.

First of all one may assume that the action does not satisfy all the assumptions
of Fact 1.1, as otherwise rkV = 2k; in particular, the action is not quadratic
or CV (G) 6= 0. As observed after Lemma 1.4, we may suppose that V is not
torsion-free. It is then easily seen that V has prime exponent p, and K must have
characteristic p as well by Lemma 1.8.
Our goal is to show that G ≃ PSL2 acts on V ≃ K

3 in the usual irreducible way
(in characteristic 6= 2). The proof will involve studying various subgroups of V ,
defining a field action piecewise, and eventually proving its linearity. On our way
we shall prove p 6= 2.

2.1. Structure of the module. A word on terminology: if K is a group acting on
a definable, connected, abelian group V , we shall call V a K-module. In particular,
K-submodules are by definition definable and connected.

Step 3. V has a T -submodule X0 6= 0 such that C ◦
T (X0) 6= 1.

Proof. Suppose C ◦
V (T ) = 0; by Lemma 1.16, CV (T ) = 0 as well, whence

CV (G) = 0, so the action is not quadratic. Let V1 ≤ V2 ≤ V be B-submodules,
with V1 and V2/V1 B-minimal. Notice that by Malcev’s Theorem (Fact 1.6), both
V1 and V2/V1 are even T -minimal. Notice further that V2 < V , as otherwise the
action is quadratic, a contradiction.
If rkV1 6= k then by Lemma 1.13, the action of T onV1 can’t have a finite kernel:
T1 = C

◦
T (V1) must be infinite, and taking C

◦
V (T1) ≥ V1 we are done. So we may

assume rkV1 = k. Suppose rkV2/V1 6= k. As V2/V1 is T -minimal, the group
T2 = C ◦

T (V2/V1) is non-trivial by Lemma 1.13. Since T2 is a good torus, CV2(T2)
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covers V2/V1 by Lemma 1.16, so C ◦
V2
(T2) is non-trivial; in particular C ◦

V (T2) 6= 1:
we are done.
So we may suppose rkV1 = rkV2/V1 = k, and in particular rkV2 = 2k. Let

W2 = (V2 ∩ V
æ
2 )

◦; clearly rkW2 ≥ k. If (V1 ∩W2)◦ 6= 0, then by T -minimality
of V1, one has V1 ≤ W2. By T -minimality of V2/V1, one finds that W2 is either
V1 or V2, a contradiction as neither is æ-invariant since they are B-invariant and
proper.
Therefore (V1 ∩ W2)◦ = 0, and in particular V2 = V1(+)W2; whence W2 is
T -minimal, and æ-invariant. As æ inverts T , Lemma 1.10 then forces T to central-
izeW2: we are done. ⊣

Notation 4. LetΘ = C ◦
T (X0) andX = CV (Θ). LetM = [V,Θ]andY = [X,U ].

By Lemma 1.16, V = M ⊕ X and each is a non-trivial, T · 〈æ〉-invariant sub-
module. By the indecomposability theorem, Y is definable and connected; it is
U -invariant and non-trivial since otherwise X is 〈U, æ〉 = G-invariant.

Step 5. rkM ≥ 2k and rkX ≤ k.

Proof. We claim that for x generic in X , C ◦
G(x) is toral. Otherwise, as C

◦
G(x)

contains Θ ≤ T , it contains either U or U æ by Fact 2.1; we may assume that for x
generic in X , U centralizes x. Thus U centralizes X . As the latter is æ-invariant, it
follows that G = 〈U,U æ〉 centralizes X , a contradiction.
Hence, the centralizer in G of the generic element of X is toral. Let x ∈ X be
generic, and suppose that g ∈ G is such that x ∈ X g . Then 〈Θ,Θg〉 ≤ C ◦

G(x)
which is toral, soC ◦

G(〈Θ,Θ
g 〉) is an algebraic torus, which can be only C ◦

G(Θ) = T ,
and only T g for a similar reason. Hence g ∈ NG (T ) = T · 〈æ〉 = NG (X ). So X is
generically disjoint from its distinct conjugates; it follows that

rkXG = 2k + rkX ≤ rkV = rkM + rkX.

Hence rkM ≥ 2k, and then rkX ≤ k. ⊣

Observe that in particular rkV > 2k.

Step 6. T = Θ centralizes X .

Proof.

Claim. [X,T ] ≤ CV (U ).

