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ON ALGEBRAIC CLOSURE IN PSEUDOFINITE FIELDS

ÖZLEM BEYARSLAN, EHUD HRUSHOVSKI

Abstract. We study the automorphism group of the algebraic closure of a substructure A of a
pseudo-finite field F . We show that the behavior of this group, even when A is large, depends
essentially on the roots of unity in F . For almost all completions of the theory, we show that
algebraic closure agrees with definable closure, as soon as A contains the relative algebraic closure
of the prime field.

1. Introduction

A pseudofinite field is an infinite model of the theory of finite fields. By Ax [Ax], we know that a
field F is pseudofinite if and only if it is 1) perfect, 2) PAC and 3) has a unique (and so necessarily
Galois and cyclic) extension in the algebraic closure F a of F of degree n for every n ∈ N \ {0}. See
[FJ] for the PAC property; it will play almost no role in this paper.

We are interested in definable and algebraic closure in F , over a substructure A containing an
elementary submodel. This is a problem about embeddings of function fields into F . Surprisingly,
the answer depends intimately on embeddings of number fields, or finite fields, into F . Say the
characteristic is zero. We show in particular that algebraic closure and definable closure coincide
if and only if, for each prime p, the cyclotomic field of pn’th roots of unity is contained in a finite
extension of F .

Real closed fields provide a geometrically comprehensible way of symmetry-breaking in algebraic
geometry; a Galois cover of an algebraic variety splits into semi-algebraic sections. Our results imply
that pseudo-finite fields give an alternative, but equally geometric approach to such a splitting: the
Galois cover splits into definable sections.

The results above are in fact valid for quasi-finite fields in the sense of [S], p. 188, i.e. perfect

fields with absolute Galois group Ẑ, the profinite completion of Z. We use pseudo-finiteness only
in order to demonstrate the converse, that if the field of of pn’th roots of unity is contained in a
finite extension of F , then Galois groups of order divisible by p occur geometrically in models of
the theory.

2. Quasi-finite Fields

We write ≤ for the substructure relation; in particular, for fields A,B, A ≤ B means that A is
a subfield of B.

By definition, a quasi-finite field F has a unique extension in F a of degree n for every n ∈ N\{0}.
Let Fn denote the unique extension of F in F a of degree n. This extension is easily seen to be
interpretable in F using parameters from F . Indeed, as F is perfect, Fn = F (α) for some α ∈ Fn.
Let Xn + a1X

n−1 + · · · + an be the minimal polynomial of α over F . Then Fn, which is an n-
dimensional vector space over F with basis {1, α, α2, . . . , αn−1}, is definably isomorphic to Fn via
this basis as a vector space. Also any linear homomorphism of Fn translates into a definable (with
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parameters) linear homomorphism of Fn (coded by an n × n matrix over F ). In particular, the
α-multiplication in Fn, the multiplicative structure of Fn and the action of Gal(Fn/F ) on Fn can
all be definably(with parameters) coded in Fn.

Note that to interpret Fn in F we only need a1, . . . , an as parameters, but to interpret the action
of an element τ of Gal(Fn/F ) in F , apart from these n parameters, we also need b0, . . . , bn−1 ∈ F
where τ(α) = b0 + b1α+ · · ·+ bn−1α

n−1, which makes up a total of 2n parameters. Note also that
any other choice of the parameters a1, . . . , an for which the polynomial Xn + a1X

n−1 + . . . + an
is irreducible gives rise to an isomorphic structure Fn; on the other hand, different choices of the
parameters b0, . . . , bn−1 may define different field automorphisms.

Lemma 1. Let F be a quasi-finite field and σ be a topological generator of Aut(F a/F ), let M be
an elementary submodel of F . Let µ be in Aut(F/M) then any extension of µ to F a commutes with
σ.

