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A FIXED POINT FOR THE JUMP OPERATOR ON STRUCTURES

ANTONIO MONTALBÁN

Abstract. Assuming that 0# exists, we prove that there is a structure that can effectively
interpret its own jump. In particular, we get a structure A such that

Sp(A) = {x′ : x ∈ Sp(A)},

where Sp(A) is the set of Turing degrees which compute a copy of A.
It turns out that, more interesting than the result itself, is its unexpected complexity. We

prove that higher-order arithmetic, which is the union of full nth-order arithmetic for all n,
cannot prove the existence of such a structure.

1. Introduction

Informally, the jump of a abstract structure A is another structure, A′, obtained by adding
to A relations that code all the Σ1 information about A.

Definition 1.1. For a language L, let {ϕi : i ∈ ω} be a computable enumeration of all the
computably infinitary Σ1 L-formulas. Given an L-structureA, let A′ be the structure obtained
by adding to A infinitely many relations Ki, for i ∈ ω, where A |= Ki(x̄) ↔ ϕi(x̄), and where
the arity of Ki is the same as the one of ϕi. (All the languages we consider in this paper are
at most countable and have a computable arity function.)

The computably infinitary L-formulas were introduced by Ash (see [AK00, Chapter 7]). We
use Σc

n to denote the class of computably infinitary Σn formulas.

The notion of the jump of an abstract structure was introduced recently, independently
by various authors. The definition above is the one that appeared in [Mon09, Mon10]. The
other definitions are due to: Baleva [Bal06], using Moschovakis extensions and a complete Σc

1-
relation; A. Soskova and Soskov [Sos07, SS09], using Moschovakis extensions and coding the
forcing relation for Π1 formulas; and Stukachev [Stu10], using hereditarily finite extensions in
the context of Σ-reducibility for structures of arbitrary size. All these definitions are equivalent
in a strong sense, namely up to Σ-reducibility. Puzarenko [Puz09] had also independently
introduced an equivalent definition of jump, but did it only for admissible sets rather than
general structures. He was extending a previous notion of jump due to Morozov [Mor04], that
works only for recursively listed admissible sets.

The equivalence of all these definitions reaffirms the naturality of the notion. A more
important reason why this notion is interesting is that it helps explain what is behind many
old results in effective structure theory. For instance, Downey and Jockusch’s result [DJ94]
that every low Boolean algebra has a computable copy is based on a lemma that can be
restated as follows: If B is a Boolean algebra, and 0′ computes a copy of B′, then B has
a computable copy. Another examples is the result by Ash, Knight, Mennasse and Slaman
[AKMS89] and Chisholm [Chi90] that says that every relatively intrinsically Σ0

n relation on a
structure A is Σc

n-definable. One can prove this result by proving only the case n = 1, where
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2 ANTONIO MONTALBÁN

the forcing is very simple, and then applying it to the (n − 1)st jump of A. (See [Mon10,
Theorem 3.9] for a more detailed proof of this last example. See [Mon09] for more examples.)

Once we are convinced this is a natural notion of jump, the question of whether it is actually
a “jump” immediately pops up:

Question 1. Is there a structure that is equivalent to its own jump?

This question was asked in print in [Stu10, Remark 1, page 3] and in [Puz09, Section 7,
Question 4]. (The reference in [Stu10, Remark 1, page 3] to a positive solution for ≡w turned
out to be incorrect.)

For other jump operators, like the original one on the Turing degrees, or the one on the
enumeration degrees, the proofs that there are no fixed points are usually done by a simple di-
agonalization argument. This is not the case for the jump of abstract structures. Furthermore,
we will see that, even more interesting than the answer of Question 1 itself, is its unexpected
complexity.

For Question 1 to be concrete, we need to specify a notion of equivalence between structures.
(For a study of different notions of equivalence between structures see [Stu07, Kal09].) Here
is our first candidate.

Definition 1.2. Given two structures A and B, we say that A is Muchnik reducible to B, and
write A ≤w B, if

∀X ⊆ ω, X computes a copy of B =⇒ X computes a copy of A,

or equivalently, if Sp(B) ⊆ Sp(A), where Sp(A), the degree spectrum of A, is the set of Turing
degrees which compute a copy of A.

This reduction defines a pre-ordering on the class of all countable structures, and hence an
equivalence, ≡w, as usual.

Even though this notion is not always used as a reducibility, it is widely accepted as a way
to measure the computability theoretic complexity of a structure. The spectrum of a structure
behaves well with the notion of jump: It was proved by A. Soskova and Soskov [SS09], and
by Montalbán [Mon09] independently, that, for every structure A,

Sp(A′) = {x′ : x ∈ Sp(A)}.

So, Question 1 for Muchnik equivalence reduces to the question of whether there exists a
structure A for which Sp(A) = {x′ : x ∈ Sp(A)}. Here is our first main theorem.

Theorem 1.3. (ZFC+ “0# exists”) There is a structure A such that

Sp(A) = Sp(A′).