Proof. Suppose on the contrary thatC[X,T ](U ) < [X,T ]. LetA = A0/C[X,T ](U )
be a T -minimal submodule of [X,T ]/C[X,T ](U ) 6= 0. By Lemma 1.16, CA(T ) = 0;
so by Zilber’s Field Theorem there is a field structure L1 such thatA ≃ (L1,+) and
T induces an infinite subgroup of L×

1 .
By construction A0 6≤ CV (U ); let N be a B-minimal quotient of [A0, U ] 6= 0.
Let x ∈ A0 be such that the map ϕ = ð ◦ adx : U → N is non-trivial, where
ð : [A0, U ] → N is the canonical projection. By Malcev’s Theorem (Fact 1.6), U
centralizes N , soN is T -minimal and ϕ is a morphism. If there is u ∈ U# such that
ϕ(u) = 0, then since 〈uΘ〉 = U by Zilber’s Field Theorem one finds kerϕ = U : a
contradiction. So ϕ is injective, and rkN ≥ rkU = k. Let u ∈ U# and s ∈ Θ#.
Then us 6= u, and by Θ-covariance and injectivity of ϕ, ϕ(u)s = ϕ(us ) 6= ϕ(u);
in particular ϕ(u) /∈ CN (Θ), and CN (Θ) < N . By T -minimality of N , CN (Θ) is
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finite, so there is another field structure L3 such thatN ≃ (L3,+) and Θ induces an
infinite subgroup of L×

3 .
Since Θ centralizes A (as a section of X ) and U centralizes N , we may apply
Lemma 1.11 with B : A × U → N defined by B(a, u) = ð([a0, u]), where a0 ∈ A0
lies above a ∈ A = A0/C[X,T ](U ). We get L1 ≃ L3, whence rkA = rkN ≥ k; in
particular rkX = k and A = X is T -minimal. Since æ normalizes X , Lemma 1.10
implies that T centralizes X , a contradiction. ✸

We now finish the proof of Step 6. [X,T ] is a æ-invariant submodule of CV (U ).
But CV (U ) ∩ CV (U )æ ≤ CV (G) which is finite, hence [X,T ] = 0. ⊣

Step 7. Y ≤ M ; V = Y ⊕ X ⊕ Y æ ; rkX = rkY = k; U centralizes Y ,
(X + Y )/Y , and V/(X +Y ).

Proof. Fix x0 ∈ X and u0 ∈ U#. Let m ∈ M and x ∈ X be such that
[x0, u0] = m + x. Since U = uT0 ∪ {0}, we have:

{[x0, u] : u ∈ U} = {[x0, u0]
t : t ∈ T} ∪ {0} = {mt + x : t ∈ T} ∪ {0} ⊆M + 〈x〉.

But by Zilber’s indecomposability theorem, [x0, U ] is connected, so [x0, U ] ≤ M :
hence Y ≤M .
By Lemmas 1.13 and 1.16, the rank of any submodule of M is a multiple of k:
going back to Step 5 one sees that rkM = 2k and rkX = k. Now Y is not
æ-invariant since it would otherwise be G = 〈U, æ〉-invariant; on the other handM
is æ-invariant, so Y < M . It follows that Y has rank k as well. In particular Y is
T -minimal, and B-minimal, so by Fact 1.6, U centralizes Y . Moreover Y ∩ Y æ is
finite, whence T -central, so Y ∩ Y æ ≤ CM (T ) = 0 by Lemma 1.16. One thus has
M = Y ⊕ Y æ and V = Y ⊕ X ⊕ Y æ .
U centralizes (X +Y )/Y by construction. SinceV/(X +Y ) ≃ Y æ is T -minimal,
by Fact 1.6 again, U centralizes V/(X + Y ) as well. ⊣

Step 8. The characteristic is not 2; G ≃ PSL2 and æ (now of order 2) inverts X .

Proof. Suppose p = 2. For any u ∈ U× consider the map ϕ : V → V given by
commutationwith u. Since p = 2one finds imϕ ≤ kerϕ. By Step 7, imϕ ≤ X+Y ;
as U = uT ∪ {0} and T centralizes X (Step 6), CX (u) = CX (U ). It follows that
imϕ ≤ CX+Y (u) = CX (u)+Y = CX+Y (U ). Hence [V,U ] ≤ CV (U ), and Fact 1.1
applied to the action of G on V/CV (G) yields rkV = 2k, a contradiction.
Hence p 6= 2. As T centralizes X , the involution i ∈ T cannot invert X . It
follows that G ≃ PSL2. In particular æ has order 2.
Now sinceY is T -minimal, i must either invert or centralize it. If i centralizes Y ,
then it centralizesM = Y ⊕Y æ and X : so i centralizes V , a contradiction. Hence
i inverts Y , and also Y æ : it follows that i invertsM . So æ which is conjugate to i
must also invert a module of rank 2k. Let us write M = M+æ ⊕M−æ under the
action of æ. ThenY is disjoint from both, showing that both have rank k. It follows
that æ must invert X . ⊣

Step 9. CV (G) = 0, CX (U ) = 0, and CV (U ) = Y .

