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§1. Introduction. Computable model theory, also called effective or recur-
sive model theory, studies algorithmic properties of mathematical structures,
their relations, and isomorphisms. These properties can be described syntac-
tically or semantically. One of the major tasks of computable model theory
is to obtain, whenever possible, computability-theoretic versions of various
classical model-theoretic notions and results. For example, in the 1950’s,
Fröhlich and Shepherdson realized that the concept of a computable func-
tion can make van der Waerden’s intuitive notion of an explicit field precise.
This led to the notion of a computable structure. In 1960, Rabin proved
that every computable field has a computable algebraic closure. However,
not every classical result “effectivizes”. Unlike Vaught’s theorem that no
complete theory has exactly two nonisomorphic countable models, Millar’s
andKudaibergenov’s result establishes that there is a complete decidable the-
ory that has exactly two nonisomorphic countable models with computable
elementary diagrams. In the 1970’s, Metakides and Nerode [58], [59] and
Remmel [71], [72], [73] used more advanced methods of computability the-
ory to investigate algorithmic properties of fields, vector spaces, and other
mathematical structures. At the same time and independently, computable
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model theory was developed by the Russian school of constructive mathe-
matics (see [19]).
We consider only countable structures for computable languages. A com-
putable language is a countable language with algorithmically presented set
of symbols and their arities. The universeA of an infinite countable structure
A can be identified with �. As usual, if L is the language of A, then LA
is the language L expanded by adding a constant symbol for every a ∈ A,
and AA = (A, a)a∈A is the corresponding expansion of A to LA. We say
that a first-order formula is Σ0 (or Π0) if it is quantifier-free. For n > 0,
a formula in prenex normal form is Σn (Πn, respectively) if it has n blocks
of like quantifiers, beginning with ∃ (∀, respectively). A Bn formula is a
Boolean combination of Σn (or Πn) formulae. A relation is Σ0 (or Π0) if it
is computable. As for formulae, we define Σn and Πn relations. A relation
is arithmetical if it is Σn for some n. A relation is ∆n if it is both Σn and Πn.
We use ≤T for Turing reducibility and ≡T for Turing equivalence of sets.
By deg(X ) we denote the Turing degree of X . For X,Y ⊆ �, the join of
X and Y isX ⊕Y = {2m : m ∈ X}∪{2m+1: m ∈ Y}. ByX (n) we denote
the nth jump of X , and by X (�) its �-jump. The Turing degree deg(X (α))
is also denoted by x(α). The degree 0(�) is a natural upper bound for the
sequence (0(n))n∈�, although no ascending sequence of Turing degrees has a
least upper bound. Post proved that a relation R is ∆n+1 iff R ≤T ∅(n). Post
also proved that a relation is Σn+1 iff it is computably enumerable (c.e.) in a
Πn relation.
A theory in L is a consistent set of sentences in L. A complete type (or,
briefly, a type) is a maximal consistent set of formulae in a certain fixed num-
ber of variables. We will often identify a formula � with its Gödel number
	�
. We say that a set Γ of formulae belongs to a certain computability-
theoretic complexity class C if {	�
 : � ∈ Γ} ∈ C. Hence, a theory is
computable, or decidable, if the set of its theorems is computable. Clearly, a
computably axiomatizable theory, namely a theory whose set of theorems is
c.e., which is also a complete theory, is decidable. Kleene, and also Hasen-
jaeger, showed that if T is a computably axiomatizable theory, then T has a
model whose domain is a set of natural numbers, such that every relation and
function of the model is ∆2. On the other hand, Kreisel, Mostowski, and
Putnam (independently) showed that there is a computably axiomatizable
theory that does not have a model in which every relation and function is
c.e. or co-c.e.
The atomic (open) diagram of a structure A is the set of all quantifier-free
sentences of LA true in AA. A structure is computable if its atomic diagram
is computable. The structure N = (�,+, ·, S, 0) is computable. A standard
model of arithmetic is a structure isomorphic to N . Tennenbaum showed
that there is no computable nonstandard model of Peano Arithmetic, PA.
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Moreover, in a nonstandard model of PA, neither addition, nor multiplica-
tion is computable (see [40]). The Turing degree of A, deg(A), is the Turing
degree of the atomic diagram of A. Hence,A is computable iff deg(A) = 0.
Lerman and Schmerl [54] proved that every Σ2 theory of linear order has a
computable model. On the other hand, they showed that there is a complete
∆3 theory of linear order without a computable model. Shoenfield improved
Hasenjager’s and Kleene’s result by establishing that a computably axiom-
atizable theory has a model whose Turing degree is < 0′. For example,
Shoenfield’s result implies that there is a nonstandard model of PA whose
Turing degree is < 0′.
The elementary (complete) diagram of A,Dc(A), is the set of all sentences
of LA that are true inAA. A structure A is decidable if its complete diagram
Dc(A) is computable. In other words, a structure A is decidable if there is
an algorithm that determines for every formula �(x0, . . . , xn−1) and every
sequence (a0, . . . , an−1) ∈ An, whether AA �(a0, . . . , an−1). For example,
the linear order of rationals is a decidable model of the theory of dense linear
order without endpoints. Let T be a complete theory inL andA a decidable
model of T . Then for every sentence � in L, [T � �] ⇔ [A �], so T is
a decidable theory. Moreover, every type of T realized in A is computable.
The set of all types of T realized in A is uniformly computable. Henkin’s
construction of models is effective and yields the following result.

