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Abstract

Dynamic Topological Logic (DT L) is a multimodal system for rea-
soning about dynamical systems. It is defined semantically and, as such,
most of the work done in the field has been model-theoretic. In particu-
lar, the problem of finding a complete axiomatization for the full language
of DT L over the class of all dynamical systems has proven to be quite
elusive.

Here we propose to enrich the language to include a polyadic topo-
logical modality, originally introduced by Dawar and Otto in a different
context. We then provide a sound axiomatization for DT L over this ex-
tended language, and prove that it is complete. The polyadic modality is
used in an essential way in our proof.

1 Introduction

Dynamic Topological Logic (DT L) is a combination of topological modal logic
[15] and temporal logic [14] used for reasoning about dynamic topological sys-
tems, which are pairs 〈X, f〉 consisting of a topological spaceX and a continuous
function f : X → X . DT L was introduced in [1] as S4C; later [13] added an
infinitary temporal modality, here written [f ] (‘henceforth’), into the language.
This development allows us to reason about arbitrary iterations of f and capture
long-term phenomena such as recurrence.

Although a substantial body of work has been done on the logic, due to its
model-theoretic definition, it has proven difficult to work with it in an entirely
syntactic manner. An axiomatization has been suggested [13], but it has not
been proven complete. However, the logic is recursively enumerable [5], which
gives hope of finding a proof system for it.1

In this paper we present an extension to DT L, which we shall call DT L∗,
generalizing the use of the topological modal operator to its ‘tangled’ variant,

1It is, nevertheless, undecidable [10].
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introduced in [2] and also studied in [4, 7]. Thus we obtain expressions of the
form ♦Γ, where Γ is a finite set of formulas; the ordinary monadic modality
becomes a special case when Γ is a singleton, and we write ♦γ for ♦ {γ}. The
interpretation of these formulas uses the tangled closure operator, discussed in
Section 3.

The axiomatization is mostly the amalgamation of proof systems for the
isolated modalities, but we need a polyadic version of the usual continuity axiom
from [13] which takes the form

♦fΓ → f♦Γ.

This axiom is sound [8]; our main goal is to show that the proof system
is complete. For this we expand on techniques from [5], where simulations
are an essential tool; it is because simulability is expressible with the tangled
operator (but not in the ordinary modal language) that we need to use this
enriched language. Our completeness proof relies heavily on [4, 8], where we
began analyzing the topological behavior of the tangled modality.

In [4], we show that given a finite, pointed S4 model w, the property of being
simulated by w is not always definable over the class of topological models in
the basic modal language; however, using the polyadic modality, there is always
a formula2 Sim(w) which defines being simulated by w. This is essential to our
current completeness proof, since simulations play a key role in [5] and capturing
them syntactiaclly is an important step in our argument.

Meanwhile, [8] gives a sound and complete axiomatization for the polyadic
S4C∗, that is, the fragment of DT L∗ without [f ]. Note that the monadic S4C

was proven complete in [1].
While a full axiomatization of (an extension of) DT L as we are presenting

here is novel, there are many positive and negative results regarding axiomati-
zations of related systems. We summarize them below:

The next-interior fragment S4C. This fragment uses only the monadic mo-
dality ♦ and the next-time operator f . A sound and complete axioma-
tization is given in [1], where the logic is also shown to be decidable. A
complete axiomatization for the logic over spaces with homeomorphisms
is given in [13].

Monadic DT L over arbitrary systems. This logic is undecidable [10] but
recursively enumerable [5]. However, the recursive enumeration does not
suggest a reasonable axiomatization. It is conjectured in [13] that a rather
intuitive proof system is complete; however, this has never been proven.

It should be remarked that the only DT L’s with the ‘henceforth’ modality
which have been given a proper axiomatization are over trivial spaces
(where the only open sets are the empty set and the entire space) and
almost disjoint spaces (where every open set is closed); this can be found
in [12].

2The language used in [4] is different, but expressively equivalent, to the purely topological
fragment of the language we will use here.
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Monadic DT L over spaces with homeomorphisms. When restricting se-
mantics to spaces with homeomorphisms but allowing the ‘henceforth’
modality in the language, DT L becomes non-axiomatizable [11].

The polyadic S4C∗. Here we use only ♦ and f , but ♦ is allowed to act on
finite sets of formulas, and is interpreted as a ‘tangled closure’ operator.
New axioms are needed to define the behavior of ♦Γ and to describe the
interaction of the dynamics with the polyadic modality; they appear in our
axiomatization in Section 5. This logic is then proven sound and complete
in [8].

The layout of this paper is as follows. Section 2 reviews topologies and
their relation to preorders; this relation is useful in linking topological and
Kripke semantics of S4. Section 3 reviews the tangled closure operator, which
is an important addition to the expressiveness of DT L. Section 4 gives the
formal language and its semantics, and then Section 5 describes our proposed
axiomatization. Subsequent sections mainly review notions from [5], although
with some modifications to accommodate the new tangled modality: Section 6
gives an overview of quasimodels, Section 7 shows how one obtains limit models
from quasimodels, Section 8 discusses simulations and Section 9 introduces the
universal state space.

In Section 10 we discuss the properties of the formulas Sim(w); this section
depends on results from [4, 8]. With this we define canonical quasimodels in
Section 11. Section 12 reviews efficiency, originally used within the context of
DT L in [10] and an important tool in showing that it is recursively enumerable
in [5]. In Section 13.1 we use these ideas to show that canonical structures are
in fact quasimodels: this is used in Section 14, where our main completeness
result is stated and proved. Finally, Section 15 gives an outlook for future work
and discusses a possible application to the DT L of minimal systems.

2 Topologies and preorders

The purpose of Dynamic Topological Logic is to reason about dynamical systems
defined over topological spaces. Such spaces provide an interpretation of the
modal logic S4, generalizing its well-known Kripke semantics.

Let us recall the definition of a topological space:

Definition 2.1 (topological space). A topological space is a pair X = 〈|X|, TX〉 ,
where |X| is a set and TX a family of subsets of |X| satisfying

1. ∅, |X| ∈ TX;

2. if U, V ∈ TX then U ∩ V ∈ TX and

3. if O ⊆ TX then
⋃

O ∈ TX.

The elements of TX are called open sets. Complements of open sets are
closed sets.
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Given a set A ⊆ |X|, its interior, denoted A◦, is defined by

A◦ =
⋃

{U ∈ TX : U ⊆ A} .

Dually, we define the closure A as |X| \ (|X| \A)◦; this is the smallest closed
set containing A.

Topological spaces generalize transitive, reflexive Kripke frames. Recall that
these are pairs W = 〈|W|,4W, J·KW〉 where 4W is a preorder on the set |W|.
We will write 4 instead of 4W whenever this does not lead to confusion.

To see a preorder as a special case of a topological space, define

↓w = {v : v 4 w} .