Proof: It is enough to show that σ and µ commute on Fn where Fn is the unique extension of
F of degree n. Since M is an elementary submodel of F , Fn = F (α) where α is a root of an
irreducible polynomial of degree n with coefficients in M . We will show that σµ(α) = µσ(α).
We know that σ(α) = b0 + b1α + . . . + bn−1α

n−1 for some b0, . . . bn−1 in M . Then µ(σ(α)) =
b0 + b1µ(α) + . . . + bn−1µ(α)

n−1. On the other hand since µ is a field automorphism fixing the
minimal polynomial of α, µ(α) = σr(α) for some r < n, hence σ(µ(α)) = σ(σr(α)) = σr(σ(α)) =
σr(b0+b1α+ . . .+bn−1α

n−1) = b0+b1σ
r(α)+ . . .+bn−1σ

r(α)n−1 = b0+b1µ(α)+ . . .+bn−1µ(α)
n−1.

3. Geometric Representation

Definition 2. We say that the group G is geometrically represented in the theory T if there exists
M0 ≺ M � T and M0 ≤ A ≤ B ≤ M , such that B ⊆ acl(M) and Aut(B/A) :∼= G.

In this definition, A,B are substructures of M containing M0. Aut(B/A) must be intepreted as
the set of permutations of B over A preserving the truth value of all formulas (computed in M .)

In more detail, let LMor be the Morleyzation, i.e. a language with a new relation symbol for
each formula of L. Interpret the new relations symbols eponymously in M . By restriction we
obtain LMor-structures on A,B, extending their L-structures. Now let Aut(B/A) be the group of
automorphisms of B over A as LMor-structures. For another approach to this definition, see [H].

Definition 3. We say that a prime number p is geometrically represented in the theory T if there
exists M0 ≺ M � T and M0 ≤ A ≤ B ≤ M , such that B ⊆ acl(M) and Aut(B/A) ∼= Z/pZ or
equivalently if p||G| for some G such that G is geometrically represented in T .

4. Maximal p-extensions

4.1. Roots of Unity. Let k be a prime field of any characteristic and p a prime p 6= char(k), we
let µpn denote the multiplicative subgroup of Ka of pn-th roots of unity. We also let µp∞ =

⋃
n<ω

µpn .

It is a well-known fact that Aut(k(µp∞)/k) is the inverse limit of the automorphism groups of
the finite extensions Aut(k(µpn)/k) and that,

Aut(k(µpn)/k) ≃ Z/pn−1Z× Z/qZ.

Where q = p− 1 if p 6= 2 and q = 2 if p = 2.
For i ≥ j, the restriction homomorphism

rij : Aut(k(µpi)/k) −→ Aut(k(µpj )/k)
φ 7−→ φ|k(µ

pj
),



ON ALGEBRAIC CLOSURE IN PSEUDOFINITE FIELDS 3

which is certainly onto, respects the decomposition. Hence

Aut(k(µp∞)/k) ≃ Zp × Z/qZ.

Let Lp be the subfield of k(µp∞) fixed by

Z/qZ < Zp × Z/qZ

and let ω be a primitive p-th root of unity if p 6= 2 and
√
−1 if p = 2. The field Lp does not contain

any pn-th roots of unity. Suppose it does then Lp contains ω hence the automorphism group of
Lp/k contains a subgroup of index q but it is impossible since Aut(Lp/k) ≃ Zp. But Lp[ω] = k(µp∞)
and contains µp∞ .

In fact Lp is the smallest subfield of k(µp∞) that intersects µp∞ trivially whereas the finite
extension Lp[ω] = K(µp∞) contains all pn-th roots of unity, it is the maximal abelian p-extension
of k.

For a field L, K ≤ L and A ⊆ L, we will say that K almost contains A if A is contained in a
finite extension of K, i.e. [K[A] : K] < ∞.

We have the following result:

Lemma 4. A field K almost contains µp∞ if and only if Lp ⊂ K.

