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DECIDABILITY FOR SOME JUSTIFICATION LOGICS WITH

NEGATIVE INTROSPECTION

THOMAS STUDER

Abstract. Justification logics are modal logics that include justifications for the agent’s

knowledge. So far, there are no decidability results available for justification logics with

negative introspection. In this paper, we develop a novel model construction for such log-

ics and show that justification logics with negative introspection are decidable for finite

constant specifications.

§1. Introduction. Justification logic is a variant of modal logic that features
explicit reasons for an agent’s knowledge. Formally, justification logic includes
statements of the form t : F meaning F is known for reason t instead of the
simple 2F meaning F is known. The evidence term t in the statement t :F can
represent an informal justification why F is known or a formal mathematical
proof of F .

The first justification logic, the Logic of Proofs, was introduced by Artemov [1,
2] to provide the modal logic S4 with a provability semantics. Later it has
been observed that justification logics also are a powerful tool in the context of
epistemic logic, see for instance [3, 5, 7, 9].

From the beginning, decidability of justification logics has been an important
issue. Already in [1], Artemov established decidability for the Logic of Proofs
with any finite constant specification. The constant specification is an essential
ingredient of a justification logic: it states which evidence constants justify which
axioms of the logic. The concrete form of the constant specification matters a
lot with respect to decidability. For instance, Kuznets [17] presented a decidable
constant specification such that the corresponding Logic of Proofs is undecidable.

Mkrtychev [20] was able to show that the Logic of Proofs is decidable for
schematic constant specifications. Kuznets [16] then provided decidability results
for justification logics with schematic constant specifications that correspond to
the modal logics K, KT, and K4. Vladimir Krupski [12, 13, 14, 15] obtained
several decidability results for single conclusion justification logics. Decidability
for justification logics that combine knowledge and justifications was established
in [6, 24, 25] where the constant specification is again required to be finite.

An excellent survey on these results as well as many new decidability theo-
rems for justification logics can be found in Kuznets’ PhD thesis [18]. He also
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2 THOMAS STUDER

presents a detailed analysis on what is needed to obtain decidability of a logic.
In particular, he carefully states the following lemma, see [18, Lemma 4.3.1].

Lemma 1. Let a finitely axiomatizable logic L be sound and complete with
respect to a class of models C, such that

1. the class C is recursively enumerable, and
2. the binary relation M  F between formulae and models from C is decid-

able.

Then L is decidable.

Artemov et al. [4] introduced the first justification logic with negative intro-
spection. The current formulation, however, of justified negative introspection
has been independently developed by Pacuit [21] and Rubtsova [23]. They prove
several initial results for justification logics with negative introspection but what
is missing so far are decidability results for those logics. In the present paper we
establish first decidability theorems for justification logics with negative intro-
spection. In particular, we show that the justification logics J5CS, J45CS, JT5CS,
and JT45CS are decidable for finite constant specifications CS.

One source of trouble for showing decidability for negative introspection is that
the usual decidability proofs rely on minimal evidence relations. The evidence
relation is that part of the semantics for justification logics that specifies which
evidence terms are admissible evidence for which formulae. For logics without
negative introspection, the evidence relation can be generated by a positive in-
ductive definition and hence there is a minimal evidence relation. This does no
longer work for negative introspection since negative introspection (as the name
says) cannot be dealt with by a positive operator form.

Another problem one encounters is that justification logics with negative intro-
spection are only sound with respect to strong models. A strong model requires
that if, according to the model, a term t is admissible evidence for a formula
F , then t : F is satisfied in the model. Justification logics without negative in-
trospection are also sound with respect to models that do not fulfill this strong
evidence property.

To solve the first problem, we develop a novel model construction that is
based on non-monotone inductive definitions. Such inductive definitions are
important for generalized recursion theory and the proof-theoretic analysis of
strong systems, see for instance [11, 22]. However, in the present paper we will
only use a very weak form of non-monotone inductive definition and we will
only be interested in models that are generated starting from a finite evidence
basis. The second problem occurs in two places. First we have to guarantee that
the inductive definition of our new model construction generates strong models.
This is needed to show that the class of finitely generated strong models is
recursively enumerable. Second we introduce a new form of generated submodel
which preserves the property of being a strong model. This is needed to establish
completeness with respect to finitely generated strong models.

The paper is organized as follows. In the next section we recall the definition
of the justification logic JT45CS that corresponds to the traditional modal logic
S5. We present a semantics (based on M-models [20]) for JT45CS and establish
soundness and completeness with respect to arbitrary strong models. In order
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to show decidability of JT45CS, we need a class of models that satisfies the
assumptions of Lemma 1. In Section 3 we introduce the class of finitely generated
strong models and establish that

1. the satisfaction relation for finitely generated strong models is decidable,
and

2. the class of finitely generated strong models is recursively enumerable.