We will prove this theorem in Section 2.
It is well known that there are upward-closed classes of Turing degrees S such that S = S′,

where S′ denotes the set {x′ : x ∈ S}. For instance, if we take a sequence {ai : i ∈ ω} of
Turing degrees such that ai ≥T a′i+1 for all i, then S = {x : ∃i (x ≥T ai)} satisfies S = S′.
Such a sequence of degrees can be found below Keene’s O (Harrison [Har68]) and its existence
can be proved using Arithmetic Transfinite Recursion. However, this set S we just constructed
is not the spectrum of any structure: Richter [Ric77] had proved that a spectrum can never
be a countable union of upper cones in the Turing degrees.

It is also known that any set S of Turing degrees with S = S′ has to be somewhat complex:
if x belongs to such a set S, then x computes all hyperarithmetic sets (Enderton and Putnam
[EP70]). This level of complexity is still very small compared to what we need to build a
structure whose spectrum is jump invariant.
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Our proof of Theorem 1.3 uses 0#, which cannot be shown to exist in ZFC. The structure A
will be an ill-founded ω-model of ZFC+V=L. Notice that for every α ∈ A which is an ordinal of
A, a complete Σc

1 relation on (Lα)
A is coded in (Lα+1)

A, which implies that A can effectively
interpret the jump of the structure (Lα)

A. Thus, it would be enough to build A so that for
some α, which is an ordinal of A, we have (Lα)

A ∼= A. In Subsection 2.2, we will define such
a structure A as the Skolem hull of a sequence of ordinal indiscernibles, H, of type 0# (i.e.
A |= ϕ(α1, ..., αk) for α1 < ... < αk ∈ H if and only if pϕ(x1, ..., xk)q ∈ 0#), and which has
order-type ω · ω∗ (i.e. H ∼= · · ·+ ω + ω + ω).

We do not know whether there is a proof in ZFC of Theorem 1.3. However, we were able
to show that a proof of Theorem 1.3 has to use techniques that are almost never used in
classical mathematics except by logicians. This implies that a structure whose jump has
the same spectrum as itself will, most likely, never occur naturally outside logic. More con-
cretely, we will show that Theorem 1.3 is not provable in higher-order arithmetic. Higher-
order arithmetic is the union, for all n ∈ ω, of nth-order arithmetic which includes the full
nth-order comprehension scheme (see Section 3.1). It is intended to describe the structure
(ω,P(ω),P(P(ω)), ...; 0, 1,+,×, <,∈). A great fragment of classical mathematics can be stated
and proved in second-order arithmetic. The small fragment of classical mathematics that can-
not be stated in second-order arithmetic might need third-, or at most fourth-order arithmetic,
but rarely more, unless it comes from set theory or other parts of logic.

We let Z2 denote the theory of full second-order arithmetic. Here is our second main
theorem.

Theorem 1.4. (Z2) The existence of a structure A with Sp(A) = Sp(A′) implies the consis-
tency of higher-order arithmetic.

Corollary 1.5. Higher-order arithmetic cannot prove that there exists a structure A with
Sp(A) = Sp(A′).

To prove Theorem 1.4, we need to build a model of higher-order arithmetic out of the
structure A. This model is defined as follows: For the first order part, N , we use the standard
model of the natural numbers. For P(N) we take the collection of all the sets X ⊆ ω which
are c.e. in all copies of A. For Pn(N) we use the the collections of all hereditarily countable
families F ∈ Pn(ω) which are uniformly computably enumerable in all copies of A, where F
is uniformly computably enumerable in Y ⊆ ω if there exists a Y -c.e. set W such that

F = {{...{{{i0 ∈ ω : 〈i0, i1, ...., in−1〉 ∈W} : i1 ∈ ω} : i2 ∈ ω} : . . . } : in−1 ∈ ω}.

The first-order part of this model is standard, so all the effort goes into showing that it satisfies
comprehension for sets of all types and formulas of all orders.

In [Stu], Question 1 was asked for Σ-equivalence, a notion of equivalence between struc-
tures that is much stronger than Muchnik equivalence. The notion of Σ-equivalence between
abstract structures was introduced and studied in detail in [Khi04, Stu07, Stu08]. Our proof
of Theorem 1.3 does answer this question, as it actually shows, in ZFC+ “0# exists,” that
there is a structure A such that A ≡Σ A′. Furthermore, we will introduce an even stronger
notion of equivalence, ≡I , and show that our structure satisfies A ≡I A

′. Our new definition
of equivalence was inspired by the notion of Σ-reducibility.

Definition 1.6. Let A be an L-structure, and B be any structure. Let us assume that L is
a relational language L = {P0, P1, P2, ...} where Pi has arity a(i); so A = (A;PA

0 , P
A
1 , ...) and

PA
i ⊆ Aa(i).
We say that A is effectively interpretable in B, and write A ≤I B, if, for some n ∈ ω, in

B, there is a Σc

1-definable set D ⊆ Bn, a ∆c
1-definable relation η ⊆ Bn × Bn which is an
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equivalence relation on D, and a uniformly ∆c
1-definable sequence of sets Ri ⊆ Bn·a(i), closed

under the equivalence η within D, such that

(A;PA
0 , P

A
1 , ...)

∼= (D/η;R0, R1, ...).