Proof: Suppose K almost contains µp∞ Let k be the prime subfield of K then

k0 = k(µp∞) ∩K

almost contains µp∞ as well. So Aut(k(µp∞)/k0) is a finite subgroup of Zp × Z/(p − 1)Z. But a
finite subgroup of Zp × Z/(p − 1)Z has to be contained in Z/(p − 1)Z. Therefore k0, contains the
fixed field of Z/(p− 1)Z in k(µp∞) which is Lp so does K. The converse of the lemma is trivial by
definition. �

4.2. Maximal p extensions when p = char(k). Given a field F of characteristic p we want to
see the maximal p-extension of the prime field Fp inside F . The maximal p extension of Fp in F a

is equal to
⋃

n∈N Fppn . We will denote the maximal p extension of Fp in F which is
⋃

n∈N Fppn ∩ F
as Lp.

5. The Automorphism Group Theorem

In this section we will state and prove our main theorem on automorphism groups of pesudofinite
fields. We will first prove the theorem for primes different from the characteristic of the pseudofinite
field then we will extend the result to the primes equal to the characteristic.

Theorem 5. Let F be a quasifinite field, p a prime different from char(F ), and ω a primitive p-th
root of unity. Assume (i) p is geometrically represented in Th(F ). Then (ii) F almost contains
µp∞. If F is pseudo-finite, the converse holds.

Proof: (i ⇒ ii). Suppose F contains substructures A < B , A containing an elementary submodule
M of F and p divides |Aut(B/A)|. Note that we may assume B/A is a Galois extension of order
p, generated by τ , by replacing A by Fix(τ) where τ is some element in H of order p.

Without loss of generality we can assume that ω is in F since [A[ω] : A] | p − 1, therefore the
order of Aut(B[ω]/A[ω]) is also p and F (ω) is quasi-finite.

Since F does not almost contain µp∞, finite extension F [ω] of F does not almost contain µp∞

either. We have that F [ω] is a quasi-finite field containing substructures A[ω], B[ω] with automor-
phism group Aut(B[ω]/A[ω]) of order p, hence F [ω] satisfies condition (i) of the theorem. Since we
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assumed that F contains the p-th roots of unity, by Kummer theory, B = A[δ] where δp = b for
some b in A. Let

C = {x ∈ F a | xpn = b, for some n ∈ N}.
Note that C is a p-divisible subset of F a and δ ∈ C.

Claim: There exists some extension τ̂ of τ such that τ̂ fixes A (and hence b) but acting nontrivially
on C. Moreover, since M is an elementary submodel of F , M is relatively algebraically closed in
F , F and Ma are linearly disjoint over M , and so we can choose a τ̂ which fixes the algebraic
closure Ma of the model M contained in A. Remark here that τ̂ |F is an automorphism of F since
τ̂ commutes with σ by Lemma 1, τ̂ sends the fixed field F of σ to itself.

An element c ∈ C is a root of a polynomial Xpn − b over A hence is τ̂(c). Any two roots of
Xpn − b differ by a pn-th root of unity, hence τ̂(c)/c ∈ µp∞ for every c ∈ C.

Define a multiplicative map φ from C to µp∞ as follows:

φ : C −→ µp∞

c 7−→ τ̂(c)/c.

We claim that the image of C is fixed by σ.
Recall that we choose τ̂ so that it fixes the algebraic closure Ma of the model M contained in

A. Therefore, τ̂ fixes µp∞. Suppose τ̂(c) = ζ1c and σ(c) = ζ2c for some ζ1, ζ2 in µp∞. Then

σ(τ̂ (c)/c) = τ̂(σ(c))/σ(c) = τ̂(ζ2c)/(ζ2c) = τ̂(c)/c.

Hence the image of C is fixed by σ.
The part of µp∞ fixed by σ (=µp∞ ∩F ∗) is a finite subgroup of F ∗ since we assumed that F does

not contain µp∞ and also that any nontrivial subgroup of µp∞ is finite. Thus, the set {τ̂ (c)/c}c∈C
is finite.

Note that C is p-divisible and also τ̂(cp)/cp = (τ̂(c)/c)p, the image of C under the map φ : c →
τ(c)/c is p-divisible p-group. Then the finiteness of φ(C) implies that it must be trivial hence τ
must fix C which is a contradiction.