Then in the following section we show that JT45CS is complete with respect
to finitely generated strong models. Hence decidability of JT45CS follows by
Lemma 1. Section 5 discusses the situation for other logics. We show that the
justification logics J5CS, J45CS, and JT5CS are decidable, too. However, we also
show that the condition of a finite constant specification is very important for
our proof.

Finally, we conclude the paper by mentioning some open problems and future
work.

Acknowledgments. We would like to thank Samuel Bucheli and Roman
Kuznets for carefully proof reading this manuscript and for providing many valu-
able comments. We are also grateful to the anonymous referee who helped to
improve the quality of this paper.

§2. Justification Logic. Justification terms are built from countably many
constants ci and variables xi according to the following grammar:

t :== ci | xi | t · t | t+ t | !t | ?t .

We denote the set of terms by Tm. Formulae are built from countably many
atomic propositions pi according to the following grammar:

F :== pi | ¬F | F → F | t : F .

Prop denotes the set of atomic propositions and Fm denotes the set of formulae.
We use ⊥ as an abbreviation for p∧¬p where p is some fixed atomic proposition.
For a formula F , we denote the set of subformulae of F by subfml(F ).

The set of axioms JT45 consists of:

1. all propositional tautologies
2. t : (A→ B)→ (s :A→ t · s :B) Application
3. s :A→ s+ t :A and t :A→ s+ t :A Sum
4. t :A→ A Reflection
5. t :A→ !t : t :A Positive Introspection
6. ¬t :A→ ?t : ¬t :A Negative Introspection

A constant specification CS for JT45 is any subset

CS ⊆ {c :A | c is a constant and A is an axiom of JT45}.

For a constant specification CS the deductive system JT45CS is the Hilbert system
given by the axioms above and by the rules modus ponens and axiom necessita-
tion:

A A→ B
B

(MP) ,
c :A ∈ CS
c :A

(AN) .
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We introduce a semantics for JT45CS that is based on M-models [20]. A closely
related semantics for justification logics with negative introspection has recently
been studied in [19].

Definition 2 (Evidence relation). Let CS be a constant specification. An
admissible evidence relation E is a subset of Tm×Fm that satisfies the following
conditions:

1. if c :A ∈ CS, then (c, A) ∈ E
2. if (s,A) ∈ E or (t, A) ∈ E , then (s+ t, A) ∈ E
3. if (s,A→ B) ∈ E and (t, A) ∈ E , then (s · t, B) ∈ E
4. if (t, A) ∈ E , then (!t, t :A) ∈ E
5. if (t, A) 6∈ E , then (?t,¬t :A) ∈ E

Definition 3 (Model). Let CS be a constant specification. A model is a pair
M = (E , ν) where

• E is an admissible evidence relation,
• ν ⊆ Prop is a valuation.

Definition 4 (Satisfaction relation). The satisfaction relation of formula F
in a model M = (E , ν) is defined by induction on the structure of F where the
cases for propositions and boolean connectives are as usual andM  t :A if and
only if

1. (t, A) ∈ E and
2. M  A

JT45CS is only sound with respect to so-called strong models that are intro-
duced next. Thus, the notion of validity will refer to strong models only.

Definition 5 (Strong model). A model M = (E , ν) is called strong model if
it satisfies the strong evidence property: for all terms t and all formulae A

(t, A) ∈ E =⇒ M  t :A.

We say a formula F is satisfied in a model M if M  F . We say a formula F is
valid if for all strong models M we have that F is satisfied in M.

Theorem 6 (Soundness). Let CS be a constant specification. If a formula A
is derivable in JT45CS, then A is valid.

Proof. The proof is standard. Let us only show the case for the negative
introspection axiom where the strong evidence property is used.

Let M = (E , ν) be a strong model and assume M  ¬t : A. From M 6 t : A,
by the strong evidence property, we infer that (t, A) 6∈ E . Thus (?t,¬t : A) ∈ E
by the closure conditions for admissible evidence relations. Again by the strong
evidence property we conclude M  ?t : ¬t :A. a

Example 7. JT45CS is indeed not sound with respect to the class of all models.
Let E be such that (t, P ) ∈ E for some term t and some atomic proposition P .
Hence we can assume (?t,¬t : P ) /∈ E. Further suppose P /∈ ν. Thus for the
model M = (E , ν) we have

(t, P ) ∈ E but M 6 t : P ,
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which means that M is not strong.
We also find

M  ¬t : P but M 6 ?t : ¬t : P ,

that is M does not satisfy the Negative Introspection axiom.

In order to establish completeness we perform a canonical model construction.