Then consider the topology T4 on |W| given by setting U ⊆ |W| to be open
if and only if, whenever w ∈ U , we have ↓w ⊆ U (so that all sets of the form
↓ w provide a basis for T4). A topology of this form is a preorder topology3.
It is not hard to check that the Kripke semantics given by 4 coincide with the
topological semantics given by T4.

Throughout this text we will often identify preorders with their correspond-
ing topologies, and many times do so tacitly.

We will also use the notation

• w ≺ v for w 4 v but v 64 w and

• w ∼ v for w 4 v and v 4 w.

The relation ∼ is an equivalence relation; the equivalence class of a point
x ∈ X is usually called a cluster, and we will denote it by [x].

3 The tangled closure

In this paper we will enrich the language of DT L by a topological operator
called the tangled closure, which generalizes the ordinary closure to families of
sets and not only single sets. It was introduced in [2] for Kripke frames and has
also appeared in [4, 7, 8].

Definition 3.1 (Tangled closure). Let X be a topological space and S ⊆ 2|X|.
Given E ⊆ |X|, we say S is tangled in E if, for all A ∈ S, A ∩ E is dense

in E.
We define S∗ to be the union of all sets E such that S is tangled in E.

It is important for us to note that the tangled closure is defined over any
topological space; however, we will often be concerned with locally finite pre-
orders in this paper. Here, the tangled closure is relatively simple.

Lemma 3.1. Let 〈S,4〉 be a finite preorder, x ∈ S and O ⊆ P(S). Then,
x ∈ O∗ if and only if there exist 〈yO〉O∈O such that yO 4 x for all O ∈ O and
yO ∼ yO′ for all O,O′ ∈ O.

3Or, more specifically, a downset topology.
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Proof. Suppose O = {Oi}i<I and x ∈ O∗.

If y ∈ O∗ and i < I, we have that y ∈ Oi ∩ O∗ (because O is tangled in O∗

[8]) which means that there is z 4 y with z ∈ Oi ∩ O∗. We can apply this fact
countably many times to obtain a sequence

x < y0 < y1 < ...

such that yn ∈ Oi ∩O∗ if and only if n ≡ i (mod I).
Since S is finite the sequence must eventually stabilize, which means that

for some value of N we have that yn ∼ ym for all n,m > N . Thus

{yN+i : i < I}

is a set of points which are all equivalent in 4 and contain a representative of
each Oi, as desired.

4 Dynamic Topological Logic

The language of DT L∗ (henceforth L∗) is built from propositional variables in
a countably infinite set PV using the Boolean connectives ∧ and ¬ (all other
connectives are to be defined in terms of these), the unary modal operators f
(‘next’) and [f ] (‘henceforth’), along with a polyadic modality ♦ which acts on
finite sets4, so that if Γ is a finite set of formulas then ♦Γ is also a formula.
Note that this is a modification of the usual language of DT L. We write � as
a shorthand for ¬♦¬; similarly, 〈f〉 denotes the dual of [f ]. We also write ♦γ
instead of ♦ {γ}; its meaning is identical to that of the usual S4 modality [8].

We will denote fragments of L∗ by indicating the modalities which are allowed
in them; for example, L∗♦ is the language of polyadic unimodal logic and L∗♦f
is the fragment without [f ] corresponding to S4C∗ [8]. The star indicates the
use of the polyadic ♦, so that, for example, L♦ denotes the standard modal
language.

Formulas of L∗ are interpreted on dynamical systems over topological spaces,
or dynamic topological systems.

Definition 4.1 (dynamic topological system). A dynamic topological system
(dts) is a triple

X = 〈|X|, TX, fX〉 ,

where 〈|X|, TX〉 is a topological space and

fX : |X| → |X|

is continuous.

Definition 4.2 (valuation). Given a dynamic topological system X, a valuation
on X is a function

J·K : L∗ → 2|X|

4We use ♦ as primitive rather than � because we find its meaning more intuitive.
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satisfying
Jα ∧ βKX = JαKX ∩ JβKX

J¬αKX = |X| \ JαKX

JfαKX = f−1 JαKX

J[f ]αKX =
⋂

n≥0

f−n JαKX

J♦ {α1, ..., αn}KX = {Jα1KX , ..., JαnKX}
∗
.

We may also write JΓKX instead of {JγKX : γ ∈ Γ}, so that

J♦ΓKX = JΓK
∗
X .

A dynamic topological model (dtm) is a dynamic topological systemX equipped
with a valuation J·KX. We say a formula ϕ is valid on X if JϕKX = |X|, and write
X |= ϕ. If a formula ϕ is valid on every dynamic topological model, then we
write |= ϕ.

We will often write 〈X, x〉 |= ϕ instead of x ∈ JϕKX.

5 The axiomatization

Our proposed axiomatization for DT L∗ consists of the following:

Taut All propositional tautologies.

Axioms for ♦:

K �(p→ q) → (�p→ �q)

T
∧

Γ → ♦Γ

4 ♦♦Γ → ♦Γ

Fix♦ ♦Γ →
∧

γ∈Γ ♦(γ ∧ ♦Γ)

Ind♦ Induction for ♦:

�
(

p→
∧

γ∈Γ

♦(p ∧ γ)
)

→ (p→ ♦Γ)

Temporal axioms:

Negf ¬fp↔ f¬p

Andf f(p ∧ q) ↔ fp ∧ fq

Fix[f ] [f ]p→ p ∧ f [f ]p
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Ind[f ] [f ](p→ fp) → (p→ [f ]p)

TCont ♦fΓ → f♦Γ.

Rules:

MP Modus ponens

Subs Substitution

N� Necessitation for �

Nf Necessitation for f

N[f ] Necessitation for [f ]

Proposition 5.1. The above axiomatization is sound for the class of dynamic
topological systems.

Proof. Each axiom and rule above has appeared and shown to be sound either
in [13] or in [8].

Any continuous function satisfies the ‘tangled’ continuity axiom, but it is
not logically derivable from the weaker

Cont ♦fp→ f♦p,

which corresponds to the special case where Γ is a singleton [8].
In general we will indicate substitution instances of axioms using parenthe-

ses; for example,
4♦(ϕ) = ♦♦ϕ→ ♦ϕ.

Throughout this paper, ⊢ denotes derivability in the system described above,
and DT L∗ its set of theorems. Note that this strays from the common usage
where DT L is defined semantically, but once we have proven completeness the
distinction will become unimportant.

Proposition 5.2 (Short-term completeness). Any valid formula in L∗♦f is deriv-
able. Further, the logic over this fragment enjoys the finite model property; that
is, if ϕ ∈ L∗♦f is satisfiable over a dtm, there exists a finite dtm W based on a
preorder topology such that JϕKW 6= ∅.

Proof. This is proven in [8].

6 Quasimodels

In this section we review a series of results from [5], where missing proofs may be
found; note, however, that there have been changes to notation and terminology.

We will define quasimodels for DT L∗, introduced originally as non-deter-
ministic quasimodels. The basic idea is that, while DT L∗ is not complete for
Kripke models, one can reduce satisfiability in arbitrary dynamical systems to
satisfiability in a birelational Kripke structure with certain syntactic constraints.
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For the construction it is convenient to assign types to worlds, rather than
evaluating formulas directly from the propositional variables.