(ii ⇒ i). For the converse, we may assume F contains the pn’th roots of unity. We assume
that Th(F ) is pseudo-finite. So Th(F ) is the restriction to Fix(σ) of a completion T of the theory
ACFA of algebraically closed fields with an automorphism σ. If A is a substructure of a model
of T and acl(A) = A, it is known that any automorphism of (A, σ) is elementary; in particular
any automorphism τ of (A, σ) restricts to an automorphism of Fix(σ), elementary in the sense of
Th(F ). We refer to [CH] for basic facts about ACFA.

Let K be a countable subfield of F , containing the p’th roots of 1. Say K = Fix(σ) where
(M,σ) |= T . Let N be the field of generalized power series in x with Q-exponents. By [Ha] this
is an algebraically closed field, see [K]. Extend σ to N by mapping

∑
αix

i to
∑

σ(αi)x
i. Then

(N,σ) embeds into an elementary extension of (M,σ).
Let {ωi}i<ω be a coherent system of the p-th roots of unity in K, i.e. ω0 = 1 and ωp

i+1 = ωi for

i ≥ 0. Define τ to be an automorphism of Ka((x1/n))n∈N such that τ fixes Ka,

τ : x1/p
i → ωix

1/pi

and
τ : x1/n → x1/n for p ∤ n.

Note that, for σ(x1/p
i

) = x1/p
i

we have that

σ(τ(x1/p
i

) = σ(ωix
1/pi) = ωix

1/pi

τ(σ(x1/p
i

) = τ(x1/p
i

) = ωix
1/pi ,
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hence σ commutes with τ on N .
Since τ is defined on an algebraically closed fieldKa((x1/n))n∈N we can extend τ to F a so that the

extension commutes with σ. Hence τ restricts to an automorphism of the model Fix(σ) of the theory

Th(F ). Now, consider A = K(x) and B = K(x1/p) substructures of F then Aut(K(x1/p)/K(x)) is
of order p hence the claim is proved. �

6. When p = char(F )

The following lemma is the key step in proving the theorem for characteristic of F is p.

Lemma 6. Let A be an abelian group with three commuting operations acting P, S, T acting on A.
Let A0 = ∪n kerP

n. Assume:

(i) P is surjective.
(ii) T |A0 = 0
(iii) A0 ∩ ker(S) ⊆ A0 ∩ ker(PN ) for some N .

Then: if a ∈ ker(S) and P (a) ∈ ker(T ), then a ∈ ker(T ).

Proof: Let P (a) = b and C = {x ∈ A : Pn(x) = b for some n > 0}. Since S(b) = T (b) = 0 we
have S(C), T (C) ⊆ A0. By (2) TS|C = 0 i.e. T (C) ⊆ A0 ∩ ker(S) ⊆ A0 ∩ ker(PN ). But C is P
divisible by definition and by (1), so T (C) is P divisible, hence PN divisible; so T (C) = 0.

Theorem 7. [cont’d] Let F be a quasi-finite field of characteristic p. Assume F does not contain
the maximal abelian p-extension Lp of its prime field. Then p is not geometrically represented in
Th(F ).

Proof: Suppose the maximal p extension of Fp in F is F
ppN

for some N . Let A,B substructures

of F , A definably closed containing an elementary submodel M of F such that |Aut(B/A)| = p,
then by Artin-Schreier theory there exists b ∈ A such that B = A(a) where ap − a = b. Let τ be a
generator of the Galois group Aut(B/A). Extend τ to an automorphism of F a fixing the algebraic
closure of Fp, this is possible since τ is fixing an elementary submodel of F . We will use Lemma 6 to
get a contradiction. Let A = F+ field F with the additive structure, P (x) = xp−x S = σ− Id and
T = τ − Id acting on F a note that (i) P is surjective on F a by algebraic closedness, (ii) T |A0 = 0
since τ fixes the algebraic closure of an elementary submodel M , (iii) A0 ∩ ker(S) ⊆ A0 ∩ ker(PN )
for some N since we assumed that maximal p extension of Fp in F is F

ppN
for some N . Then by

construction a ∈ F , i.e. a ∈ ker(S), and P (a) = b ∈ ker(τ), hence by the lemma any root a of
xp − x = b is in ker(τ) hence fixed by τ which gives a contradiction. �

7. Automorphism Group and Tournaments

Let p be a prime. By a p-tournament we mean a p-place relation R, such that for any p-tuple of
distinct elements x1, . . . , xp,

R(xτ(1), . . . , xτ(p)) holds for exactly one element τ ∈< (12 . . . p) >

where (12 . . . p) denotes the cyclic permutation of order p over the p element set {1, . . . , p}, and
< (12 . . . p) > is the subgroup of Sym(p) generated by this permutation, isomorphic to Z/pZ.