Definition 8. Let CS be a constant specification. A set Φ of formulae is
called consistent if there exists a formula A that is not derivable from Φ in
JT45CS. A set Φ is called maximal consistent if it is consistent and has no
consistent proper extensions.

Definition 9. Let Γ be a maximal consistent set of formulae. The canonical
model MΓ = (EΓ, νΓ) is given by

1. (t, F ) ∈ EΓ iff t : F ∈ Γ
2. pi ∈ νΓ iff pi ∈ Γ

First, we show thatMΓ is indeed a model, that is EΓ is an admissible evidence
relation.

Lemma 10. Let Γ be a maximal consistent set of formulae. The relation EΓ
is an admissible evidence relation.

Proof. We have to verify that EΓ satisfies the closure conditions of an ad-
missible evidence relation. Let us only show the case for negative introspection.
Assume (t, F ) 6∈ EΓ. That means, by definition, that t:F 6∈ Γ. Since Γ is maximal
consistent, we have ¬t :F ∈ Γ. Moreover, every maximal consistent set contains
every axiom. In particular, ¬t : F → ?t : ¬t : F ∈ Γ. Since maximal consistent
sets are closed under modus ponens, we find ?t : ¬t : F ∈ Γ. By definition, this
implies (?t,¬t : F ) ∈ EΓ. a

Lemma 11 (Truth lemma). Let Γ be a maximal consistent set of formulae.
For every formula F we have MΓ  F iff F ∈ Γ.

Proof. The proof is by induction on the structure of the formula F .

1. F = pi. The claim follows immediately from the definition of the satisfac-
tion relation in the canonical model:

MΓ  pi iff pi ∈ νΓ iff pi ∈ Γ.

2. The boolean cases easily follow by the induction hypothesis.
3. F = t :A. Assume t :A ∈ Γ. Then, by definition,

(t, A) ∈ EΓ. (1)

Since Γ is maximal consistent, it contains the reflection axiom, that is
t : A → A ∈ Γ. Since maximal consistent sets are closed under modus
ponens, we find A ∈ Γ. By the induction hypothesis, we get MΓ  A.
Together with (1), this implies MΓ  t :A.

To show the reverse direction we assume t : A 6∈ Γ. Then, by definition,
(t, A) 6∈ EΓ. Hence MΓ 6 t :A.

a
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Theorem 12 (Completeness). Let CS be a constant specification. If a formula
A valid, then it is derivable in JT45CS.

Proof. Assume that the formula F is not derivable in JT45CS We show that
there exists a strong counter-model for F . Since F is not derivable, the set {¬F}
is consistent. Thus there exists a maximal consistent set Γ that contains ¬F .
Then we construct the canonical modelMΓ = (EΓ, νΓ). By the Truth lemma we
find MΓ  ¬F . Therefore, MΓ 6 F . It remains to show that MΓ is a strong
model, that is it satisfies the strong evidence property. Assume (s,A) ∈ EΓ.
Hence s :A ∈ Γ. By the Truth lemma we conclude MΓ  s :A. a

§3. Inductively generated models. In this section we show that it is pos-
sible to inductively generate admissible evidence relations. This allows us to
introduce the class of finitely generated strong models that satisfies the condi-
tions of Lemma 1.

We need the following auxiliary definition.

Definition 13 (Rank). The rank of a term is inductively defined by:

1. rk(ci) := rk(xi) := 0
2. rk(s+ t) := max(rk(s), rk(t)) + 1
3. rk(s · t) := max(rk(s), rk(t)) + 1
4. rk(!s) := rk(s) + 1
5. rk(?s) := rk(s) + 1

Definition 14 (Inductively generated evidence relation). An evidence base B
is a subset of Tm × Fm. The evidence base B extends a constant specification
CS if

c : F ∈ CS =⇒ (c, F ) ∈ B.
We inductively generate an evidence relation EB such that B ⊆ EB. By induction
on the natural number i we define the stages E iB as follows.

1. (s, F ) ∈ E0
B if (s, F ) ∈ B

2. (s, F ) ∈ E i+1
B if (s, F ) ∈ E iB

3. (s+ t, F ) ∈ E i+1
B if rk(s+ t) = i+ 1 and (s, F ) ∈ E iB

4. (s+ t, F ) ∈ E i+1
B if rk(s+ t) = i+ 1 and (t, F ) ∈ E iB

5. (s · t, F ) ∈ E i+1
B if rk(s · t) = i+ 1 and there exists a formula B with

(s,B → F ) ∈ E iB and (t, B) ∈ E iB
6. (!s, F ) ∈ E i+1

B if rk(!s) = i + 1 and there exists a formula F ′ such that
F = s : F ′ and (s, F ′) ∈ E iB

7. (?s, F ) ∈ E i+1
B if rk(?s) = i + 1 and there exists a formula F ′ such that

F = ¬s : F ′ and (s, F ′) 6∈ E iB
We set EB :=

⋃
i E iB.