The sets Ri do not need to be subsets ofDa(i), and, when we refer to the structure (D/η;R0, R1, ...)

we, of course, mean (D/η; (R0 ∩D
a(0))/η, (R1 ∩D

a(1))/η, ...). By uniformly ∆c
1-definable, we

mean that there is a computable sequence {θi : i ∈ ω} of Σc

1 formulas, and a computable
sequence {ψi : i ∈ ω} of Πc

1 formulas such that, for all i, B |= Ri(x̄) ↔ θi(x̄) ↔ ψ(x̄).

It is not hard to see that effective interpretability implies Muchnik reducibility. Further-
more, for the readers familiar with Σ-reducibility, it is not hard to see that effective inter-
pretability implies Σ-reducibility too. This is because a relation R ⊆ Bm is Σc

1 definable in B
if and only if it is Σ-definable in HF(B) (as proved by Vǎıtsenavichyus; see [Stu, Theorem 1]).
These two reducibilities are not equivalent: for example, if (ω; ) is an infinite structure on an
empty language, then (ω;Succ) ≤Σ (ω; ) but (ω, Succ) 6≤I (ω; ).

Instead of proving Theorem 1.3, we will directly prove the following theorem.

Theorem 1.7. (ZFC+ “0# exists”) There is a structure A such that A ≡I A
′.

2. The fixed point structure

2.1. Background on L-indiscernibles. We follow Devlin’s book [Dev84, Chapter 5]. The
reader familiar with 0# can skip this subsection and move to 2.2.

We say that a set S of formulas in the language of set theory is an Ehrenfeucht-Mostowski
set (E-M set) if there is a model M of ZFC+V=L and an infinite set of ordinal indiscernibles
H in M such that S is the set of formulas that are true in M about increasing tuples from H
(i.e., S = {ϕ(x1, ..., xk) : M |= ϕ(α1, ..., αk) for some (all) α1 < ... < αk ∈ H}). Devlin uses
models of the weaker system BSL+V=L, instead of ZFC+V=L, in his definition of Ehrenfeucht-
Mostowski sets. However, for our purposes we do not need to deal with BSL.

Recall that V=L implies that there exists a definable well-ordering <L of the universe. We
can use this ordering to add Skolem terms tϕ to the language for all formulas ϕ, and add
axioms saying that “tϕ(x1, ..., xn) is the <L-least witness for ϕ(x1, ..., xn, x), if such a witness
exists.” This is an inessential extension of ZFC+ V=L.

From the Ehrenfeucht-Mostowski theorem, we get that given an E-M set S, and a linear
ordering X , there is a model M(S,X ) with a set of ordinal indiscernibles H, unique up to
isomorphism, such that H has order type X and M(S,X ) is the Skolem hull of of H (that is
M(S,X ) = {t(α1, ..., αn) : t is a term, and α1, ..., αn ∈ H}). We usually identify H with X .

Definition 2.1. 0#, if it exists, is defined to be an E-M set with the following properties:

(1) If X is well-ordered, then M(0#,X ) is well-founded.
(2) 0# is cofinal: For every term t, if the following formula is in 0#:

On(t(x1, ..., xn−1)) =⇒ t(x1, ..., xn−1) < xn,

(where On(x) is the predicate that says that x is an ordinal).
(3) 0# is remarkable: For every term t, if the following formula is in 0#:

On(t(x1, ..., xn, ..., xn+m)) & t(x1, ..., xn, ..., xn+m) < xn =⇒

t(x1, ..., xn, ..., xn+m) = t(x1, ..., xn−1, xn+m+1, ..., xn+2m+1).

(When we write ϕ(x1, ..., xn) above, we implicitly assume that x1 < .... < xn, and that all the
xi’s represent ordinals.)
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If 0# exists, it cannot belong to L, and hence its existence is not provable in ZFC (as is not
true in V=L), but it follows, for example, if we assume that a measurable cardinal exists.

The following two lemmas correspond to [Dev84, Lemma 2.3] and [Dev84, Lemma 2.4]. We
include the proofs for completeness.

Lemma 2.2. If X is a linear ordering without a greatest element, then X is cofinal in the
ordinals of M(0#,X ).

Proof. Let x be an ordinal in M(0#,X ); we want to find k ∈ X with x < k. There is a term

t and ordinals ~h in X such that x = t(~h). Since X has no greatest element, there is k ∈ X ,

k > ~h (i.e., ~h = (h1, ..., hℓ) and h1 < ... < hℓ < k). By the cofinality of 0#, the formula

t(~h) < k is in 0#. So x < k. �

Given a linear ordering X and α ∈ X , we let X ↾α be the restriction of X to the set
{β ∈ X : β < α}.

Lemma 2.3. If X is a linear ordering, and α ∈ X is a left-limit point (i.e., ∀β <X α ∃γ (β <X

γ <X α)), then

M(0#,X ↾α) ∼= (Lα)
M(0#,X ).

Proof. Let A =M(0#,X ), and B be the Skolem Hull of X ↾α in A. So B ∼=M(0#,X ↾α).
We start by proving that OnB = {x ∈ OnA : x < α}. By the lemma above, we get that

X ↾α is cofinal in OnB, and hence OnB ⊆ {x ∈ OnA : x < α}. Now, pick x ∈ OnA with x < α.