A p-tournament clearly has no automorphism of order p, or even an automorphism σ with a
p-cycle a0, . . . , ap−1 with σ(ai) = ai+1mod p. Thus p is not geometrically represented in T if T is
1-sorted and admits a p-tournament structure on the main sort. In fact no Galois group of T can
have order divisible by p, whether or not the base contains an elementary submodel.
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Proposition 8. Let p be a prime, and F a field of characteristic 6= p, containing the group µp of
p’th roots of unity. Let ω ∈ µp \ {1}. Let S be a set of representatives for the cosets of µp in F ∗.
Then in the structure (F,+, ·, ω, S) there exists a definable p-tournament on F .

Remark: When F is pseudo-finite, and ω ∈ F , we have [F ∗ : (F ∗)p] = p by a counting argument.
The same conclusion holds when F is quasi-finite, using Galois cohomology: the cohomology exact
sequence associated with the short exact sequence

1 → µp → (F alg)∗ →x 7→xp (F alg)∗ → 1

gives, using Hilbert 90,

F ∗ →x 7→xp F ∗ → Hom(Ẑ, µp) → H1(Gal, (F alg)∗) = 0.

We refer to [T] for the basics of Galois cohomology.
Assume F contains a primitive pn-th root of unity ζ, but not any p’th root of ζ. Then F ∗ is

the direct sum of µpn and (F ∗)p
n

. Let S0 be a set of representatives for µpn/µp. Then S0(F
∗)p

n

is a set of representatives for (F ∗)/µp. Hence, using the Proposition, there exists a p-tournament
definable in the field F using µpn as parameters. This gives another proof of Theorem 6 (in the
forward direction.)

Before proving Proposition 8, we illustrate it with the case p = 2. Assume F does not contain√
−1. A tournament on a set X is an irreflexive binary relation R ⊂ X × X such that for every

x 6= y ∈ X exactly one of R(x, y) and R(y, x) holds. A pseudofinite field F not containing
√
−1

interprets a tournament by the formula:

(∃z)(z2 = x− y).

The automorphism group of any field interpreting a 0-definable tournament can not have any
involutions.

We can still define a tournament in a pseudofinite field F which contains all the 2n-th roots of
unity but not all the (2n+1)-st roots of unity.

For every m ∈ N we denote the set of 2m-th roots of unity by µ2m . Let S ⊂ µ2n , such that
S ∩ −S = ∅ and S ∪−S = µ2n . Define a relation R on F × F as follows:

R(x, y) if and only if x− y is in
⋃

c∈S

cF pn .

Then this defines a tournament in F . That is, for every x, y ∈ F, x 6= y, exactly one of R(x, y)
and R(y, x) holds. Suppose ¬R(x, y) then (x − y) 6∈ ⋃

c∈S cF
2n then (x − y) is in

⋃
c∈−S cF

2n .
Therefore

−(x− y) = (y − x) ∈
⋃

c∈S

cF 2n

hence R(y, x). Also, at most one of R(x, y) and R(y, x) hold since

F× =
⊔

c∈µ2n

cF×2n
,

that is, µ2n is a set of representatives for the cosets of the subgroup F×2n
of multiplicative part

F× of F .
Now we will generalize the construction of the above tournament relation from binary to p-ary.

Proof: of Proposition 8.
Define a p-ary relation Rω on F as follows:

Rω(x1, x2, . . . , xp) if and only if x1 + ωx2 + . . . + ωp−1xp ∈ S
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Claim: 1 Assume x1 + ωx2 + . . .+ ωp−1xp 6= 0. Then

Rω(xτ(1), . . . , xτ(p)) holds for exactly one element in < (12 . . . p) >≃ Z/pZ.