Remark 15. The generation of the evidence relation is performed by a non-
monotone inductive definition. The case that deals with negative introspection
has, of course, negation built in. Thus the evidence relation that we construct
will not be least fixed point but only an arbitrary fixed point. In fact, admissible
evidence relations for negative introspection cannot be minimal: Kuznets [18,
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Example 3.3.43] shows very nicely how to construct two incomparable evidence
relations.

Lemma 16. If (s, F ) ∈ EB and rk(s) ≤ i, then (s, F ) ∈ E iB.

Proof. First observe that

k ≤ l =⇒ EkB ⊆ E lB. (2)

Assume now that (s, F ) ∈ EB and rk(s) ≤ i. Let j be the least natural number

such that (s, F ) ∈ EjB. Now we distinguish the different cases in the definition

of EjB.

1. (s, F ) ∈ B. Thus (s, F ) ∈ E0
B and (s, F ) ∈ E iB follows by (2).

2. (s, F ) ∈ Ej−1
B . This case is not possible since j is minimal.

3. In all other cases we have rk(s) = j. Thus j ≤ i and hence (s, F ) ∈ E iB
by (2).

a

Lemma 17. Let B be a evidence base extending the constant specification CS.
Then the relation EB is an admissible evidence relation.

Proof. We have to show that EB satisfies the conditions of Definition 2. The
only critical case is when (t, A) 6∈ EB. Then (t, A) 6∈ E iB for i = rk(t). Since

rk(?t) = rk(t) + 1, we find (?t,¬t :A) ∈ E i+1
B . Thus (?t,¬t :A) ∈ EB. a

Definition 18 (Finitely generated model). Let CS be a finite constant speci-
fication. Let B be a finite evidence base extending CS and ν be a finite valuation.
Then we call MB = (EB, ν) a finitely generated model.

Next we are going to show that the satisfaction relation for finitely generated
models is decidable. We first need an auxiliary lemma.

Lemma 19. Let B be a finite evidence base. For any natural number i and
any term r, the set

{F | (r, F ) ∈ E iB and F has the form F1 → F2}

is finite.

Proof. We show the claim by induction on i. The base case i = 0 holds since
B is finite. For the induction step let i = j + 1. We distinguish the different
cases in the definition of E iB and show that each case may add only finitely many
formulae of the form F1 → F2.

1. (s, F ) ∈ E i+1
B because (s, F ) ∈ E iB. By the induction hypothesis there are

only finitely many F = F1 → F2 with (s, F ) ∈ E iB.

2. (s+ t, F ) ∈ E i+1
B because rk(s+ t) = i+1 and (s, F ) ∈ E iB. By the induction

hypothesis there are only finitely many F = F1 → F2 with (s, F ) ∈ E iB.

3. (s + t, F ) ∈ E i+1
B because rk(s + t) = i + 1 and (t, F ) ∈ E iB. Similar to the

previous case.
4. (s · t, F ) ∈ E i+1

B because rk(s · t) = i+ 1 and there exists a formula B with

(s,B → F ) ∈ E iB and (t, B) ∈ E iB.
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By the induction hypothesis there are only finitely many formulae B → F
with (s,B → F ) ∈ E iB. Hence there can be only finitely many F with

(s · t, F ) ∈ E i+1
B .

5. (!s, F ) ∈ E i+1
B because rk(!s) = i + 1 and there exists a formula F ′ such

that F = s : F ′ and (s, F ′) ∈ E iB . This case cannot add formulae of the
form F1 → F2 since F must have the form s : F ′.

6. (?s, F ) ∈ E i+1
B because rk(?s) = i + 1 and there exists a formula F ′ such

that F = ¬s : F ′ and (s, F ′) 6∈ E iB. This case cannot add formulae of the
form F1 → F2 since F must have the form ¬s : F ′.

a

Theorem 20. The satisfaction relation for finitely generated models is decid-
able.

Proof. Let CS be a finite constant specification. Let B be a finite evidence
base extending it and ν be a finite valuation. First we show that for any term s
and any formula F ,

(s, F ) ∈ EB is decidable. (3)

By Lemma 16 we know (s, F ) ∈ EB if and only if (s, F ) ∈ E rk(s)
B . Thus it is

enough to show by induction on j that we can decide (s, F ) ∈ EjB for every j.
The base case j = 0 is decidable since B is finite. For the case j = i + 1 we
show that all cases in the definition of EjB are decidable. The only critical case is
application: rk(r · t) = i+ 1 and there exists a formula B with (r,B → F ) ∈ E iB
and (t, B) ∈ E iB. By Lemma 19 there are only finitely many formulae of the form
B → F with (r,B → F ) ∈ E iB. For all these formulae (t, B) ∈ E iB is decidable by
the induction hypothesis. Hence we have established (3).