We will denote the set of subformulas of ϕ by sub(ϕ), and define

sub±(ϕ) = sub(ϕ) ∪ ¬sub(ϕ).

We will treat sub±(ϕ) as if it were closed under negation, by implicitly identi-
fying ψ with ¬¬ψ. If Φ is a set of formulas, sim(Φ) denotes

⋃

ϕ∈Φ sub(ϕ), and
sub±(Φ) is defined analogously.

Definition 6.1 (type). A weak type is a finite set of formulas Φ such that

• whenever ψ ∈ Φ it follows that ¬ψ 6∈ Φ

• whenever ψ ∧ ϑ ∈ Φ, then both ψ ∈ Φ and ϑ ∈ Φ

• whenever ¬(ψ ∧ ϑ) ∈ Φ, either ¬ψ ∈ Φ or ¬ϑ ∈ Φ

• whenever [f ]ψ ∈ Φ, it follows that ψ ∈ Φ.

For a set of formulas Ψ, Φ ⊆ sub±(Ψ) is a Ψ-type if it is a weak type and,
given ψ ∈ sub(Ψ), either ψ ∈ Φ or ¬ψ ∈ Φ.

The set of Ψ-types will be denoted by type(Ψ).

We adopt the general custom of identifying singletons with the element they
contain when this does not lead to confusion, so that, for example, we write
ϕ-type instead of {ϕ}-type.

Definition 6.2 (typed preorder). Let S be a set preordered by 4.
A weak typing function on S is a function t which assigns to each w ∈ |S|

a type t(w) such that

• whenever w ∈ S and ♦Γ ∈ t(w), there is v 4 w with the property that
Γ ⊆ t([v])5 and

• whenever w ∈ S, ¬♦Γ ∈ t(w) and v 4 w, there is γ ∈ Γ such that
¬γ ∈

⋂

t([v]).

If all types are Φ-types, we say t is a Φ-typing function.
A weakly typed preorder is a tuple A = 〈|A|,4A, tA〉 consisting of a pre-

ordered set equipped with a weak typing function; if tA is a Φ-typing function,
then A is a Φ-typed preorder.

Thus in a Φ-typed preorder, all subformulas of Φ are decided; on weakly
typed structure, only the formulas appearing have a definite value.

Definition 6.3 (sensible relation). Let ϕ be a formula in L∗ and Φ,Ψ be finite
sets of formulas. The ordered pair (Φ,Ψ) is sensible if

1. whenever fψ ∈ Φ, ψ ∈ Ψ,

5In other words, for all γ ∈ Γ there is u ∼ v with γ ∈ t(u).
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2. whenever ¬fψ ∈ Φ, ¬ψ ∈ Ψ,

3. for every formula ψ, [f ]ψ ∈ Φ implies that [f ]ψ ∈ Ψ and

4. for every formula ψ, 〈f〉ψ ∈ Φ implies that ψ ∈ Φ or 〈f〉ψ ∈ Ψ.

Likewise, a pair (w, v) of worlds in a typed preorder A is sensible if (t(w), t(v))
is sensible.

A continuous6 relation 7→⊆ |A| × |A| is sensible if it is serial and every pair
in 7→ is sensible.

Further, 7→ is ω-sensible if for all 〈f〉ψ ∈ sub±(ϕ), if 〈f〉ψ ∈ t(w), there
exist v ∈ |A| and N ≥ 0 such that ψ ∈ t(v) and w 7→N v.

We will refer to formulas of the form 〈f〉ψ as eventualities. If 〈f〉ψ ∈ tA(w),
w 7→N v and ψ ∈ tA(v), we will say v realizes 〈f〉ψ, or 〈f〉ψ is realized in time
N .

Definition 6.4 (Quasimodel). Given a finite set of formulas Φ, a Φ-quasimodel
is a tuple

A = 〈|A|,4A, 7→A, tA〉 ,

where 〈|A|,4A, tA〉 is a Φ-typed Kripke frame and 7→A is an ω-sensible relation
on |A|.

A satisfies ϕ if there exists w∗ ∈ |A| such that ϕ ∈ tA(w∗).

We adopt the general practice of dropping subindices when this does not
lead confusion, for example writing 4 instead of 4A.

7 Generating dynamic topological models from

quasimodels

Given a Φ-quasimodel A, we can construct a dynamic topological model limA

satisfying the same subformulas of Φ as A; the points of | limA| will not be
worlds in |A|, but rather infinite 7→-paths.

7.1 Realizing sequences

A path in A is any sequence 〈wn〉n<N , with N ≤ ω, such that wn 7→ wn+1.
The continuity of 7→ has a natural generalization for finite paths. The fol-

lowing lemma is proven in [5]:

Lemma 7.1. Let A be a Φ-quasimodel, 〈wn〉n≤N a finite path and v0 be such
that v0 4 w0.

Then, there exists a path 〈vn〉n≤ω such that, for n ≤ N , vn 4 wn.

Proof. This follows from an easy induction on N using the cotinuity of 7→.

6By continuous relation we understand a binary relation χ such that, whenever U is open,
χ−1 is open as well.
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An infinite path ~w = 〈wn〉n<ω is realizing if for all n < ω and 〈f〉ψ ∈ t(wn)
there exists K ≥ n such that ψ ∈ t(wK).

Denote the set of realizing paths by
−→
|A|. Note that

−→
|A| ⊆ |A|N; if we view |A|

as a topological space with the preorder topology, then |A|N naturally acquires

the product topology. Consequently,
−→
|A| can be seen as a topological space under

the corresponding subspace topology; this topology on
−→
|A| will be denoted TA.

For ~w,~v ∈
−→
|A| and N < ω, write ~v

N
4 ~w if vn 4 wn for all n < N . Then

define

↓N(~w) =

{

~v ∈
−→
|A| : ~v

N
4 ~w

}

.

Sets of the form ↓N(~w) form a basis for TA [5].

7.2 Limit models

We can define dynamics on
−→
|A| by the shift operator σ, given by

σ
(

〈wn〉n<ω
)

= 〈wn+1〉n<ω .

This simply removes the first element in the sequence. The function σ is con-
tinuous with respect to TA.

We can also use t to define a valuation: if p is a propositional variable, set

JpKlimA =
{

~w ∈
−→
|A| : p ∈ t (w0)

}

.

We are now ready to assign a dynamic topological model to every ϕ-quasimodel:

Definition 7.1 (limit model). Given a Φ-quasimodel A, define

limA =
〈−→
|A|, TA, σ, J·KlimA

〉

to be the limit model of A.

The following was proven in [5] for monadic formulas (i.e., formulas where
♦ is applied only to singletons). The version we present here is a mild general-
ization.

Lemma 7.2. Suppose A is a Φ-quasimodel, ~w = {wn}n≥0 ∈ |A| and ψ ∈
sub±(Φ). Then,

〈limA, ~w〉 |= ψ if and only if ψ ∈ t(w0).