There is an increasing tuple of ordinals ~k~h from X , where ~k < x ≤ ~h, such that x = t(~k,~h).

Since α is a left-limit and ~k < α, there exists a tuple of ordinals ~l from X ↾α with ~k < ~l < α,

and with the same number of elements as the tuple ~h. Then, by indiscernibility, t(~k,~l) ≤ ~l.

And then, by the remarkable property, x = t(~k,~h) = t(~k,~l) ∈ B. This finishes the proof that
OnB = {x ∈ OnA : x < α}.

For all x ∈ A, the least ordinal βx ∈ A such that x ∈ (Lβx
)A is definable in A by some

term t(x) = βx. Thus, for all x ∈ B, βx ∈ B, and hence βx < α. It follows that B ⊆ LA
α .

Conversely, if x ∈ LA
α , then x ∈ LA

β for some β < α. This implies that x is definable from a

finite set of ordinals below α. (V=L implies that if x ∈ Lβ, then x is definable from finitely
many ordinals which are ≤ β.) All these ordinals are in B, and hence so is x. We get that
B = LA

α . �

2.2. The fixed-point structure. Let A =M(0#, ω ·ω∗), and H be the associated sequence
of ordinal indiscernibles in A or order type ω · ω∗. We claim that

A ≡I A
′.

Let α be the least element of the largest copy of ω in H. (That is, we can decompose H as
ω ·ω∗ + {α}+ω). Let H0 = H ↾α, and let B =M(0#,H0), the Skolem hull of H0 in A. Since
H0 is also isomorphic to ω · ω∗, by the Ehrenfeucht-Mostowski theorem, we get that B ∼= A.
Since 0# is cofinal and remarkable, and α is a left-limit point of H, Lemmas 2.3 implies that
B = LA

α .
The subset LA

α ⊆ A is Σc

1-definable in A using the element LA
α ∈ A as a parameter. Let

K = {(e, b̄) : e ∈ ωA, b̄ ∈ B<ω,B |= ϕe(b̄)},

where ϕe is the eth Σc

1 formula. The set K is first-order definable over B = LA
α , and hence

belongs to LA
α+1. Here we are using that A is an ω-model (i.e., ωA = ω), so that for all e and

b̄,

B |= ϕe(b̄) ⇐⇒ A |= “LA
α |= ϕe(b̄)”.
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The reason why A is an ω-model is that there is no term t(x̄) such that 0# contains the
formulas t(x̄) ∈ ω and n < t(x̄) for all n ∈ ω. We know that 0# does not contain all these
formulas because, for instance, M(0#, ω) is well-founded, and hence an ω-model. (Let us
notice that this is all we use from property (1) of Definition 2.1.)

Using LA
α and K as parameters, we can get an effective interpretation of B′ in A. Thus

B′ ≤I A. Since B ∼= A, we get A ≡I A
′.

3. Coding higher-order arithmetic

3.1. Background on higher-order arithmetic. We let higher-order arithmetic be defined
as follows. The language Lω has infinitely many sorts, or types. There is a first type, that we
call N , and intends to represent the natural numbers, and then, for every type τ , we have a
type P(τ) which intends to represent the power set of τ . We write Pn(N) for P(P(...(P(N)...))
iterated n times. All variables have a type, and thus, all quantifiers range over the elements
of a certain type. The language has symbols 0, 1,+,×, < that apply to elements of the first
type N , and a binary relation x ∈ y that can only be used when x is of a certain type τ and
y has type P(τ). The axioms are the ordered-semi-ring axioms for the elements of the first
type N , plus extensionality for sets of all types, plus the induction axiom for all subsets of
N in P(N), plus the full comprehension scheme, which for all types τ and for all formulas

ψ(zτ ) contains the universal closure of the formula ∃yP(τ)∀zτ (zτ ∈ yP(τ) ↔ ψ(zτ )). It is not
hard to see that a statement can be proved in higher-order arithmetic if and only if it can be
proved in full nth-order arithmetic for some n ∈ ω: The reason is that a proof in higher-order
arithmetic can only mention finitely many types.

An ω-model of the language Lω is an Lω-structure where the first-order part is standard,
i.e. (ω; 0, 1,+,×, <). These Lω-structures are determined by a sequence (E1, E2, E3, ....) where
En ⊆ Pn(ω). Such a structure H is a model of higher-order arithmetic if and only if for every
n and every formula ϕ(zn) in the language Lω, with parameters from H, and where zn is a
variable of type Pn(N), we have that

{F ∈ En : H |= ϕ(F )} ∈ En+1.

3.2. Background on generic copies of a structure. A important tool in our proofs will
be the notion of generic copy of a structure A introduced by Ash, Knight, Mennasse and
Slaman [AKMS89], and Chisholm [Chi90]. We refer the reader to [AK00, Chapter 10] for the
basic properties of this forcing notion, that we now quickly review. (See also [Mon10, Section
4] for an exposition closer to the one we use here.)

