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Abstract

We show a model construction for a system of higher-order illative combinatory logic Iω, thus

establishing its strong consistency. We also use a variant of this construction to provide a complete

embedding of first-order intuitionistic predicate logic with second-order propositional quantifiers into

the system I0 of Barendregt, Bunder and Dekkers, which gives a partial answer to a question posed

by these authors.

This paper is a revised version of [Cza13] which appeared in the Journal of Symbolic Logic, vol. 78,
issue 3, pp. 837-872. An error in Section 5 and some minor mistakes in Section 4 are corrected. Also,
the construction in Section 4 is slightly simplified. © 2013 by the Association for Symbolic Logic.

1 Introduction

Illative systems of combinatory logic or lambda-calculus consist of type-free combinatory logic or lambda-
calculus extended with additional constants intended to represent logical notions. In fact, early systems
of combinatory logic and lambda calculus (by Schönfinkel, Curry and Church) were meant as very simple
foundations for logic and mathematics. However, the Kleene-Rosser and Curry paradoxes led to this work
being abandoned by most logicians.
It has proven surprisingly difficult to formulate and show consistent illative systems strong enough

to interpret traditional logic. This was accomplished in [BBD93], [DBB98a] and [DBB98b], where sev-
eral systems were shown complete for the universal-implicational fragment of first-order intuitionistic
predicate logic.
The difficulty in proving consistency of illative systems in essence stems from the fact that, lacking

a type regime, arbitrary recursive definitions involving logical operators may be formulated, including
negative ones. In early systems containing an unrestricted implication introduction rule this was the
reason for the Curry’s paradox [BBD93, CFC58, §8A], where an arbitrary term X is derived using a
term Y satisfying Y =β Y ⊃ X . For an overview of and introduction to illative combinatory logic see
[BBD93], [Sel09] or [CFC58].
Systems of illative combinatory logic are very close to Pure Type Systems. The rules of illative

systems, however, have fewer restrictions, judgements have the form Γ ⊢ t where t is an arbitrary term
instead of Γ ⊢ N : C. This connection has been explored in [BD05] where some illative-like systems were
proven equivalent to more liberal variants of PTSs from [BD01]. Those illative systems, however, differ
somewhat from what is in the literature.
In [Cza11] an algebraic treatment of a combination of classical first-order logic with type-free com-

binatory logic was given. On the face of it, the system of [Cza11] seems to be not quite like traditional
illative combinatory logic, but the methods used in the present paper are a (substantial) extension of
those from [Cza11].
In this work we construct a model for a system of classical higher-order illative combinatory logic Icω ,

thus establishing a strong consistency result. We also use a variant of this construction to improve
slightly on the results of [BBD93]. We show a complete embedding of the system PRED20 of first-order
intuitionistic many-sorted predicate logic with second-order propositional quantifiers into the system I0
which is an extension of IΞ from [BBD93].
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To be more precise, we define a translation ⌈−⌉ from the language of PRED20 to the language of I0,
and a mapping Γ from sets of formulas of PRED20 to sets of terms of I0. The embedding is proven to
satisfy the following for any formula ϕ of PRED20 and any set of formulas ∆ of PRED20:

∆ ⊢PRED20 ϕ iff ⌈∆⌉,Γ(∆, ϕ) ⊢I0
⌈ϕ⌉

where ∆, ϕ stands for ∆∪{ϕ}. The implication from left to right is termed soundness of the embedding,
from right to left – completeness.
Our methods are quite different from those of [BBD93], where an entirely syntactic approach is

adopted. We define a Kripke semantics for illative systems and prove it sound and complete1. Given a
Kripke model N for PRED20 we show how to construct an illative Kripke model M for I0 such that
exactly the translations of statements true in a state of N are true in the corresponding state of M.
This immediately implies completeness of the embedding.
The model constructions for I0 and I

c
ω are similar, but the latter is much more intricate. The basic

idea is to define for each ordinal α a relation ❀α between terms and so called “canonical terms”. To
every canonical term we associate a unique type. In a sense, the set of all canonical terms of a given
type fully describes this type. Intuitively, t ❀α ρ holds if ρ is a “canonical” representant of t in the
type of ρ. This relation encompasses a definition of truth when ρ ∈ {⊤,⊥}. Essentially, ❀α is defined
by transfinite induction in a monotonous way. We show that there must exist some ordinal ζ such that
❀α=❀ζ for α > ζ. We use the relation ❀ζ to define our model. Then it remains to prove that what
we obtain really is the kind of model we expect, which is the hard part.

2 Preliminaries

In this section we define the system PRED20 of first-order many-sorted intuitionistic predicate logic with
second-order propositional quantifiers, together with its (simplified) Kripke semantics. We also briefly
recapitulate the definition of full models for a system of classical higher-order logic PREDωc.

Definition 2.1. The system PREDω of higher-order intutionistic logic is defined as follows.

• The types are given by
T ::= o | B | T → T

where B is a specific finite set of base types. The type o is the type of propositions.

• The set of terms of PREDω of type τ , denoted Tτ , is defined by the following grammar, where for
each type τ the set Vτ is a countable set of variables and Στ is a countable set of constants.

Tτ ::= Vτ | Στ | Tσ→τ · Tσ for σ ∈ T | λVτ1 .Tτ2 if τ = τ1 → τ2

To ::= Vo | Σo | Tτ→o · Tτ for τ ∈ T | To ⊃ To | ∀Vτ .To for τ ∈ T

Terms of type o are called formulas.

• We identify α-equivalent formulas, i.e., formulas differing only in the names of bound variables are
considered identical.

• Every variable x has an associated unique type, i.e., there is exactly one τ such that x ∈ Vτ . We
sometimes use the notation xτ for a variable such that xτ ∈ Vτ .

• The system PREDω is given by the following rules and an axiom, where∆ is a finite set of formulas,
ϕ, ψ are formulas. The notation ∆, ϕ is a shorthand for ∆ ∪ {ϕ}.

Axiom

∆, ϕ ⊢ ϕ

Rules

1In fact, for completeness of the embedding the easier soundness of the semantics would suffice, i.e., the completeness
of the semantics is not necessary for the main results of this paper.
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⊃i:
∆, ϕ ⊢ ψ

∆ ⊢ ϕ ⊃ ψ
⊃e:

∆ ⊢ ϕ ⊃ ψ ∆ ⊢ ϕ

∆ ⊢ ψ

∀i :
∆ ⊢ ϕ

∆ ⊢ ∀xτ .ϕ
xτ /∈ FV (∆) ∀e :

∆ ⊢ ∀xτ .ϕ

∆ ⊢ ϕ[xτ/t]
t ∈ Tτ

conv :
∆ ⊢ ϕ ϕ =βη ψ

∆ ⊢ ψ

The classical variant PREDωc is defined by adding to PREDω the law of double negation as an axiom

∆ ⊢ ((ϕ ⊃ ⊥) ⊃ ⊥) ⊃ ϕ

where ⊥ ≡ ∀xo.xo and xo ∈ Vo.
The system PRED20 is the fragment of second-order many-sorted predicate calculus restricted to for-

mulas in which second-order quantifiers are only propositional. It is obtained from PREDω by dropping
the rule conv, restricting the types to

T ::= o | B | B → T

and changing the definition of terms to

Tτ ::= Vτ | Στ | Tσ→τ · Tσ for all τ ∈ T , σ ∈ B

To ::= Vo | Σo | Tσ→o · Tσ | To ⊃ To | ∀Vτ .To for τ ∈ B ∪ {o}, σ ∈ B

For an arbitrary set ∆ we write ∆ ⊢S ϕ if ϕ is derivable from a subset of ∆ in system S. We drop
the subscript when obvious or irrelevant. Note that we trivially have weakening with this definition, i.e.,
if ∆ ⊢ ϕ then ∆′ ⊢ ϕ for any ∆′ ⊇ ∆.
In the rest of this section we assume a fixed set of base types and fixed sets of constants Στ for each

type τ ∈ T . We assume T , Tτ , etc. to refer either to PREDω or PRED20, depending on the context.
The systems contain only ⊃ and ∀ as logical operators. However, it is well-known that all other

connectives may be defined from these with the help of the second-order propositional universal quantifier.
We denote by t[x/t′] a term obtained from t by simultaneously substituting all free occurences of x

with t′.

Definition 2.2. A full model for PREDωc is a pair

M = 〈{Dτ | τ ∈ T }, I〉

where each Dτ is a nonempty set for τ ∈ B, Do = {⊤,⊥}, each Dτ1→τ2 is the set of all functions from
Dτ1 to Dτ2 , and I is a function mapping constants of type τ to Dτ . The interpretation function JK and
the satisfaction relation |= are defined in the standard way. It is well-known and easy to show that
∆ ⊢PREDωc ϕ implies ∆ |= ϕ.

The rest of this section is devoted to introducing a simplified variant of Kripke semantics for PRED20
and proving it sound and complete. The development is mostly but not completely standard.

Definition 2.3. A Kripke pre-model of PRED20 is a tuple

M = 〈S,≤, {Dτ | τ ∈ T }, ·, I, ς〉

where S is a set of states, ≤ is a partial order on S, the set Dτ is the domain for type τ , the function
· is a binary application operation, I is an interpretation of constants, and ς is a function assigning
upward-closed (w.r.t. ≤) subsets of S to elements of Do. A set X ⊆ S is upward-closed w.r.t. ≤ when
for all s1, s2 ∈ S, if s1 ∈ X and s1 ≤ s2, then s2 ∈ X as well. We sometimes write ςM, SM, etc., to
stress that they are components ofM. Furthermore, the following conditions are imposed on a Kripke
pre-model:
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• Dτ is nonempty for any τ ,

• for any d1 ∈ Dτ1→τ2 and d2 ∈ Dτ1 we have d1 · d2 ∈ Dτ2 ,

• I(c) ∈ Dτ for any c ∈ Στ .

A valuation is a function that, for all types τ , maps Vτ into Dτ . When we want to stress that a
valuation is associated with a structureM, we call it anM-valuation. If u is a valuation, d ∈ Dτ and
xτ is a variable of type τ , then by u[xτ/d] we denote a valuation u

′ such that u′(y) = u(y) for y 6= xτ
and u(xτ ) = d. For a given structure M and an M-valuation u, an interpretation JKuM (sometimes
abbreviated by JK) is a function mapping terms of type τ to Dτ , and satisfying the following:

• JxKu = u(x) for a variable x,

• JcKu = I(c) for c ∈ Στ ,

• Jt1t2K
u = Jt1K

u · Jt2Ku.

For a formula ϕ, a state s and a valuation u we write s, u 
M ϕ if s ∈ ς(JϕKuM). Given a set of
formulas ∆, we use the notation s, u 
M ∆ if s, u 
M ϕ for all ϕ ∈ ∆. We drop the subscriptM when
obvious or irrelevant.
A Kripke model is a Kripke pre-modelM satisfying the following for any state s and any valuation u:

• s, u 
 ϕ ⊃ ψ iff for all s′ ≥ s such that s′, u 
 ϕ we have s′, u 
 ψ,

• s, u 
 ∀xτ .ϕ for xτ ∈ Vτ iff for all s
′ ≥ s and all d ∈ Dτ we have s

′, u[xτ/d] 
 ϕ,

• s, u 1 ∀p.p for p ∈ Vo.

We write∆ 
 ϕ if for every Kripke modelM, every state s ofM, and every valuation u, the condition
s, u 
M ∆ implies s, u 
M ϕ.

Remark 2.4. What we call Kripke semantics is in fact a somewhat simplified version of the usual notion.
It is not much more than a reformulation of the inference rules. There are no conditions for connectives
other than ∀ and ⊃, so for instance with our definition s, u 
 ϕ ∨ ψ need not imply s, u 
 ϕ or s, u 
 ψ,
where ϕ ∨ ψ is defined in the standard way as ∀xo.(ϕ ⊃ xo) ⊃ (ψ ⊃ xo) ⊃ xo. We also assume constant
domains.2 The resulting notion of a model is quite syntactic, which allows us to simplify the usual
completeness proof considerably.
Another peculiarity is the presence of the function ς . It may seem superfluous, but it is necessary

in the Kripke semantics for illative systems in Section 3 where we do not know a priori which terms
represent propositions. For the sake of uniformity we already introduce it here.

Lemma 2.5. IfM is a Kripke model, x ∈ Vτ , t0 ∈ Tτ , t ∈ Tτ ′ and τ ′ 6= o, then:

Jt[x/t0]K
u
M = JtKu

′

M

where we use the notation u′ for u[x/Jt0K
u].

Proof. Straightforward induction on the size of t.

Lemma 2.6. IfM is a Kripke model, x ∈ Vτ , t ∈ Tτ , ϕ ∈ To and u′ = u[x/JtKu], then for all states s:

s, u 
 ϕ[x/t] iff s, u′ 
 ϕ

Proof. We proceed by induction on the size of ϕ. If ϕ is a constant, a variable, or ϕ = t1t2, then the
claim follows from Lemma 2.5.
Assume ϕ = ϕ1 ⊃ ϕ2. Suppose s, u 
 ϕ1[x/t] ⊃ ϕ2[x/t] and let s

′ ≥ s be such that s′, u′ 
 ϕ1. By
the IH we have s′, u 
 ϕ1[x/t], hence s

′, u 
 ϕ2[x/t]. Applying the IH again we obtain s
′, u′ 
 ϕ2. This

implies that s, u′ 
 ϕ. The other direction is analogous.
Assume ϕ = ∀y.ϕ0. Without loss of generality y 6= x and y /∈ FV (t). Suppose s, u 
 ∀y.ϕ0[x/t], and

let s′ ≥ s and d ∈ Dτ . We have s
′, u[y/d] 
 ϕ0[x/t]. By the IH we obtain s

′, u′[y/d] 
 ϕ0. This implies
s, u′ 
 ∀y.ϕ0. The other direction is analogous.

2A reader concerned by this is invited to invent an infinite Kripke model (as defined in Definition 2.3) falsifying the
Grzegorczyk’s scheme ∀x(ψ ∨ ϕ(x)) ⊃ ψ ∨ ∀xϕ(x). This scheme is not intuitionistically valid, but holds in all models with
constant domains, in the usual semantics.
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Theorem 2.7. The conditions ∆ 
 ϕ and ∆ ⊢ ϕ are equivalent.

Proof. By induction on the length of derivation we first show that ∆ ⊢ ϕ implies ∆ 
 ϕ. Note that it
suffices to show this for finite ∆. The implication is obvious for the axiom. Assume ∆ ⊢ ϕ was obtained
by rule ∀i. Then ϕ = ∀x.ψ for x ∈ Vτ , x /∈ FV (∆). Let M, s, u be such that s, u 
M ∆. Hence for
all s′ ≥ s we have s′, u 
M ∆, and s′, u[x/d] 
M ∆ for any d ∈ Dτ because x /∈ FV (∆). So by the
inductive hypothesis we obtain s′, u[x/d] 
M ψ for any d ∈ Dτ . By the definition of a Kripke model,
this implies s, u 
M ∀x.ψ. The remaining cases are equally straightforward. Lemma 2.6 is needed for
the rule ∀e.
To prove the other direction, we assume that ∆0 0 ϕ0 and construct a Kripke model M and a

valuation u such that for some state s ofM we have s, u 
M ∆0, but s, u 1M ϕ0.
First, without loss of generality, we assume that there are infinitely many variables not occuring in

the formulas of ∆0. We can do this because extending the language with infinitely many new variables
is conservative. The states of M are consistent sets of formulas ∆′ ⊇ ∆0, i.e., ∆

′ 6⊢ ⊥, which differ
from ∆0 by only finitely many formulas. The ordering is by inclusion. For any type τ as Dτ we take
the set of terms of type τ . Let v be a valuation. Given a term t, we denote by tv a term obtained
from t by simultaneously substituting any variable x ∈ FV (t) by the term v(x). We obviously assume
that no variables are captured in these substitutions, which is possible because we treat formulas up to
α-equivalence. We define the interpretation I by I(c) = c. We also set t1 · t2 = t1t2. Notice that now
JtKv = tv. Further, we define the function ς of M as follows: ς(ϕ) = {∆ | ∆ ⊢ ϕ} for a formula ϕ,
where ∆ ranges over sets of formulas which are valid states. Note that ∆, v 
M ϕ is now equivalent to
∆ ⊢ ϕv. Finally, we set u(x) = x.
Given a formula φ, a state ∆, and a valuation v, we show by induction on the size of φ that ∆, v 
M φ

satisfies the conditions required for a Kripke model. If φ = ϕ ⊃ ψ, then we need to check that
∆ ⊢ ϕv ⊃ ψv iff for all ∆′ ⊇ ∆ such that ∆′ is a valid state and ∆′ ⊢ ϕv, we have ∆′ ⊢ ψv. Sup-
pose the right side holds and take ∆′ = ∆ ∪ {ϕv}. If ∆′ is a valid state then ∆′ ⊢ ψv, hence by rule ⊃i

we obtain ∆ ⊢ ϕv ⊃ ψv. Because ∆ extends ∆0 by finitely many formulas, so does ∆
′. Hence if ∆′ is

not a valid state, then it is inconsistent. Then obviously ∆′ ⊢ ψv anyway, so we again obtain the left
side by applying rule ⊃i. The other direction follows by applying ⊃e and weakening finitely many times.
Similarly, if ψ = ∀x.ϕ, then without loss of generality we assume v(x) = x, x ∈ Vτ , and check that

∆ ⊢ ∀x.ϕv iff for all valid states ∆′ ⊇ ∆ and all t1 ∈ Dτ we have ∆
′ ⊢ ϕv′

where v′ = v[x/t1]. If the
right side of the equivalence holds, then it holds in particular for t1 = y such that y /∈ FV (∆, ϕv), and
∆′ = ∆. Such y exists, because we have assumed an infinite number of variables not occuring in the
formulas of ∆o, and ∆ extends ∆o by only finitely many formulas. By rule ∀i we obtain ∆ ⊢ ∀yϕv,
which is α-equivalent to the left side, and we treat α-equivalent formulas as identical. Conversely, if
∆ ⊢ ∀x.ϕv, then by rule ∀e and weakening we obtain ∆′ ⊢ ϕv[x/t1]. This is equivalent to ∆

′ ⊢ ϕv′

where
v′ = v[x/t1].
It is now a matter of routine to check thatM is a Kripke model. Obviously, in this model we have

∆0, u 1 ϕ0, i.e., ∆0 /∈ Jϕ0K
u = ς(ϕ0), because ∆0 0 ϕ0. On the other hand, ∆0, u 
 ψ for every ψ ∈ ∆0.