Proof. The proof goes by standard induction of formulas. The induction steps
for Boolean operators are trivial, and the steps for the modal operators f, [f ]
are covered in [5]. Hence we will only consider formulas of the form ♦Γ.

Assume that ♦Γ ∈ t(w0). In order to prove that ~w satisfies ♦Γ, it suffices to
show that JΓKlimA is tangled in

E = {~v : ♦Γ ∈ t(v0)} .
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Let ~v ∈ E. Suppose γ ∈ Γ and N < ω. There is u0 4 v0 such that
γ,♦Γ ∈ t(u0) (by Definition 6.2.1). But, by Lemma 7.1, u0 can then be extended
to a realizing path ~u ∈ ↓N (~v). Clearly ~u ∈ E, and by induction on formulas
~u ∈ JγKlimA. Thus every neighborhood of ~v contains a point in JγKlimA∩E. We
conclude E ⊆ J♦ΓKlimA, and since ~w ∈ E,

〈limA, ~w〉 |= ♦Γ.

Now assume ♦Γ 6∈ t(w0).
We must show that there can be no set E containing ~w such that JΓKlimA

is tangled in E. Here we will use a second induction on ≺, in the following
sense; if ~v is any path with v0 ≺ w0, we will assume ♦Γ ∈ t(v0) if and only
if ~v ∈ J♦ΓKlimA. Note that, since ♦Γ 6∈ t(w0), there is no v0 4 w0 such that
♦Γ ∈ t(v0).

Towards a contradiction, suppose that JΓKlimA were tangled in E. By our
induction hypothesis,

E ∩ {~v : v0 ≺ w0} = ∅.

Thus, for all ~v ∈ E ∩ ↓0 ~w we have that v0 ∼ w0.
But for each γ ∈ Γ there must be a point

~vγ ∈ E ∩ ↓0 ~w ∩ JγKlimA ;

by induction hypothesis (on formulas) this implies that γ ∈ t(vγ0 ) and, by the
above considerations, vγ0 ∼ w0. Thus for each γ ∈ Γ, [w0] contains a point vγ0
with γ ∈ t(vγ0 ), which by Definition 6.2.2 implies that ¬♦Γ 6∈ t(w0) and thus
♦Γ ∈ t(w0).

This leads us to the main theorem of this section:

Theorem 7.1. Let ϕ be a formula of L, and suppose ϕ is satisfied in a quasi-
model A.

Then, there exists ~w∗ ∈ |
−→
A | such that

〈limA, ~w∗〉 |= ϕ.

Proof. Pick w∗ ∈ |A| such that ϕ ∈ t(w∗); w∗ can be extended to a realizing
path ~w∗ [5]. It follows from Lemma 7.2 that

〈limA, ~w∗〉 |= ϕ.

8 Simulations

We will say that a relation between topological spaces is continuous if the preim-
age of any open set is open. Note that this is not the standard definition of
continuous relations, which is more involved.

11



Definition 8.1 (Topological simulation). Let X and Y be topological models.
A simulation is a continuous binary relation

χ ⊆ |X| × |Y|

such that for every p ∈ PV and x χ y, x ∈ JpKX if and only if y ∈ JpKY.
Given topological models X and Y, a point x ∈ |X| simulates y ∈ |Y| if there

exists a simulation χ ⊆ |X| × |Y| such that x χ y; we will write 〈X, x〉E 〈Y, y〉.

Note that in the above definition, either X or Y could well be Kripke models,
as long as we tacitly identify them with their corresponding preorder topology
model.

In the case that both structures are Kripke models then continuity is the
usual ‘forth’ condition for simulations, namely that, if v 4X w and w χ x, there
is y 4Y x such that v χ y.

We are also interested in simulations involving typed structures; either be-
tween two typed preorders or between a typed preorder and a dtm. We define
these below:

Definition 8.2 (Typed simulations). Given two typed preorders W,V, we say a
simulation between W and V is a continuous relation χ such that w χ v implies
that tW(w) = tV(v).

If W is a typed preorder and X a dtm, χ ⊆ |W| × |X| is a simulation if it is
continuous and, whenever w χ x, it follows that

〈X, x〉 |=
∧

tW(w).

9 The universal state space

In this section we define a structure I(Φ) which we will use to link the seman-
tic framework developed so far with the syntactic constructions we need for a
completeness proof. The ‘worlds’ of I(Φ) are called Φ-states, as defined below.
In the end we will be mainly interested in structures I(ϕ) (i.e., when Φ is a
singleton), but it will be convenient to give a more general treatment.

We refer the reader once again to [5] for omitted proofs.
Roughly, Φ-states are local descriptions of Φ-quasimodels. We will define

len(ϕ) (the lenght of ϕ) as the number of subformulas of ϕ, and similarly define
len(Φ) as #sub(Φ).

Definition 9.1 (Φ-state). Let Φ be a finite set of formulas. A Φ-state is a tuple

w = 〈|w|,4w, tw, 0w〉 ,

consisting of a finite Φ-typed preorder equipped with a distinguished point 0w ∈
|w| satisfying v 4w 0w for all v ∈ |w|.
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In other words, a Φ-state is a Φ-typed, finite, pointed Kripke frame, or a
local Kripke frame from [5]. We will write t(w) instead of tw (0w). As always,
we will include the subindex in 4w only when necessary. Weak states are defined
analogously but based on weakly typed preorders.

Definition 9.2 (norm of a state). Given a state w, we define hgt(w) as the
maximum length of a sequence of worlds

w0 ≺ w1 ≺ w... ≺ wN

such that wn ∈ |w| for all n ≤ N . Similarly, wdt(w) is defined as the maximum
N such that there exist w ∈ |w| with N 4-incomparable daughters.

We then define the norm of w, denoted nrm (w), by

nrm(w) = max(hgt(w),wdt(w)).

We will make the assumption that no two worlds of w are indistinguishable;
that is, if w ∼ v and tw(w) = tw(v), then w = v. This will immediately bound
the size of each cluster by 2len(Φ). Thus bounding the height and width of w
gives us a bound on #|w| (and vice-versa). In particular, it follows that there
are only finitely many Φ-states with a given norm.

Many times it will be useful to compare different Φ-states and express re-
lations between them. These relations will appear throughout the rest of the
text.

Definition 9.3. Say that w simulates v, denoted wE v, if there exists a simu-
lation χ ⊆ |w| × |v| such that 0w χ 0v.

Definition 9.4 (substate). Say that v is a substate of w, written v 4 w, if
0v ∈ |w| and v is a generated substructure of w.

Below, sub♦(Ψ) denotes the set of all formulas ♦Γ ∈ sub(Ψ).

Definition 9.5 (termporal successor). Say w is a temporal successor of v,
denoted w 7→ v, if there exists a sensible relation g ⊆ |w|× |v| such that 0w g 0v.

If w 7→ v and

nrm(v) ≤ nrm(w) + #
⋃

w∈|w|

sub♦(tw(w)),

we will write w ˙7→v and say v is a small temporal successor of w.