Proof. By Step 8, CV (G) ≤ CV (T ) ∩ CV (æ) = CX (æ) = 0. Since æ inverts
X , it normalizes CX (U ) which is G = 〈U, æ〉-invariant, whence finite, whence by
connectedness in CV (G) = 0. So CX (U ) = 0.
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We already know that Y ≤ CV (U ) (Step 7). If there is x + yæ ∈ CV (U ) with
x ∈ X , y ∈ Y , then y 6= 0 as CX (U ) = 0. Hence y /∈ X , that is T does not
centralize y: using Zilber’s Field Theorem, Y = yT ∪ {0}. Now U centralizes
x+yæ , so using T , U centralizes x+Y æ ; U then also centralizes Y æ ≤ CV (U,U æ):
a contradiction. ⊣

2.2. Linearity. The second part of the proof is of so different a nature that if the
reader wishes to take a break, he may now. We shall start afresh with the following
knowledge.

• æ has order 2 (Step 8).
• Y = C ◦

V (U ) = [X,U ] is B-minimal (Notation 4 and Steps 7 and 9).
• V = Y ⊕ X ⊕ Y æ ; rkX = rkY = k (Notation 4 and Step 7).
• X = CV (T ) is inverted by æ (Steps 6 and 8).

We now work towards understanding the scalar action on X .

Step 10. Let x ∈ X , t ∈ T , u ∈ U#. Then there is a unique x′ ∈ X such that
[x′, u] = [x, u]t = [x, t · u]; x′ depends on x and t, but not on u.

Proof. Fix u1 ∈ U# and consider the definable morphism from X to Y which
maps x to [x, u1]. This is injective, as the kernel lies in CX (u1) = CX (T, u1) ≤
CX (U ) = 0. By equality of ranks, the map is a bijection. Now suppose another
u2 ∈ U

# is given, and we have elements x′1, x
′
2 such that [x

′
i , ui ] = [x, ui ]

t . Then
there is ô ∈ T such that u2 = uô1 , and it follows that:

[x′2, u2] = [x, u2]
t = [x, uô1 ]

t = [x, u1]ôt

= [x, u1]tô = [x′1, u1]
ô = [x′1, u

ô
1 ] = [x

′
1, u2]

whence x′1 = x
′
2, as claimed. ⊣

We can finally impose a linear structure on V . This is done piecewise using the
decomposition V = Y ⊕ X ⊕ Y æ . By our hypotheses, CY (T ) = (0) and Y is
T -invariant. Let L be the subring of End(Y ) generated by the image of T . As Y is
T -minimal, L is a field (Fact 1.9) and Y ≃ (L,+).

Notation 11.

• On Y , L acts as a subring of End(Y ).
• On Y æ , we let k · yæ = (k · y)æ .
• On X , we let k · x be the unique x′ ∈ X such that [x′, u] = k · [x, u] (Step 10;
this does not depend on the choice of u).

We shall check thatG acts linearly. We do it piecewise; notice that when we claim
that U acts linearly on X , we mean that the operation induced by elements of U
fromX toV is linear, without claiming anything about invariance under the action.

Step 12. T · 〈æ〉 acts linearly on V . U acts linearly on Y ⊕ X .

Proof. By construction, T is linear on Y and Y æ . It is linear on X , as it acts
trivially! By construction, æ is linear on Y ⊕ Y æ . As it inverts X , it is also linear
on X . So T · 〈æ〉 is linear on V .
As U acts trivially on Y , it is linear on Y . It remains to see that U is linear
on X . Let u ∈ U , x ∈ X , and k ∈ K. By definition of the action on X , one has
[k · x, u] = k · [x, u], and therefore:

k · xu − k · x = k · [x, u] = [k · x, u] = (k · x)u − k · x.
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Linearity follows. ⊣

It remains to prove that U is linear on Y æ . As T is, and since T acts transitively
on U#, it suffices to exhibit one non-trivial element of U which is linear on Y æ .

Notation 13 (Bryant Park element). Let w = æ (it is an involution, after all).
Let u ∈ U be such that (wu) has order 3.