Let MB = (EB, ν). Decidability of MB  F follows by induction on the
structure of F . We distinguish the following cases:

1. The atomic case follows from the assumption that ν is finite.
2. The boolean cases follow by the induction hypothesis.
3. F = s :F ′. We have thatMB  F ′ is decidable by the induction hypothesis

and (s, F ′) ∈ EB is decidable by (3). Hence MB  s : F ′ is decidable.

a
Now we show that it is decidable whether a finitely generated model is a

strong model. Hence the class of finitely generated strong models is recursively
enumerable.

Lemma 21. Let CS be a constant specification, B be an evidence base extending
CS, and ν be a valuation. Consider the model MB = (EB, ν). If for all terms r
and formulae F we have

(r, F ) ∈ B =⇒ MB  F,

then MB is a strong model.

Proof. By induction on i we show that (r, F ) ∈ E iB implies MB  F . We
distinguish the following cases:

1. (r, F ) ∈ B. By assumption we have MB  F .
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2. (r, F ) ∈ E i+1
B because of (r, F ) ∈ E iB. The claim follows by the induction

hypothesis.
3. r = s + t, rk(s + t) = i + 1, and (s, F ) ∈ E iB. By the induction hypothesis

we find MB  F .
4. r = s + t, rk(s + t) = i + 1, and (t, F ) ∈ E iB. By the induction hypothesis

we find MB  F .
5. r = s ·t, rk(s ·t) = i+1, (s,B → F ) ∈ E iB, and (t, B) ∈ E iB. By the induction

hypothesis we find MB  B → F and MB  B. Hence MB  F .
6. r = !s, rk(!s) = i + 1, F = s : F ′ and (s, F ′) ∈ E iB. By the induction

hypothesis we find MB  F ′. By (s, F ′) ∈ E iB, we also get MB  s : F ′.
7. r = ?s, rk(?s) = i+ 1, F = ¬s : F ′, and (s, F ′) 6∈ E iB. We find (s, F ′) 6∈ EB

by Lemma 16 and thus MB 6 s : F ′. We conclude MB  ¬s : F ′.

To show that MB is a strong model, we assume (r, F ) ∈ EB. Hence we have
(r, F ) ∈ E iB for some i and thus, as shown above, MB  F . We finally obtain
MB  r : F . a

Lemma 22. Let CS be a finite constant specification, B be a finite evidence base
extending CS, and ν be a finite valuation. Consider the model MB = (EB, ν). It
is decidable whether MB is a strong model.

Proof. We observe that MB is a strong model if and only if

for all (r, F ) ∈ B we have MB  F. (4)

The if-direction is given by the previous lemma. For the other direction we
assume that MB is a strong model and (r, F ) ∈ B. Hence we have (r, F ) ∈ EB
and by the strong evidence property MB  r : F which implies MB  F .

Decidability of (4) follows from Theorem 20 since B is finite. a

Corollary 23. The class of finitely generated strong models is recursively
enumerable.

§4. Decidability. It remains to show that JT45CS is complete with respect
to the class of finitely generated strong models. To achieve this, we construct a
finitely generated strong submodel of the canonical model. We need the following
definitions.

Definition 24. Let Φ be a finite set of formulae. We say a term t occurs in
Φ if there is an F ∈ Φ with s :G ∈ subfml(F ) such that t is a subterm of s. We
let TΦ be the set of all terms that occur in Φ. We set:

1. CΦ(s : F ) := {t :G | t ∈ TΦ and G ∈ subfml(F )}
2. M(Φ) := {s : F ∈ Φ | CΦ(s : F ) 6⊆ Φ}
3. deg(Φ) := card(M(Φ))

Lemma 25. Let Φ be a finite set of formulae. There exists a set of formulae
clo(Φ) such that

1. Φ ⊆ clo(Φ),
2. clo(Φ) is finite,
3. clo(Φ) is closed under subformulae,
4. if s : F ∈ clo(Φ), then Cclo(Φ)(s : F ) ⊆ clo(Φ).
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Proof. Assume that we have a fixed enumeration of all formulae. If the
formula F is the i-th formula in this enumeration, then we call i the index of F .

Depending on this enumeration we define for each set Π of formulae a new set
Π′ as follows. Let s : F be the formula with least index such that s : F ∈ M(Π).
We set Π′ := Π ∪ CΠ(s : F ). If M(Π) is empty, then we set Π′ := Π.

First we observe

TΠ′ = TΠ. (5)

The inclusion TΠ ⊆ TΠ′ is trivial. For the other direction we let r be a term that
occurs in Π′. If r occurs in Π, we are done. Otherwise r must occur in CΠ(s :F )
with s : F ∈ M(Π). By definition we have

CΠ(s : F ) = {t :G | t ∈ TΠ and G ∈ subfml(F )}.