Note that if w is a Φ-type,
⋃

w∈|w| sub♦(tw(w)) becomes sub♦(Φ).
With these relations in mind, the class of finite Φ-states can be viewed as a

typed structure on its own right.

Definition 9.6 (IK(Φ)). Let Φ be a finite set of L∗-formulas and K ≥ 0. Define
|IK(Φ)| to be the set of Φ-states w such that

nrm(w) ≤ (K + 1)len(Φ).

13



Now, consider

|I(Φ)| =
⋃

k<ω

|Ik(Φ)|

(evidently this is the set of all finite Φ-states). Define

I(Φ) = 〈|I(Φ)|,4, 7→, t〉 ,

where t(w) = tw(0w).
We then have the following restatement of a result in [5]:

Proposition 9.1. Let Φ be a finite set of formulas. Then,

1. If w is any Φ-state, there exists v ∈ |I0(Φ)| such that vE w and

2. If w is a weak state and w 7→ v ∈ |I(Φ)|, there is uE v such that w ˙7→u.

Proof. We omit the proof. It proceeds by induction on the height of a state,
deleting worlds until we reach a model of the desired size.

While I(Φ) is a Φ-typed preorder with a sensible relation 7→, it is not nec-
essarily ω-sensible, so I(Φ) is not a quasimodel. Nevertheless, it will be very
useful as a universal structure. In particular, if ϕ is satisfiable, it can be satisfied
in a quasimodel which is a substructure of I(ϕ).

More specifically, define a non-empty set U ⊆ |I(Φ)| to be regular if U is
open (i.e., downward-closed under 4) and 7→↾ U7 is ω-sensible. The following
should then be fairly obvious from Definition 6.4:

Lemma 9.1. If U is a regular subset of |I(Φ)|, then I(Φ) ↾ U is a Φ-quasimodel.

We will refer to quasimodels of the form I(Φ) ↾ U , with U regular, as regular
quasimodels. Much of what follows will be devoted to defining a ‘canonical
quasimodel’ for a given consistent set of formulas Φ, and this quasimodel will
be regular.

10 Simulation formulas

The primary motivation for extending the language of DT L to use a polyadic
modality is that, for our completeness proof, it is essential to be able to define
simulability by finite Φ-states. This cannot be done in the standard modal
language, but in the extended language the situation is different [4]. In this
section, we will discuss the formulas Sim(w), which define the property being
simulated by w.

We generalize the notion of substitution to states as follows: if w is a state,
~p a tuple of variables and ~ψ a tuple of formulas, we write w[~p/~ψ] as the state v

which is identical to w except that, for w ∈ |w|, we have

tv(w) =
{

δ[~p/~ψ] : δ ∈ tw(w)
}

.

7We denote restriction by ↾, so that for example 7→↾ U = 7→ ∩(U × U).
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For a state w, define wp as the state which is identical to w except that twp is
given as follows: for each type Φ in the range of tw (which we denote rng(tw)),
we introduce a new propositional variable pΦ.

Then we put

twp(w) =
{

ptw(w)

}

∪ {¬pΨ : Ψ 6= tw(w)} .

Say a weak state w is distinctly typed if, whenever tw(w) 6= tw(v), there is
ψ ∈ tw(w) such that ¬ψ ∈ tw(v) (or vice-versa). Note that Φ-typed states are
distinctly typed.

We then get:

Proposition 10.1. Given a distinctly typed state w, there exists a formula
Sim(w) such that, for every topological model X and x ∈ |X|, x ∈ JSim(w)KX if
and only if wE 〈X, x〉.

Further, we can define Sim so that

Sim(w) = Sim(wp)
[

pΨ/
∧

Ψ
]

Ψ∈rng(tw)
.

Proof. Let w be a distinctly typed state.
In [4] it is shown that there exists a formula Sim(wp) such that, for any

topological model X and x ∈ |X|, wp E 〈X, x〉 if and only if 〈X, x〉 |= ϑ. We then
set

Sim(w) = Sim(wp)
[

pΨ/
∧

Ψ
]

Ψ∈rng(tw)
,

as indicated.
Now, if Y is any dtm, let Yp be the dtm obtained by extending J·KY so that

JpΨKYp = J
∧

ΨKY. Note that these sets are disjoint because different types are
mutually inconsistent, given that w is distinctly typed.

We then have that

〈Y, x〉 |= Sim(w) ⇔ 〈Yp, x〉 |= Sim(wp)

⇔ wp E 〈Yp, x〉

⇔ wE 〈Y, x〉 ,

as claimed.

Proposition 10.2. Simulation formulas have the following properties:

1. If ψ ∈ t(w), then ⊢ Sim(w) → ψ;

2. if vEw then ⊢ Sim(w) → Sim(v);

3. if v 4 w then ⊢ Sim(w) → ♦Sim(v);

4. if ψ ∈ sub(Φ) ∪ ¬sub(Φ),

⊢ ψ →
∨

{Sim(w) : w ∈ I0(Φ) and ψ ∈ t(w)} ;
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5. for all w ∈ I(Φ),

⊢ Sim(w) → f
∨

w
·

7→v

Sim(v).

Proof. As we shall see, these claims are consequences of Propositions 5.2, 9.1
and 10.1. What we shall do is show that each of these formulas is a (subsitu-
tion instance of an) S4C∗ validity, which by Proposition 5.2 implies that it is
derivable.

1. Suppose ψ ∈ t(w). Any point on a dtm satisfying Sim(w) must satisfy
t(w) (by the definition of a simulation), which in this case includes ψ. Hence
Sim(w) → ψ is a substitution instance of an S4C∗ validity, as claimed.

2. This expresses the transitivity of E. Namely, suppose 〈X, x〉 |= Sim(w)
(so that w E 〈X, x〉) and v E w. Then, clearly v E 〈X, x〉 (by composing the
itermediate simulations) so by Proposition 10.1 we have that 〈X, x〉 |= Sim(v).

3. Suppose v 4 w and 〈X, x〉 is a dtm satisfying Sim(w), so that there is a
simulation χ between w and 〈X, x〉 with 0w χ x. Since simulations are continu-
ous and the only neighborhood of 0w ∈ |w| is all of |w|, it follows that, given a
neighborhood U of x, χ−1(U) = |w|.

In particular, 0v ∈ χ−1(U), so that ζ = χ ↾ |v| is a simulation between v

and X with 0v ζ y for some y ∈ U . Thus by Proposition 10.1, y satisfies Sim(v)
and, since U was arbitrary, x ∈ JSim(v)KX or, equivalently, x satisfies ♦Sim(v).

4. It will be useful to define a variant of w, which we denote wq. For this,
add a new propositional variable qδ for each [f ]δ ∈ sub(Φ). Given a formula γ,
let γq be the result of replacing each outermost occurrence of [f ]δ in γ by qδ.
Similarly, if Γ is a set of formulas, Γq denotes the set {γq : γ ∈ Γ} and wq is the
state which is identical to w except that tw(w) is replaced by tqw(w).

