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ON THE DEFINABILITY OF RADICALS IN SUPERSIMPLE

GROUPS

CÉDRIC MILLIET

Abstract. If G is a group with supersimple theory having finite SU -rank, the
subgroup of G generated by all of its normal nilpotent subgroups is definable
and nilpotent. This answers a question asked by Elwes, Jaligot, Macpherson
and Ryten in [5]. If H is any group with supersimple theory, the subgroup of
H generated by all of its normal soluble subgroups is definable and soluble.

1. Introduction

Among the problems in the model theory of groups, is the one of knowing which
subsets of a group G are definable by a formula. For example, the centraliser of an
element a in G is defined by the quantifier free formula xa = ax and the centre of
G by the formula (∀y) xy = yx. Similarly, finite sets, centralisers of finite sets and
the iterated centres of G are always definable. But this is mostly the end of the list:
almost every other characteristic subgroups such as the commutator subgroup G′,
the FC-centre, the Fitting subgroup or the soluble radical may not be definable,
not in first order logic at least: they all are countable union of definable sets. The
situation is even more complicated for the iterated FC-centres, the FC-soluble
radical or the FC-Fitting subgroup who have a higher complexity in the hierarchy
of definable sets.

In an algebraic group over an algebraically closed field, every subgroup cited above
is definable. The situation is far less straightforward in a group G which is merely
stable. Wagner has shown that the Fitting subgroup of G is always definable [17].
The question is still open for the soluble radical of G, but Baudish [3] has proved
that it is definable provided that G be superstable. The starting point of their
investigation was a Theorem of Poizat [13] that any nilpotent (respectively soluble)
subgroup ofG is contained in a definable nilpotent (respectively soluble) one of same
nilpotency class (resp. derived length). Recently, many attempts have been made
to extend these results to a wider context: let us cite [15, Shelah] and [1, Aldama] for
groups with dependent theory, [2, Altınel Baginski] for groups with the descending
chain condition on centralisers, [11, Milliet] for groups with a simple theory and [5,
Elwes Jaligot Macpherson Ryten], for supersimple groups, where it is shown that
the soluble radical of a supersimple group G of finite rank is definable and soluble
provided that Geq eliminates ∃∞. The authors of [5] also asked whever such a G

2010 Mathematics Subject Classification. 03C45, 03C60 (primary), 20F16, 20F18 (secondary).
Key words and phrases. Supersimple group, Fitting subgorup, soluble radical.
The paper arose after a conversation with Professor Macpherson in the Neostability theory

conference in Banff, Canada. L’auteur voudrait remercier le centre de Banff pour son hospitalité,
ainsi que l’institut Camille Jordan de Lyon qui lui a permis d’entreprendre ce long voyage.

1



ON THE DEFINABILITY OF RADICALS IN SUPERSIMPLE GROUPS 2

had a largest nilpotent normal subgroup F and if F would be definable. We give
a positive answer here while proving that the Fitting subgroup of a supersimple
group of finite SU -rank is definable and nilpotent. We also show that the soluble
radical of a supersimple group of arbitrary rank is a definable and soluble subgroup.
As a corollary, the FC-soluble radical of a supersimple group is virtually soluble
and definable.

2. Preliminaries on groups

If G is a group and x an element of G, we write xG for the conjugacy class {g−1xg :
g ∈ G} of x, and C(x) for its centraliser {g ∈ G : g−1xg = x} in G. If y is another
element of G, we write [x, y] for the commutator x−1y−1xy. We write G(n) for the
nth term of the derived series of G defined inductively by puting G(0) equal to G
and G(n+1) the subgroup generated by the set [G(n), G(n)]. The group G is soluble
of derived length n if n is the smallest natural number such that G(n) is {1}.

The FC-centre of a group G is written FC(G) and is defined to be the set of g in G
such that gG is finite. By definition, the group G is an FC-group if FC(G) equals
G. Inductively on n, we call FCn+1(G) the preimage in G of FC(G/FCn(G)), with
the convention that FC0(G) is {1}. This defines an ascending chain of characteristic
subgroups of G. The group G is called FC-nilpotent if G equals FCn(G) for some
natural number n, the least such we call the FC-nipotency class of G. Finite groups
and nilpotent ones are both examples of FC-nilpotent groups. If G/N is a quotient
group modulo a normal subgroup N of G, we write FCG(G/N) for the preimage
of FC(G/N) in G by the canonical surjection from G onto G/N .