Effective Completeness Theorem. A decidable theory has a decidable
model.

Clearly, every decidable structure is computable. The converse is not true.
For example, the structureN is computable, but not decidable. However, if a
theory admits effective quantifier elimination, then every computable model
of the theory is decidable. Thus, every computable model of the theory of
algebraically closed fields of characteristic 0 is decidable. Similarly, every
computable model of the theory of dense linear order without endpoints is
decidable.
By f : A ∼= B we denote that f is an isomorphism from A onto B.
We call any structure isomorphic to A an isomorphic copy (or, briefly, a
copy) of A. Hence, an ℵ0-categorical theory T with only infinite models is
decidable iff every countable model of T has a decidable isomorphic copy.
Harrington [33] and Khisamiev [41] established that every countable model
of a decidable ℵ1-categorical theory has a decidable copy. We define the
n-diagram of A, Dn(A), to be the set of all Σn sentences of LA that are
true in AA. In particular, D0(A) is the open diagram of A. There are
familiar structures for which Turing degrees of the n-diagrams are strictly
increasing. For example, the n-diagram of N has Turing degree 0(n). For
n ≥ 1, a structure is n-decidable if its n-diagram is computable. Moses
[67] showed that for every n ≥ 1, there is a linear order that is n-decidable,
but has no (n + 1)-decidable copy. Chisholm and Moses [12] have shown
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that there is a linear order that is n-decidable for every n ∈ �, but has
no decidable copy. Goncharov [22] established similar results for Boolean
algebras.
For sets X and Y , we say that Y is c.e. in and above (c.e.a. in) X if Y is
c.e. relative to X , and X ≤T Y . For any structure A, Dn+1(A) is c.e.a. in
Dn(A), uniformly in n. (This would not be true if we had defined Dn(A) as
Dc(A) ∩ Bn.) Clearly, Dn(A) ≡T Dc(A) ∩ Bn. An �-table is a sequence
of sets (Cn)n∈�, where Cn+1 is c.e.a. in Cn, uniformly in n. The �-table is
said to be over X if C0 = X . Similarly, for k ∈ � − {0}, a k-table is a
sequence (Cn)n<k such that for n + 1 < k, Cn+1 is c.e.a. in Cn. (In [5], Ash
and Knight introduced the notion of an α-table for any computable ordinal
α ≥ 1.) For every structure A, (Dn(A))n∈� is an �-table. Harizanov,
Knight and Morozov [32] investigated possible sequences of Turing degrees
of n-diagrams for B � A, (deg(Dn(B)))n∈�.
It is easy to see that the theory of a structure A is computable in Dc(A),
and that Dc(A) is computable in (D0(A))(�). The atomic diagram of a
model of a theory may be of much lower Turing degree than the theory
itself. For example, true arithmetic, TA, is the theory of N , and its Turing
degree is 0(�). For any theory S, Henkin’s construction produces a model
H with Dc(H) ≤T S ′. A set X ≤T ∅′ and its Turing degree x are called low
if x� ≤ 0�, and lown if x(n) ≤ 0(n). The Low Basis Theorem of Jockusch
and Soare [38], establishes that every infinite binary tree Λ has an infinite
path H with H ′ ≤T Λ′. In particular, every infinite computable binary tree
has a low path. The Low Basis Theorem can be used to obtain for a theory
S, a model H with (Dc(H))′ ≤T S ′, thus strengthening Shoenfield’s result.
As a general source for model theory we use [10] and [9], for computability
theory [78], and for computable model theory [6], [20], [31] and [63].