This proves the theorem.

3 Illative systems

In this section we define the higher-order illative systems Iω, Icω and the second-order illative system I0.
We also define a semantics for these systems.

Definition 3.1. By T(Σ) we denote the set of type-free lambda-terms over some specific set Σ of
primitive constants, which is assumed to contain Ξ, L and Aτ for each τ ∈ B where B is some specific
set of base types.
We use the following abbreviations. The term ⊃ is usually written in infix notation and is assumed
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to be right-associative.

I = λx.x

S = λxyz.xz(yz)

K = λxy.x

H = λx.L(Kx)

⊃ = λxy.Ξ(Kx)(Ky)

F = λxyf.Ξx (λz.y (fz))

The constant Ξ functions as a restricted quantification operator, i.e., ΞAB is intuitively interpreted as
∀x.Ax ⊃ Bx. The intended interpretation of LA is “A is a type”, or “Amay be a range of quantification”.
The term H stands for the “type” of propositions, and FAB denotes the “type” of functions from A
to B. The constants Aτ denote base types, i.e., different sorts of individuals. We use a notion of types
informally in this section.
For systems of illative combinatory logic, judgements have the form Γ ⊢ t where Γ is a finite subset

of T(Σ) and t ∈ T(Σ). The notation Γ, t is an abbreviation for Γ ∪ {t}.

The system Iω is defined by the following axioms and rules.

Axioms

(1) Γ, t ⊢ t

(2) Γ ⊢ LH

(3) Γ ⊢ LAτ for τ ∈ B

Rules

Eq :
Γ ⊢ t1 t1 =βη t2

Γ ⊢ t2
Hi :

Γ ⊢ t

Γ ⊢ Ht

Ξe :
Γ ⊢ Ξt1t2 Γ ⊢ t1t3

Γ ⊢ t2t3

Ξi :
Γ, t1x ⊢ t2x Γ ⊢ Lt1

Γ ⊢ Ξt1t2
x /∈ FV (Γ, t1, t2)

ΞH :
Γ, t1x ⊢ H(t2x) Γ ⊢ Lt1

Γ ⊢ H(Ξt1t2)
x /∈ FV (Γ, t1, t2)

FL :
Γ, t1x ⊢ Lt2 Γ ⊢ Lt1

Γ ⊢ L(Ft1t2)
x /∈ FV (Γ, t1, t2)

The system Icω is Iω plus the axiom of double negation:

Γ ⊢ ΞH (λx. ((x ⊃ ⊥) ⊃ ⊥) ⊃ x)

where ⊥ = ΞHI.3

The system I0 is Iω minus the rule FL. The rule FL allows us to quantify over functions and
predicates. Obviously, the system becomes more useful if for τ ∈ B we can add constants c representing
some elements of type τ , axioms Aτc, and some axioms of the form e.g. p(fc1)(gc2) where f , g are
constants representing functions and p is a predicate constant (i.e. of type τ1 → τ2 → o). That most
such simple extensions are consistent with Iω is a consequence of the model construction in Section 4.

3Note that here the symbol ⊥ is an abbreviation for a term in the syntax of Iω , which is distinct from previous uses
of ⊥.
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For an arbitrary set Γ, we write Γ ⊢I t if there is a finite subset Γ′ ⊆ Γ and a derivation of Γ′ ⊢ t in
an illative system I. The subscript is dropped when obvious from the context.

Lemma 3.2. The following rules are admissible in Iω and I0.

Pe :
Γ ⊢ t1 ⊃ t2 Γ ⊢ t1

Γ ⊢ t2
Pi :

Γ, t1 ⊢ t2 Γ ⊢ Ht1

Γ ⊢ t1 ⊃ t2

PH :
Γ, t1 ⊢ Ht2 Γ ⊢ Ht1

Γ ⊢ H(t1 ⊃ t2)
Weak :

Γ ⊢ t

Γ, t′ ⊢ t

Proof. Routine.

Definition 3.3. A combinatory algebra C is a tuple 〈C, ·, S,K〉, where · is a binary operation in C and
S,K ∈ C, such that for any X,Y, Z ∈ C we have:

• S ·X · Y · Z = (X · Z) · (Y · Z),

• K ·X · Y = X .

To save on notation we often write X ∈ C instead of X ∈ C. We assume · associates to the left, and
sometimes omit it.
A combinatory algebra is extensional if for any M1,M2 ∈ C, whenever for all X ∈ C we have

M1X =M2X , then we also have M1 =M2.
It is well-known that any combinatory algebra contains a fixed-point combinator and satisfies the

principle of combinatory abstraction, so any equation of the form z · x = Φ(z, x), where Φ(z, x) is an
expression involving the variables z, x and some elements of C, has a solution for z satifying this equation
for arbitrary x.

Definition 3.4. An illative Kripke pre-model for an illative system I (I ∈ {Iω, Icω, I0}) with primitive
constants Σ, is a tuple 〈S,≤, C, I, ς〉, where S is a set of states, ≤ is a partial order on the states, C is
an extensional combinatory algebra, I : Σ → C is an interpretation of primitive constants, and ς is a
function assigning upward-closed (w.r.t. ≤) subsets of S to elements of C. We sometimes write σM, SM,
etc., to stress that they are components ofM.
Given an illative Kripke pre-modelM, the value JtKuM of term t under valuation u, which is a function

from variables to C, is defined inductively:

• JxKu = u(x) for a variable x,

• JcKu = I(c) for a constant c,

• Jt1t2K
u = Jt1K

u · Jt2K
u,

• Jλx.tKu is the element d ∈ C satisfying d · d′ = JtKu
′

for any d′ ∈ C, where u′ = u[x/d′].

Note that the element in the last point is uniquely defined because of extensionality and combinatorial
completeness of C.
To save on notation, we often confuse Ξ, L, etc. with JΞKuM, JLKuM, etc. The intended meaning is

always clear from the context. The subscriptM is also often dropped.
Intuitively, for X ∈ C the set ς(X) is the set of all states s such that the element X is true in s. The

relation ≤ on states is analogous to an accessibility relation in a Kripke frame.
An illative Kripke model for Iω is an illative Kripke pre-model where ς satisfies the following conditions

for any X,Y ∈ C:

(1) if s ∈ ς(LX) and for all s′ ≥ s and all Z ∈ C such that s′ ∈ ς(XZ) we have s′ ∈ ς(Y Z), then
s ∈ ς(ΞXY ),

(2) if s ∈ ς(ΞXY ) then for all Z ∈ C such that s ∈ ς(XZ) we have s ∈ ς(Y Z),

(3) if s ∈ ς(LX) and for all s′ ≥ s and all Z ∈ C such that s′ ∈ ς(XZ) we have s′ ∈ ς(H(Y Z)), then
s ∈ ς(H(ΞXY )),

7



(4) if s ∈ ς(LX) and for all s′ ≥ s such that s′ ∈ ς(XZ) for some Z ∈ C, we have s′ ∈ ς(LY ), then
s ∈ ς(L(FXY )),

(5) if s ∈ ς(X) then s ∈ ς(HX),

(6) s ∈ ς(LH),

(7) s ∈ ς(LAτ ) for τ ∈ B.

An illative Kripke model for I0 is defined analogously, but omitting condition (4). A model is a classical
illative model if it satisfies the law of double negation: if s ∈ ς(HX) and s ∈ ς((X ⊃ ⊥) ⊃ ⊥) then
s ∈ ς(X), where ⊥ = ΞHI. It is not difficult to see that every one-state illative Kripke model is a
classical illative model. For a classical illative model with a single state s we define the set T of true
elements by T = {X ∈ C | s ∈ ς(X)}. Note that ς(X) may be empty.
For a term t and a valuation u, we write s, u 
M t whenever s ∈ ς(JtKuM). For a set of terms Γ, we

write Γ 
I t if for all Kripke models M of an illative system I, all states s ofM, and all valuations u
such that s, u 
M t′ for all t′ ∈ Γ, we have s, u 
M t. Note that s, u 
M t implies s′, u 
M t for s′ ≥ s,
because ς(X) is always an upward-closed subset of S, for any argument X .

Informally, one may think of illative Kripke models as combinatory algebras with an added structure
of a Kripke frame.

Fact 3.5. In any illative Kripke model the following conditions are satisfied:

(1) if s ∈ ς(HX) and for all s′ ≥ s such that s′ ∈ ς(X) we have s′ ∈ ς(Y ), then s ∈ ς(X ⊃ Y ),

(2) if s ∈ ς(X ⊃ Y ) then s ∈ ς(X) implies s ∈ ς(Y ),

(3) if s ∈ ς(HX) and for all s′ ≥ s such that s′ ∈ ς(X) we have s′ ∈ ς(HY ), then s ∈ ς(H(X ⊃ Y )).

Theorem 3.6. The conditions Γ 
I t and Γ ⊢I t are equivalent, where I = Iω or I = I0.

Proof. We first check that Γ ⊢I t implies Γ 
I t, by a simple induction on the length of derivation. It
suffices to prove this for finite Γ. The implication is immediate for the axioms. Now assume Γ ⊢ t2t
was obtained by rule Ξe, and we have s, u 
M Γ. Hence, by the inductive hypothesis s, u 
M Ξt1t2
and s, u 
M t1t, which by condition (2) in Definition 3.4 implies s, u 
M t2t. Assume Γ ⊢ Ξt1t2 was
obtained by rule Ξi, and that s, u 
M Γ. Let s′ ≥ s and Z ∈ C be such that s′ ∈ ς(Jt1KuM · Z). We
therefore have s′, u′ 
M Γ, t1x, where u

′ = u[x/Z] and x /∈ FV (Γ, t1, t2). So by the inductive hypothesis
we obtain s′, u′ 
M t2x. Because x /∈ FV (t2), this is equivalent to s

′ ∈ ς(Jt2K
u
M · Z). The inductive

hypothesis implies also that s ∈ ς(L · Jt1KuM). We therefore obtain by condition (1) in Definition 3.4 that
s, u 
M Ξt1t2. The other cases are equally straightforward and we leave them to the reader. In the case
of rule Eq the extensionality of C is needed.
To prove the other direction, we assume Γ0 0I t0, and construct an illative Kripke modelM and a

valuation u such that for some state s ofM we have s, u 
M Γ0, but s, u 1M t0.
We construct the model as follows. First of all, we assume without loss of generality that there are

infinitely many variables not occuring in Γ0. As states we take all sets of terms Γ
′ ⊇ Γ0 which extend Γ0

by only finitely many formulas. The ordering is by inclusion. The combinatory algebra C is the set of
equivalence classes of βη-equality on T(Σ). We denote the equivalence class of a term t by [t]βη. We
define I(c) = [c]βη for c ∈ Σ. The function ς is defined by the condition: Γ ∈ ς([t]βη) iff Γ ⊢I t and Γ
is a valid state. This is well-defined because of βη-equality in rule Eq. The valuation u is defined by
u(x) = [x]βη. Note that JtKuM = [t]βη.
We now show that this is an illative Kripke model. We only need to check the conditions on ς . It

is obvious that ς(X) is upward-closed for any X ∈ C because of weakening. Assume that Γ ⊢ Lt1, and
for all Γ′ ⊇ Γ and all terms t3 such that Γ

′ ⊢ t1t3 we have Γ′ ⊢ t2t3. Then, in particular, this holds for
Γ′ = Γ ∪ {t1x} and t3 = x, where x is a variable, x /∈ FV (Γ, t1, t2). Such a variable x exists because Γ
differs from Γ0 by only finitely many formulas, and there are infinitely many variables not occuring in
the formulas of Γ0. Therefore, by rule Ξi we have Γ ⊢ Ξt1t2, hence Γ ∈ ς([Ξt1t2]βη). This verifies
condition (1). Conditions (2), (3), (4) and (5) are verified in a similar manner, using rules Ξe, ΞH , FL

and Hi, respectively. Condition (6) is immediate from the axiom Γ ⊢ LH . Condition (7) follows from
the axioms Γ ⊢ LAτ for τ ∈ B.
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It is obvious that Γ0, u 1M t0, i.e., Γ0 /∈ ς([t0]βη), because Γ0 0I t0. Clearly, we also have Γ0, u 
M t
for all t ∈ Γ0. This proves the theorem.

Remark 3.7. Note one subtlety here. The above theorem does not imply that I0 or Iω is consistent.
This is because we allow trivial Kripke models, i.e., ones such that ς(X) = S for any X ∈ C, and it is
not obvious that nontrivial ones exist. Indeed, if we dropped the restriction s ∈ ς(LX) in condition (1)
in Definition 3.4, then all illative Kripke models would be trivial. To see this, let X ∈ C and s ∈ S be
arbitrary and consider the element Υ ∈ C defined by the equation Υ = Υ ⊃ X . Note that dropping
s ∈ ς(LX) in condition (1) in Definition 3.4 means dropping s ∈ ς(HX) in condition (1) in Fact 3.5.
For any s′ ≥ s we obviously have s′ ∈ ς(Υ ⊃ X) whenever s′ ∈ ς(Υ). By condition (2) in Fact 3.5 we
conclude that s′ ∈ ς(X) whenever s′ ∈ ς(Υ). Therefore, by condition (1) in Fact 3.5, we have s ∈ ς(Υ).
Hence, s ∈ ς(Υ ⊃ X) as well, so again s ∈ ς(X). Thus ς(X) = S. This argument is essentially Curry’s
paradox.

For convenience of reference we state the following simple fact about one-state classical illative models
for Icω , as we will be constructing such a model in the next section. Recall that for a classical illative
model with a single state s, the set T of true elements is defined by T = {X ∈ C | s ∈ ς(X)}.

Fact 3.8. For a one-state classical illative model for Icω the conditions on ς may be reformulated as
follows:

(1) if LX ∈ T and for all Z ∈ C such that XZ ∈ T we have Y Z ∈ T , then ΞXY ∈ T ,

(2) if ΞXY ∈ T then for all Z ∈ C such that XZ ∈ T we have Y Z ∈ T ,

(3) if LX ∈ T and for all Z ∈ C such that XZ ∈ T we have H(Y Z) ∈ T , then H(ΞXY ) ∈ T ,

(4) if LX ∈ T , and either LY ∈ T or there is no Z ∈ C such that XZ ∈ T , then L(FXY ) ∈ T ,

(5) if X ∈ T then HX ∈ T ,

(6) LH ∈ T ,

(7) LAτ ∈ T for τ ∈ B.

4 The model construction

In this section we construct a model for Icω. The construction is parametrized by a full model for classical
higher-order logic.

4.1 Definitions

In this subsection we give definitions necessary for the construction and fix some notational conventions.

Definition 4.1.1. We define the set of types T + by the following grammar:

T + ::= T1 | ω | ε

T1 ::= T | T1 → T1 | ω → T1

T ::= o | B | T → T

where B is a specific finite set of base types. Intuitively, the type o is the type of propositions, ω is the
type of arbitrary objects, ε is the empty type.
For the sake of simplicity we use the following notational convention: we sometimes write τ → ε for

ε when τ 6= ε, ε→ τ for ω, and τ → ω for ω. There is never any ambiguity because τ → ε etc. are not
valid types according to the grammar for T +. This convention is only to shorten some statements later
on. We also use the abbreviation τn1 → τ2 for τ1 → . . . → τ1 → τ2 where τ1 occurs n times (possibly
n = 0). ✷
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From now on we fix a full model N = 〈{Dτ | τ ∈ T }, I〉 of classical higher-order logic and construct a
one-state classical illative modelM for Icω. We assume that T ⊂ T

+ defined above corresponds exactly
to the types of N , and that the base types B correspond exactly to the base types used in the definition
of the syntax of Icω.
We will define the universe of the model as the set of equivalence classes of a certain relation on the

set of type-free lambda-terms over a set Σ+ of primitive constants, to be defined below. We assume
these terms to be different objects than the terms of the syntax of Icω. We also treat lambda-terms up
to α-equivalence, i.e., terms differing only in the names of bound variables are considered identical.

Definition 4.1.2. We define a set of primitive constants Σ+, and a set of canonical terms as follows.
First, for every type τ 6= ω we define by induction on the size of τ a set of canonical terms of type τ ,
denoted by Tτ . We also define a set of constants Στ for every type τ /∈ {ω, ε} ∪ {ω → τ ′ | τ ′ ∈ T +},
i.e., we leave Στ undefined if τ is not of the form required. First, we set Tε = ∅. In the inductive step
we consider possible forms of τ . If τ ∈ T (i.e. it does not contain ω or ε) then we define Στ to contain
a unique constant for every element d ∈ Dτ . We set Tτ = Στ . If τ /∈ T , τ = τ1 → τ2 and τ1 6= ω, then
denote by Στ a set of new constants for every (set-theoretical) function from Tτ1 to Tτ2 . Again we set
Tτ = Στ . If τ = ω → τ2 then Tτ consists of all terms of the form λx.ρ where ρ ∈ Tτ2 .

4

The symbol ΣA stands for a set consisting of distinct new constants Aτ for each base type τ ∈ B.
Finally, we set Σ+ = {Ξ, L} ∪ ΣA ∪

⋃
τ Στ where the index in the sum ranges over τ /∈ {ω, ε} ∪ {ω →

τ ′ | τ ′ ∈ T +}. For the sake of uniformity, we use the notation Tω for the set of all type-free lambda
terms over Σ+. Note that terms in Tω are not necessarily canonical and all canonical terms are closed.
Note that for τ ∈ T the set Στ contains a unique constant for every element of Dτ . Hence for each

τ ∈ T there is a natural bijection from Στ onto Dτ . We denote this bijection by πτ .
We now define a mapping F such that for ρ ∈ Tτ1→τ2 we have F(ρ) : Tτ1 → Tτ2 , where τ1 → τ2 ∈ T1.