We claim that
S4C∗ ⊢ η,

where η is the formula

ψq →
∨

{Sim(w) : w ∈ I0(sub
q(Φ)) and ψq ∈ t(w)} .

By the finite model property for S4C∗ (Propostion 5.2), it suffices to check that
this formula is valid on every finite dynamic Kripke model W.

Suppose, then, that W is finite and 〈W, w〉 |= ψq. We obtain a subq(Φ)-
state8 v by letting |v| = ↓w, 0v = w and

tv(v) =
{

ϑ ∈ subq±(Φ) : v ∈ JϑKW
}

.

8Note that subq(Φ) may not be equal to sub(Φq)! Consider, for example, Φ = {[f ]p}.
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Now, by Proposition 9.1 there is w ∈ I0(sub
q(Φ)) such that wE v and thus

w ∈ JSim(w)KXq . Hence 〈W, w〉 satisfies

∨

{Sim(w) : w ∈ I0(sub
q(Φ)) and ψq ∈ t(w)} ,

and ηq is valid.

Let us write [~q/[f ]~δ] instead of
[

qδ/[f ]δ
]

[f ]δ∈subΦ
. We then have that η[~q/[f ]~δ]

is equal to

ψ →
∨

{

Sim(w)[~q/[f ]~δ] : w ∈ I0(sub
q(Φ)) and ψq ∈ t(w)

}

; (1)

this is derivable by applying Subs to η, and very close to our goal, except that it
may be that for some subq(Φ)-state w with ψq ∈ t(w), the structure w[~q/[f ]~δ]
is not a Φ-state.

In other words, it may be the case that for some v ∈ |w|, tw(v)[~q/[f ]~δ] is not a

Φ-type. However, we shall see that in such cases, Sim(w)[~q/[f ]~δ] is inconsistent,
and we can remove it from the disjunction.

Looking at Definition 6.1, the only property that may fail is that [f ]δ ∈ tw(v)
but δ 6∈ tw(v). In this case, it follows that ¬δ ∈ tw(v); this is because tw(v) is a
subq(Φ)-type and δq ∈ subq(Φ), so given that δq 6∈ tw(v), we have ¬δq ∈ tw(v)

and thus ¬δ ∈ tw(v)[~q/[f ]~δ].
On the other hand, ⊢ [f ]δ → δ, so

⊢
∧

tw(v) → (δ ∧ ¬δ),

i.e. tw(v) is inconsistent.
Now, let v 4 w be the substructure with 0v = v. We have, by Item 3, that

⊢ Sim(w) → ♦Sim(v),

while by Item 1,

⊢ Sim(v) →
∧

tw(v);

together, these imply that ⊢ ¬Sim(w).

Thus we can remove from (1) all disjoints of the form Sim(w)[~q/[f ]~δ] where

w[~q/[f ]~δ] 6∈ |I0(Φ)| and obtain the desired result.

5. Given a type Ψ, define Ψ+ by

Ψ+ = Ψ ∪ {f [f ]ψ : [f ]ψ ∈ Φ} ∪ {f〈f〉ψ : 〈f〉ψ ∈ Ψ but ψ 6∈ Ψ} .

It should be fairly clear that

DT L∗ ⊢
∧

Ψ ↔
∧

Ψ+. (2)

Define w+ to be the structure which is identical to w except that tw+ = t+w.
Note that w+ is, in general, not a proper Φ-state because we have added some
formulas which may not be subformulas of Φ; however, it is distincly typed.
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Thus we can use Proposition 10.1 to see that

Sim(w) = Sim(wp)
[

pΨ/
∧

Ψ
]

Ψ∈rng(tw)
,

Sim(w+) = Sim(wp)
[

pΨ/
∧

Ψ+
]

Ψ∈rng(tw)

and by (2),
DT L∗ ⊢ Sim(w) ↔ Sim(w+).9 (3)

As before, we use the finite model property of S4C∗. Suppose that W is
a finite dtm and 〈W, w〉 |= Sim(w+q) (where we are writing w+q instead of
(w+)q, defined in the previous item). As before, we can see W ↾ ↓ fW(w) as a
subq(Φ)-state, which we shall call u.

Then, by Proposition 10.1, w+qE〈W, w〉, and composing with fW we obtain
that w+q 7→ u. By Proposition 9.1 there exists v such that vE u and w+q ˙7→v.

It follows that w satisfies

f
∨

w+q ˙7→v

Sim(v);

since 〈W, w〉 was arbitrary,

S4C∗ ⊢ Sim(w+q) → f
∨

w+q ˙7→v

Sim(v),

given that the latter is a formula in L∗♦f and S4C∗ is complete.
But then, using Subs, it follows that

DT L∗ ⊢
(

Sim(w+q) → f
∨

w+q ˙7→v

Sim(v)
)

[~q/[f ]~δ],

or equivalently

DT L∗ ⊢ Sim(w+) → f
∨

w+q ˙7→v

Sim
(

v[~q/[f ]~δ]
)

. (4)

We claim now that if w+q ˙7→v, then

w ˙7→v[~q/[f ]~δ].

Note that for any set of formulas Ψ,

#sub♦(Ψ) = #sub♦(Ψ
+) = #subq♦(Ψ

+);

9We are also using the rule
α↔ β

ψ[p/α] ↔ ψ[p/β]
,

which is easily shown to be admissible.
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thus if w+q ˙7→v and w 7→ v[~q/[f ]~δ], we automatically have that v[~q/[f ]~δ] is a

small temporal successor of w. Hence we need only prove that v[~q/[f ]~δ] is a
temporal successor of w.

In fact, if we have a sensible relation g between w+q and v, g is still sensible
between w and v[~q/[f ]~δ]. To see this, assume that w g v; let us check that the
pair (tw(w), tv(v)) is sensible (see Definition 6.3).

1. Suppose that fψ ∈ tw+(w). Then, ψ is of the form γ[~q/[f ]~δ], so that
fγ ∈ tw+q(w) and thus γ ∈ tw+q(v); it follows that ψ ∈ t

v[~q/[f ]~δ](v), as

required.

2. The case for ¬fψ is similar.

3. If [f ]ψ ∈ tw(w) and w g v, by construction f [f ]ψ ∈ t+w(w), so that fqψ ∈
tw+q(w). This implies that qψ ∈ tv(v); the latter in turn implies that
[f ]ψ ∈ t

v[~q/[f ]~δ](v), which is what we wanted.

4. The condition for 〈f〉ψ is similar and we skip it.

Thus we can replace (4) by

DT L∗ ⊢ Sim(w+) → f
∨

w ˙7→v

Sim(v). (5)

Putting together (3) and (5) we get that

DT L∗ ⊢ Sim(w) → f
∨

w ˙7→v

Sim(v).