§2. Elementary and atomic diagrams of prime, saturated, and other count-
able models. Every computable type of a complete decidable theory is real-
ized in some decidable model of that theory. The set of all computable types
of a complete decidable theory is a Π2 set. Every principal type of such
a theory is computable, and the set of all its principal types is Π1. How-
ever, if a complete decidable theory T has a decidable prime model, then
the set of all principal types of T is uniformly computable. The following
theorem establishes the converse. Its proof combines the Henkin method of
constructing models with the finite injury priority method.

Theorem 2.1 (Goncharov and Nurtazin [29], Harrington [33]). Let T be
a complete decidable theory. Then the following are equivalent:
(a) The theory T has a decidable prime model.
(b) The theory T has a prime model and the set of all principal types of T
is uniformly computable.
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(c) There is a computable function which maps the Gődel code of every
formula consistent with T to a Gődel index of a computable principal type of
T containing the formula.

Peretyat’kin [69] showed that there is a complete atomic finitely axiomatiz-
able theory without a computable prime model. Hirschfeldt [35] has proven
that there is a complete theory of linear order with a prime model and a
computable model, but without a computable prime model. Previously,
Khisamiev established a similar result for Abelian groups.
On the other hand, Millar [62] showed that a complete atomic decidable
theory has a prime model A such that Dc(A) ≤T ∅′. Csima has recently
strengthened this result by establishing the PrimeModel Low Basis Theorem.
This theorem does not follow from the Low Basis Theorem of Jockusch and
Soare.

Theorem 2.2 (Csima [14], [13]). LetT be a complete atomic decidable the-
ory.
(a) The theory T has a prime model A such that Dc(A) is low.
(b) The theory T has low prime models A and B such that their Turing
degrees form a minimal pair.

Csima also established the Prime Model Avoiding Cones Theorem, i.e., she
proved that no nontrivial information can be coded into all prime models
of T .

Theorem 2.3 (Csima [14], [13]). LetT be a complete atomic decidable the-
ory. For every noncomputable set X , there is a prime model A of T with
X T D

c(A), and indeed A can even be chosen to be low.
In [15], a setX is called prime bounding if every complete atomic decidable
theory T has a prime model A such that Dc(A) ≤T X . For example, it
follows from Millar’s result that ∅′ is prime bounding.
Theorem 2.4 (Csima, Hirschfeldt, Knight and Soare [15]). Let X ≤T ∅′.
Then X is prime bounding if and only if X is not low2.

To prove that a low2 setX is not prime bounding, one uses a ∅′-computable
listing of the array of sets {Y : Y ≤T X} to find a complete atomic decidable
theory T , which diagonalizes against all potential prime models of T whose
elementary diagrams are computable in X . To prove that any set X that
is not low2 is indeed prime bounding, one fixes a function f ≤T X that
dominates every total ∅′-computable function. Given a complete atomic
decidable theory T , one uses f to build a prime model of T .
Millar [61] proved that a complete decidable theory T without a decidable
prime model has infinitely many pairwise nonisomorphic decidable models,
such that the set of all types realized in any two of these models simultane-
ously is exactly the set of all principal types of T . This result can be obtained
using the following Effective Omitting Types Theorem.
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Theorem 2.5 (Millar [61]). Let T be a complete decidable theory, and let
Φ be a Σ2 set of computable types of T . Then T has a decidable model that
omits every nonprincipal type in Φ.

Millar showed that the previous theorem does not hold if Φ contains
computable partial types of T , even if Φ is a computable set. Csima has
shown that for such computable partial types, Millar’s degree 0 is the only
∆2 Turing degree ruled out as the degree of the elementary diagram of a
model omitting all types.

Theorem 2.6 (Csima [13]). Let T be a complete decidable theory, and Φ a
computable set of computable partial types ofT . Then for every noncomputable
∆2 set X , there is a model A of T such that Dc(A) ≡T X and A omits every
nonprincipal type in Φ.

Millar [62] was first to show that there is a complete atomic decidable
theory with all types computable, but no computable prime model. Csima
established the following basis theorem for prime models of such theories.