We distinguish two cases.

1. There exists t : G ∈ CΠ(s : F ) such that r is a subterm of t. Since t ∈ TΠ,
we also have r ∈ TΠ and we are done.

2. Otherwise there exists t : G ∈ CΠ(s : F ) such that r occurs in G. Since
G ∈ subfml(F ), we also have that r occurs in F . By s :F ∈ M(Π), we know
s : F ∈ Π. Hence r occurs in Π and we are done.

Thus we have established (5).
Now we take the given set Φ and define a sequence Φ0,Φ1, . . . of sets of

formulae by

1. Φ0 is the closure of Φ under subformulae,
2. Φm+1 := Φ′m.

We prove the following for all j by induction on j:

1. Φ ⊆ Φj . This easily follows from Φ ⊆ Φ0 and Φi ⊆ Φi+1.
2. Φj is the closed under subformulae. Φ0 is closed under subformulae by

definition. Let B ∈ Φi+1 and A ∈ subfml(B). If B ∈ Φi, then we find
A ∈ Φi ⊆ Φi+1 by the induction hypothesis. If B 6∈ Φi, then B ∈ CΦi

(s :F )
for some suitable s : F ∈ Φi and B has the from t :G with G ∈ subfml(F ).
If A = B, then A ∈ CΦi

(s : F ) ⊆ Φi+1. If A 6= B, then A ∈ subfml(G). By
G ∈ subfml(F ) we get A ∈ subfml(F ). Since s:F ∈ Φi and, by the induction
hypothesis, Φi is closed under subformulae, we find A ∈ Φi ⊆ Φi+1.

3. Φj is finite. Φ0 is finite since there are only finitely many subformulae
of the finitely many formulae in Φ. To show that Φi+1 is finite we first
observe that Φi is finite by the induction hypothesis. The set CΦi

(s : F )
that is added is also finite: it contains only formulae of the form t :G where
t ∈ TΦi and G ∈ subfml(F ). Since TΦi and subfml(F ) are finite, also the set
CΦi

(s : F ) must be finite. Hence Φi+1 is finite.

Note that (5) implies for all i, j

CΦi(s : F ) = CΦj (s : F ). (6)

Now we show that

if deg(Φi) 6= 0, then deg(Φi+1) < deg(Φi). (7)
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Let Φi+1 = Φi ∪ CΦi(s : F ) where s : F ∈ M(Φi). By (6) we have

CΦi+1(s : F ) = CΦi(s : F )

and hence s : F 6∈ M(Φi+1). Thus deg(Φi+1) < deg(Φi) follows if we can show

r :G ∈ CΦi
(s : F ) =⇒ r :G 6∈ M(Φi+1). (8)

So assume r : G ∈ CΦi
(s : F ) and t : H ∈ CΦi+1

(r : G). That is t ∈ TΦi+1
and

H ∈ subfml(G). Because of (5) we have t ∈ TΦi
and because of G ∈ subfml(F )

we have H ∈ subfml(F ). Thus t : H ∈ CΦi(s : F ) and, therefore, t : H ∈ Φi+1.
Hence (8) is established.

Since there cannot be an infinite descending sequence of natural numbers, (7)
implies that there exists m such that deg(Φm) = 0, which means

if s : F ∈ Φm, then CΦm
(s : F ) ⊆ Φm.

Finally, we set clo(Φ) = Φm. a

Lemma 26. Let Φ be a finite set of formulae and B be an evidence base such
that (s, F ) ∈ B implies s : F ∈ clo(Φ). Further, let r be a term occurring in
clo(Φ). Then we have for all j that

(r,A→ B) ∈ EjB implies r : (A→ B) ∈ clo(Φ).

Proof. By induction on j. The case j = 0 holds by assumption. Let j = i+1.
We distinguish the following cases.

1. (r,A→ B) ∈ E iB. The claim follows by the induction hypothesis.
2. r = s+ t and (s,A→ B) ∈ E iB. By the induction hypothesis we find

s : (A→ B) ∈ clo(Φ).

Since s + t is a term of clo(Φ), we find s + t : (A → B) ∈ clo(Φ) by the
conditions on clo(Φ).