We define the forcing notion P to be the set of finite one-to-one partial functions from a
set of constants B to A, the domain of the structure A. Diverting from [AK00], we will set
B = {b0, b1, ...} = ω, and we will only consider finite functions defined on initial segments of
ω. So, we can think of the conditions of P as finite tuples of different elements from A ordered
by inclusion.

A generic G for this forcing gives a bijection from B (= ω) to A. By pulling back the
relations and functions from A, G defines a structure B on B which is isomorphic to A. Let
L be the language of A; assume it is a relational language. Let {φ0, φ1, ...} be an enumeration
of all the atomic (L ∪ B)-sentences. For each n, let {φ0, ..., φkn−1} be the subset of atomic
(L ∪ B)-sentences which only use the first n relations from L and the first n constants from
B. (Assume these formulas always come first in the listing.) Let D(B) be the atomic diagram
of B, that is, D(B) ∈ 2ω and D(B)(i) = 1 iff B |= φi. For each p̄ ∈ P, we let D(p̄) be the
fragment of D(B) of lenght k|p̄|, determined by p̄. That is, D(p̄)(i) = 1 iff A |= φi(p̄), where,
in φi(p̄), each constant bj is replaced by p̄(j). This way, we have that D(B) =

⋃

p̄∈GD(p̄), and
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that for each σ ∈ 2kn there is a quantifier-free formula ϕσ(x1, ..., xn), such that A |= ϕσ(p̄) if
and only if σ = D(p̄).

Given an infinitary sentence ϕ in the language L ∪B, and given p̄ ∈ P, the forcing relation
p̄  ϕ is defined as usual: p̄  φi iff i < k|p̄| and A |= φi(p̄); p̄ 

∨

i ψi iff for some i, p̄  ψi;
and p̄ 

∧

i ψi iff for each i, and each q̄ ⊇ p̄, there exists r̄ ⊇ q̄, such that r̄  ψi. One can
then prove that for any sentence ϕ, B |= ϕ if and only if for some p̄ ∈ G, p̄  ϕ, provided that
G is generic enough.

It is shown in [AK00, Lemma 10.6] that there is an effective procedure that, given a sentence
ϕ, returns a formula Forceϕ of the same complexity such that p̄  ϕ ⇐⇒ A |= Forceϕ(p̄).
We also note that we can uniformly get Σc

1 sentences ϕe,n in the language L ∪ B, such that,

given a c.e. operator We and n ∈ ω, B |= ϕe,n if and only if n ∈ W
D(B)
e , namely ϕe,n ≡

∨

σ∈2<ω :n∈Wσ
e
ϕσ(b0, ..., bm). We write this formula ϕe,n as “n ∈ WB

e .” (Here {We : e ∈ ω} is

the standard list of all c.e. operators, and by W σ
e , with σ ∈ 2<ω, we mean the set of n’s which

are enumerated in W σ
e in less than |σ| steps, using σ as oracle.) We observe that q̄  n ∈WB

e

if and only if n ∈W
D(q̄)
e .

The following application of this forcing notion contains many of the ideas that we will use
in later proofs.

Lemma 3.1. (Knight [AK00, Theorem 10.17]) Given X ⊆ ω, we have that X is c.e. in all
copies of A if and only if there is a tuple ā ∈ A<ω and an enumeration-operator Θ such that

X = Θ(Σc

1-tpA(ā)).

Proof. The implication from right to left is fairly straightforward. Any oracle that computes
a presentation of A can enumerate Σc

1-tpA(ā) for any ā ∈ A<ω, and thus can also enumerate
X = Θ(Σc

1-tpA(ā)). Let us now consider the other direction.
Suppose that X is c.e. in all copies of A. Let G be an X-arithmetically generic filter in P,

and let B be the associated copy of A. There is some e such that X =WB
e . Thus, there is some

p̄ ∈ G such that p̄  X = WB
e . (This means that p̄ 

∧

n∈X(n ∈ WB
e )&

∧

n 6∈X ¬(n ∈ WB
e ).)

So, we claim that for every n

n ∈ X ⇐⇒ ∃q̄ ∈ P

(

q̄ ⊇ p̄ & n ∈WD(q̄)
e

)

.

The reason is that, if n ∈ X, there is a q̄ ∈ G, q̄ ⊇ p̄ such that n ∈W
D(q̄)
e ; and if n 6∈ X, then

for all q̄ ⊇ p̄ there exists r̄ ⊇ q̄ such that r̄  ¬(n ∈ WB
e ) and hence q̄ 6 n ∈ WB

e . Let Θ be
the enumeration operator such that, if for some σ ∈ 2<ω with n ∈ W σ

e , the index for the Σc

1

formula

∃x̄
(

p̄x̄ ∈ P & D(p̄, x̄) = σ
)

belongs to an oracle Y , then n ∈ ΘY (where “q̄ ∈ P” is the formula that says that all the
elements in the tuple q̄ are different). It follows that X = Θ(Σc

1-tpA(p̄)). �

Let {Θe : e ∈ ω} be the standard computable enumeration of all enumeration-operators.
That is, Θe(Y ) is the set of all k ∈ ω for which we have (u, k) ∈We for some u with Du ⊆ Y ,
where Du is the uth finite subset of ω in some standard ordering. For each e and each p̄ ∈ A<ω,
let

Te(p̄) = Θe(Σ
c

1-tpA(p̄)) ⊆ ω.