If τ1 → τ2 ∈ T then τ1, τ2 ∈ T , Tτ1 = Στ1 , and both πτ1 and πτ2 are defined. In this case we set
F(c)(c1) = π−1

τ2
(πτ1→τ2(c)(πτ1 (c1))) for c ∈ Στ1→τ2 , c1 ∈ Στ1 . If τ1 → τ2 /∈ T and τ1 6= ω then also

Tτ1→τ2 = Στ1→τ2 and by our construction to each c ∈ Στ1→τ2 corresponds a set-theoretical function fc
from Tτ1 to Tτ2 . In this case we set F(c) = fc. Finally, if ρ ∈ Tω→τ then ρ = λx.ρ′ and by F(ρ) we
denote the constant function from Tω to Tτ whose value is always ρ

′. Note that because N is assumed
to be a full model, so by our construction if τ1 → τ2 ∈ T1 and τ1 6= ω then for every set-theoretical
function f from Tτ1 to Tτ2 there exists a constant ρf ∈ Στ1→τ2 such that F(ρf ) = f .
By ⊤ ∈ Σo we denote the constant corresponding to the element ⊤ ∈ Do, by ⊥ ∈ Σo the one

corresponding to ⊥ ∈ Do. Note that Σo = {⊤,⊥}, because Do = {⊤,⊥}.
Note that if τ1, τ2 6= ω and τ1 6= τ2 then Tτ1 ∩Tτ2 = ∅. Hence every canonical term ρ may be assigned

a unique type τ 6= ω such that ρ ∈ Tτ . When talking about the canonical type, or simply the type, of a
canonical term we mean the type thus defined. ✷

An n-ary context C is a lambda-term over the set of constants Σ+∪{✷1, . . . ,✷n}, where ✷1, . . . ,✷n /∈
Σ+. The constants ✷1, . . . ,✷n are the boxes of C. If C is an n-ary context then by C[t1, . . . , tn] we
denote the term C with all occurences of ✷i replaced with ti for i = 1, . . . , n. Unless otherwise stated,
we assume that the free variables of t1, . . . , tn do not become bound in C[t1, . . . , tn]. By a context we
usually mean a unary context, unless otherwise qualified. In this case we write ✷ instead of ✷1.
In what follows α, β, etc. stand for ordinals; t, t1, t2, r, r1, r2, q, q1, q2 etc. stand for type-free

lambda-terms over Σ+ from which we build the model; c, c1, c2, etc. stand for constants from Σ+; τ ,
τ1, τ2, etc. stand for types; ρ, ρ1, ρ2 stand for canonical terms (i.e. terms ρ ∈ Tτ for τ 6= ω); and C, C′,
C1, C2, etc. denote contexts; unless otherwise qualified.
The following simple fact states some easy properties of canonical terms. It will sometimes be used

implicitly in what follows.

Fact 4.1.3. If ρ is a canonical term then:

(1) ρ ≡ λx1 . . . xn.c where n ≥ 0, c ∈ Στ for some τ (so τ 6= ω → τ1), and ρ ∈ Tωn→τ ,

(2) if ρ ≡ C[t] then either C ≡ λx1 . . . xk.✷ and t is a canonical term, or C ≡ ρ.

4Formally, terms are α-equivalence classes of certain strings, i.e., by λx.ρ we mean the α-equivalence class of the string
”λx.ρ”, so e.g. λx.ρ and λy.ρ are the same, which we denote by λx.ρ ≡ λy.ρ.
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For each ordinal α we inductively define reduction systems Rα and R̂α, a relation ∼α between terms
and types in T +, and a relation ≻α between terms and canonical terms. Formally, all these notions
are defined by one induction in a mutually recursive way, but we split up the definitions for the sake of
readability. These definitions are monotone with respect to α, so the induction closes at some ordinal,
i.e., the relations do not get larger after this ordinal.
First, let us fix some notations. We write R<α for

⋃
β<αRβ , ≻<α for

⋃
β<α ≻β , ∼<α for

⋃
β<α ∼β .

We use the notation ≡ for identity of terms up to α-equivalence. By →≤α we denote the reduction
relation of Rα, by →≡

≤α the reflexive closure of →≤α, by ։≤α the transitive reflexive closure of →≤α,
and by =≤α the transitive reflexive symmetric closure. We write [t]α for the equivalence class of a term
t w.r.t. the relation =≤α. Analogously, we use the subscript <α for relations corresponding to R<α,

and =α for relations corresponding to R̂α. We drop the subscripts when they are obvious or irrelevant.

Notation 4.1.4. In what follows a term of the form Kt should be read as λx.t where x /∈ FV (t), a term
Ht as Lλx.t where x /∈ FV (t), and Ft1t2 as λf.Ξt1(λx.t2(fx)). We adopt this convention to shorten
notations. ✷

Before embarking on the task of rigorously constructing the model we explain the intuitive meaning
of various notions formally introduced later. This is necessarily informal and at points rather vague.
Informally speaking, we identify types with sets of terms. A base type corresponds to the set of all

constants of this type, the type o to the set of all propositions, the type ω to the set of all terms, the
type ε to the empty set, and a function type τ1 → τ2 to the set of all terms t such that for all terms t1
of type τ1 the term tt1 has type τ2. It is known at the beginning of the transfinite inductive definition
exactly which terms have base types, but not so for type o or function types. During the course of the
induction new terms may obtain types. If r is a term, and α an ordinal, then by r ❀α ⊤ we mean that
at stage α in the induction, r has been shown to be “true”. If r ≡ FAτ1Aτ2t, we interpret this as saying
that, at stage α in the induction, the term t has been shown to have type τ1 → τ2. It may be that for all
β < α we may have FAτ1Aτ2t 6❀β ⊤, yet FAτ1Aτ2t ❀α ⊤. So the fact that t has type τ1 → τ2 becomes
known only at stage α of the induction. Our induction stops when no new typings may be obtained
and no new terms may become true or false, i.e., when we have all information we need to construct the
model.
Note that canonical terms may obtain types different from their canonical types. For instance, a

term of the form λx.c where c ∈ Στ will ultimately obtain the type ω and all of the types τ
′ → τ for any

type τ ′. As far as canonical terms are concerned, we mostly care about their canonical types, and it is
known beforehand what types these are.
In Rα we will have reduction rules of β- and η-reduction, and rules of the form cρ→ F(c)(ρ), where

c ∈ Στ1→τ2 and ρ ∈ Tτ1 . We will also add some other rules to make certain terms “indistinguishable”,
as explained in the paragraph below.
Intuitively, t ≻α ρ is intended to hold if ρ ∈ Tτ is a “canonical” term which is “equivalent” to t in

type τ , basing on the information we have at stage α. Let us give some examples to elucidate what we
mean by this. For instance, suppose we have two distinct (hence disjoint) base types τ1 and τ2, and
two functions Idτ1→τ1 ∈ Dτ1→τ1 and Idτ2→τ2 ∈ Dτ2→τ2 which are identities on Dτ1 and Dτ2 respectively.
In Σ+ we will have two canonical constants idτ1→τ1 and idτ2→τ2 of type τ1 → τ1 and τ2 → τ2 respectively,
associated with the functions Idτ1→τ1 and Idτ2→τ2 , i.e., such that F(idτ1→τ1) = π−1

τ1
◦ Idτ1→τ1 ◦ πτ1 and

F(idτ2→τ2) = π−1
τ2
◦ Idτ2→τ2 ◦ πτ2 . The reduction rules associated with idτ1→τ1 will be idτ1→τ1c → c for

every canonical constant c of type τ1, and analogously for idτ2→τ2 . Note that idτ1→τ1c will not form
a redex if c is a canonical constant of type different from τ1. Now we have both λx.x ≻1 idτ1→τ1 and
λx.x ≻1 idτ2→τ2 , because λx.x behaves exactly like idτ1→τ1 when given arguments of type τ1, and exactly
like idτ2→τ2 when given arguments of type τ2. In fact, we will define the reduction systems Rα so as
to make λx.x and idτ1→τ1 indistinguishable, for sufficiently large α, wherever a term of type τ1 → τ1 is
“expected”. For instance, for any reduction rule in Rα of the form ρ idτ1→τ1 → c, where ρ is a canonical
term of type (τ1 → τ1)→ τ for some τ , we will add to Rα+1 a reduction rule ρ (λx.x)→ c.
In the case ρ ∈ {⊤,⊥}, the relation t ≻α ρ encompasses a definition of truth. The condition t ≻α ⊤

means that t is certainly true, basing on the information from the earlier stages β < α of the inductive
definition. So if t ≻α ⊤ then t should behave like ⊤ wherever a truth-value is expected. If t ≻α ⊥, then
t is certainly not true.
If t 6= ρ then we never have t ≻α ρ for a canonical term ρ of some base type τ ∈ B, because no term

different from ρ behaves like ρ if the type of ρ is an atomic type different from o.
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Notation 4.1.5. We use the notation t❀α ρ when t։≤α t
′ ≻α ρ. We write ❀<α for

⋃
β<α ❀β .

Informally, t❀α ρ holds if we can reduce t, using the rules of Rα, to a term equivalent to a canonical
term ρ in the type of ρ basing on what we know at stage α of the inductive definition. A careful reader
will notice that what we ultimately really care about is the relation ❀α, not ≻α, because we want to
identify Rα-equivalent terms. The relation ≻α is needed chiefly to facilitate the proofs.
The condition t ∼α τ is intended to hold if t “represents” the type τ basing on what we know at

stage α, i.e., it is a “predicate” which is true when applied to terms of type τ , and is never true when
applied to terms which are not of type τ . In other words, Lt ❀α ⊤ and for all terms r known to be
of type τ we have tr ❀α ⊤, but we should not have tr ❀α ⊤ for any r which is not of type τ . So for
instance for each type τ ∈ B we should have Aτ ∼α τ for sufficently large α. Because ε is the empty
type, if t ∼α ε then we should never have tr ❀<α ⊤ for any term r. Since ω is the type of arbitrary
objects we should have t ∼α ω if for all terms r we have tr ❀<α ⊤.
Having explained the intuitive meaning of the relations, we may proceed to formal definitions. The

definition below depends on the definition of ≻<α, and thus on ≻β for β < α.

Definition 4.1.6. A reduction system is a set of reduction rules over a specified set of terms, i.e., a set
of pairs of terms. In all reduction systems we consider we assume the set of terms to be the type-free
lambda-terms over Σ+. Instead of writing 〈t1, t2〉 ∈ R we usually say that t1 → t2 is a reduction rule
of R. Given a reduction system R we define its associated reduction relation →R by: t1 →R t2 iff there
exists a context C with exactly one box and terms r1, r2 such that t1 ≡ C[r1], t2 ≡ C[r2] and r1 → r2 is
a rule of R. In contrast to all subsequent uses of contexts, here we allow the free variables of r1 and r2
to become bound in C[r1] or C[r2].

We define R̂α to contain the following reduction rules:

• for α = 0: rules of β- and η-reduction,

• for α > 0: rules ct → ρ2 for every c ∈ Στ1→τ2 (so τ1 6= ω), every ρ2 ∈ Tτ2 and every term t such
that t ≻<α ρ1 and F(c)(ρ1) ≡ ρ2.

We set Rα = R<α ∪ R̂α. ✷

Definition 4.1.7. The relation ∼α is defined by the following rules. Recall that τ1 → ε = ε for τ1 6= ε,
ε→ τ2 = ω, and τ1 → ω = ω.

(A) :
τ ∈ B

Aτ ∼α τ
(H) :

H ∼α o

(Kω) :
t ❀<α ⊤

Kt ∼α ω
(Kε) :

t❀<α ⊥

Kt ∼α ε

(F) :
t1 ∼<α τ1 t2 ∼<α τ2

Ft1t2 ∼α τ1 → τ2

(F′) :
t1 ∼<α τ1 λz.t2 ∼<α τ2 f, x /∈ FV (t1, t2)

λf.Ξt1(λx.t2[z/fx]) ∼α τ1 → τ2

(F′′) :
t1 ∼<α τ1 t2 ∼<α τ2 ∈ {ω, ε} f /∈ FV (t1, t2)

λf.Ξt1t2 ∼α τ1 → τ2

(Fω) :
t1 ∼<α ε

λf.Ξt1t2 ∼α ω
(Fω′) :

t1 ∼<α ε

Ξt1 ∼α ω

The above definition depends on the definitions of Rβ , ∼β and ≻β for β < α. The next definition
of ≻α depends on the definitions of Rβ and ∼β for β ≤ α, and on ≻<α.

Definition 4.1.8. We define the relation t ≻α ρ for canonical terms ρ by the following conditions:
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• ρ ≻α ρ if the canonical type of ρ is o or a base type,

• t ≻α ρ if the canonical type of ρ is τ1 → τ2 and t is a term such that for any t1 ∈ Tτ1 we have
tt1 ❀<α F(ρ)(t1). Note that we allow τ1 = ω but not τ1 = ε.

In particular, ⊤ ≻α ⊤ and ⊥ ≻α ⊥ by the above definition. For ρ ∈ {⊤,⊥} we give additional
postulates. For α ≥ 0 we postulate t ≻α ⊤ for all terms t such that at least one of the following holds:

(A⊤
τ ) t ≡ Aτ c where τ ∈ B and c ∈ Στ ,

(Ξ⊤) t ≡ Ξt1t2 where t1, t2 are terms such that there exists τ s.t. t1 ∼α τ and for all t3 ∈ Tτ we have
t2t3 ❀<α ⊤,

(L⊤) t ≡ Lt1 and t1 ∼α τ for some type τ .

Finally, when α ≥ 0 we postulate t ≻α ⊥ for all terms t such that:

(Ξ⊥) t ≡ Ξt1t2 and there exists a type τ such that:

• t1 ∼α τ , and

• for every term t3 ∈ Tτ we have t2t3 ❀<α ⊤ or t2t3 ❀<α ⊥,

• there exists a term t3 ∈ Tτ with t2t3 ❀<α ⊥.

The intuitive interpretation of Ξt1t2 is restricted quantification ∀x.t1x ⊃ t2x, but t1 is required to
represent a type, if Ξt1t2 is to have a logical value. In illative combinatory logic the notions of being
(representing) a type and being eligible to stand as a quantifier range are equivalent. It turns out that
the types of Icω are just the types defined by T

+. This explains putting t1 ∼α τ in some of the cases
above.
During the course of the transfinite inductive definition some previously untyped terms t will obtain

types, e.g. a statement of the form FAτ1Aτ2t will become true at some stage α. At that point we need
to decide which term among the canonical terms of type τ1 → τ2 behaves exactly like t. The whole
correctness proof rests on the fact that this decision is always possible. That we may choose such a
canonical term implies that quantifying over only canonical terms of a certain type τ is equivalent to
quantifying over all terms of type τ . This justifies restricting quantification to canonical terms in the
above definition of t ≻α ⊤.

Let us now give some examples illustrating the above definitions.

Example 4.1.9. Suppose we have a base type τ and Îd ∈ Dτ→τ is the identity function on Dτ . Let
Id = π−1

τ ◦ Îd ◦ πτ , i.e., Id(c) = c for any c ∈ Στ . There is a constant id ∈ Στ→τ such that F(id) = Id.
We show λx.x ≻1 id. Let c ∈ Στ = Tτ . We have (λx.x)c →<1 c, because R<1 =

⋃
n<1Rn = R0 and R0

contains the rules of β-reduction. We also have c ≻<1 c ≡ F(id)(c) by the first part of Definition 4.1.8.
Therefore (λx.x)c ❀<1 c. Since c ∈ Στ was arbitrary, we obtain λx.x ≻1 id by the second part of
Definition 4.1.8.
Now we show that λyx.x ≻2 λy.id. We have λy.id ∈ Tω→τ→τ . So let t ∈ Tω. We have (λyx.x)t→<2

λx.x. We already proved that λx.x ≻1 id. Note that F(λy.id) is the constant function from Tω to Tτ→τ

whose value is always id. This implies that (λyx.x)t ❀<2 id ≡ F(λy.id)(t) for any t ∈ Tω . Hence
λyx.x ≻2 λy.id.
Let ρ ∈ Σ((ω→τ)→τ)→τ be such that F(ρ)(f) ≡ F(f)(λy.id) for f ∈ Σ(ω→τ)→τ . As another ex-

ample we will show that λz.z(λyx.x) ≻4 ρ. So suppose f ∈ Σ(ω→τ)→τ = T(ω→τ)→τ . We have
(λz.z(λyx.x))f →<4 f(λyx.x). We proved in the previous paragraph that λyx.x ≻2 λy.id. By the second
part of Definition 4.1.6 we obtain f(λyx.x) →=3 F(f)(λy.id). Hence (λz.z(λyx.x))f ։<4 F(f)(λy.id)
for any f ∈ Σ(ω→τ)→τ . Obviously we have F(f)(λy.id) ≻0 F(f)(λy.id) by the first part of Defini-
tion 4.1.8, because the range of F(f) is included in Στ . Recalling that F(ρ)(f) ≡ F(f)(λy.id) for any
f ∈ Σ(ω→τ)→τ we obtain λz.z(λyx.x) ≻4 ρ by the second part of Definition 4.1.8.

Lemma 4.1.10. For α ≤ β we have the following inclusions: Rα ⊆ Rβ, ∼α ⊆ ∼β, and ≻α ⊆ ≻β.