11 Canonical quasimodels

We are now ready to define our canonical quasimodels. Given a finite set of
formulas Φ, we shall define a quasimodel Q(Φ) satisfying all consistent Φ-types.
This quasimodel shall be a substructure of I(Φ), however, it will only contain
states which are consistent in the following sense:

Definition 11.1 (Consistent states). We say a state w is inconsistent if ⊢
¬Sim(w); otherwise, it is consistent.

We will denote the set of consistent Φ-states by Cons(Φ).

With this we are ready to define our canonical quasimodels. However, as
showing that they are indeed quasimodels will take some work, we shall baptize
them, for now, as canonical structures:

Definition 11.2 (Canonical structures). Given a set of formulas Φ, we define
the canonical strucure for Φ, denoted Q(Φ), as I(Φ) ↾ Cons(Φ).

More specifically, we define

Q(Φ) = 〈|Q(Φ)|,4Q(Φ), 7→Q(Φ), tQ(Φ)〉
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by
|Q(Φ)| = Cons(Φ)
4Q(Φ) = 4I(Φ) ∩(Cons(Φ)× Cons(Φ))
7→Q(Φ) = 7→I(Φ) ∩(Cons(Φ)× Cons(Φ))

tQ(Φ) = tI(Φ) ∩ (Cons(Φ)× 2L
∗

)

Our strategy from here on will be to show that canonical structures are
indeed quasimodels; once we establish this, completeness of DT L∗ is an easy
consequence. The most involved step will be showing that 7→Q(Φ) is ω-consistent;
however, we may already prove some nice properties of Q(Φ).

Lemma 11.1. If Φ is a finite set of formulas, |Q(Φ)| is an open subset of |I(Φ)|
and 7→Q(Φ) is serial.

Proof. To check that |Q(Φ)| is open, let w ∈ |Q(ϕ)| and suppose v 4 w. Now,
by Proposition 10.2.3, we have that

⊢ Sim(w) → ♦Sim(v);

hence if w is consistent, so is v.
To see that 7→Q(Φ) is serial, observe that by Proposition 10.2.5, if w ∈ |Q(ϕ)|

for all w ∈ I(Φ),

⊢ Sim(w) → f
∨

w
·

7→v

Sim(v);

since w is consistent, it follows that for some v with w ˙7→v, v is consistent as
well, and thus v ∈ |Q(Φ)|.

12 Efficiency

One of the primary difficulties in the study of DT L is that we must consider an
infinite number of states, so that one cannot tell a priori how long it will take
for a formula of the form 〈f〉ψ to be realized. However, we can remedy this
using ideas from [9, 10] which we elaborate below.

If A is a Φ-quasimodel, an eventuality is any formula of the form 〈f〉ψ ∈
sub±(Φ).

Definition 12.1 (efficiency). Let ~w = 〈wn〉n≤N be a finite path of Φ-states and
〈f〉ψ ∈ t(w).

An inefficiency in ~w is a pair M1 < M2 such that wM1
EwM2

.
The path ~wn is efficient if

1. for all n < N , wn ˙7→wn+1 and

2. it contains no inefficiencies.

20



Roughly, the previous definition says that if a path realizes an eventuality
efficiently, no state should be ‘repeated’. Otherwise, the path between them
gives us a sort of loop which we could simply skip.

Efficient paths are very useful because, while there may be infinitely many
paths beginning on a Φ-state w, there are only finitely many efficient ones.

The following is a restatement of a result from [9] which was first applied to
DT L in [10]:

Lemma 12.1. Given a Φ-state w, there are only finitely many efficient paths
~v with v0 = w.

Proof. This is a consequence of Kruskal’s tree theorem together with König’s
Lemma; the proof may be found in [5, 9, 10].

13 ω-Sensibility

In this section we shall show that 7→Q(Φ) is ω-sensible, the most difficult step in
proving that Q(Φ) is a quasimodel. In other words, we must show that, given
w ∈ |Q(Φ)| and 〈f〉ψ ∈ t(w), there is a finite path

w = w0 7→ w1 7→ . . .wN ,

where ψ ∈ t(wN ) and each wn ∈ |Q(Φ)|.
Another way of saying this is that there should be some v ∈ |Q(Φ)| which is

reachable from w with ψ ∈ t(v).
Here is where our notion of efficiency will be useful; for, in fact, we need

only focus our attention on those v which are reachable from w via an efficient
path.

Definition 13.1 (Reachability). Let w be a Φ-state.
Say a Φ-state v is reachable from w if there is a finite efficient path

~u = 〈u0, ..., uN 〉

of consistent states with u0 = w and uN = v.
Let ρ(w) be the set of all states that are reachable from w.

This notion of reachability is very convenient because of the following:

Lemma 13.1. Given w ∈ |Q(Φ)|, ρ(w) is finite.

Proof. This is an immediate consequence of Lemma 12.1.

Now, we shall see that to check that 7→Q(Φ) is ω-sensible, we need only
consider efficient paths. But first, we need a key syntactic lemma.

Lemma 13.2. If w ∈ |Q(Φ)| then

⊢
∨

v∈ρ(w)

Sim(v) → f
∨

v∈ρ(w)

Sim(v).
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Proof. By Proposition 10.2.5 we have that, for all v ∈ ρ(w),

⊢ Sim(v) → f
∨

v ˙7→u

Sim(u).

Now, if v ˙7→u, it does not immediately follow that u ∈ ρ(w), so we must
examine the possible exceptions; let us see what these are.

Pick an efficient path ~y of length N with y0 = w and yN−1 = v.
Consider an extension ~z of ~y with zn = yn for n < N and zN = u.
Now, by definition, the path ~z shows that u is reachable from w, unless one

of the following happens:

1. u 6∈ |Q(Φ)|;

2. the path ~z is inefficient.

If 1 holds, then ⊢ ¬Sim(u) and we can directly remove u from the disjunction.
If 2 holds, there is n < N such that zn E zN (since ~z is inefficient but ~y is

still efficient). But then, by Proposition 10.2.2, we have that

⊢ Sim(u) → Sim(zn),

and clearly zn is reachable from w. Therefore we can replace u by zn in the
disjunction.

We conclude that

⊢ Sim(v) → f
∨

u∈ρ(w)

Sim(u),

as desired.
Since v was arbitrary, this shows that

⊢
∨

v∈ρ(w)

Sim(v) → f
∨

v∈ρ(w)

Sim(v).

From this we obtain the following, which evidently implies ω-sensibility:

Proposition 13.1. If w ∈ |Q(Φ)| and 〈f〉ψ ∈ t(w), then there is v ∈ ρ(w) such
that ψ ∈ t(v).

Proof. Towards a contradiction, assume that w ∈ |Q(Φ)| and 〈f〉ψ ∈ t(w) but,
for all v ∈ ρ(w), ψ 6∈ t(w).