Notice that from the uniformity in the proof above, we get a computable function f1 : ω → ω
such that, for each e and each X ⊆ ω,

p̄  X =WB
e =⇒ X = Tf1(e)(p̄),
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where Θf1(e) is defined by

Θf1(e)(Σ
c

1-tpA(p̄)) = {m ∈ ω : (∃q̄ ⊇ p̄) m ∈WD(q̄)
e } = {m ∈ ω : p̄ 6 ¬m ∈WB

e }.

The next step is to generalize all this to X ∈ Pn(ω).

3.3. The model HA.

Definition 3.2. Given F ∈ Pn(ω) and Y ⊆ ω, we say that F is uniformly computably
enumerable (u.c.e.) in Y if there exists a Y -c.e. set W ⊆ ωn such that

F = {{...{{{m ∈ ω : 〈m, i1, ...., in−1〉 ∈W} : i1 ∈ ω} : i2 ∈ ω} : ...} : in−1 ∈ ω}.

In this case, we say that W codes F . Given a structure A and n ∈ ω we let En
A ⊆ Pn(ω) be

the set of all F ∈ Pn(ω) such that, for every set X ∈ Sp(A), F is u.c.e. in X.

So, for instance, E1
A is the set of all subsets of ω which are c.e. in all copies of A. Lemma

3.1 says that
E1
A = {Te(ā) : e ∈ ω, ā ∈ A<ω}.

Definition 3.3. Given a structure A, we let HA be the ω-model determined by

HA = (E1
A, E

2
A, E

3
A, ...),

that is, HA is the Lω-structure where (N, 0, 1,+, ·, <) is represented by the standard model
of arithmetic, and Pn(N) is interpreted as En

A.

Theorem 3.4. If Sp(A) = Sp(A′), then HA is a model of higher-order arithmetic.

The proof of this theorem will be completely contained in Z2, and hence Theorem 1.4 and
Corollary 1.5 follow. We let the reader verify that the proof goes through in Z2. We just
notice that HA is a countable structure, and that it can be represented by a countably-coded
ω-model.

As we mentioned above, all we need to prove is the comprehension axiom scheme.
The next few lemmas are dedicated to characterize En

A in terms of the types realized in A.
We use Σc

m-tpA(ā) to denote the Σc

m-type of ā in A.

Lemma 3.5. If F ∈ E2
A, then there is a tuple ā ∈ A<ω and a uniformly computably infinitary

list of Σc

3 formulas ϕℓ(x̄, ȳ), such that

F = {Tℓ(ā, b̄) : ℓ ∈ ω, b̄ ∈ A<ω,A |= ϕℓ(ā, b̄)}.

Proof. This proof is somewhat similar to the one of Lemma 3.1.
Since F ∈ E2

A, F is uniformly computably enumerable in the diagram of B (which, abusing
notation, we denote as B). Then, for some computable sequence {ei : i ∈ ω}, F is coded by
⊕

i∈ωW
B
ei
; that is, F = {WB

ei
: i ∈ ω}. There exists a condition p̄ ∈ P such that p̄  F =

{WB
ei

: i ∈ ω}. If
F = {X0,X1, ...},

this means that p̄ forces that ∀i ∈ ω∃j(WB
ei
= Xj) and ∀j∃i(WB

ei
= Xj).

We say that q̄ decides WB
e , if for all k ∈ ω, either q̄  k 6∈ WB

e or 6 ∃r̄1 ⊇ q̄ (r̄1  k 6∈ WB
e ).

Equivalently, q̄ decides WB
e , if for all generic extensions G of q̄, WB

e is always the same set.
Let δe(q̄) be the Πc

2 formula that says that q̄ decides WB
e :

δe(q̄) ≡
∧

k∈ω

(∀r̄ ⊇ q̄(k 6∈WD(r̄)
e )) ∨ (∀r̄1 ⊇ q̄ ∃r̄2 ⊇ r̄1(k ∈WD(r̄2)

e )).

So, we have that, if for some set X, q̄  WB
e = X, then δe(q̄) holds. Conversely, if δe(q̄)

holds, then for some X, q̄  WB
e = X: Because, for some r̄ ⊇ q̄, there is an X such that
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r̄  WB
e = X, but then δe(q̄) implies that q̄  WB

e = X too. Recall that this implies that
X = Tf1(e)(q̄).

Let us go back to the fact that p̄ forces that ∀i ∈ ω∃j(WB
ei
= Xj) and ∀j∃i(WB

ei
= Xj). We

claim that

F = {Tf1(ei)(q̄) : q̄ ⊇ p̄, i ∈ ω, δei(q̄)}.

Suppose first that q̄ ⊇ p̄ and that δei(q̄) holds. Then for some j ∈ ω and some r̄ ⊇ q̄,
r̄  WB

ei
= Xj . Therefore, q̄  WB

ei
= Xj too, and Tf1(ei)(q̄) = Xj. So the right-hand side is

included in the left-hand side. Take now Xj ∈ F . There exists q̄ ⊇ p̄, q̄ ∈ G and i ∈ ω such

that q̄  WB
ei

= Xj . Then δei(q̄) holds and Tf1(ei)(q̄) = Xj . So the left-hand side is included
in the right-hand side.