Proof. Follows easily from definitions.
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It follows from Lemma 4.1.10 by appealing to the well-known Knaster-Tarski fixpoint theorem that
there exists an ordinal ζ such that ≻ζ = ≻<ζ and Rζ = R<ζ . This simple fact may also be shown directly
as follows. Suppose ζ is an ordinal with cardinality greater than (Tω ∪ {✷})4 and there is no α < ζ
such that Rα = R<α and ≻α = ≻<α. Then for each α < ζ either Rα \R<α or ≻α \ ≻<α is non-empty.
Because Rα ⊆ Tω ×Tω and ≻α⊆ Tω ×Tω, we may thus define, using the axiom of choice, an injection f
from ζ to (Tω ∪ {✷})4 (recall that in set theory an ordinal ζ is the set of all ordinals less than ζ). If
Rα \ R<α is non-empty, then let f(α) = 〈t1, t2,✷,✷〉 where 〈t1, t2〉 ∈ Rα \ R<α is chosen arbitrarily.
Analogously, if ≻α \ ≻<α is non-empty, then let f(α) = 〈✷,✷, t1, t2〉 where 〈t1, t2〉 ∈ ≻α \ ≻<α is
chosen arbitrarily. Since Rα ⊆ R<β and ≻α ⊆ ≻<β for α < β, we have f(α) 6= f(β), so f really is an
injection. But this implies that the cardinality of ζ is not greater than the cardinality of (Tω ∪ {✷})4.
Contradiction.
Let ζ be an ordinal such that Rζ = R<ζ and ≻ζ = ≻<ζ . We may assume without loss of generality

that also ∼ζ = ∼<ζ. In what follows we will use the notations R, ≻, ❀, etc. for Rζ , ≻ζ , ❀ζ , etc.

Finally, we are ready to define the modelM for Icω.

Definition 4.1.11. The one-state classical illative Kripke modelM is defined as follows. We take the
combinatory algebra C ofM to be the set of equivalence classes of =R. We define the interpretation I
ofM by I(c) = [c]R. We define the set T of true elements ofM by T = {d ∈ C | ∃t . d = [t]R ∧ t❀ ⊤}.

4.2 Correctness proof

In this subsection we prove that the preceding lengthy definition ofM is actually correct, i.e., thatM
is a classical illative Kripke model for Icω.
Below we will silently use the following simple lemma, without mentioning it explicitly every time.

Lemma 4.2.1. If λ~x.Ξt1t2 ։ λ~x.t then t ≡ Ξt′1t
′
2 where t1 ։ t′1 and t2 ։ t′2. An analogous result holds

when λ~x.Aτ t1 ։ λ~x.t for τ ∈ B, and when λ~x.Lt1 ։ λ~x.t. Here the reduction ։ may stand for any of
։≤α, ։<α, etc.

Proof. This follows from the fact that there are no reduction rules which involve Ξ, L, or Aτ for τ ∈ B,
so the reductions may happen only inside t1 and t2.

Note that together with our convention stated in Notation 4.1.4 regarding the meaning of Ht1,
Lemma 4.2.1 implies that if Ht1 ։ t then t ≡ Ht′1 where t1 ։ t′1.
The proof of the following lemma illustrates a pattern common to many of the proofs below. We give

this single proof in full, but when later an argument follows this same pattern we treat only some of the
cases to spare the reader excessive tedious details.

Lemma 4.2.2. If x1, . . . , xn are variables, n ≥ 1, and C is a context, then the following conditions hold:

(1) if t։≤α t
′ and t ≡ C[x1 . . . xn] then t′ ≡ C′[x1 . . . xn] and C[t

′′] ։≤α C
′[t′′] for any term t′′,

(2) if C[x1 . . . xn] ≻α ρ then C[t] ≻α ρ for any term t,

(3) if C[x1 . . . xn] ∼α τ then C[t] ∼α τ for any term t.

Proof. Induction on α.
First, we show (1) by induction on the length of the reduction C[x1 . . . xn] ։≤α t′. The only

interesting case is when cC[x1 . . . xn] →≤α ρ2 by virtue of C[x1 . . . xn] ≻<α ρ1. But then by part (2) of
the IH we have C[t′′] ≻<α ρ1, so cC[t

′′]→≤α ρ2.
Next we shall verify (3). If C[x1 . . . xn] ∼α τ is obtained by rule (A) or (H), then C ≡ Aτ for τ ∈ B

or C ≡ H , and the claim is obvious.
If C[x1 . . . xn] ∼α τ is obtained by rule (Kω) or (Kε) then τ ∈ {ω, ε} and C[x1 . . . xn] ❀<α c for

c ∈ {⊤,⊥}, i.e., C[x1 . . . xn] ։<α t′ ≻<α c. By part (1) of the IH we obtain t′ ≡ C′[x1 . . . xn] where
C[t] ։<α C

′[t]. Then by part (2) of the IH we have C′[t] ≻<α c. Hence C
′[t] ❀<α c, so C

′[t] ∼α τ by
rule (Kω) or (Kε).
If C[x1 . . . xn] ∼α τ is obtained by rule (Fω) then τ = ω, C ≡ λf.ΞC1C2 and C1[x1 . . . xn] ∼<α ε.

By part (3) of the IH we obtain C1[t] ∼<α ε, and thus C[t] ≡ λf.ΞC1[t]C2[t] ∼α ω by rule (Fω).
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If C[x1 . . . xn] ∼α τ is obtained by rule (Fω′) then τ = ω, C ≡ ΞC1 and C1[x1 . . . xn] ∼<α ε. By
part (3) of the IH we obtain C1[t] ∼<α ε, and thus C[t] ≡ ΞC1[t] ∼α ω by rule (Fω

′).
If C[x1 . . . xn] ∼α τ is obtained by rule (F) then τ = τ1 → τ2 and C ≡ λf.ΞC1(λx.C2(fx)) where

C1[x1 . . . xn] ∼<α τ1 and C2[x1 . . . xn] ∼<α τ2. But then by part (3) of the IH we have C1[t] ∼<α τ1 and
C2[t] ∼<α τ2, which implies C[t] ≡ λf.ΞC1[t](λx.C2[t](fx)) ∼α τ .
If C[x1 . . . xn] ∼α τ is obtained by rule (F

′) then τ = τ1 → τ2 and C ≡ λf.ΞC1(λx.C2[z/fx]) where
C1[x1 . . . xn] ∼<α τ1 and λz.C2[x1 . . . xn] ∼<α τ2. But then by part (3) of the IH we have C1[t] ∼<α τ1
and λz.C2[t] ∼<α τ2, which implies C[t] ≡ λf.ΞC1[t](λx.C2[z/fx][t] ∼α τ (recall that by our convention
regarding contexts, the free variables of t are assumed not to become bound in C[t]).
Finally, if C[x1 . . . xn] ∼α τ is obtained by rule (F′′) then τ = τ1 → τ2 and C ≡ λf.ΞC1C2 where

C1[x1 . . . xn] ∼<α τ1 and C2[x1 . . . xn] ∼<α τ2 ∈ {ω, ε}. But then by parts (1) and (3) of the IH we have
C1[t] ∼<α τ1 and C2[t] ∼<α τ2, which implies C[t] ≡ λf.ΞC1[t]C2[t] ∼α τ .
Now we check condition (2). Suppose C[x1 . . . xn] ≻α ρ for a canonical term ρ. If C[x1 . . . xn] ≡ ρ

then the claim is obvious because canonical terms are closed, so C[t] ≡ C ≡ C[x1 . . . xn] ≡ ρ. If the
canonical type of ρ is τ1 → τ2 then by definition for any t1 ∈ Tτ1 we have C[x1 . . . xn]t1 ❀<α F(ρ)(t1).
By parts (2) and (3) of the IH and by the definition of ❀<α we obtain C[t]t1 ❀<α F(ρ)(t1). Hence
C[t] ≻α ρ.
Suppose ρ ≡ ⊤. If C[x1 . . . xn] 6≻0 ⊤ then one of the conditions (A⊤

τ ), (Ξ
⊤) or (L⊤) in Definition 4.1.8

must hold. If (A⊤
τ ) holds then the claim is obvious, because C[x1 . . . xn] is closed.

If (Ξ⊤) holds then C ≡ ΞC1C2 and there exists τ such that C1[x1 . . . xn] ∼α τ and for all t′ ∈ Tτ

we have C2[x1 . . . xn]t
′
❀<α ⊤. By claim (3), which has already been verified in this inductive step, we

obtain C1[t] ∼α τ . By parts (1) and (2) of the IH we conclude that for all t
′ ∈ Tτ we have C2[t]t

′
❀<α ⊤.

Therefore C[t] = ΞC1[t]C2[t] ≻α ⊤.
If condition (L⊤) holds then C ≡ LC1 and C1[x1 . . . xn] ∼α τ for some type τ . By calim (3), which

has already been verified in this inductive step, we obtain C1[t] ∼α τ . Therefore C[t] ≻α ⊤.
It remains to verify the case C[x1 . . . xn] ≻α ⊥. Assuming C[x1 . . . xn] 6≻0 ⊥, the condition (Ξ⊥) must

hold. Then the claim again follows by applying the already verified condition (3) and parts (1) and (2)
of the inductive hypothesis.

Corollary 4.2.3. If t1 →=α t′1 and the free variables of t2 do not become bound in t1[x/t2], then
t1[x/t2]→=α t

′
1[x/t2].

Proof. If α = 0 then this is obvious. If α > 0 then assume without loss of generality that ct1 →=α ρ2 ≡ t′1
by virtue of t1 ≻<α ρ1. But then by part (2) of Lemma 4.2.2 we have t1[x/t2] ≻<α ρ1, so ct1[x/t2]→=α

ρ2 ≡ t′1[x/t2], since the canonical term ρ2 is closed.

Lemma 4.2.4. If Kt ∼α τ then τ = ω or τ = ε.

Proof. Induction on α. The non-obvious case is when Kt ≡ λf.Ξt1(λx.t2[z/fx]) ∼α τ1 → τ2 is obtained
by rule (F′), and t1 ∼<α τ1 for τ1 6= ε, and λz.t2 ∼<α τ2. But then t ≡ Ξt1(λx.t2[z/fx]) and z /∈ FV (t2).
Since Kt2 ∼<α τ2 by the inductive hypothesis we conclude τ2 = ω or τ2 = ε. In either case τ = ω or
τ = ε.

The next lemma and Lemma 4.2.12 are the two key technical lemmas justifying the correctness of
our model construction.

Lemma 4.2.5. For all ordinals α, β the following conditions hold:

(1) Rα and Rβ commute, i.e., if t ։≤α t1 and t ։≤β t2 then t1 ։≤β t′ and t2 ։≤α t′ for some
term t′,

(2) if t1 ≻α ρ and t1 ։≤β t2 then t2 ≻α ρ,

(3) if t ≻α ρ1, t ≻β ρ2 and ρ1, ρ2 ∈ Tτ then ρ1 ≡ ρ2,

(4) if t1 ∼α τ and t1 ։≤β t2 then t2 ∼α τ ,

(5) if t ∼α τ1 and t ∼β τ2 then τ1 = τ2,

(6) if t ∼α ω then tr ❀<α ⊤ for all r, and if t ∼α ε then tr ❀<α ⊥ for all r.
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Proof. Induction on pairs 〈α, β〉 ordered lexicographically. Together with every condition we show its
dual, i.e., the condition with α and β exchanged. We give proofs only for the original conditions, but it
can be easily seen that in every case the dual condition follows by exactly the same proof with α and β
exchanged. Note that for a proof of a condition to be a proof of its dual, it suffices that we never use
the inductive hypothesis with β increased.
First note that conditions (1) and (2) imply that if t1 ❀α ρ and t1 ։≤β t2, then t2 ❀α ρ. Indeed, if

t1 ։≤α t
′
1 ≻α ρ and t1 ։≤β t2, then by (1) we have t2 ։≤α t

′
2 and t

′
1 ։≤β t

′
2. Hence by (2) it follows

that t′2 ≻α ρ, so t2 ❀α ρ.

Instead of (1) we prove a stronger claim that R̂α and R̂β commute. Condition (1) follows from this
claim by a simple tiling argument, similar to the proof of the Hindley-Rosen lemma.
If α = β = 0 then the claim is obvious, because R̂0 = R0 is the ordinary λβη-calculus. We therefore

check that R0 commutes with R̂α for α > 0. We show that if t →=α t1 and t →βη t2 then there exists
t3 such that t1 →≡

βη t3 and t2 ։=α t3. The claim then follows by a simple diagram chase. First suppose
t ≡ (λx.r1)r2 →β r1[x/r2] ≡ t2 and r1 →=α r

′
1. Then by Corollary 4.2.3 we have r1[x/r2]→=α r

′
1[x/r2].

Also obviously (λx.r′1)r2 →β r
′
1[x/r2]. If t ≡ (λx.r1)r2 →β r1[x/r2] ≡ t2 and r2 →=α r

′
2 then the claim

is obvious. Suppose t ≡ λx.rx →η r where x /∈ FV (r). The only interesting case is when r ≡ c and
cx→=α ρ2 by virtue of x ≻<α ρ1. But then by part (2) of Lemma 4.2.2 we have ρ

′ ≻<α ρ1 for ρ
′ 6= ρ1

with ρ′ of the same canonical type as ρ1. This is, however, impossible by part (3) of the IH. Without
loss of generality, the only remaining case is t ≡ ct′ →=α t1 ≡ F(c)(ρ), t′ ≻<α ρ, t2 ≡ ct′2, and t

′ →βη t
′
2.

By part (2) of the IH we obtain t′2 ≻<α ρ. Therefore t2 ≡ ct′2 →=α F(c)(ρ) ≡ t1.

We now check that R̂α commutes with R̂β for α, β > 0. It suffices to show that if t →=α t1 and
t→=β t2 then there exists t3 such that t1 →≡

=β t3 and t2 →
≡
=α t3. If the redexes do not overlap then this

is obvious. Suppose they overlap at the root, i.e., t ≡ ct′, ct′ →=α t1 ≡ F(c)(ρ1) where t′ ≻<α ρ1, and
ct′ →=β t2 ≡ F(c)(ρ2) where t′ ≻<β ρ2. But then ρ1 and ρ2 are canonical terms of the same type, which
is determined by the type of c. So by part (3) of the IH we obtain ρ1 ≡ ρ2. Hence t1 ≡ t2. If the overlap
does not happen at the root, then without loss of generality t ≡ ct′, ct′ →=α t1 ≡ F(c)(ρ) where t′ ≻<α ρ,
t2 ≡ ct

′
2, and t

′ →=β t
′
2. By part (2) of the IH we obtain t

′
2 ≻<α ρ, so t2 ≡ ct

′
2 →=α F(c)(ρ) ≡ t1.

Now we shall prove (4). If t1 ≡ Aτ ∼α τ for τ ∈ B or t1 ≡ H , then the claim is obvious. If
t1 ≡ Kt′1 ∼α ω and t′1 ❀<α ⊤, then t2 = Kt′2, t

′
1 ։≤β t

′
2, and by parts (1) and (2) of the IH we have

t′2 ❀<α ⊤. Hence t2 ∼α ω. If t1 ≡ Kt′1 ∼α ε and t
′
1 ❀<α ⊥ the proof is analogous.

If t1 ∼α τ1 → τ2 follows by (F) then t1 ≡ λf.Ξt11(λx.t
2
1(fx)) where t

1
1 ∼<α τ1 and t

2
1 ∼<α τ2. Without

loss of generality, we may assume t1 →≤β t2, i.e., the reduction t1 ։≤β t2 consists of a single step. Then
t2 ≡ λf.Ξt12s with t

1
1 →

≡
≤β t12 and λx.t

2
1(fx) →

≡
≤β s. By the IH we have t

1
2 ∼<α τ1. If t

2
1 ≡ λz.s1 and

s ≡ λx.s2[z/fx] then t2 ∼α τ1 → τ2 by (F
′). It is impossible that t21(fx) is a redex with t

2
1 a constant.

Indeed, then fx ≻<β ρ for some canonical ρ. Using the definition of ≻ and noting that a term of the form
fxw1 . . . wk is not a→γ-redex for any γ because f is a variable, we may conclude that fxw1 . . . wn ≻γ ρ

′

for some γ, w1, . . . , wn and some canonical ρ
′ of type o or base type. But this contradicts the definition

of ≻γ . Therefore, the only remaining possibility is s ≡ λx.t22(fx) with t
2
1 →

≡
≤β t

2
2. By the IH we obtain

t22 ∼<α τ2. Therefore t2 ∼α τ1 → τ2 by (F).
If t1 ∼α τ1 → τ2 follows by (F

′) then t1 ≡ λf.Ξt11(λx.t
2
1[z/fx]) where t

1
1 ∼<α τ1 and λz.t

2
1 ∼<α τ2.

Without loss of generality, we may assume t1 →≤β t2, i.e., the reduction t1 ։≤β t2 consists of a single
step. By Lemma 4.2.1 we have t2 ≡ λf.Ξt12s2 where t

1
1 →

≡
≤β t

1
2 and λx.t

2
1[z/fx]→

≡
≤β s2. We show that

s2 ≡ λx.t22[z/fx] with t
2
1 ։≤β t

2
2. Suppose the contraction in λx.t

2
1[z/fx] occurs at the root. Then this

must be an η-contraction, and because x /∈ FV (t21) we have t
2
1 ≡ z. But then λz.z ∼<α τ2. By inspecting

the definition of ∼<α this is seen to be impossible. Hence the contraction does not occur at the root,
and thus it follows from Lemma 4.2.1 and Lemma 4.2.2 that s2 ≡ λx.t22[z/fx] with t

2
1 ։≤β t

2
2. By the

IH we obtain t12 ∼<α τ1 and λz.t
2
2 ∼<α τ2. Thus t2 ∼α τ1 → τ2.

If t1 ∼α τ1 → τ2 follows by (F
′′) then t1 ≡ λf.Ξt11t

2
1 with t

1
1 ∼<α τ1 and t

2
1 ∼<α τ2, with f /∈ FV (t21).