By Lemma 13.2,

⊢
∨

v∈ρ(w)

Sim(v) → f
∨

v∈ρ(w)

Sim(v).
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But then we can use necessitation and Ind[f ] to show that

⊢
∨

v∈ρ(w)

Sim(v) → [f ]
∨

v∈ρ(w)

Sim(v);

in particular,

⊢ Sim(w) → [f ]
∨

v∈ρ(w)

Sim(v). (6)

Now let v ∈ ρ(w). By Proposition 10.2.1 and the assumption that ψ 6∈ t(v)
we have that

⊢ Sim(v) → ¬ψ,

and since v was arbitrary,

⊢
∨

v∈ρ(w)

Sim(v) → ¬ψ.

Using necessitation and distributibity we further have that

⊢ [f ]
∨

v∈Reach(w)

Sim(v) → [f ]¬ψ.

This, along with (6), shows that

⊢ Sim(w) → [f ]¬ψ;

however, once again by Proposition 10.2.1 and our assumption that 〈f〉ψ ∈ t(w)
we have that ⊢ Sim(w) → 〈f〉ψ, which inconsistent with [f ]¬ψ, showing that
⊢ ¬Sim(w).

But this contradicts the assumption that w ∈ |Q(Φ)| = Cons(Φ), and we
conclude that there can be no such w.

Corollary 13.1. Given any finite set of formulas Φ, Q(Φ) is a quasimodel.

Proof. By Lemma 11.1, |Q(Φ)| is open in |I(Φ)| and 7→Q(Φ) is serial, while by
Proposition 13.1, 7→Q(Φ) is ω-sensible.

Thus |Q(Φ)| is regular, and it follows from Lemma 9.1 that Q(Φ) is a quasi-
model.

14 Completeness

We are now ready to prove completeness of DT L∗.

Theorem 14.1 (Completeness). If |= ϕ, then ⊢ ϕ.
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Proof. Suppose ϕ is a consistent formula and let

W = {w ∈ I0(ϕ) : ϕ ∈ t(w)} .

Then, by Proposition 10.2.4 we have that

⊢ ϕ→
∨

w∈W

Sim(w).

Since ϕ is consistent, it follows that some w∗ ∈ W is consistent and hence
w∗ ∈ |Q(ϕ)|. By Corollary 13.1, Q(ϕ) is a quasimodel, so that by Theorem 7.1,
ϕ is satisied in limQ(ϕ).

15 Conclusions and future work

The primary motivation for studying DT L with infinitary temporal modalities
is to apply techniques from modal logic to the study of topological dynamics.
The methods developed until now have allowed us to bring the model theory of
modal logic and Kripke semantics into the study of such systems. We believe
that the results presented in the current paper may turn the study of DT L in
a new direction, where proof-theoretic methods take on a leading role.

However, there is much to be done. Indeed, dynamic topological systems
appear in multiple branches of mathematics, but rarely is such a general class
as that of all systems studied: applications typically consider systems with
greater structure. Motivated by this fact, the semantic work in [5] has already
been applied to metric spaces in [6] and minimal systems in [3]. The advances
presented here should lead to an analogous syntactic treatment of such classes
of systems.

As a case in point, consider DT L over the class of minimal systems; a
dynamic topological system X is minimal if |X| contains no non-empty, proper,
closed, fX-invariant subset. These systems have the property that the orbit of
every point is dense in the whole space.

In [3], the language of DT L is enriched with a universal modality ∀. The
formula

∃�p→ ∀〈f〉p

can then be seen to be valid over this class; it expresses the fact that the orbit
of every point is dense. Further, it is shown that

Theorem 15.1. Given a formula ϕ in the (monadic) language L♦f [f ]∀, there
exists a finite set of formulas Axϕ of the form ∃�ψ → ∀〈f〉ψ such that ϕ is
valid over the class of all minimal dynamic topological systems if and only if
∧

Axϕ → ϕ is valid over the class of all dynamic topological systems.

This leads us to the following:
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Conjecture 15.1. The set of L∗
♦f [f ]∀-formulas valid over the class of minimal

dynamic topological systems can be axiomatized by

DT L∗ + Ax∀ + ∃�p→ ∀〈f〉p,

where Ax∀ denotes the standard axioms and rules for the universal modality and
its interaction with other modalities.

Proof idea. If a formula ϕ is valid over the class of all minimal systems, it follows
from Theorem 15.1 that

∧

Axϕ → ϕ is valid. Then, by Theorem 14.1,

DT L∗ ⊢
∧

Axϕ → ϕ

and thus
DT L∗ + ∃�p→ ∀〈f〉p ⊢ ϕ.

However, there are two obstacles to make this a proper proof:

1. Theorem 14.1 considers a language without the universal modality, and
hence would have to be revised to accommodate for this addition.

2. Theorem 15.1 considers a monadic language, and would also have to be
revised to include the polyadic ♦.

It seems very unlikely that either of these points would prove terribly chal-
lenging: unfortunately, it also seems like the only way to deal with them (at
least the second) would be to go back to the original proofs and check that the
new additions do not pose a problem. Because of this, we shall not provide a
full proof, but leave it as a conjecture and an indication of the new territory
that must now be explored within the field of Dynamic Topological Logic.
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Gödel Centenary Research Prize Fellowships.

25



[6] D. Fernández-Duque. Dynamic topological logic interpreted over metric
spaces. Journal of Symbolic Logic, 2011.

[7] D. Fernández-Duque. Tangled modal logic for spatial reasoning, 2011.

[8] D. Fernández-Duque. Tangled modal logic for topological dynamics. 2011.

[9] D. Gabelaia, A. Kurucz, F. Wolter, and M. Zakharyaschev. Non-primitive
recursive decidability of products of modal logics with expanding domains.
Annals of Pure and Applied Logic, 142(1-3):245–268, 2006.

[10] B. Konev, R. Kontchakov, F. Wolter, and M. Zakharyaschev. Dynamic
topological logics over spaces with continuous functions. In G. Governatori,
I. Hodkinson, and Y. Venema, editors, Advances in Modal Logic, volume 6,
pages 299–318, London, 2006. College Publications.

[11] B. Konev, R. Kontchakov, F. Wolter, and M. Zakharyaschev. On dynamic
topological and metric logics. Studia Logica, 84:129–160, 2006.

[12] P. Kremer. Dynamic topological S5. Annals of Pure and Applied Logic,
160:96–116, 2009.

[13] P. Kremer and G. Mints. Dynamic topological logic. Annals of Pure and
Applied Logic, 131:133–158, 2005.

[14] O. Lichtenstein and A. Pnueli. Propositional temporal logics: Decidability
and completeness. Logic Jounal of the IGPL, 8(1):55–85, 2000.

[15] A. Tarski. Der aussagenkalkül und die topologie. Fundamenta Mathematica,
31:103–134, 1938.

26


	1 Introduction
	2 Topologies and preorders
	3 The tangled closure
	4 Dynamic Topological Logic
	5 The axiomatization
	6 Quasimodels
	7 Generating dynamic topological models from quasimodels
	7.1 Realizing sequences
	7.2 Limit models

	8 Simulations
	9 The universal state space
	10 Simulation formulas
	11 Canonical quasimodels
	12 Efficiency
	13 -Sensibility
	14 Completeness
	15 Conclusions and future work