3. r = s+ t and (t, A→ B) ∈ E iB. Similar to the previous case.
4. r = s · t, (s, C → (A → B)) ∈ E iB, and (t, C) ∈ E iB. By the induction

hypothesis we know s : (C → (A→ B)) ∈ clo(Φ). Now we observe that

r : (A→ B) ∈ Cclo(Φ)(s : (C → (A→ B)))

and conclude r : (A→ B) ∈ clo(Φ).
5. r = !s. This case is not possible since we consider only implications.
6. r = ?s. This case is not possible since we consider only implications.

a

Definition 27. LetM = (E , ν) be a model and Φ a finite set of formulae that
contains CS. The Φ-generated submodel M �Φ of M is defined by (E �Φ, ν �Φ)
where

1. E �Φ is the evidence relation generated from the base BΦ given by

(t, F ) ∈ BΦ iff t : F ∈ clo(Φ) and (t, F ) ∈ E ,

2. ν �Φ is given by

pi ∈ ν �Φ iff pi ∈ clo(Φ) and pi ∈ ν.
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Remark 28. Since we require that Φ contains CS, the above definition guar-
antees that BΦ extends CS. Thus by Lemma 17 we know that E �Φ is an admis-
sible evidence relation and hence M �Φ is indeed a model.

Moreover, by Lemma 25 we find that clo(Φ) is finite. Thus M �Φ is a finitely
generated model.

Lemma 29. Let E be an admissible evidence relation, Φ a finite set of formulae
that contains CS, and E �Φ be the evidence relation generated from BΦ. We have
for all r : F ∈ clo(Φ) that

(r, F ) ∈ E if and only if (r, F ) ∈ E �Φ.

Proof. From left to right. Assume r : F ∈ clo(Φ) and (r, F ) ∈ E . We have
(r, F ) ∈ BΦ by definition and hence (r, F ) ∈ E �Φ.

From right to left. We show that (r, F ) ∈ EjBΦ
implies (r, F ) ∈ E by induction

on j. The case j = 0 holds by the definition of BΦ. Let j = i+1. We distinguish
the following cases.

1. (r, F ) ∈ E iBΦ
. The claim follows by the induction hypothesis.

2. r = s + t and (s, F ) ∈ E iBΦ
. By the closure conditions on clo(Φ) and the

induction hypothesis we find (s, F ) ∈ E . Thus (s+ t, F ) ∈ E follows by the
closure conditions of E .

3. r = s+ t and (t, F ) ∈ E iBΦ
. Similar to the previous case.

4. r = s · t, (s,A→ F ) ∈ E iB, and (t, A) ∈ E iB. By Lemma 26 we find

s : (A→ F ) ∈ clo(Φ). (9)

Hence by the induction hypothesis we get (s,A → F ) ∈ E . Moreover,
by the closure conditions on clo(Φ), (9) and r : F ∈ clo(Φ) together imply
t :A ∈ clo(Φ). Thus by the induction hypothesis we infer (t, A) ∈ E . Finally
by the closure conditions on E we conclude (s · t, F ) ∈ E .

5. r = !s, F = s : F ′, and (s, F ′) ∈ E iBΦ
. By the closure conditions on clo(Φ)

and the induction hypothesis we find (s, F ′) ∈ E . Thus (!s, s : F ′) ∈ E
follows by the closure conditions of E .

6. r = ?s, F = ¬s :F ′, (s, F ′) 6∈ E iBΦ
, and rk(r) = i+ 1. By Lemma 16 we find

(s, F ′) 6∈ EBΦ
. By the closure conditions on clo(Φ) we get s : F ′ ∈ clo(Φ).

Hence by the direction from left to right we obtain (s, F ′) 6∈ E . Thus
(?s,¬s : F ′) ∈ E follows by the closure conditions on E .

a

Lemma 30. Let M = (E , ν) be a model and Φ be a finite set of formulae that
contains CS. Further, let M �Φ be the Φ-generated submodel of M. Then for
all formulae F ∈ clo(Φ) we have

M �Φ  F if and only if M  F.

Proof. Proof by induction on the structure of F .

1. F = pi. We haveM �Φ  pi iff pi ∈ ν �Φ and pi ∈ clo(Φ). Since pi ∈ clo(Φ)
by assumption, this is equivalent to pi ∈ ν which is M  pi.

2. The boolean cases follow immediately by the induction hypothesis.
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3. F = s : F ′. We have M �Φ  s : F ′ if and only if

(a) (s, F ′) ∈ E �Φ and (b) M �Φ  F ′.

Since s : F ′ ∈ clo(Φ), we find by Lemma 29 that (a) is equivalent to (a’)
(s, F ′) ∈ E . Moreover (b) is equivalent to (b’) M  F ′ by the induction
hypothesis. Finally (a’) and (b’) together are equivalent to M  s : F ′.

a

Lemma 31. LetM = (E , ν) be a model, Φ a finite set of formulae that contains
CS, and M �Φ the Φ-generated submodel of M. If M is a strong model, then
M �Φ is a strong model, too.