Since t21 6≡ f we have t2 ≡ λf.Ξt
1
2t

2
2 with t

1
1 ։≤β t

1
2 and t

2
1 ։≤β t

2
2. By the IH we obtain t

1
2 ∼<α τ1 and

t22 ∼<α τ2. Thus t2 ∼α τ1 → τ2.
If t1 ∼α ω follows by (Fω) then t1 ≡ λf.Ξt11t

2
1 and t

1
1 ∼<α ε. Without loss of generality we assume

t1 →≤β t2. There are two possibilities.

• t2 ≡ λf.Ξt12t
2
2 with t

1
1 ։≤β t

1
2 and t

2
1 ։≤β t

2
2. Then t

1
2 ∼<α ε by the IH, so t2 ∼α ω by (Fω).

• t2 ≡ Ξt11. Then t2 ∼α ω follows by (Fω
′).
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If t1 ∼α ω follows by (Fω
′) then t1 ≡ Ξt′1, t

′
1 ∼<α ε and t2 ≡ Ξt′2 with t

′
1 ։≤β t

′
2. Then t

′
2 ∼<α ε by

the IH. Thus t2 ∼α ω.
We show (2). If t1 ≡ ρ then t1 is in Rβ-normal form, so there is nothing to prove. If t1 6≡ ρ, t1 ≻α ρ

and t1 ։≤β t2, where ρ ∈ Tτ1→τ2 , then by definition for all ρ1 ∈ Tτ1 we have t1ρ1 ❀<α ρ2, where
ρ2 ≡ F(ρ)(ρ1). But then by parts (1) and (2) of the inductive hypothesis t2ρ1 ❀<α ρ2, so t2 ≻α ρ.
Therefore suppose t1 ≻α ⊤. When t1 ≻α ⊥ the argument is similar. If α = 0 then the claim is obvious,
because the right sides of the identities in the postulates for t1 ≻0 ⊤ are normal forms. If α > 0 then
assume t1 ։≤β t2, t1 ≡ Ξt11t

2
1 and condition (Ξ⊤) in the definition of t1 ≻α ⊤ is satisfied, i.e., there

exists τ s.t. t11 ∼α τ and for all t3 ∈ Tτ we have t
2
1t3 ❀<α ⊤. When any of the other conditions in the

definition of t1 ≻α ⊤ is satisfied instead of (Ξ⊤), then the proof is analogous. By Lemma 4.2.1 we have
t2 ≡ Ξt12t

2
2 where t

1
1 ։≤β t12 and t

2
1 ։≤β t22. By (4), which has already been verified in this inductive

step, we obtain t12 ∼α τ . It therefore suffices to check that for all t3 ∈ Tτ we have t
2
2t3 ❀<α ⊤. But for

t3 ∈ Tτ obviously t
2
1t3 ❀<α ⊤, so t

2
2t3 ❀<α ⊤ by parts (1) and (2) of the IH.

We show (6). Suppose t ∼α ω. When t ∼α ε the argument is similar. If t ∼α ω is obtained by
rule (Kω) then the claim is obvious. If t ∼α ω is obtained by (F) then t ≡ λf.Ξt1(λx.t2(fx)) with
f, x /∈ FV (t1, t2), t1 ∼<α τ1 and t2 ∼<α τ2. Because τ = ω we must have τ1 = ε or τ2 = ω. Since
tr →β Ξt1(λx.t2(rx)) it suffices to show Ξt1(λx.t2(rx)) ≻<α ⊤. If τ1 = ε then this follows from (Ξ⊤)
because Tε = ∅. So assume τ2 = ω. Let γ < α be such that t1 ∼γ τ1 and t2 ∼γ ω. Let t3 ∈ Tτ1 . By
part (6) of the IH we have (λx.t2(rx))t3 →β t2(rt3) ❀<γ ⊤. Hence Ξt1t2 ≻<α ⊤ by (Ξ⊤). If t ∼α ω is
obtained by (F′′) then the argument is analogous to the case for (F). If the derivation of t ∼α ω is by
(Fω) then t ≡ λf.Ξt1t2 with t1 ∼<α ε. Then tr →β Ξt1(t2[f/r]) ≻<α ⊤ by definition. When t ∼α ω is
obtained by (Fω′) the argument is analogous to the case for (Fω). The only other possiblity is that t ∼α ω
is obtained by rule (F′). Then t ≡ λf.Ξt1(λx.t2[z/fx]), t1 ∼<α τ1 and λz.t2 ∼<α τ2. It suffices to verify
that Ξt1(λx.(λz.t2)(rx)) ≻<α ⊤, because for t′ ≡ Ξt1(λx.t2[z/rx]) we have Ξt1(λx.(λz.t2)(rx)) →β t′

and tr →β t
′, so then t′ ≻<α ⊤ by part (2) of the IH, which implies tr ❀<α ⊤. But the argument to

show Ξt1(λx.(λz.t2)(rx)) ≻<α ⊤ is analogous to the case for (F).
We show (5). Suppose t ∼α τ1 and t ∼β τ2. If t ≡ Aτ for τ ∈ B or t ≡ H then the claim is obvious.

So suppose t 6≡ Aτ for τ ∈ B and t 6≡ H . First assume that both t ∼α τ1 and t ∼β τ2 are obtained by rule
(F′). Hence τ1 = τ11 → τ21 , τ2 = τ12 → τ22 , and t ≡ λf.Ξt1(λx.t2[z/fx]) where t1 ∼<α τ

1
1 , λz.t2 ∼<α τ

2
1 ,

t1 ∼<β τ
1
2 and λz.t2 ∼<β τ

2
2 . By the IH we obtain τ

1
1 = τ12 and τ

2
1 = τ22 . Hence τ1 = τ2. If one of t ∼α τ1

or t ∼β τ2 is obtained by (Fω) and the other by (F), (F
′) or (F′′), or one by (F) and the other by (F′),

or both are obtained by (F), etc., then the argument is similar. If one is obtained by (Kω) and the other
by (Kε), then the claim follows from parts (2) and (3) of the IH. The only other possibility is, without
loss of generality, when t ∼α τ1 is obtained by (Kω) or (Kε) and t ∼β τ2 by (F), (F′), (F′′) or (Fω).
Then t ≡ Kt′. So by Lemma 4.2.4 we have τ1, τ2 ∈ {ω, ε}. For instance, suppose τ1 = ω and τ2 = ε.
By (6) and its dual, which we have already verified in this inductive step, for all t3 we have tt3 ❀<α ⊤
and tt3 ❀<β ⊥. By parts (1) and (2) of the IH this implies the existence of t4 such that t4 ≻<α ⊤ and
t4 ≻<β ⊥, which contradicts part (3) of the IH.
It remains to verify (3). If τ ∈ B then this is obvious. Suppose τ = τ1 → τ2 ∈ T1. Note that for all

t1 ∈ Tτ1 we have F(ρ1)(t1) ≡ F(ρ2)(t1). This follows from the definition of ≻α for τ = τ1 → τ2 ∈ T1,
from parts (1), (2) and (3) of the IH, and from the fact that canonical terms are in normal form. Now,
if τ1 = ω then ρ1 ≡ λx.ρ′1 and ρ2 ≡ λx.ρ′2. Thus for any t1 we have ρ

′
1 ≡ F(ρ1)(t1) ≡ F(ρ2)(t1) ≡ ρ′2,

so ρ1 ≡ ρ2. If τ1 6= ω then the claim is immediate, because Tτ1→τ2 = Στ1→τ2 for τ1 6= ω was defined to
contain exactly one constant for every function from Tτ1 to Tτ2 .
The last remaining case is τ = o. Thus, suppose t ≻α ⊤ and t ≻β ⊥. It is easily seen that this is

possible only when the conditions (Ξ⊤) and (Ξ⊥) are satisfied. So we have t ≡ Ξt1t2 and there exists τ1
such that t1 ∼α τ1 and for all t

′ ∈ Tτ1 we have t2t
′
❀<α ⊤. There also exists τ2 and t3 ∈ Tτ2 such that

t1 ∼β τ2 and t2t3 ❀<β ⊥. But by (5) we have τ1 = τ2. Hence t2t3 ❀<α ⊤ and t2t3 ❀<β ⊥, which
contradicts the inductive hypothesis.

Corollary 4.2.6. If t =≤α t
′ then t❀α ⊤ is equivalent to t′ ❀α ⊤.

Proof. Follows from conditions (1) and (2) in Lemma 4.2.5.

Corollary 4.2.7. If t ❀α ρ1 and t ❀α ρ2 where ρ1, ρ2 are canonical terms with the same canonical
type, then ρ1 ≡ ρ2.
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Proof. Follows from conditions (1)-(3) in Lemma 4.2.5.

Lemma 4.2.8. Let t1 and t2 be terms. If for all terms t0 we have t1t0 =≤α t2t0 then t1 =≤α t2. In
particular, the combinatory algebra of M, as defined in Definition 4.1.11, is extensional.

Proof. If t1t0 =≤α t2t0 for all terms t0 then in particular t1x =≤α t2x where x is variable which does
not occur in t1 and t2. Hence t1 η← λx.t1x =≤α λx.t2x→η t2. Therefore t1 =≤α t2.

The rank of a type τ , denoted rank(τ), is defined as follows. If τ ∈ B ∪ {o, ω, ε} then rank(τ) = 1.
Otherwise τ = τ1 → τ2 ∈ T1 and we set rank(τ) = max{rank(τ1) + 1, rank(τ2)}. By the rank of a
canonical term we mean the rank of its canonical type.
We write t≫α t

′ if there exists an n-ary context C, terms t1, . . . , tn, and canonical terms ρ1, . . . , ρn,
such that ti ≻α ρi for i = 1, . . . , n, t ≡ C[t1, . . . , tn] and t

′ ≡ C[ρ1, . . . , ρn]. If the maximal rank of
ρ1, . . . , ρn is at most k then we write t≫k

α t
′, and if it is less than k we write t≫<k

α t′.
Recall that whenever we write C[t1, . . . , tn] we assume that the free variables of t1, . . . , tn do not

become bound in C[t1, . . . , tn].

Lemma 4.2.9. If t ≻α ρ and x1, . . . , xn /∈ FV (t) then λx1 . . . xk.t ≻α+k λx1 . . . xk.ρ.

Proof. Easy induction on k.

Lemma 4.2.10. If t≫n Fr′1r
′
2 then t ≡ Fr1r2 with r1 ≫

n r′1 and r2 ≫
n r′2.

Proof. This follows from Fr′1r
′
2 ≡ λf.Ξr′1(λx.r

′
2(fx)) and from the fact that canonical terms are closed

and do not contain Ξ.

Lemma 4.2.11. If t≫n λf.Ξr′1(λx.r
′
2[z/fx]) with x, f /∈ FV (r′2) then one of the following holds:

• t ≡ λf.Ξr1(λx.r2[z/fx]), x, f /∈ FV (r2), r1 ≫n r′1 and r2 ≫
n r′2, or

• t ≡ λf.Ξr1r2, z /∈ FV (r′2), r1 ≫
n r′1 and r2 ≫

n λz.r′2.

Proof. Let q ≡ λx.r′2[z/fx]. Since t ≫
n λf.Ξr′1q there exist contexts C1, C2, terms t1, . . . , tk, and

canonical terms ρ1, . . . , ρk, such that ti ≻α ρi for i = 1, . . . , k, t ≡ λf.ΞC1[t1, . . . , tk]C2[t1, . . . , tk],
r′1 ≡ C1[ρ1, . . . , ρk] and q ≡ C2[ρ1, . . . , ρk]. We take r1 ≡ C1[t1, . . . , tk]. If C2 ≡ λx.(C′

2)[z/(fx)], then
C′

2[ρ1, . . . , ρk] ≡ r′2 and we take r2 ≡ C′
2[t1, . . . , tk]. Otherwise z /∈ FV (r′2) and λx.r

′
2 ≡ ρi for some

1 ≤ i ≤ k. Then C2[t1, . . . , tk] ≡ ti ≻ ρi and the second point in the statement of the lemma holds.

Recall that we use the notations R, ≻, ❀, ≫, etc. without subscripts to denote Rζ , ≻ζ , ❀ζ , ≫ζ ,
etc., where ζ is the ordinal introduced just before Definition 4.1.11. For this ordinal we have ≻ζ =≻<ζ,
Rζ = R<ζ , etc.

Lemma 4.2.12. If t1, t2, t3 are terms, ρ is a canonical term, and τ is a type, then for every ordinal α
and every natural number n the following conditions hold:

(1) if t1 ≫n t2 ≻α ρ then t1 ≻ ρ,

(2) if t1 ≫n t2 ∼α τ then t1 ∼ τ ,

(3) if t1 ≫n t2 ։≤α t
′
2 then t1 ։R t′1 ≫

n t′2.

Proof. Induction on pairs 〈n, α〉 ordered lexicographically, i.e., 〈n1, α1〉 < 〈n2, α2〉 iff n1 < n2, or n1 = n2

and α1 < α2.
First we verify condition (2). Suppose t1 ≫n t2 ∼α τ . If t2 ∼α τ is obtained by rule (A) or (H) then

t2 ≡ Aτ for τ ∈ B or t2 ≡ H , so t1 ≡ t2 and the claim is obvious.
If t2 ∼α τ is obtained by rule (Kω) or (Kε) then t2 ≡ Kt′2, τ ∈ {ω, ε} and t

′
2 ❀<α c where c ∈ {⊤,⊥},

i.e., t′2 ։<α t
′′
2 ≻<α c for some t

′′
2 . Hence t1 ≡ Kt

′
1 ≫

n Kt′2 ≡ t2, and thus t
′
1 ≫

n
ζ t

′
2 ։<α t

′′
2 ≻<α c. By

part (3) the IH there exists t′′1 such that t
′
1 ։R t′′1 ≫

n t′′2 ≻<α c. By part (1) of the IH we obtain t
′
1 ❀ c.

Hence t1 ∼ τ .
If t2 ∼α τ is obtained by rule (Fω) then τ = ω and t2 ≡ λf.Ξr′1r

′
2. Then we must have t1 ≡

λf.Ξr1r2 ≫n λf.Ξr′1r
′
2 where r1 ≫

n r′1 ∼<α ε. So by part (2) of the inductive hypothesis r1 ∼ ε.
Therefore t1 ∼ ω = τ by rule (Fω). If t2 ∼α τ is obtained by rule (Fω

′) then the argument is similar.
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If t2 ∼α τ is obtained by rule (F) then t2 ≡ Fr′1r
′
2 and by Lemma 4.2.10 we obtain t1 ≡ Fr1r2 ≫n

Fr′1r
′
2 where r1 ≫

n r′1 and r2 ≫
n r′2. We have τ = τ1 → τ2, r1 ≫n r′1 ∼<α τ1 and r2 ≫n r′2 ∼<α τ2. By

part (2) of the IH we obtain r1 ∼ τ1 and r2 ∼ τ2. Therefore t1 ≡ Fr1r2 ∼ τ by rule (F).
If t2 ∼α τ is obtained by rule (F′) then t2 ≡ λx.Ξr′1(λx.r

′
2[z/fx]), τ = τ1 → τ2, r

′
1 ∼<α τ1 and

λz.r′2 ∼<α τ2. By Lemma 4.2.11 there are two cases.

• t1 ≡ λf.Ξr1(λx.r2[z/fx]), x, f /∈ FV (r2), r1 ≫n r′1 and r2 ≫
n r′2. Then r2 ≫

n r′1 ∼<α τ1 and
λz.r2 ≫

n λz.r′2 ∼<α τ2. By part (2) of the IH we obtain r1 ∼ τ1 and λz.r2 ∼ τ2. Therefore
t1 ≡ Fr1r2 ∼ τ by rule (F′).

• t1 ≡ λf.Ξr1r2, z /∈ FV (r′2), r1 ≫
n r′1 and r2 ≫

n λz.r′2. By part (2) of the IH we obtain r1 ∼ τ1
and r2 ∼ τ2. Since Kr

′
2 ∼<α τ2, by Lemma 4.2.4 we have τ2 ∈ {ω, ε}. Therefore t1 ≡ Fr1r2 ∼ τ

by rule (F′′).

The remaining case is when t2 ∼α τ is obtained by rule (F′′). Then t2 ≡ λf.Ξr′1r
′
2, t1 ≡ λf.Ξr1r2,

r1 ≫n r′1 ∼<α τ1 and r2 ≫n r′2 ∼<α τ2 ∈ {ω, ε}. By part (2) of the IH we obtain r2 ∼ τ1 and r1 ∼ τ2.
Hence t1 ∼ τ1 → τ2.
Now we verify condition (1). If t2 ≡ ρ then t1 ≫ ρ. By (1) in Fact 4.1.3 we have ρ ≡ λx1 . . . xn.c, so

by definition of≫, there exist a unary context C, a term t′, and a canonical term ρ′ such that t1 ≡ C[t′],
ρ ≡ C[ρ′] and t′ ≻ ρ′. If C ≡ ρ then the claim is obvious. Otherwise C ≡ λx1 . . . xk.✷ where k ≤ n,
ρ′ ∈ Tτ , and ρ ∈ Tωk→τ , by (2) in Fact 4.1.3. By Lemma 4.2.9 we obtain t1 ≡ C[t′] ≡ λx1 . . . xk.t

′ ≻
λx1 . . . xk.ρ

′ ≡ C[ρ′] ≡ ρ.
Next assume that ρ ∈ Tτ where τ = τ1 → τ2 ∈ T1. Thus for all t3 ∈ Tτ1 there exists t

′
2 such

that t2t3 ։<α t′2 ≻<α F(ρ)(t3). Then obviously t1t3 ≫n t2t3 ։<α t′2, so by part (3) of the inductive
hypothesis there exists t′1 such that t1t3 ։R t′1 ≫

n t′2 ≻<α F(ρ)(t3). Using part (1) of the IH we obtain
t1t3 ։R t′1 ≻ F(ρ)(t3). This implies t1 ≻ ρ.
The remaining case to check is ρ ∈ To. Suppose ρ ≡ ⊤, so t1 ≫n t2 ≻α ⊤. If ρ ≡ ⊥, i.e.,

t1 ≫n t2 ≻α ⊥, then proof is similar. We consider all possible forms of t2 according to the definition of
t2 ≻α ⊤. If t2 ≡ Aτc for τ ∈ B then t1 ≡ t2, because if c is a canonical constant of a base type τ then the
condition t ≻ c implies t ≡ c. If t2 ≡ ⊤ then t1 ≻ t2 ≡ ⊤ and the claim is obvious. Suppose condition (Ξ⊤)
in the definition of t2 ≻α ⊤ is satisfied. Then t1 ≡ Ξr1r2 ≫n Ξr′1r

′
2 ≡ t2 where r1 ≫

n r′1 and r2 ≫
n r′2.