Such an element exists (this may be viewed as a special case of the Steinberg
relations). We shall prove that this particular u is linear on Y æ .

Fuga

Step 14. For any y ∈ Y , there is a unique x ∈ X such that ywu = y + x + yw .

Proof. A priori, one has

ywu = y1 + x + y
w
2

for elements y1, y2 ∈ Y and x ∈ X . But U centralizes Y , (X + Y )/Y , and
V/(X + Y ) by Step 7. So y2 = y. We push further, using the fact that w inverts
X (Step 8).

y(wu)
2

= ywu1 + x
wu + ywwu

= ywu1 − xu + y

and

y = y(wu)
3

= ywuwu1 − xuwu + ywu

whence applying u−1,

y = ywuw1 − xuw + yw .

Now Uw centralizes Yw , (X + Yw)/Yw , and V/(X + Yw) (Step 7), so [y1, uw ]
is in X +Yw . It follows that y1 is the projection on Y of ywuw1 . On the other hand,
xu ∈ X + Y , so xuw ∈ X + Yw . Taking projections on Y modulo X + Yw , one
has y1 = y. ⊣

Step 15. Let y ∈ Y and x ∈ X be as in Step 14. Then [x, u] = 2y.

Proof. By definition,

ywu = y + x + yw .

Let us iterate:

y(wu)
2

= ywu + xwu + ywwu

= (y + x + yw)− xu + y

= 2y + x − xu + yw

and

y(wu)
3

= 2ywu + xwu − xuwu + ywwu

= 2(y + x + yw)− xu − xuwu + y

= 3y + 2x − xu − xuwu + 2yw .
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As wu has order three, one has:

2y + 2x − xu − xuwu + 2yw = 0.

Now u centralizes (Y + X )/Y , so there is y1 ∈ Y such that xu = x + y1. Let x1
be associated to y1 by Step 14: one has ywu1 = y1 + x1 + y

w
1 . Hence

xuwu = xwu + ywu1

= −xu + (y1 + x1 + y
w
1 )

= −x − y1 + y1 + x1 + y
w
1

= x1 − x + y
w
1 .

It follows that

2y + 2x − (x + y1)− (x1 − x + y
w
1 ) + 2y

w = 0,

and projecting onto Y modulo X + Yw ,

y1 = 2y

so that [x, u] = y1 = 2y. ⊣

Notation 16. For y ∈ Y , let x(y) be the element x given by Step 14.

Step 17. The function x(y) is L-linear.

Proof. Let k ∈ L. Then

[x(k · y), u] = 2(k · y) = k · (2y) = k · [x(y), u] = [k · x(y), u].

And we are done. ⊣

Step 18. u is linear on Yw .

Proof. Let y ∈ Y and k ∈ L; let y2 = k · y, and x2 = x(y2). Then

(k · yw)u = ywu2 = y2 + x2 + y
w
2 = k · y + x2 + k · y

w .

On the other hand,

k · ywu = k · (y + x + yw) = k · y + k · x + k · yw .

As x is L-linear, both expressions are equal: u is linear on Yw . ⊣

It follows that G = 〈T, æ, u〉 is L-linear on V .

We may now finish the proof. We have a definable embedding of G into GL(V )
withV 3-dimensional overL. Wemay view this as a homomorphism fromPSL2(K)
into GL(V ), with the image of PSL2(K) acting irreducibly on V . Let Ĝ be the
Zariski closure in GL(V ) of the image of PSL2(K), also acting irreducibly onV . As
V has dimension 3, the group Ĝ will be a simple algebraic group, so by Theorem A
of [3] (or [11, Theorem 1.3]) the homomorphism PSL2(K)→ Ĝ has the form h ◦ϕ◦

with ϕ an embedding of K into L and h a rational homomorphism defined on
ϕPSL2(K). We now return to G and ϕG , keeping the same notation for ϕ and h.
Since the composition h ◦ ϕ is definable, ϕ[K] is definable, and is therefore L.
As V with its L-structure is a rational representation of ϕG , V ⋊

ϕG is algebraic,
and pulling back via ϕ−1, we get a K-structure making V ⋊G algebraic.
We note that in a more general setting, the Zariski closure Ĝ would be semisimple
rather than simple, and there would be several associated maps hi and ϕi , with the
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representation V being a tensor product; this is the case discussed in detail in
[3, §10], [11, §6].