Theorem 2.1 (Neumann [12]). An FC-group whose conjugacy classes are bounded
by a natural number is abelian-by-finite and has a class 2 nilpotent subgroup of finite
index.

Lemma 2.2. If N is a finite normal subgroup of G, then FC(G) equals FCG(G/N).

Proof. The canonical surjection from G onto G/N has a finite kernel. It follows
that the conjugacy class xG is finite if and only if (xN)G/N is finite. �

Lemma 2.3. If H and N are two normal subgroups of G with N ≤ H, then
FCG(G/H)

/

N equals FCG/N (G/N
/

H/N).

Proof. There is a canonical homomorphism from G/H onto G/N
/

H/N . It follows

that (xH)G/H is finite if and only if ((xN)H/N)G/N
/

H/N is finite. This means
precisely that x ∈ FCG(G/H) if and only if xN ∈ FCG/N (G/N

/

H/N). �

Lemma 2.4. If for some natural number n the quotient FCn+1(G)/FCn(G) is
finite, then FCn+2(G) equals FCn+1(G).

Proof. We have

FCn+2(G)/FCn(G) = FCG(G/FCn+1(G))/FCn(G)

By Lemma 2.3

FCn+2(G)/FCn(G) = FCG/FCnG(G/FCn(G)
/

FCn+1(G)/FCn(G))
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As FCn+1(G)/FCn(G) is finite, applying Lemma 2.2 we get

FCn+2(G)/FCn(G) = FC(G/FCn(G)) = FCn+1(G)/FCn(G)

�

Two subgroups of a given group G are commensurable if the index of their inter-
section is finite in both of them. Commensurability is an equivalence relation on
the set of subgroups of G.

Theorem 2.5 (Schlichting [16]). Let G be a group and H a subgroup of G such
that H/H ∩ Hg remains finite and bounded by a natural number for all g in G.
There exists a normal subgroup N of G such that H/H ∩ N and N/N ∩ H are
finite. Moreover, N is a finite extension of a finite intersection of G-conjugates of
H. In particular, if H is definable then so is N .

3. Preliminaries on supersimple groups

A supersimple groupG is equiped with a rank function taking values in the ordinals,
and ranking any definable subset of G. We write SU(X) for the rank of a definable
subset X of G. We shall not need the precise definition of the rank (we refer to
[19] for more details), but only some of its properties that we recall now. The rank
is increasing: if X ⊂ Y are two definable subsets of G, then SU(X) is smaller or
equal to SU(Y ). If G is supersimple, then so is any of its elementary extension, and
so is Geq, meaning that any quotient group G/N by a definable normal subgroup
N has an ordinal SU -rank. A definable set (in Geq) has rank zero if and only if it
is finite. In particular, if N is a definable normal subgroup of G, then SU(G/N)
equals zero if and only if N has finite index in G.

The following comes from [6, Remark 3.5] as a particular case of [19, Theorem 5.5.4]

Theorem 3.1 (Zilber’s Indecomposability Theorem). G is a supersimple group of
finite rank, (Xi)i∈I a family of definable subsets of G. There exists a definable
subgroup H of G such that

(1) H ≤ 〈Xi : i ∈ I〉
(2) Finitely many translates of H cover Xi for every i.

If the sets Xi are normal in G, the group H may be choosen normal in G.

Corollary 3.2. If G is a supersimple group with finite SU -rank, then the derived
subgroup G′ is definable.

Proof. We follow exactly the proof of [8, Corollary 7.5]. Let C be the set of com-
mutators of G. By Theorem 3.1, there is a definable subgroup H of G′ with H
normal in G such that finitely many translates of H cover C. It follows that the
set of commutators in G/H is finite, so the derived group (G/H)′ is finite by [9, p.
110]. The group G′ is a finite union of cosets of H hence definable. �

Any ordinal α decomposes in base ω: there are unique ordinals α1 > · · · > αn

and non-zero natural numbers k1, . . . , kn such that α equals ωα1 .k1 + · · ·+ωαn .kn.
If α and β are two ordinals, we may assume that α equals ωα1 .k1 + · · · + ωαn .kn
and β equals ωα1 .ℓ1+ · · ·+ωαn .ℓn for the same α1, . . . , αn, adding some additional
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possibly zero ki and ℓi if necessary. We write α ⊕ β for their Cantor sum defined
by