By definition of ≻α there exists τ such that r
′
1 ∼α τ and for all t3 ∈ Tτ we have r

′
2t3 ❀<α ⊤, i.e.,

r′2t3 ։<α t′3 ≻<α ⊤. Since r1 ≫n r′1 ∼α τ we conclude that r1 ∼ τ by condition (2) which we have
already verified in this inductive step. Because for all t3 ∈ Tτ we have r2t3 ≫

n r′2t3 ։<α t′3 ≻<α ⊤,
so by part (3) of the IH for all t3 ∈ Tτ there exists t

′′
3 such that r2t3 ։R t′′3 ≫

n t′3 ≻<α ⊤. Hence
r2t3 ❀ ⊤ by applying part (1) of the IH. Therefore t1 ≻ ⊤ by the definition of ≻. Finally, assume the
condition (L⊤) in the definition of t2 ≻α ⊤ is satisfied. Then t2 ≡ Lt′2 with t

′
2 ∼α τ for some type τ .

Since t1 ≫n t2 we must have t1 ≡ Lt′1 with t
′
1 ≫

n t′2 ∼α τ . By condition (2), which we have already
verified in this inductive step, we obtain t′1 ∼ τ . Therefore t1 ≡ Lt

′
1 ≻ ⊤.

It remains to prove (3). It suffices to consider a single reduction step, i.e., to show that t1 ≫n

t2 →≤α t′2 implies t1 ։R t′1 ≫
n t′2. We have t1 ≡ C[r1, . . . , rk] and t2 ≡ C[ρ1, . . . , ρk] where ri ≻ ρi

and rank(ρi) ≤ n, for i = 1, . . . , k. Denote by C0[ρ1, . . . , ρk] the contracted redex in t2, where the
boxes in C0 correspond to appropriate boxes in C. By Ce we denote the surrounding context satisfying
C ≡ Ce[C0,✷1, . . . ,✷k]. It follows from the definition of Rα that there are four possibilities: C0 ≡ λx.C1x
where x /∈ FV (C1), C0 ≡ (λx.C1)C2, C0 ≡ c0C1 for c0 ∈ Στ1→τ2 , or C0 ≡ ✷iC1 for some 1 ≤ i ≤ k. In
the first two cases we have t′2s ≡ Ce[C

′
0[ρ1, . . . , ρk], ρ1, . . . , ρk] where C0 →≤α C′

0, so we may just take
t′1 ≡ Ce[C

′
0[r1, . . . , rk], r1, . . . , rk].

Otherwise the contraction in t2 produces some canonical term ρ, i.e., C0[ρ1, . . . , ρk]→≤α ρ. It suffices
to prove:

(⋆) there exists t such that C0[r1, . . . , rk] ։R t ≻ ρ, and if t 6≡ ρ then rank(ρ) ≤ n.

Indeed, if (⋆) holds then simply take t′1 ≡ Ce[t, r1, . . . , rk]. We have t1 ≡ Ce[C0[r1, . . . , rk], r1, . . . , rk] ։R

Ce[t, r1, . . . , rk] ≡ t′1 and t
′
2 ≡ Ce[ρ, r1, . . . , rk]. Now it is easy to see that t

′
1 ≫

n t′2: if t ≡ ρ then we
take Ce[ρ,✷1, . . . ,✷k] as the context required by the definition of ≫n, otherwise we take Ce noting that
t ≻ ρ and rank(ρ) ≤ n.
If C0 ≡ c0C1 then C1[ρ1, . . . , ρk] ≻<α ρ′ where F(c)(ρ′) ≡ ρ. We conclude C1[r1, . . . , rk] ≻ ρ′

by part (1) of the IH and the fact that C1[r1, . . . , rk] ≫n C1[ρ1, . . . , ρk]. Therefore C0[r1, . . . , rk] ≡
cC1[r1, . . . , rk]→R ρ and we are done.
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Suppose C0 ≡ ✷iC1 where 1 ≤ i ≤ k. First assume that ρi is a canonical constant of type τ1 → τ2.
As in the previous paragraph we have C1[ρ1, . . . , ρk] ≻<α ρ

′ where F(ρi)(ρ′) ≡ ρ, so C1[r1, . . . , rk] ≻ ρ′

by part (1) of the IH. Obviously rank(ρ) = rank(τ2) ≤ rank(τ1 → τ2) = rank(ρi) ≤ n and rank(ρ′) =
rank(τ1) < rank(τ1) + 1 ≤ rank(τ1 → τ2) = rank(ρi) ≤ n. Let r ≡ C1[r1, . . . , rk]. We have r ≻ ρ′ and
rank(ρ′) < n, so rir ≫

<n riρ
′ where the context required by the definition of ≫<n is ri✷. Since ri ≻ ρi

and the canonical type of ρi is a function type, we conclude by definition of ≻ that riρ′ ❀ F(ρi)(ρ′) ≡ ρ.
Note that we may have ri ≡ ρi, but then the condition riρ

′
❀ ρ is satisfied anyway, by definition of

F . Therefore there exists t′ such that rir ≫<n riρ
′
։R t′ ≻ ρ. By part (3) of the inductive hypothesis

there exists t such that rir ։ζ t ≫
<n
ζ t′ ≻ ρ. Applying part (1) of the IH we obtain t ≻ ρ. Hence

C0[r1, . . . , rk] ≡ riC1[r1, . . . , rk] ≡ rir ։R t ≻ ρ where rank(ρ) ≤ n, so (⋆) holds.
Now suppose that ρi ≡ λx1 . . . xm.c for m > 0. We have C0[r1, . . . , rk] ≡ riC1[r1, . . . , rk] with ri ≻ ρi.

By the definition of ≻ we conclude that there exists t such that riC1[r1, . . . , rk] ։R t ≻ λx2 . . . xm.c ≡ ρ.
Obviously we also have rank(ρ) ≤ rank(ρi) ≤ n. Thus (⋆) holds.

Corollary 4.2.13. If t ≻ ρ1 and C[ρ1] ❀ ρ2, then C[t] ❀ ρ2.

The above corollary states that our definition of ≻ is correct. If t ≻ ρ1 then t behaves exactly like ρ1
in every context C such that C[ρ1] has an “interesting” interpretation.

The following final lemmas show that the conditions on T required for a classical illative model are
satisfied byM.

Lemma 4.2.14. If Ht❀α ⊤ then t❀<α ⊤ or t❀<α ⊥.

Proof. Keeping in mind the convention regarding the meaning of Ht, we note that if Ht ❀α ⊤ then
Ht։≤α L(Kt

′) ≻α ⊤ where t։≤α t
′. Thus it suffices to show that for any term t, if L(Kt) ≻α ⊤ then

t ❀α ⊤ or t ❀α+1 ⊥. Assume L(Kt) ≻α ⊤. Then the condition (L⊤) must hold, so Kt ∼α τ for some
type τ . By Lemma 4.2.4 we have τ = ω or τ = ε. Assume τ = ω. The other case is analogous. By (6)
in Lemma 4.2.5 we have Ktt❀<α ⊤. Since Ktt→β t, by Corollary 4.2.6 we have t❀<α ⊤.

Lemma 4.2.15. If ρ ∈ Tτ and τ 6= ω then ρ ≻ ρ.

Proof. Induction on the size of τ .

Lemma 4.2.16. If t ∼α τ then for all t0 ∈ Tτ we have tt0 ❀ ⊤.

Proof. Induction on α. If t ∼α τ is obtained by rule (A), (H), (Kω) or (Kε), then the claim is obvious.
If τ = ω then the claim follows from (6) in Lemma 4.2.5. If τ = ε then the claim is also obvious. So we
may assume τ = τ1 → τ2 /∈ {ω, ε}. Then the only remaining cases are when t ∼ τ is obtained by (F)
or (F′). Then t =β Ft1t2, τ = τ1 → τ2, t1 ∼<α τ1 and t2 ∼<α τ2. Suppose t0 ∈ Tτ1→τ2 . Then for
all r1 ∈ Tτ1 there exists r2 ∈ Tτ2 such that t0r1 ։R r2, by Definition 4.1.8, because if τ1 6= ω then
r1 ≻ r1 by Lemma 4.2.15. Also, we have Ft1t2t0 =≤0 Ξt1λy.t2(t0y). Hence (λy.t2(t0y))r1 ։R t2r2.
Because t2 ∼<α τ2, we have t2r2 ❀ ⊤ by the IH, so (λy.t2(t0y))r1 ❀ ⊤. Therefore Ξt1λy.t2(t0y) ≻ ⊤
by condition (Ξ⊤

i ). Hence, by Corollary 4.2.6, we obtain Ft1t2t
′
❀ ⊤.

Lemma 4.2.17. If t1 ∼α τ , τ 6= ω, τ 6= ε and t1t2 ❀ ⊤, then t2 ❀ ρ for some ρ ∈ Tτ .

Proof. Induction on α. If t1 ∼α τ is obtained by rule (A) then t1 ≡ Aτ for τ ∈ B, and Aτ t2 ։R t′ ≻⊤.
So t′ ≡ Aτ t

′
2 where t2 ։R t′2. By Definition 4.1.8 we have t

′
2 ≡ c for c ∈ Tτ . Hence t2 ❀ c. If t1 ∼α τ is

obtained by rule (H) then t1 ≡ H and t2 ❀ c ∈ {⊤,⊥} by Lemma 4.2.14.
The only remaining case is when t1 ∼α τ = τ1 → τ2 is obtained by (F) or (F

′). Then t1 =β Fr1r2 ∼α

τ = τ1 → τ2 where r1 ∼<α τ1, r2 ∼<α τ2. We may assume τ1 6= ε, τ2 6= ω and τ2 6= ε, since otherwise
τ = ω or τ = ε. By Corollary 4.2.6 we have Ξr1λy.r2(t2y) ❀ ⊤, so Ξr′1r

′
2 ≻ ⊤ where r1 ։R r′1,

λy.r2(t2y) ։R r′2. By inspecting Definition 4.1.8 we see that the only possible way for Ξr
′
1r

′
2 ≻ ⊤ to

hold is when condition (Ξ⊤) is satisfied, i.e., there exists τ ′ such that r′1 ∼ τ
′ and for all t3 ∈ Tτ ′ we have

r′2t3 ❀ ⊤. By (4) in Lemma 4.2.5 we have r′1 ∼<α τ1, so it follows from (5) in Lemma 4.2.5 that τ
′ = τ1.

Therefore for any t3 ∈ Tτ1 we have r
′
2t3 ❀ ⊤. Since r2(t2t3) =≤0 (λy.r2(t2y))t3 ։R r′2t3, we obtain by

Corollary 4.2.6 that r2(t2t3) ❀ ⊤ for any t3 ∈ Tτ1 . Because r2 ∼<α τ2 where τ2 6= ω and τ2 6= ε, we
conclude by the inductive hypothesis that the following condition holds:
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(⋆) for all t3 ∈ Tτ1 there exists ρ2 ∈ Tτ2 such that t2t3 ❀ ρ2.

Note that ρ2 depends on t3.
If τ1 6= ω then Tτ1→τ2 contains a constant for every set-theoretical function from Tτ1 to Tτ2 . In

particular it contains a constant c such that for every ρ1 ∈ Tτ1 we have F(c)(ρ1) ≡ ρ2 where ρ2 ∈ Tτ2 is
a term depending on ρ1 such that t2ρ1 ❀ ρ2. Such a ρ2 exists by (⋆). Therefore by definition of ≻ we
have t2 ≻ c ∈ Tτ .
If τ1 = ω then it suffices to show that there exists a single ρ′ ∈ Tτ2 such that for all t3 we have

t2t3 ❀ ρ′. Indeed, if this holds then t2 ≻ Kρ
′ ∈ Tω→τ2 = Tτ . Let x be a variable. Obviously x ∈ Tω, so

by (⋆) there exists ρ′ ∈ Tτ2 such that t2x ❀ ρ′, i.e., t2x ։R t′ ≻ ρ′ for some term t′. Taking C ≡ t2✷,
we conlude by conditon (1) in Lemma 4.2.2 that t′ ≡ C′[x] where C[t3] ։R C′[t3] for any term r. By
condition (2) in Lemma 4.2.2 we have C′[t3] ≻ ρ′ for any term t3. Therefore for any t3 there exists t

′
3

such that t2t3 ։R t′3 ≻ ρ′, i.e., t2t3 ❀ ρ′. This ρ′ depends only on x, but not on t3, so our claim has
been established.

Lemma 4.2.18. The following conditions are satisfied.

• If Lt1 ❀ ⊤ and for all t3 such that t1t3 ❀ ⊤ we have t2t3 ❀ ⊤, then Ξt1t2 ❀ ⊤.

• If Lt1 ❀ ⊤ and for all t3 such that t1t3 ❀ ⊤ we have H(t2t3) ❀ ⊤, then H(Ξt1t2) ❀ ⊤.

• If Lt1 ❀ ⊤, and either Lt2 ❀ ⊤ or there is no t3 such that t1t3 ❀ ⊤, then L(Ft1t2) ❀ ⊤.

Proof. Suppose Lt1 ❀ ⊤. By definitions we have t1 ։R t′1 ∼ τ for some type τ .
Assume that for all t3 such that t1t3 ❀ ⊤ we have t2t3 ❀ ⊤. Let t0 ∈ Tτ . Then by Lemma 4.2.16 we

obtain t′1t0 ❀ ⊤. Because t1t0 =R t′1t0, by Corollary 4.2.6 we conclude t1t0 ❀ ⊤. Then by assumption
t2t0 ❀ ⊤. Therefore by (Ξ⊤

i ) we obtain Ξt
′
1t2 ≻ ⊤. Hence Ξt1t2 ❀ ⊤.

Assume that for all t3 such that t1t3 ❀ ⊤ we have H(t2t3) ❀ ⊤, so t2t3 ❀ ⊤ or t2t3 ❀ ⊥ by
Lemma 4.2.14. If for all t3 such that t1t3 ❀ ⊤ we have t2t3 ❀ ⊤, then Ξt1t2 ❀ ⊤ by the previous
paragraph. Otherwise using Lemma 4.2.16, Corollary 4.2.6 and (Ξ⊥) we may conclude Ξt1t2 ❀ ⊥ by an
argument analogous to the previous paragraph. In any case H(Ξt1t2) ❀ ⊤ by (L⊤), and (Kω) or (Kε).
Assume Lt2 ❀ ⊤. Then t2 ։R t′2 ∼ τ

′. Then Ft′1t
′
2 ∼ τ → τ ′, so L(Ft1t2) ։R L(Ft′1t

′
2) ≻ ⊤.

Finally, assume there is no t3 such that t1t3 ❀ ⊤. Then there is no t3 such that t′1t2 ❀ ⊤. By
Lemma 4.2.17 and (6) in Lemma 4.2.5 we must have τ = ε. Then L(Ft1t2) ❀ ⊤ by (Fω), (L⊤) and
Corollary 4.2.6.

Lemma 4.2.19. If Ξt1t2 ❀ ⊤ then for all terms t3 such that t1t3 ❀ ⊤ we have t2t3 ❀ ⊤.

Proof. If Ξt1t2 ❀ ⊤ then Ξt1t2 ։R Ξt′1t
′
2 ≻ ⊤ where t1 ։R t′1 and t2 ։R t′2. The only possibility

for Ξt′1t
′
2 ≻ ⊤ to hold is that condition (Ξ⊤) holds for Ξt′1t

′
2. Thus t

′
1 ∼ τ for some type τ . Suppose

t1t3 ❀ ⊤. By Corollary 4.2.6 we have t′1t3 ❀ ⊤. Because t2t3 ։R t′2t3, it suffices to show that t
′
2t3 ❀ ⊤.

If τ = ω then this is obvious by definition of (Ξ⊤). We cannot have τ = ε, since if t′1 ∼ ε then by (6)
in Lemma 4.2.5 and by Corollary 4.2.7 there is no t such that t′1t ❀ ⊤. If t

′
1 ∼ τ 6= ω and τ 6= ε, then

we use Lemma 4.2.17 to conclude that there exist t′3 and ρ ∈ Tτ such that t3 ։R t′3 ≻ ρ. Because (Ξ
⊤
i )

holds for Ξt′1t
′
2, t

′
1 ∼ τ and ρ ∈ Tτ , we have t

′
2ρ ❀ ⊤. Since t′3 ≻ ρ, taking C ≡ t′2✷ we conclude by

Corollary 4.2.13 that t′2t
′
3 ❀ ⊤, so t′2t3 ❀ ⊤.

Theorem 4.2.20. The systems Icω and Iω are strongly consistent, i.e., ΞHI is not derivable in them.