Theorem 2.7 (Csima [13]). Let T be a complete atomic decidable theory
with all types computable. For every noncomputable ∆2 setX , there is a prime
model A of T such that Dc(A) ≡T X .
If all types of a complete decidable theory are computable, then T has
a countable saturated model. However, Millar [62] constructed a complete
decidable theory T whose all types are computable, such that T does not
have a computable saturated model. If T has a decidable saturated model,
then the types of T are uniformly computable. The converse is also true.

Theorem 2.8 (Morley [65], Millar [62]). Let T be a complete decidable
theory such that the set of all types of T is uniformly computable. Then
T has a decidable saturated model.

Therefore, a complete theory with a decidable saturated model also has
a decidable prime model. Millar [60] showed that there is a homogeneous
modelAwhose set of all types is uniformly computable, butA does not have
a decidable copy. On the other hand, Millar [62] established that for such a
model A, we must have Dc(A) ≤T ∅′.
Goncharov and Peretyat’kin independently generalized Theorems 2.1 and
2.8 by giving a criterion for the existence of a decidable copy of a countable
homogeneous structure A. The criterion involves an effective extension
of every type realized in A by adding a new consistent formula with an
additional variable.

Theorem 2.9 (Goncharov [24], Peretyat’kin [70]). Let A be a homoge-
neous structure. Then A has a decidable copy if and only if there is a com-
putable enumeration Γ0(u0),Γ1(u1),Γ2(u2), . . . of all types realized inA, and
a computable binary function f such that if (∃x)�(ui , x) ∈ Γi(ui), then for
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j = f(i, 	�
), we have that uj = (ui , x) and

Γi(ui) ∪ {�(ui , x)} ⊆ Γj(uj).

Macintyre and Marker [55] have a relativized version of the previous
theorem (also, see [26]).
Lerman and Schmerl investigated ℵ0-categorical theories with computable
models.

Theorem 2.10 (Lerman and Schmerl [54]). Let T be an arithmetical ℵ0-
categorical theory such that for every n ∈ �, the fragment T ∩ Σn+2 is Σn+1.
Then T has a computable model.

Lerman and Schmerl [54] also showed that for every n ∈ � and a Turing
degree d 0(n), there is an ℵ0-categorical theory T of degree d without a
computable model, such that T ∩ Σn+1 is computable.
Goncharov [23] and Kudaibergenov [51] showed that for any n ≥ 1, there
is an ℵ1-categorical but not totally categorical theory T such that only the
first n models in the Baldwin-Lachlan elementary chain of countable models
of T have computable copies.

Theorem 2.11 (Khoussainov, Nies and Shore [42]). (a) There is an ℵ1-
categorical but not totally categorical theory such that all its models in the
Baldwin-Lachlan elementary chain, except the prime one, have computable
copies.
(b) There is an ℵ1-categorical but not totally categorical theory such that
all its models in the Baldwin-Lachlan elementary chain, except the saturated
one, have computable copies.

The ℵ1-categorical theories in the previous examples are all strongly mini-
mal. That is, every definable (with parameters) subset of the domain of any
model of such a theory is finite or cofinite. A structure is strongly minimal if
its theory is strongly minimal. Nies [68] also showed that there is a strongly
minimal theory T such that the only model in the Baldwin-Lachlan elemen-
tary chain with a computable copy is the second one. Hence, T does not
have a computable prime, nor a computable saturated model. The spectrum
of computable models of an ℵ1-categorical but not totally categorical theory
T is defined to be

{α ≤ � : Aα has a computable copy},

where (Aα)α≤� is the Baldwin-Lachlan elementary chain of countable mod-
els of T . Hence, some of the previous results can be restated as results about
the possible spectra of computable models. Herwig, Lempp and Ziegler [34]
were first to find such a spectrum, different from � ∪ {�}, for a theory in a
finite language.
A strongly minimal model A is trivial if it has trivial pregeometry, that
is, for every subset X ⊆ A, the algebraic closure of X is the union of the
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algebraic closures of all elements in X . Triviality is indeed a property of the
theory of a model.