§3. Appendix: actions of (P)SL2 and centralizers. In this appendix we give one
further result on the structure of a generic stabilizer in a representation of (P)SL2(K)
of finite Morley rank in positive characteristic, whose proof is a variation on Step 5
of our main argument. Recall that a connected definable subgroup of a group of
finite Morley rank is toral if it is included in a maximal torus, and p-unipotent if it
is a nilpotent p-group of bounded exponent.

Proposition. In a universe of finite Morley rank, consider the following definable
objects: a field K of characteristic p, a group G ≃ (P)SL2(K), an abelian group V ,
and a non-trivial action of G on V . Then for v generic in V , C ◦

G(v) is toral or
unipotent (possibly trivial ).

Proof. We first show that we may assume CV (G) = 0. Assume the result holds
when CV (G) = 0 and let V be as in the statement. Let V0 = CV (G) < V . Since
G is perfect, one has CV/V0(G) = 0, and the action of G on V/V0 is non-trivial. By
assumption, the result holds forV/V0. Now let v ∈ V be generic. Then v̄ ∈ V/V0 is
generic too, and in particularC ◦

G(v̄) is either toral or unipotent. AsC
◦
G(v) ≤ C

◦
G(v̄),

we are done.
So from now on we suppose CV (G) = 0. In Notation 1 we had fixed a maximal
unipotent subgroupU ≤ G , B = NG (U ) its normalizer, T an algebraic torus such
that B = U ⋊ T , and a 2-element æ inverting T .
Let v ∈ V be generic. C ◦

G(v) is proper in (P)SL2, hence solvable [10, Théorème 4];
up to conjugacy, C ◦

G(v) ≤ B. Assume that C
◦
G(v) is neither unipotent nor toral.

Then by Fact 2.1, C ◦
G(v) contains U .

So C ◦
G(v) = U ⋊ Tv for some non-trivial Tv ≤ T . The family {Tv : v ∈ V,

U ≤ C ◦
G(v) ≤ B} of subgroups of T is uniformly definable; as K has positive

characteristic, T ≃ K
× is a good torus, and the family is finite [5, Rigidity II]. It

follows that there is a common T0 ≤ T such that generically, C ◦
G(v) is conjugate to

U ⋊ T0.
Now let V1 = CV (U ). Clearly V1 is infinite, taking a B-minimal subgroup of V
and applying Malcev’s Theorem (Fact 1.6). As any two distinct conjugates of U
generateG and CV (G) = 0, V1 must be disjoint from V

g
1 for g 6∈ B. It follows that

NG (V1) = B and that V1 is disjoint from its distinct conjugates. One therefore has

rkV G1 = rkV1 + rkG − rkB = rkV1 + rkK.

By assumption, the generic element of V is centralized by a conjugate ofU ⋊T0.
Thus V G1 is generic in V . But furthermore, for v generic in V1, C

◦
G(v) is a con-

jugate of U ⋊ T0 containing U ; conjugacy is therefore obtained by an element of
NG (U ) = B. As B ′ = U , U ⋊ T0 is normal in B; hence C ◦

G(v) = U ⋊ T0. This
means that T0 centralizes a generic subset X of V1; as X + X = V1 it follows that
V1 = CV (U ⋊ T0).
LetW = V1⊕V

æ
1 and W̌ =W \ (V1 ∪V

æ
1 ). The generic element ofW is in W̌ .

Let v ∈ W̌ . Clearly T0 ≤ C ◦
G(v). Moreover, if C

◦
G(v) is not toral, then it must meet

a unipotent subgroup which can only be either U or U æ as 1 6= T0 ≤ C ◦
G(v). In

that case, C ◦
G(v) contains either U or U

æ by Fact 2.1, against the definition of W̌ .
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This means that for v ∈ W̌ , one has T0 ≤ C ◦
G(v) ≤ T . In particular, W̌

G is not
generic in V .
It follows that W < V . As V G1 is generic in V , W cannot be G-invariant.
Therefore T · 〈æ〉 ≤ NG (W ) < G , and equality follows from maximality of T · 〈æ〉.

As T · 〈æ〉 also normalizes V1 ∪ V
æ
1 , one sees thatNG (W̌ ) = T · 〈æ〉.

Let w ∈ W̌ . Assume that w ∈ W̌ g for some g ∈ G . Then C ◦
G(v) is a non-trivial

connected subgroup of T , so CG(C ◦
G(v)) = T = T

g , and g ∈ NG (T ) = T · 〈æ〉 =

N(W̌ ). This implies that

rk W̌ G = rk W̌ + rkG − rkT = 2 rkV1 + 2 rkK = 2 rkV
G
1 .

But V G1 is already generic in V which is infinite: this is a contradiction. ⊣
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