Proof. We verify that the structure M constructed in Definition 4.1.11 is a one-state classical illative
model for Icω. It follows from Lemma 4.2.8 that the combinatory algebra of M is extensional. Corol-
lary 4.2.6 implies that [t]R ∈ T is equivalent to t❀ ⊤. We need to check the conditions stated in Fact 3.8.
Conditions (1), (3) and (4) follow from Lemma 4.2.18. Condition (2) follows from Lemma 4.2.19. Con-
ditions (5), (6) and (7) follow from definitions.
It is also easy to see that 6
M ΞHI. Indeed, otherwise we would have ΞHI ❀ ⊤, which is possible

only when (Ξ⊤) is satisfied for ΞHI. Thus H ∼ τ for some type τ , and for all t ∈ Tτ we have It ❀ ⊤,
so t ❀ ⊤ by Corollary 4.2.6. It is easily verified by inspecting the definitions that we must have τ = o.
But then ⊥❀ ⊤ which is impossible by Corollary 4.2.7.
Therefore, by the soundness part of Theorem 3.6, the term ΞHI is not derivable in Icω, and hence

neither in Iω , which is a subsystem of Icω.
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5 The embedding

In this section a syntactic translation from the terms of PRED20 into the terms of I0 is defined and
proven complete for I0. The translation is a slight extension of that from [BBD93]. The method of the
completeness proof is by model construction analogous to that in the previous section. Relinquishing
quantification over predicates and restricting arguments of functions to base types allows us to signifi-
cantly simplify this construction and to extend it to more than one state.
We use the notation T for the set of types of PRED20. Recall that T is defined by the grammar

T ::= o | B | B → T , where B is a specific set of base types. We assume that B corresponds exactly to
the base types used in the definiton of I0. We fix a signature for PRED20, and by Στ denote the set of
constants of type τ in this signature. We always assume that all variables of PRED20 are present in the
set of variables of I0.
Recall that by T(Σ) we denote the set of type-free lambda terms over a set of primitive constants

Σ, which is assumed to contain Ξ, L and Aτ for each τ ∈ B. We also assume that Σ contains every
constant c ∈ Στ for any τ ∈ T . For the sake of uniformity, we will sometimes use the notation Ao for
H . For every composite type τ = τ1 → τ2 ∈ T we inductively define Aτ = FAτ1Aτ2 . We use the same
notational conventions concerning Kt, Ht, etc. as in Section 4.

Definition 5.1. We define inductively a map ⌈−⌉ from the terms of PRED20 to T(Σ) as follows:

• ⌈x⌉ = x for a variable x,

• ⌈c⌉ = c for a constant c,

• ⌈t1t2⌉ = ⌈t1⌉⌈t2⌉,

• ⌈ϕ ⊃ ψ⌉ = ⌈ϕ⌉ ⊃ ⌈ψ⌉,

• ⌈∀x.ϕ⌉ = ΞAτλx.⌈ϕ⌉ for x ∈ Vτ .

We extend the map to finite sets of formulas by defining ⌈∆⌉ to be the image of ⌈−⌉ on ∆. We also
define a mapping Γ from sets of formulas to subsets of T(Σ), which is intended to provide a context for
a set of formulas. For a finite set of formulas ∆ we define Γ(∆) to contain the following:

• Aτx for all x ∈ FV (∆) s.t. x ∈ Vτ , and all types τ ,

• Aτc for all c ∈ Στ , and all types τ ,

• LAτ for all τ ∈ B,

• Aτy for all τ ∈ B and some y ∈ Vτ such that y /∈ FV (∆).

Lemma 5.2. For any τ ∈ T and any ∆ there exists a term t such that Γ(∆) ⊢I0
Aτ t.

Proof. First note that by a straightforward induction on the size of τ we obtain Γ(∆) ⊢ LAτ for any
type τ .
We prove the lemma by induction on the size of τ . If τ ∈ B then Aτy ∈ Γ(∆) for some variable y. If

τ = o then notice that e.g. ⊢ H(LH). If τ = τ1 → τ2 then we need to prove that Γ(∆) ⊢ FAτ1Aτ2t for
some term t. Because Γ(∆) ⊢ LAτ1 , it suffices to show that Γ(∆), Aτ1x ⊢ Aτ2(tx) for some term t and
some x /∈ FV (Γ(∆), t). By the inductive hypothesis there exists a term t2 such that Γ(∆) ⊢ Aτ2t2. So
just take x /∈ FV (Γ(∆), t2) and t ≡ Kt2.

Theorem 5.3. The embedding is sound, i.e., ∆ ⊢PRED20 ϕ implies ⌈∆⌉,Γ(∆, ϕ) ⊢I0
⌈ϕ⌉.

Proof. Induction on the length of derivation of ∆ ⊢PRED20 ϕ, using Lemma 3.2. The only interesting
case is with modus-ponens, as from the inductive hypothesis we may only directly derive the judgement
⌈∆⌉,Γ(∆, ψ),Γ(ϕ) ⊢I0

⌈ψ⌉. To get rid of Γ(ϕ) on the left, we note that if t ∈ Γ(ϕ) \ Γ(∆, ψ) then
t ≡ Aτx for x ∈ FV (ϕ) \FV (∆, ψ). Now, by Lemma 5.2 there exists t′ such that Γ(∆, ψ) ⊢I0

Aτ t
′. It is

not difficult to show by induction on the length of derivation that ⌈∆⌉,Γ(∆, ψ),Γ(ϕ)[x/t′] ⊢I0
⌈ψ⌉, i.e.,

that we may change Aτx on the left to Aτ t
′. To eliminate Aτ t

′ altogether, it remains to notice that if
Γ, t1 ⊢I0

t2 and Γ ⊢I0
t1 then Γ ⊢I0

t2.
If we had extended our semantics for PRED20 a bit by allowing non-constant domains, then we could

also give a relatively simple semantic proof by transforming any illative Kripke model for I0 to a Kripke
model for PRED20, and appealing to the completeness part of Theorem 3.6.
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The rest of this section is devoted to proving that the embedding is also complete.

Let N be a Kripke model for PRED20. We will now construct an illative Kripke modelM such that
M will “mirror” N , i.e., exactly the translations of true statements in a state of N will be true in the
corresponding state ofM. This construction is the crucial step in the completeness proof. It is similar
to the construction given in Section 4. For the rest of this section we assume a fixed N .
We define a set of primitive constants Σ+ and the sets Στ of canonical constants of type τ , just like

in Definition 4.1.2, but restricting ourselves only to the types in T (i.e. the types of PRED20). Note
that there is a bijection δτ between Στ and DN

τ . We often drop the subscript in δτ . We also include
in Σ+ an infinite set Σν of external constants. Note that Σ+ is disjoint from the signature Σ of M
which we defined earlier. The terms over Σ form the syntax. The terms over Σ+ are used to build the
model. To every constant c ∈ Σ corresponds exactly one constant c+ ∈ Σ+ such that JcKN = δ(c+). This
correspondence, however, need not be injective, as there may be another constant c′ ∈ Σ, c′ 6= c, such
that Jc′KN = δ(c+).
Let S be the set of states of N . By ⊤ ∈ Σo we denote the constant such that ςN (δ(⊤)) = S, and

by ⊥ ∈ Σo the constant such that ςN (δ(⊥)) = ∅. In what follows ρ, ρ′, etc., stand for ⊤ or ⊥. Note
that Σo may contain other elements in addition to ⊤ and ⊥. In this section we use t, t1, t2, etc., for
closed terms, unless otherwise stated.

Definition 5.4. We construct a reduction system R as follows. The terms of R are the type-free
lambda-terms over Σ+. The reduction rules of R are as follows:

• rules of β- and η-reduction,

• cc1 → c2 for c ∈ Στ1→τ2 , c1 ∈ Στ1 and c2 ∈ Στ2 such that F(c)(c1) = c2.

It is easy to see that R has the Church-Rosser property.

Definition 5.5. For each ordinal α and each state s ∈ S we inductively define a relation ≻s
α between

terms and ⊤ or ⊥. The notations ≻s
<α, ❀

s
<α, etc., have analogous meaning to those in Section 4.

We postulate t ≻s
α ⊤ for α ≥ 0 and all closed terms t such that:

(1) t ≡ c for some c ∈ Σo such that s ∈ ςN (δ(c)), or

(2) t ≡ LAτ for some τ ∈ B, or

(3) t ≡ LH , or

(4) t ≡ Aτ c for τ ∈ B and c ∈ Στ , or

(5) t ≡ Hc for c ∈ Σo.

When α > 0 we postulate t ≻s
α ⊤ for all closed terms t such that one of the following holds:

(Ξ⊤) t ≡ ΞAτ t1 where τ ∈ B ∪ {o} and t1 is such that for all s′ ≥ s and all c ∈ Στ we have t1c❀
s′

<α ⊤,

(P⊤) t ≡ Ξ(Kt1)t2 where

• t1 ❀
s
<α ⊤ or t1 ❀

s
<α ⊥, and

• for all s′ ≥ s such that t1 ❀
s′

<α ⊤ we have t2 ։R Kt′2 with t
′
2 ≻

s′

<α ⊤,

(H⊤) t ≡ Ht1, and t1 ❀
s
<α ⊤ or t1 ❀

s
<α ⊥.

Finally, we postulate t ≻s
α ⊥ for α ≥ 0 and all closed terms t such that one of the following holds:

(c⊥) t ≡ c ∈ Σo and s /∈ ςN (δ(c)),

(Ξ⊥) t ≡ ΞAτ t1 and τ ∈ B ∪ {o}, and

• for all c ∈ Στ and all s
′ ≥ s we have t1c❀s′

<α ⊤ or t1c❀
s′

<α ⊥,

• there exist a constant c ∈ Στ and a state s
′ ≥ s such that t1c❀s′

<α ⊥,

(P⊥) t ≡ Ξ(Kt1)(Kt2), and
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• t1 ❀
s
<α ⊤ or t1 ❀

s
<α ⊥, and

• for all s′ ≥ s such that t1 ❀
s′

<α ⊤ we have t2 ❀
s′

<α ⊤ or t2 ❀
s′

<α ⊥.

• there exists s′ ≥ s such that t1 ❀
s′

<α ⊤ and t2 ❀
s′

<α ⊥.

In [Cza13] this definition is incorrect. In fact, Lemma 5.9 of [Cza13] is false, because of the presence of
type ε. To correct this we need to separately consider the case when Ξ encodes implication, which is done
here by means of the rules (P⊤) and (P⊥). This change requires reworking the subsequent correctness
proof.
With the corrected definition, it is not obvious that for α ≤ β we have ≻s

α ⊆ ≻
s
β. We will show this

only in Lemma 5.12. However, for α ≤ β we obviously have ≻s
<α ⊆ ≻

s
<β , and consequently❀

s
<α ⊆❀

s
<β .

Lemma 5.6. If t1 ≻s
α ρ and t1 ։R t2 then t2 ≻s

α ρ.

Proof. This follows by an easy induction on α, using the Church-Rosser property of R.

Corollary 5.7. If t =R t′ then t❀s
α ρ is equivalent to t

′
❀

s
α ρ.

Corollary 5.8. If t❀s
α ⊤ and t❀

s
α ⊥ then there exists t

′ such that t′ ≻s
α ⊤ and t

′ ≻s
α ⊥.

Lemma 5.9. For all ordinals α and all s ∈ S we have:

(1) if t ≻s
α ⊤ and s

′ ≥ s then t ≻s′

α ⊤,

(2) if t ≻s
α ⊥ and s

′ ≥ s then t ≻s′

α ⊤ or t ≻
s′

α ⊥.

Proof. Induction on α.

(1) Follows directly from the inductive hypothesis.

(2) The only non-obvious cases are with (Ξ⊥) and (P⊥). Suppose t ≡ ΞAτ t1 ≻s
α ⊥ with:

• for all c ∈ Στ and all s
′′ ≥ s we have t1c❀s′′

<α ⊤ or t1c❀
s′′

<α ⊥,

• there exist a constant c ∈ Στ and a state s
′′ ≥ s such that t1c❀s′′

<α ⊥,

Let s′ ≥ s. The first condition obviously still holds with s′ substituted for s. If the second condition
does not hold, then by the first condition:

• for all c ∈ Στ and all s
′′ ≥ s′ we have t1c❀s′′

<α ⊤.

This implies t ≻s′

α ⊤. The argument for (P⊥) is analogous.

Corollary 5.10. If t❀s
α ⊤ then t❀

s′

α ⊤ for s
′ ≥ s.

Remark 5.11. The necessity of the above corollary is precisely the reason why it is not easy to extend
this construction to the case of full higher-order intuitionistic logic, i.e., when we have functions and
predicates of all types and more than one state. In that case we would need separate reduction systemsRs

α

for each s and α, similarily to what is done in Section 4. But then it would not be the case that Rs
α ⊆ R

s′

α

for s′ ≥ s. Roughly speaking, this is because t ≻s
α ⊥ is interpreted as “t is not true in state s basing on

what we know at stage α”, and not as “t is false in state s”. Thus we may have t ≻s
α ⊥ and t ≻

s′

α ⊤
for some s′ ≥ s. This by itself is not yet a fatal obstacle, because we really only care about t ❀s

α ⊤
being monotonous w.r.t. state ordering. However, the condition t ≻s

α ⊥ would be used to define R
s
α,

which would make Rs
α non-monotonous w.r.t s. Thus t ❀

s
α ⊤ would not be monotonous either, as it is

equivalent to t ։Rs
α
t′ ≻s

α ⊤. Hence the corollary would fail. This explains why we do not simply give
a single construction generalizing both the present one and the one from Section 4.

Lemma 5.12. For all ordinals α and all s ∈ S we have:

(1) if t ≻s
<α ρ then t ≻

s
α ρ,

(2) if t ≻s
α ⊤ then t 6≻

s
α ⊥.

24



Proof. Induction on α. First note that the inductive hypothesis and Corollary 5.8 imply:

(⋆) if t❀s
<α ⊤ then t 6❀<α ⊥.

Now, we check the conditions (1) and (2).

(1) The problem is with the universal quantification in (P⊤) and (P⊥). For instance, consider (P⊤),
i.e., t ≡ Ξ(Kt1)t2 ≻s

β ⊤ for some β < α, with:

• t1 ❀
s
<β ⊤ or t1 ❀

s
<β ⊥,

• for all s′ ≥ s such that t1 ❀
s′

<β ⊤ we have t2 ։R Kt′2 with t
′
2 ≻

s′

<β ⊤.

Of course, we have t1 ❀
s
<α ⊤ or t1 ❀

s
<α ⊤. Suppose s

′ ≥ s and t1 ❀
s′

<α ⊤. If t1 ❀
s
<β ⊤, then

t1 ❀
s′

<β ⊤ by Lemma 5.9. Thus t2 ։R Kt′2 with t
′
2 ≻

s′

<β ⊤, so also t
′
2 ≻

s′

<α ⊤. If t1 ❀
s
<β ⊥, then

t1 ❀
s′

<β ⊤ or t1 ❀
s′

<β ⊤ by Lemma 5.9. The case t1 ❀
s′

<β ⊤ has just been considered. So suppose

t1 ❀
s′

<β ⊥. Then t1 ❀
s′

<α ⊥ which contradicts (⋆).

(2) The claim is immediate for α = 0. Suppose t ≻s
α ⊤ and t ≻

s
α ⊥. Then either t ≡ ΞAτ t1 or

t ≡ Ξ(Kt1)(Kt2).

Assume t ≡ ΞAτ t1. Then, because t ≻s
α ⊥, there exist c ∈ Στ and s

′ ≥ s such that t1c ❀
s′

<α ⊥.

On the other hand, because t ≻s
α ⊤, we have t1c❀

s′

<α ⊤. This contradicts (⋆).

If t ≡ Ξ(Kt1)(Kt2) then the argument is analogous.

It follows from Lemma 5.12, by a simple cardinality argument, that there exists an ordinal ζ such
that ≻s

ζ = ≻s
<ζ for all s ∈ S. We use the notations ≻

s and ❀s without subscripts for ≻s
ζ and ❀

s
ζ .

Definition 5.13. The structureM is defined as follows. We define the extensional combinatory algebra C
ofM to be the set of equivalence classes of =R on closed terms. We take the set S of states of N to be the
set of states ofM as well. For c ∈ Σ we define the interpretation I ofM by I(c) = [c+]R, where c

+ ∈ Σ+

corresponds to the element JcKN . The function ςM is given by ςM(d) = {s ∈ S | ∃t.d = [t]R ∧ t ❀s ⊤},
where t is required to be closed.

Lemma 5.14. Let t1 and t2 be closed terms. If for all closed t3 we have t1t3 =R t2t3, then t1 =R t2.

Proof. If t1t3 =R t2t3 for all closed t3, then in particular t1ν =R t2ν for an external constant ν not
occuring in t1 and t2. By the Church-Rosser property ofR there exists t such that t1ν ։R t and t2ν ։R t.
Because there are no rules in R involving ν, and ν cannot be produced by any of the reductions, it is
easy to verify by induction on the number of reduction steps that t ≡ C′[ν], t1ν ≡ C1[ν], t2ν ≡ C2[ν],
C1 ։R C′ and C2 ։R C′, where ν does not occur in C1, C2 or C

′. Hence t1x ≡ C1[x] =R C2[x] ≡ t2x
for a variable x, and thus λx.t1x =R λx.t2x. Because R contains the rule of η-reduction, we conclude
that t1 =R t2.

Lemma 5.15. Let C be a context and let ρ ∈ {⊤,⊥}. If C[ρ] ։R t then there exists a context C′ such
that C ։R C′ and t = C′[ρ].

Proof. Because there are no rules in R involving ρ, the claim is easy to verify by induction on the number
of reduction steps.

The following lemma is a much simplified analogon of Lemma 4.2.12.

Lemma 5.16. If t ≻s ρ1 and C[ρ1] ❀
s
α ρ2 then C[t] ❀

s ρ2.

Proof. Induction on α.
Suppose t ≻s ρ1 and C[ρ1] ❀

s
α ρ2. By Lemma 5.15 we have C ։R C′ where C′[ρ1] ≻s

α ρ2. It suffices
to show that C′[t] ≻s ρ2.
First assume α = 0. The claim is obvious if C′ does not contain ✷, so assume it does. Then by

inspecting the definitions we see that there are the following two possibilities.
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• If C′ ≡ ✷ and ρ1 ≡ ρ2 then the claim is obvious.

• If C′ ≡ H✷ and ρ2 ≡ ⊤, then either t ≻ ⊤ or t ≻ ⊥. Thus Ht ≻ ⊤ by condition (H⊤).

Now let α > 0. If C′ ≡ ΞAτC1 and ρ2 = ⊤ then for all c ∈ Στ and all s
′ ≥ s we have C1[ρ1]c❀

s′

<α ⊤.