α⊕ β = ωα1 .(k1 + ℓ1) + · · ·+ ωαn .(kn + ℓn)

Theorem 3.3 (Lascar inequalities). G is a supersimple group, and H a definable
normal subgroup of G. Then

SU(H) + SU(G/H) ≤ SU(G) ≤ SU(H)⊕ SU(G/H)

As a consequence, note that two definable subgroups of a supersimple group which
are commensurable have the same SU -rank.

Proposition 3.4. G is a supersimple group of rank ωα1 .k1 + · · · + ωαn .kn with
α1 > · · · > αn. For every natural number i such that 1 ≤ i ≤ n, there is a definable
normal subgroup H of G of rank ωα1 .k1 + · · ·+ ωαi .ki. The group H is unique up
to commensurability.

Remark 3.5. Proposition 3.4 is the definable version of [18, Wagner, Corollary 4.2].
It generalises what is known for superstable groups [4, Corollary 2.7 p.27].

Proof. We may assume that G is saturated and we write βi for ωα1 .k1+ · · ·+ωαi.ki.
By [18, Corollary 4.2], there is a type-definable normal subgroup H of G having
rank βi. Recall that βi is by definition the rank of any of the generic types of
H . By [18, Theorem 4.4], the group H is the conjunction of definable groups Hi

for i in I. We may close this familly by finite intersections, remove the members
that do not have minimal rank and assume that every Hi has rank β say and are
commensurable. It follows that for every i, the group H has bounded index in Hi

so H is a generic type of Hi by [19, Lemma 4.1.15]. Thus β equals βi. Take any Hi.
As H is normal in G, Hg

i and Hi are commensurable for every g in G. Let FN(Hi)
stand for the set of g in G such that Hi/Hi ∩ H

g
i is finite. On the one hand, the

group FN(Hi) is a countable union of definable sets. On the other hand, by [19,
Lemma 4.1.15] and [19, Remark 4.1.5], it is type-definable. It must be definable by
compactness and saturation. It follows that Hi/Hi∩H

g
i remains bounded by some

natural number when g ranges over G. By Theorem 2.5, there is a definable normal
subgroup N of G commensurable with H hence of rank βi. If K is another group
satisfying the desired requirements, K and N are commensurable as type-definable
sets by [18, Corollary 4.2] hence commensurable as definable sets. �

Lemma 3.6 ([11]). If G is a group with (super)simple theory, its FC-centre is
definable.

Proof. It is shown in [11] that FC(G) is definable by a formula ψ provided that G
be an ℵ0-saturated extension of G. Actually the same formula ψ computed in G
defines FC(G). �

4. The Fitting subgroup

Let G be any group. We call the Fitting subgroup of G the subgroup generated by
all nilpotent normal subgroups. We write it Fit(G). It is worth mentioning that
the Fitting subgroup is definable if and only if it is nilpotent. Namely x belongs to
Fit(G) if and only if the subgroup generated by its conjugacy class xG is nilpotent.
It follows that Fit(G) equals

⋃

n≥1{x ∈ G : [xG ∪ (x−1)G, . . . ,n x
G ∪ (x−1)G] = 1},
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where for any subset X of G the set [X, . . . ,nX ] is defined inductively by [X,1X ] =
{[x1, x2] : (x1, x2) ∈ X2} and [X, . . . ,n+1X ] = {[y, x] : (y, x) ∈ [X, . . . ,n+1X ]×X}.
The observation that Fit(G) is definable if it is nilpotent was first made by Ould
Houcine, and the simple proof above was independently provided by the referee
of [2].

Proposition 4.1. G is a group and F is a normal subgroup of G. Assume that
F ≤ FCn(G) for some natural number n (in particular, F is FC-nilpotent). If
G/F is FC-nilpotent, then so is G.

Proof. Assume that G/F is FC-nilpotent of class m. There is a surjection from
G/F onto G/FCn(G). As recalled in [11], the image of an FC-nilpotent group by a
group homomorphism is FC-nilpotent. It follows that G/FCn(G) is FC-nilpotent
of class at most m, so that FCm+n(G) equals G. �

We recall Hall’s criterion for nilpotence.