To get the sequence of Σc

3 formulas we wanted, we let ϕℓ(ā, b̄) ≡
∨

i∈ω:f1(ei)=ℓ δei(ā, b̄). �

We now want to generalize this proof to En
A.

Definition 3.6. Given m,n, e ∈ ω, and ā ∈ A<ω, we define T n
m,e(ā) ∈ Pn(ω) by induction on

n as follows.

T 1
m,e(ā) = Θe(Σ

c

m-tpA(ā)),

T n+1
m,e (ā) = {T n

m,j(ā, b̄) : b̄ ∈ A<ω, j ∈ T 1
m,e(ā, b̄)}.

Notice that T 1
1,e(ā) = Te(ā).

Lemma 3.7. For all n ≥ 1, {T n
1,e(ā) : e ∈ ω, ā ∈ A<ω} ⊆ En

A.

Proof. This proof is like the right-to-left proof of Lemma 3.1. Any oracle that computes a
presentation of A can uniformly enumerate Σc

1-tpA(b̄) for any b̄ ∈ A<ω, and can thus enumerate
a set coding T n

1,e(ā). �

Our next goal is to show that, if Sp(A) = Sp(A′), then, for every n ≥ 1,

En
A = {T n

n2,e(ā) : e ∈ ω, ā ∈ A<ω} = {T n
m,e(ā) : e,m ∈ ω, ā ∈ A<ω}.

We have already shown the first equality for the case n = 1.
Before we prove further results about these families T n

m,e(ā), let as show how the basic
statements about them can be translated to statements about the structure A. First, given
k,m, e, note that

k ∈ T 1
m,e(ā) ⇐⇒ A |=

∨

u:(u,k)∈Θe





∧

j∈Du

ϕm,j(ā)



 ,

where {ϕm,j : j ∈ ω} is a standard enumeration of all Σc

m formulas. We let k ∈ T 1
m,e(x̄) denote

this Σc

m formula
∨

u:(u,k)∈Θe

∧

j∈Du
ϕm,j(x̄). Note that this is now a formula in the language

of A.
We now define the following Πc

m+1 formula, where m = max{m1,m2}.

T 1
m1,e1

(x̄1) = T 1
m2,e2

(x̄2) ≡
∧

k∈ω

(

k ∈ T 1
m1,e1

(x̄1) ↔ k ∈ T 1
m2,e2

(x̄2)
)

.

We now want to define a formula T n
m1,e1

(x̄1) ⊆ T n
m2,e2

(x̄2) in the language of A such that

for all ā1, ā2 ∈ A<ω,

T n
m1,e1

(ā1) ⊆ T n
m2,e2

(ā2) ⇐⇒ A |= T n
m1,e1

(ā1) ⊆ T n
m2,e2

(ā2).

We let
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T n
m1,e1

(x̄1) ⊆ T n
m2,e2

(x̄2) ≡
∧

i∈ω

∀ȳ1

(

i ∈ T 1
m1,e1

(x̄1, ȳ1) =⇒

∨

j∈ω

∃ȳ2

(

j ∈ T 1
m2,e2

(x̄2, ȳ2) & T n−1
m1,i

(x̄1, ȳ1) = T n−1
m2,j

(x̄2, ȳ2)
)

)

.

It is not too hard to see, using induction on n, that T n
m1,e1

(x̄1) ⊆ T n
m2,e2

(x̄2) is a Πc

m+2n−1

formula where m = max{m1,m2}.

Of course, we define the Πc

m+2n−1 formula T n
m1,e1

(x̄1) = T n
m2,e2

(x̄2) using both inclusions in
the obvious way.

Lemma 3.8. For every n ≥ 1, En
A ⊆ {T n

n2,e
(ā) : e ∈ ω, ā ∈ A<ω}.

Proof. By induction on n, we prove that there is a computable function fn such that, for all
F ∈ Pn(ω), e ∈ ω, p̄, p̄1, p̄2 ∈ P

p̄  “WB
e codes F” =⇒ T n

n2,fn(e)
(p̄) = F,

and

p̄1 ⊆ p̄2 =⇒ T n
n2,fn(e)

(p̄1) ⊇ T n
n2,fn(e)

(p̄2).

Notice that we have already proved the case n = 1 in Lemma 3.1.
Suppose we have already defined such a function fn, and we now want to define fn+1. First,

for each e, let δe be the following Πc

n2+2n−1 formula:

δe(p̄) ≡ ∀q̄ ⊇ p̄
(

T n
n2,fn(e)

(p̄) = T n
n2,fn(e)

(q̄)
)

.

Notice that if for some F ∈ Pn(ω), p̄ 

(

W
D(A)
e codes F

)

, then δe(p̄) holds by the induction

hypothesis. Also note that n2 + 2n− 1 < (n+ 1)2, so δe is Σc

(n+1)2 .

Now, suppose that F = {F1, F2, ...} ∈ Pn+1(ω) and that

p̄ WB
e codes F,

where WB
e =

⊕

iW
B
ei
. That means that

p̄ 
(

∀i∃j(WB
ei

codes Fj)
)

&
(

∀j∃i(WB
ei

codes Fj)
)

.