Proof. By Lemma 21 it is enough to show

(t, F ) ∈ BΦ =⇒ M �Φ  F. (10)

So assume (t, F ) ∈ BΦ. That is (a) t : F ∈ clo(Φ) and (b) (t, F ) ∈ E . Since
clo(Φ) is closed under subformulae we have (a’) F ∈ clo(Φ). SinceM is a strong
model (b) impliesM  t :F from which we get (b’)M  F . From (a’) and (b’)
we conclude by Lemma 30 that M �Φ  F . Hence (10) is established. a

Theorem 32. Let CS be a finite constant specification. Let F be a formula
that is not derivable in JT45CS. Then there exists a finitely generated strong
model MB with MB 6 F .

Proof. By Theorem 12 we find a strong model M with M 6 F . Let Φ be
the union of {F} and CS. Since Φ is finite, we know that M �Φ = (E �Φ, ν �Φ)
is a finitely generated model. By Lemma 31 we know that M �Φ is a strong
model. Moreover, by Lemma 30 we find M �Φ 6 F . Thus the claim follows by
setting MB :=M �Φ. a

Corollary 33. JT45CS is decidable for finite constant specifications CS.

Proof. Let C be the class of finitely generated strong models. By Theorem 6
know that JT45CS is sound with respect to C and Theorem 32 gives us com-
pleteness of JT45CS with respect to C. The class C is recursively enumerable by
Corollary 23. Finally, by Theorem 20, the binary relation M  F between for-
mulae and models from C is decidable. Thus we have established the assumptions
of Lemma 1 and conclude that JT45CS is decidable. a

§5. Discussion. We have established decidability of JT45CS for finite con-
stant specifications CS. Our method also applies to the sublogics JT5CS, J45CS,
and J5CS that are given as follows.

JT5CS is obtained from JT45CS by dropping the Positive Introspection axiom.
On the semantic side, we drop the clause for the !-operator in the definition of
an admissible evidence relation. Decidability of JT5CS is established essentially
in the same way as decidability of JT45CS, simply delete all cases dealing with
the !-operator.
J45CS is obtained from JT45CS by dropping the Reflection axiom. On the

semantic side, we adapt the satisfaction relation such that of M  t : A if and
only if (t, A) ∈ E (i.e. we drop the additional condition M  A). Using this
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definition of satisfaction in a model, the strong evidence property trivializes.
Again, we can show decidability as above. However, we do not need to take care
of the strong evidence property. In particular, we do not need Lemma 21 and
Lemma 31.
J5CS is obtained from J45CS by dropping the Positive Introspection axiom.

Again, we drop all cases dealing with the !-operator in the treatment of J45CS
and easily obtain decidability of J5CS.

Theorem 34. The logics J5CS, J45CS, JT5CS, and JT45CS are decidable for
finite constant specifications CS.

Often, decidability for a justification logic is not established for finite con-
stant specifications but for schematic constant specifications that are defined as
follows.

Definition 35. A constant specification is called schematic if for every con-
stant c the set {F | c : F} consists of several (possibly zero) axiom schemes.

It is open whether our approach can be adapted to deal with schematic con-
stant specifications. Essentially, there are two problems when the constant spec-
ification CS is schematic.

1. We cannot decide whether MB is a strong model, see Lemma 22. Our
proof requires that CS is a finite set since we check for each element of CS
whether is satisfies the strong evidence property.

2. We cannot decide the satisfaction relation for finitely generated models, see
Theorem 20. The proof of that theorem relies on the fact that a given evi-
dence term can justify only finitely many implications (Lemma 19), which,
of course, is not the case for schematic constant specifications. The usual
‘trick’ of working with schemes in the construction of the evidence relation
does not work either: even if there are only finitely many schemes A→ F ,
we would have to check whether there is a most general unifier of A and
infinitely many schemes B.

§6. Conclusion. Justification logics are modal logics that include justifica-
tions for the agent’s knowledge. So far, there were no decidability results avail-
able for justification logics with negative introspection. To address this issue, we
have developed a novel model construction for such logics. In particular we have
shown how to inductively build a kind of M-model for negative introspection.

Assuming a finite constant specification, we have defined the class of finitely
generated strong models and established that this class is recursively enumer-
able and that the satisfaction relation for its models is decidable. Using a new
submodel construction, we have also been able to show that JT45CS is complete
with respect to that class. Hence JT45CS is decidable. Our technique also works
for J5CS, J45CS, and JT5CS.

The main future task in this line of research is to solve the decision problem
for justification logics with negative introspection and schematic constant spec-
ifications. This will also include the treatment of logics with the D-axiom for
which we have to adapt the methods to deal with so-called F-models [10]. More-
over, we believe that the tools we have developed in this paper will also allow
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us to decide more complex logics like an extension of justifications for common
knowledge [8] with negative introspection.
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INSTITUT FÜR INFORMATIK UND ANGEWANDTE MATHEMATIK

UNIVERSITÄT BERN
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