Theorem 4.2 (Hall [7]). G is any group and N is a normal subgroup of G. If
G/N ′ and N are nilpotent, then G is nilpotent.

Two other proofs of Theorem 4.2 can be found in [14] and [10], with a bound on
the nilpotency class of G depending on the classes of N and G/N ′ in [10]. Note
that since G/N ′′

/

N ′/N ′′ and G/N ′ are isomorphic, a straightforward induction on
the nilpotency class of N reduces the proof to the case where N is 2-nilpotent.

Proposition 4.3 ([11]). G is a group with (super)simple theory. If G is FC-
nilpotent of class n, then G has a definable normal subgroup of finite index which
is nilpotent of class at most 2n.

Theorem 4.4 (Milliet [11]). G is a group with (super)simple theory. If N is a
normal nilpotent subgroup of class n, then N is contained in a normal definable
nilpotent subgroup of class at most 3n.

We can now answer the question asked in [5].

Theorem 4.5. G is a supersimple group with finite SU -rank. The Fitting subgroup
of G is definable and nilpotent.

Proof. By Lemma 2.4, for big enough n, the quotient FCn+1(G)/FCn(G) is either
trivial or infinite. By Lascar’s equality, there exists a natural number such that
FCn(G) = FCn+1(G). We call G the quotient group G/FCn(G) so that G has a
trivial FC-centre. Let F be its Fitting subgroup.

Claim 1. We may assume that FC(G) = {1}. To prove Claim 1, we need just
assume that F is definable and nilpotent and show that Fit(G) is definable and
nilpotent. Note that F is FC-nilpotent. Let F be its pull-back in G so that
we have F/FCn(G) = F . The group F is FC-nilpotent by Proposition 4.1. By
Proposition 4.3, F has a definable subgroup of finite index which is nilpotent, so
it must have a normal one N . It follows that F contains a maximal normal (in
G) nilpotent subgroup H of finite index so that H equals Fit(G). Being a finite
extension of N , Fit(G) is definable.

Claim 2. We may assume that G has a definable normal 2-nilpotent subgroup. On
the one hand, if every nilpotent normal subgroup of G is abelian, then Fit(G) is
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abelian. In this case, by the remark made at the beginning of this section (or
Theorem 4.4), Fit(G) must be definable. On the other hand, if there is a non
abelian nilpotent normal subgroup, then there is a definable one by Theorem 4.4.
Call it N . The group Z2(N) has the required properties.

Conclusion. We proceed by induction on SU(G). If SU(G) is zero, G is finite and so
is Fit(G). If SU(G) equals n+1, by Claim 2, there is a normal nilpotent definable
subgroup N of G of nilpotency class 2. By Corollary 3.2, the derived subgroup N ′

is definable. As N ′ is normal un G, it is infinite by Claim 1, so SU(N ′) ≥ 1. By
Lascar’s equality, SU(G/N ′) ≤ n, and we may apply the induction hypothesis to
G/N ′. It follows that Fit(G/N ′) is definable and nilpotent. Let F be its preimage
in G so that we have F/N ′ = Fit(G/N ′). By Theorem 4.2, F is nilpotent. Thus
F equals Fit(G). �

Remark 4.6. If G is supersimple or rank ω, every definable normal subgroup is finite
or of finite index in G by Lascar inequalities, so Fit(G) is definable by Theorem 4.4.
If G has rank ω + 1, every definable normal subgroup has rank 0, 1, ω or ω + 1 by
Lascar inequalities so a similar proof as in Theorem 4.5 works.

5. The soluble radical

We call the soluble radical of G the subgroup generated by all soluble normal sub-
groups and write it R(G). It is a locally soluble group.

We recall a simple and useful remark by Ould Houcine :

Lemma 5.1 (Ould Houcine). G is any group. Its soluble radical is definable if and
only of it is soluble.