This implies that for each i and each q̄ ⊇ p̄, there exists j and q̄1 ⊇ q̄ such that q̄1 

WB
ei

codes Fj . Now, by the inductive hypothesis, we have that T n
n2,fn(ei)

(q̄1) = Fj . If we had

δei(q̄) we would have that T n
n2,fn(ei)

(q̄) = Fj too. So, for each i and each q̄ ⊇ p̄ with δei(q̄),

we have that for some j, T n
n2,fn(ei)

(q̄) = Fj . On the other hand, for each j, there exists i and

q̄ ⊇ p̄ such that q̄ WB
ei

codes Fj . For this q̄, δei(q̄) holds. It follows that

F = {T n
n2,fn(ei)

(q̄) : i ∈ ω, q̄ ⊇ p̄, δei(q̄)}.

Now, let Θfn+1(e) be an enumeration-operator such that k ∈ Θfn+1(e)(Σ
c

(n+1)2-tpA(q̄)) if and

only if for some i, fn(ei) = k and A |= δei(q̄). Then F = T n+1
(n+1)2,fn+1(e)

(p̄) as wanted. It is

easy to see from the definition that p̄1 ⊆ p̄2 =⇒ T n+1
(n+1)2,fn+1(e)

(p̄1) ⊇ T n+1
(n+1)2,fn+1(e)

(p̄2). �

Corollary 3.9. If Sp(A) = Sp(A′) then, for every n,

En
A = {T n

n2,e(ā) : e ∈ ω, ā ∈ A<ω} = {T n
m,e(ā) : e,m ∈ ω, ā ∈ A<ω}.
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Proof. The inclusion of the first set in the second set follows from the lemma above. The
inclusion of the second set in the third set is obvious.

The hypothesis Sp(A) = Sp(A′) is only used to prove the inclusion {T n
m,e(ā) : e,m ∈ ω, ā ∈

A<ω} ⊆ En
A. If Y ∈ Sp(A), then Y ∈ Sp(A(m−1)) and hence Y computes a copy of A(m−1) and

can uniformly enumerate Σc

m-tpA(b̄) for all b̄ in this copy. Thus Y can enumerate T n
m,e(ā). �

We are now ready to prove that HA satisfies full comprehension. Add to Lω, the language
of higher-order arithmetic, a new constant symbol T n

m,e(x̄) of type P
n(N) for each n,m, e ∈ ω

and tuple of variables x̄. (We use x and y for variables that range over elements of A, and
zn for variables in Lω of type Pn(N).) We now define a computable transformation that
takes a sentence ψ(T n1

m1,e1
(x̄1), ..., T

nk
mk ,ek

(x̄k)) in this language, and returns a Πc
<ω formula

ψm̄,ē(x̄1, ..., x̄k) in the language of A such that, for all ā1, ..., āk ∈ A<ω,

HA |= ψ(T n1
m1,e1

(ā1), ..., T
nk
mk ,ek

(āk)) ⇐⇒ A |= ψm̄,ē(ā1, ...., āk),

where m̄ = (m1, ...,mk) and ē = (e1, ..., ek).
We have already defined

• k ∈ T 1
m,e(x̄),

• T n
m1,e1

(x̄1) ⊆ T n
m2,e2

(x̄2), and

• T n
m1,e1

(x̄1) = T n
m2,e2

(x̄2),

with the desired property. We now add to the list

• T n
m1,e1

(x̄1) ∈ T
n+1
m2,e2(x̄2) ≡

∨

j ∃ȳ
(

j ∈ T 1
m2,e2

(x̄2, ȳ) & T n
m1,e1

(x̄1) = T n
m2,j

(x̄2, ȳ)
)

• ϕ ∨ ψ = ϕ ∨ ψ.
• ¬ψ = ¬ψ.
• ∃znψ(zn) =

∨

e∈ω ∃x̄ ψ(T n
n2,e

(x̄)).

This transformation allows us to prove comprehension inHA and finish the proof of Theorem
3.4.

Suppose we have a sentence ψ(T̄ , zn) in the language of HA with parameters T̄ = T n1
m1,e1

(ā1),
... ,T nk

mk ,ek
(āk) ∈ HA, and a free variable zn of type Pn(N). We need to show that the set

{G ∈ En
A : HA |= ψ(T̄ , G)}

belongs to En+1
A . (Let ā = (ā1, ..., āk).) Then, we have that,

{G ∈ En
A : HA |= ψ(T̄ , G)} = {T n

n2,e(ā, b̄) : e ∈ ω, b̄ ∈ A<ω, A |= ψm̄,ē(ā, b̄)},

where m̄ = (m1, ...,mk, n
2) and ē = (e1, ..., ek , e). Let m be such that ψm̄,ē is Σc

m. It follows

that for the appropriate index j, {G ∈ En
A : HA |= ψ(T̄ , G)} = T n+1

m,j ∈ En+1
A .

This concludes the proof that HA satisfies the full comprehension axiom, and hence that it
is a model of higher-order arithmetic.
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