We conclude by the inductive hypothesis that for all c ∈ Στ and all s
′ ≥ s we have C1[t]c❀

s′ ⊤. Hence
C′[t] ≻s ⊤.
If C′ ≡ Ξ(KC1)C2 and ρ2 = ⊤ then

• C1[ρ1] ❀
s
<α ⊤ or C1[ρ1] ❀

s
<α ⊥, and

• for all s′ ≥ s such that C1[ρ1] ❀
s′

<α ⊤ we have C2 ։R KC′
2 with C

′
2[ρ1] ≻

s′

<α ⊤.

By Lemma 5.9 for all s′ ≥ s we have:

(⋆) C1[ρ1] ❀
s′

<α ⊤ or C1[ρ1] ❀
s′

<α ⊥.

By the inductive hypothesis C1[t] ❀
s ⊤ or C1[t] ❀

s ⊥. Let s′ ≥ s be such that C1[t] ❀
s′ ⊤. By (⋆)

we have C1[ρ1] ❀
s′

<α ⊤, because if C1[ρ1] ❀
s′

<α ⊥ then C1[t] ❀
s′ ⊥ by the inductive hypothesis, which

contradicts C1[t] ❀
s′ ⊤ by part 2 of Lemma 5.12. Hence, C2 ։R KC′

2 with C
′
2[ρ1] ≻

s′

<α ⊤, and by the

inductive hypothesis C′
2[t] ❀

s′

<α ⊤. This implies C
′[t] ≻s

α ⊤.
In all other cases the proof is similar.

This finishes the more difficult part of the construction correctness proof. As in Section 4 it remains
to prove several simple lemmas implying thatM satisfies the conditions imposed on an illative Kripke
model for I0. For convenience we reformulate the definition of an illative Kripke model for I0 in terms
of the notions used to constructM.

Fact 5.17. If the following conditions hold, then M is an illative Kripke model for I0.

(1) If t1 =R t2 then t1 ❀
s ⊤ is equivalent to t2 ❀

s ⊤.

(2) If t❀s ⊤ then t❀s′ ⊤ for all s′ ≥ s.

(3) If for all t3 we have t1t3 =R t2t3 then t1 =R t2.

(4) If Lt1 ❀
s ⊤ and for all s′ ≥ s and all t3 such that t1t3 ❀

s′ ⊤ we have t2t3 ❀
s′ ⊤, then Ξt1t2 ❀

s ⊤.

(5) If Ξt1t2 ❀
s ⊤ then for all t3 such that t1t3 ❀

s ⊤ we have t2t3 ❀
s ⊤.

(6) If Lt1 ❀
s ⊤ and for all s′ ≥ s and all t3 such that t1t3 ❀

s′ ⊤ we have H(t2t3) ❀
s′ ⊤, then

H(Ξt1t2) ❀
s ⊤.

(7) If t❀s ⊤ then Ht❀s ⊤.

(8) LH ❀
s ⊤,

(9) LAτ ❀
s ⊤ for τ ∈ B.

Proof. Condition (1) ensures that s ∈ ςM([t]R) is equivalent to t ❀
s ⊤. Condition (2) implies that for

any d ∈M the set ςM(d) is upward-closed. Condition (3) implies that the combinatory algebra ofM is
extensional. The remaining conditions are a reformulation of the conditions imposed on ς in an illative
Kripke model for I0.

Lemma 5.18. Ht❀s ⊤ iff t❀s ⊤ or t❀s ⊥.

Proof. Follows directly from definitions.

Lemma 5.19. If Lt❀s ⊤ then exactly one of the following holds:

• t։R Aτ for some τ ∈ B,

• t։R H,
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• t։R Kt′ with t′ ❀s ⊤ or t′ ❀s ⊥.

Proof. Easy inspection of the rules in the definition of ≻s
α. That the conditions are exclusive is a

consequence of the Church-Rosser property of R.

Lemma 5.20. The following conditions are satisfied.

• If Lt1 ❀
s ⊤ and for all s′ ≥ s and all t3 such that t1t3 ❀

s′ ⊤ we have t2t3 ❀
s′ ⊤, then Ξt1t2 ❀

s ⊤.

• If Lt1 ❀
s ⊤ and for all s′ ≥ s and all t3 such that t1t3 ❀

s′ ⊤ we have H(t2t3) ❀
s′ ⊤, then

H(Ξt1t2) ❀
s ⊤.

Proof. Suppose Lt1 ❀
s ⊤ and for all s′ ≥ s and all t3 such that t1t3 ❀

s′ ⊤ we have t2t3 ❀
s′ ⊤. We

consider possible cases according to Lemma 5.19.

• t1 ։R Aτ for τ ∈ B∪{o}. If c ∈ Στ and s
′ ≥ s then Aτ c ≻s′ ⊤, so also t1c❀s′ ⊤ by Corollary 5.7,

and thus t2c❀
s′ ⊤. Hence ΞAτ t2 ≻s ⊤ by (Ξ⊤). Therefore, Ξt1t2 ❀

s ⊤.

• t1 ։R Kt′1 with t
′
1 ❀

s ⊤ or t′1 ❀
s ⊥. Let s′ ≥ s be such that t′1 ❀

s′ ⊤. Then t1t3 ❀
s′ ⊤ for

arbitrary closed t3, so t2t3 ❀
s′ ⊤ for any closed t3, in particular for t3 ≡ ν an external constant

not occuring in t2. We have t2ν ։R t′2 ≻
s′ ⊤. It is easy to see by inspecting the definitions that ν

cannot occur in t′2. Thus we also have t2x ։R t′2. Therefore t2 ←η λx.t2x ։R Kt′2. So if there

exists s′ ≥ s such that t′1 ❀
s′ ⊤ then t2 =R Kt′2, and for every such s

′ ≥ s we have t′2 ≻
s′ ⊤.

Thus Ξ(Kt′1)(Kt
′
2) ≻

s ⊤, so Ξt1t2 ❀
s ⊤, by Corollary 5.7. If there does not exist s′ ≥ s such that

t′1 ❀
s′ ⊤, then also Ξt1t2 ❀

s ⊤.

The second claim is verified in a similar manner using Lemma 5.19, Lemma 5.18, Corollary 5.10 and
Corollary 5.7.

Lemma 5.21. If Ξt1t2 ❀
s ⊤ then for all s′ ≥ s and all terms t3 such that t1t3 ❀

s′ ⊤ we have
t2t3 ❀

s′ ⊤.

Proof. Suppose Ξt1t2 ❀
s ⊤. Then Ξt1t2 ։R Ξt′1t

′
2 ≻

s ⊤ with ti ։R t′i. There are three cases.

• t′1 ≡ Aτ where τ ∈ B and for all s′ ≥ a and all c ∈ Στ we have t
′
2c ❀

s′ ⊤. Assume s′ ≥ s and
t1t3 ❀

s′ ⊤. Then also Aτ t3 ❀
s′ ⊤ by Corollary 5.7. This is only possible when t3 ∈ Στ . This

implies t′2t3 ❀
s′ ⊤, so also t2t3 ❀

s′ ⊤ because t2 ։R t′2.

• t′1 ≡ H and for all s′ ≥ s and all ρ ∈ {⊤,⊥} ⊆ Στ we have t
′
2ρ ❀

s′ ⊤. Assume s′ ≥ s and
t1t3 ❀

s′ ⊤. Then also Ht3 ❀
s′ ⊤ by Corollary 5.7. By Lemma 5.18 either t3 ❀

s′ ⊤ or t3 ❀
s′ ⊥.

In any case, we may use Lemma 5.16 to conclude t2t3 ❀
s′ ⊤.

• t′1 ≡ Kt
′′
1 and for all s

′ ≥ s such that t′′1 ❀
s′ ⊤ we have t′2 ։R Kt′′2 with t

′′
2 ≻

s′ ⊤. Assume s′ ≥ s
and t1t2 ❀

s′ ⊤. Then t′′1 ❀
s′ ⊤ by Corollary 5.7. So also t2t3 ❀

s′ ⊤ by Corollary 5.7, because
t2 ։R Kt′′2 with t

′′
2 ≻

s′ ⊤.

Corollary 5.22. The structureM constructed in Definition 5.13 is an illative Kripke model for I0.

Proof. It suffices to check the conditions of Fact 5.17. Condition (1) follows from Corollary 5.7. Con-
dition (2) is a consequence of Corollary 5.10. Condition (3) follows from Lemma 5.14. Conditions (4)
and (6) follow from Lemma 5.20. Lemma 5.21 implies condition (5). Conditions (7), (8) and (9) are
obvious from definitions.

Lemma 5.23. If τ ∈ T and c ∈ Στ then for all states s we have Aτ c❀
s ⊤.

Proof. Straightforward induction on the size of τ .

It remains to prove that the values in N of formulas of PRED20 are faithfully represented by the
values of their translations inM. From this completeness will directly follow.
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Definition 5.24. Recall that for c ∈ Σ+, we denote by δ(c) the element of N corresponding to c, if
there is one. We say that an M-valuation w̃ mirrors an N -valuation w, if for every variable x there
exists c ∈ Σ+ such that w(x) = δ(c) and w̃(x) = [c]R. In other words, w̃ is the valuation assigning to
each variable x the equivalence class of the constant corresponding to the element w(x). Note that given
w the valuation w̃ is uniquely determined.

To avoid confusion, from now on we use q1, q2, etc. for terms of PRED20. By t1, t2, etc. we denote
closed terms from T(Σ+). We use c, c1, c2, etc. for constants from Σ+.

Lemma 5.25. For any N -valuation w and any term q of PRED20 which is not a formula, we have
J⌈q⌉Kw̃M = [c]R for some c ∈ Σ+ such that δ(c) = JqKwN .

Proof. Induction on the size of q. If q is a constant then ⌈q⌉ = q and J⌈q⌉Kw̃M = JqKw̃M = IM(q) = [c]R
for some c ∈ Σ+ such that δ(c) = JqKN . If q = x is a variable of type τ ∈ B then ⌈q⌉ = x. So
J⌈q⌉Kw̃M = w̃(x) = [c]R for c ∈ Σ+ such that w(x) = δ(c), by definition of w̃.
Otherwise q ≡ q1q2. Neither q1 nor q2 is a formula, so by the inductive hypothesis J⌈q1⌉Kw̃M = [c1]R

and J⌈q2⌉Kw̃M = [c2]R where δ(c1) = Jq1K
w
N and δ(c2) = Jq2K

w
N . We have ⌈q⌉ = ⌈q1⌉⌈q2⌉, so J⌈q⌉Kw̃M =

J⌈q1⌉Kw̃M ·M J⌈q2⌉Kw̃M = [c1]R ·M [c2]R = [c1c2]R. Let c ∈ Σ+ be such that δ(c) = δ(c1) ·N δ(c2).
In R there is a reduction rule c1c2 → c because F(c1)(c2) = c. Thus [c1c2]R = [c]R. We also have
δ(c) = Jq1K

w
N ·N Jq2K

w
N = Jq1q2K

w
N = JqKwN .

Lemma 5.26. For any formula φ of PRED20, any state s, and any N -valuation w we have:

s, w 
N φ iff s, w̃ 
M ⌈φ⌉

Proof. Induction on the size of φ.
If φ is a variable or a constant, then our claim follows easily from definitions. If φ = q1q2, then

neither q1 nor q2 is a formula, so by Lemma 5.25 we have J⌈q1⌉Kw̃M = [c1]R and J⌈q2⌉Kw̃M = [c2]R where
c1, c2 ∈ Σ+ and δ(c1) = Jq1K

w
N , δ(c2) = Jq2K

w
N . We have [c1]R · [c2]R = [c1c2]R = [c]R for c ∈ Σ+ such

that δ(c) = δ(c1) ·N δ(c2) = Jt1t2K
w
N . The claim now follows from the definition of ≻

s
0.

If φ = ϕ ⊃ ψ then ⌈φ⌉ = ⌈ϕ⌉ ⊃ ⌈ψ⌉. Suppose s, w̃ 
M ⌈ϕ⌉ ⊃ ⌈ψ⌉. Let s′ ≥ s be such that s′, w 
N ϕ.
By the inductive hypothesis s′, w̃ 
M ⌈ϕ⌉. Note that we also have s′, w̃ 
M ⌈ϕ⌉ ⊃ ⌈ψ⌉. By condition (2)
in Fact 3.5 we obtain s′, w̃ 
M ⌈ψ⌉, which implies s′, w 
N ψ by the IH. From Definition 2.3 it now
follows that s, w 
N ϕ ⊃ ψ. The other direction is analogous.
If φ = ∀x.ϕ where x ∈ Vτ , τ ∈ B ∪ {o}, then ⌈∀x.ϕ⌉ = ΞAτλx.⌈ϕ⌉.
Suppose s, w̃ 
M ⌈∀x.ϕ⌉, i.e., s, w̃ 
M ΞAτλx.⌈ϕ⌉. Let s′ ≥ s, d ∈ DN

τ , and u = w[x/d]. There
exists c ∈ Σ+ such that ũ(x) = [c]R and δ(c) = d. The constant c is a canonical constant of type
τ ∈ B ∪ {o}, so s′, w̃ 
M Aτ c, by definition ofM. We also have s′, w̃ 
M ΞAτλx.⌈ϕ⌉, so we conclude
that s′, w̃ 
M (λx.⌈ϕ⌉)c. This implies s′, ũ 
M ⌈ϕ⌉, and hence s′, w[x/d] 
N ϕ by the IH. Therefore
s, w 
N ∀x.ϕ, by Definition 2.3.
For the other direction, we need to show that if s, w 
M ∀x.ϕ then s, w̃ 
M ΞAτλx.⌈ϕ⌉, where

τ ∈ B ∪ {o}. If v is an M-valuation and t ∈ T(Σ+), then by tv we denote the term t with every free
variable x substituted for a representant of the equivalence class v(x). By induction on the size of t
one may easily verify that JtKvM = JtvKM, but Lemma 5.14 is needed for the case of lambda-abstraction.
Hence s, v 
M t is equivalent to tv ❀

s ⊤. Now the condition s, w̃ 
M ΞAτλx.⌈ϕ⌉ may be reformulated
as ΞAτ (λx.⌈ϕ⌉)w̃ ❀

s ⊤. Therefore it suffices to prove, assuming s, w 
N ∀x.ϕ, that for all canonical
constants c ∈ Στ of type τ ∈ B ∪ {o} and all s′ ≥ s we have (λx.⌈ϕ⌉)w̃c ❀

s′ ⊤. Let u = w[x/δ(c)].
We have ũ = w̃[x/c]. Hence (λx.⌈ϕ⌉)w̃c ❀

s′ ⊤ is equivalent to ⌈ϕ⌉ũ ❀
s′ ⊤, which is the same as

s, ũ 
M ⌈ϕ⌉. Because s, w 
N ∀x.ϕ, s′ ≥ s and u = w[x/δ(c)], we conclude that s′, u 
N ϕ. By the
inductive hypothesis we obtain s, ũ 
M ⌈ϕ⌉ which completes the proof.

Theorem 5.27. The embedding is complete, i.e., ⌈∆⌉,Γ(∆, ϕ) ⊢I0
⌈ϕ⌉ implies ∆ ⊢PRED20 ϕ.

Proof. Suppose ∆ 0PRED20 ϕ. Let N be a Kripke model, v an N -valuation and s a state of N such
that s, v 
N ∆, but s, v 1N ϕ. We use the construction in Definition 5.13 to obtain an illative Kripke
modelM. By Lemma 5.26 the condition s, v 
N ψ is equivalent to s, ṽ 
M ⌈ψ⌉. Therefore s, ṽ 
M ⌈∆⌉
but s, ṽ 1M. Using Lemma 5.23, it is a matter of routine to verify that also s, ṽ 
M Γ(∆, ϕ). By the
soundness part of Theorem 3.6 this implies ⌈∆⌉,Γ(∆, ϕ) 0I0

⌈ϕ⌉.
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6 Remarks and open problems

Remark 6.1. In this paper we use lambda-calculus with βη-equality. Lambda-calculus with β-equality
or combinatory logic with weak equality could be used instead. The proofs and definitions would only
need minor adjustments.

Remark 6.2. It is clear that the methods presented here may be used to prove completeness of the
embedding of propositional second-order logic into an extension of IP from [BBD93]. This extension
of IP is essentially I0 but with rules Pi, Pe, PH from Lemma 3.2 instead of the more general rules
for Ξ. Whether such an extension is complete for second-order propositional logic was posed as an open
problem in [BBD93].
The open problem related to I0 given in [BBD93] was whether full second-order predicate logic may

be faithfully embedded into it. We do not know the answer to this question. One problem with extending
our methods was already noted in Remark 5.11. It is not straightforward to extend our construction to
obtain a model with quantification over predicates and more than one state. Another obstacle is that
our construction of a model for Icω crucially depends on the fact that the model of higher-order logic
being transformed is a full model. Thus the construction cannot be used to show completeness of an
embedding of higher-order logic into Icω. Informally speaking, a full model is needed to ensure that no
“essentially new” functions may be “created” at later stages α of the inductive definition.
In [DBB98a] and [DBB98b] two indirect propositions-as-types translations of first-order propositional

and predicate logic were shown complete for two illative systems IF and IG, which are stronger than
IP and IΞ, respectively. It is interesting whether our methods may be used to obtain these results, or
improve on them.

Remark 6.3. In [Cza11] we presented an algebraic treatment of a combination of untyped combinatory
logic with first-order classical logic. The model construction and the completeness proof there follow
essentially the same pattern as those presented here, but they are much simpler. The system in [Cza11]
contains an additional constant Cond which allows for branching on formulas. It is not difficult to see
that we could add such a constant to Icω and our model construction would still go through.

Remark 6.4. The construction from Section 4 could also be used to show that classical many-sorted
first-order logic may be faithfully embedded into Icω , but we omit this proof as it is analogous to that
from Section 5. We do not know whether Icω is conservative over stronger systems of logic, or whether Iω
is conservative over intuitionistic first-order logic.
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