Indeed let π ∈< (12 . . . p) > and k = π(1) (so k determines the element π). Then we have:

xπ(1) + ωxπ(2) + . . .+ ωp−1xπ(p) = ωk−1(x1 + ωx2 + . . . + ωp−1xp)

Since S is a set of representatives for F ∗/µp, and a := x1+ωx2+ . . .+ωp−1xp ∈ F ∗, it is clear that
ωk−1a ∈ S for a unique value of k modulo p.

Thus Rω is almost a p-tournament, but we need to deal with certain linearly dependent p-tuples.
Claim: 2 Assume x1 + ωix2 + · · ·+ ωi(p−1)xp = 0 for all i = 1, . . . , p − 1. Then x1 = · · · = xp.

This is because the Vandermonde matrix with rows (1, ω, . . . , ωp−1), (1, ω2, · · · , ω2(p−1)), . . .,

(1, ωp−1, . . . , ω((p−1)(p−1) has rank p− 1. So the kernel of this matrix is a vector space of dimension
1. But (1, . . . , 1) is clearly in the kernel; hence the kernel consists of scalar multiples of this vector.

Since we are only concerned with p-tuples of distinct elements, for each such p-tuple x =
(x1, . . . , xp) there exists a smallest i ∈ {1, . . . , p − 1} such that x1 + ωix2 + . . . 6= 0. Write
i = i(x), and define R(x1, . . . , xp) to hold iff Rωi(x)(x1, . . . , xp) holds. It is then clear that R is
a p-tournament.

8. Model Theoretic Consequences

Let TPsf be the theory of pseudo finite fields. Let K = Q or K = Fp By Ax’s theorem [Ax] (cf.
also [FJ], Chapter 20) is a one to one correspondence between the conjugacy classes of Aut(Ka/K)
and the set of completions of the theory TPsf . Namely, note that Ka ∩M is determined by T up
to isomorphism; call it Ka

T . Then σ corresponds to T iff Fix(σ) ∼= Ka
T .

The absolute Galois group Γ = Gal(Ka/K) is a compact topological group with a unique normal-
ized left invariant Haar measure µΓ. Let Π be the set of conjugacy classes of Γ, and let π : Γ → Π
be the quotient map. µΓ induces a measure µ on Π, namely µ(U) = µΓ(π

−1(U)). Using the 1-1
correspondence above, we identify Π with the the set of completions C of the theory of pseudofinite
fields of characteristic =char(K). We obtain a measure on C. By a theorem of Jarden (cf. Theorem
20.5.1 of [FJ]), for almost all σ ∈ Γ, Ka

T |= T .

Corollary 9. For almost all T in C, we have acl = dcl over Ka
T .

Proof: For each p 6= char(F ) the set {σ ∈ Aut(F a/F ) : σp−1 fixes µp∞} has measure 0. So⋃
p 6=char(F ){σ ∈ Aut(F a/F ) : σp−1 fixes µp∞} has measure 0. If char(F ) = p0, {σ ∈ Aut(F a/F ) :

σ fixes the maximal p0 extension Lp0} has measure 0. Which implies, by Theorems 5 and 7, for
almost all T ∈ C any group which is geometrically represented in T is trivial, hence acl = dcl over
Ka

T .
Remarks:

We remark that while dcl = acl is a restricted form of Skolemization, the theories of pseudo-finite
fields are not Skolemized. For instance, let F0 be pseudo-finite char(F0) = 0, and let K = F0((t

Q))

be the field of Puiseux series over F0. Then K has Galois group Ẑ, and embeds into a pseudo-finite
field F such that Aut(F a/F ) → Aut(Ka/k) is an isomorphism; hence K is relatively algebraically
closed in F . But being Henselian and non-separably closed it cannot be PAC, by Corollary 11.5.6
of [FJ].

It would be interesting to know which finite groups can be geometrically represented in theories
of pseudo-finite fields.
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