Proof. An element x belongs to R(G) if and only if the subgroup generated by its
conjugacy class xG is soluble. Note that 〈xG〉(1) is generated by all commutators
of the form [ag, bh] where a and b equal x or x−1 and g and h range over G. Thus
the following equality holds

R(G) =
⋃

n≥1

{x ∈ G :
(

xG ∪ (x−1)G
)(n)

= 1}

where for any subset X of G the set X(n) is defined inductively by

X(1) = {[x, y] : (x, y) ∈ X ×X} and X(n+1) =
(

X(n)
)(1)

It follows that R(G) is a countable union of increasing definable sets. By compact-
ness, it is definable if and only if this chain is stationnary. �

Theorem 5.2 (Milliet [11]). G is a group with (super)simple theory, S a normal
soluble subgroup of derived length n. The group S is contained in a definable soluble
group of derived length at most 3n.

Theorem 5.3. The soluble radical of a supersimple group is definable and soluble.

Proof. We proceed by transfinite induction on the rank of G.

If G has rank zero, then G is finite and so is R(G).

If G has a non-monomial rank, there is a natural number k > 0 and ordinals α and
β such that SU(G) equals ωα.k + β with 0 < β < ωα. By Proposition 3.4, there is
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a normal subgroup H of G having SU -rank ωα.k. We show that the derived length
of any normal soluble subgroup of G is bounded by some natural number. This is
a necessary and sufficient condition by Lemma 5.1. So let S be a normal soluble
subgroup of derived length n. By Lascar inequalities, both SU(G/H) and SU(H)
are less than SU(G) so we may apply the induction hypothesis to H and G/H and
it follows that SH/H and S∩H are soluble of derived length at most some natural
number m say. As SH/H is isomorphic to S/S ∩H , we must have S(m) ⊂ S ∩H ,
so S(2m) = {1}. It follows that n is bounded by 2m, as desired.

If G has a monomial rank, it is of the form ωα.k. Either there is some a in R(G)
with aG having SU -rank at least ωα. By Theorem 5.2, aG is contained in a definable
normal soluble group S. As the rank is increasing, S must have SU -rank at least
ωα. In that case, either S and G have the same rank so G is virtually soluble
and we are done, or SU(S) < SU(G). Then, by Lascar inequalities 3.3 we have
SU(G/S) < SU(G) and we may conclude that the derived length of any normal
soluble subgroup of G is bounded by induction hypothesis, as in the non-monomial
case. One last case to deal with: we may have SU(aG) < ωα for all a in R(G).
As aG and G/C(a) are in bijection it follows that SU(G/C(a)) < ωα for all a in
R(G). By Lascar inequalities, this is equivalent to say that SU(G/C(a)) is zero for
all a in R(G). So R(G) is a subgroup of the FC-centre of G which is definable by
Lemma 3.6 and virtually nilpotent of class 2 by Theorem 2.1. It follows that R(G)
is also virtually nilpotent of class 2 (and locally soluble) hence soluble. In any case,
R(G) is definable and soluble. �

6. The FC-soluble radical

Definition 6.1 (Duguid, McLain). A group G is FC-soluble if there exists a finite
sequence of normal subgroups G0, G1, . . . , Gn of G such that

G0 = G D G1 D · · · D Gn = {1}

and such that Gi/Gi+1 is an FC-group for all i. We call the least such natural
number n the FC-solubility class of G, or its class.

If N is a normal subgroup of G, then G is FC-soluble if and only if G/N and N
are FC-soluble.

We define the FC-soluble radical of a group to be the subgroup generated by every
normal FC-soluble subgroup. This is a locally FC-soluble subgroup:

Lemma 6.2. H and K are two normal FC-soluble subgroups of a group G of class
h and k. The product H.K is FC-soluble of derived length at most h+ k.

Proof. The quotient HK/K is isomorphic to H/H ∩ K. So K and HK/K both
are FC-soluble. �

Proposition 6.3 (Milliet [11]). A (super)simple FC-soluble group is virtually-
soluble.

Corollary 6.4. The FC-soluble radical of a supersimple group is definable and
virtually-soluble.

Proof. By Theorem 5.3, R(G) is supersimple so the quotient G/R(G) is super-
simple and has no non trivial normal soluble subgroup. Let us write it G. By
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Proposition 6.3, an FC-soluble subgroup of G is virtually-soluble, hence finite, so
every normal FC-soluble subgroup is contained in FC(G). By Lemma 3.6 and
Theorem 2.1, the group FC(G) must be finite. Its preimage in G contains every
normal FC-soluble subgroup of G. �
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