Theorem 2.12 (Goncharov, Harizanov, Laskowski, Lempp and
McCoy [27]). Let T be a trivial, strongly minimal theory with at least one
computable model. Then every countable model of T has a copy A such that
Dc(A) ≤T ∅′′. The spectrum of computable models of T is a Σ5 subset of
� ∪ {�}.
Similar questions remain open for nontrivial, strongly minimal theories.
Goncharov and Khoussainov [28] have shown that for every n ∈ �, there
is a non-strongly minimal, trivial, ℵ1-categorical theory of Turing degree
0(n), all of whose countable models have computable copies. Theorem 2.12
follows from a purelymodel-theoretic result in [27], that for a trivial, strongly
minimal theory T in a language L, the elementary diagram of any model
A of T is a model complete LA-theory. It can then be shown that T is
Σ3 axiomatizable. On the other hand, Marker [57] previously showed that
there is an almost strongly minimal, ℵ0-categorical theory, which is not Σn
axiomatizable for every n.

§3. Complexity of diagrams of models of arithmetic. Jockusch and Soare
[38] showed that there is a nonstandard model of PA of low Turing de-
gree. Using hisworkers method for nested priority constructions, Harrington
proved that there is an arithmetical, even ∆2, nonstandard model A of PA
whose theory is not arithmetical. Harrington’s construction of A exploits
infinitely many workers. For n > 1, the nth worker produces Dn(A). It has
an access to the oracle ∅(n), and always guesses what the (n + 1)st worker
has done. Knight further improved Harrington’s result.

Theorem 3.1 (Harrington, Knight [6]). There is a nonstandard modelA of
PA such that TA ≤T Th(A) and D0(A) is low.
Solovay and Marker [56] were first to show that for a nonstandard model

A of PA, the set of Turing degrees of all isomorphic copies of A is closed
upwards. In particular, the set of Turing degrees of all nonstandard models
of TA is closed upwards. Knight showed that ifA is a nonstandard model of
PA, then the set of Turing degrees of its isomorphic copies has no minimal
element.

Theorem 3.2 (Knight [49]). If A is a nonstandard model of PA, then there
exists B ∼= A such that D0(B) <T D0(A).
It is not known whether the previous result can be strengthened to obtain
both D0(B) <T D0(A) and D1(A) ≤T D1(B).
Every model of PA has an isomorphic copy that has no increase in Turing
degree-theoretic complexity between its n-diagram and (n+1)-diagram, for
any n. However, the following theorem shows that there is no nonstandard
model of PA that intrinsically shows no increase in such complexity.
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Theorem 3.3 (Knight [45]). Let A be a nonstandard model of PA. Then
there is B ∼= A such that

D0(B) <T D1(B) <T D2(B) <T . . . .
The proof involves forcing, a weak saturation property of nonstandard
models of PA, and a new consistency result.
Feferman [21] proved that every arithmetical set is computable in the
atomic diagram of any nonstandard model of TA. Knight showed that there
is a nonstandard model ofTA of the Turing degree< 0(�) (see [44]). Marker
[56] proved that for a Turing degree d with d > 0(n) for every n ≥ 0, there
is a nonstandard model A of TA such that deg(A) ≤ d′. Knight, Lachlan
and Soare [44] improved Marker’s result by obtaining (deg(A))′ ≤ d′. As a
corollary, they deduced that there is a nonstandard model of TA of Turing
degree d such that d′′ = 0(�). Knight, Lachlan and Soare also refuted the
conjecture that the converse of Feferman’s theorem holds.

Theorem 3.4 (Knight, Lachlan and Soare [44]). There is a Turing degree
d such that d > 0(n) for every n ∈ �, but d is not the Turing degree of a
nonstandard model of TA.
We now introduce Scott sets, named after Dana Scott [75], which are
naturally associated with the completions of PA. Let (�n)n∈� be a fixed
computable 1-1 enumeration of all sequences (nodes) in 2<� . (We identify
a sequence �n with its index n.) A tree TA, for a set A ⊆ �, is a set of nodes
{�n : n ∈ A} that is closed under initial segments in 2<�. A path P on a
tree T is a maximal linearly ordered set of nodes of T closed under initial
segments in 2<�. Let [T ] denote the set of all infinite paths on T .
Definition 1. A Scott set is a nonempty family S ⊆ P(�) such that for all
A,B ⊆ �:
(i) (A ∈ S ∧ B ∈ S) =⇒ A⊕ B ∈ S,
(ii) (A ∈ S ∧ B ≤T A) =⇒ B ∈ S,
(iii) (A ∈ S ∧ TA an infinite tree ) =⇒ (∃P ∈ S)(P ∈ [TA]).
Another way to look at condition (iii) of the previous definition is that a
consistent set of axioms in S has a completion in S. For example, the set of
all arithmetical sets is a Scott set. Another important example of a Scott set
for every nonstandard model A of PA is the standard system of A:

{{n ∈ � : AA “a is divisible by the nth prime number”} | a ∈ A}.
We say that a set X ⊆ � is representable in a model A of PA if there is a
formula �(x) in the language of PA, such that

X = {n : A �(Sn(0))}.
Theorem 3.5 (Scott [75]). If A is a model of PA, then {X ⊆ � : X is
representable in A} is a Scott set. Conversely, for any countable Scott set
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S, there is a nonstandard model A of PA such that S = {X ⊆ � : X is
representable in A}.
An enumeration of a countable set S ⊆ P(�) is a binary relation � such
that S = {�0, �1, �2, . . . }, where for every i ∈ �, �i =def {n : (i, n) ∈ �}.
The number i is called a �-index of the set �i .
Definition 2. Let S be a countable Scott set. An effective enumeration
of S is an enumeration � with associated binary functions f, g, and a unary
function h such that for every i, j ∈ �:
(i) �i ⊕ �j = �f(i,j),
(ii) (�i = A ∧ B = {e}A) =⇒ B = �g(i,e),
(iii) T�i an infinite tree =⇒ �h(i) ∈ [T�i ].
This effective enumeration is computable in a set X ⊆ � if �, f, g, h are all
computable in X .
Solovay proved that the Turing degrees of nonstandard models of TA are
precisely theTuring degrees of effective enumerations of Scott sets containing
the arithmetical sets (see [48]). However, Macintyre and Marker [55], using
Theorem 2.9 relativized to an arbitrary oracle X , showed that if a countable
Scott set S has an enumeration computable in X , then S has an effective
enumeration computable in X . Hence, in Solovay’s characterization of
Turing degrees of nonstandard models of TA, “effective enumeration” can
be replaced by “enumeration”.
Theorem 3.6 (Solovay, Marker). For a Turing degrees d, the following are
equivalent:
(i) There is a nonstandard model A of TA such that deg(A) = d;
(ii) For some Scott set containing all arithmetical sets, there is an enumer-
ation � such that deg(�) = d.
We say that a Turing degree d is a uniform upper bound for the arithmetical
sets if there is an enumeration � of the set of all arithmetical sets such that
deg(�) ≤ d. Hence, every uniform upper bound for the arithmetical sets
is the Turing degree of a nonstandard model of TA. On the other hand,
Lachlan and Soare [52] proved that there is a model of TA whose Turing
degree is not a uniform upper bound for the arithmetical sets. A Turing
degree d is a subuniform upper bound for the arithmetical sets if there is an
enumeration � of sets containing all arithmetical sets such that deg(�) ≤ d. If
A is a nonstandard model of TA of Turing degree d, then d is a subuniform
upper bound for the arithmetical sets. However, the converse does not
hold. Lachlan and Soare [53] proved that there is a Turing degree that is
a subuniform upper bound for the arithmetical sets, but is not the Turing
degree of a nonstandard model of TA.
Solovay also characterized the Turing degrees of nonstandard models of
arbitrary completions of PA (see [48] and [2]). Arana further extended
Solovay’s result to n-diagrams.
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Theorem 3.7 (Arana [1]). Let C be a completion of PA, and n ∈ �. Then
the following are equivalent for a set X ⊆ �:
(i) There is a nonstandard model A of C such that Dn(A) ≡T X ;
(ii) For some Scott setS withC∩Σi ∈ S for every i , there is an enumeration
� ≤T X , and a sequence of unary functions (fn+i)i≥1 such that

• fn+i is ∆i in X , uniformly in i ,
• lim
s→∞fn+i(s) is a �-index for C ∩ Σn+i ,

• for every s , fn+i(s) is a �-index for a subset of C ∩ Σn+i .
A related open problem is to characterize sequences of Turing degrees of
n-diagrams for models of a given completion of PA. Arana characterized
Turing degrees of n-diagrams of nonstandard models of TA.

Theorem 3.8 (Arana [1]). For every n ∈ �, the Turing degrees of n-
diagrams of nonstandard models of TA are the Turing degrees of enumera-
tions of Scott sets containing the arithmetical sets.

Hence, the Turing degrees of n-diagrams of nonstandard models of TA
are the same for every n ∈ �.

§4. Turing degrees of isomorphism types. Consider A = (�,<). Then for
any Turing degree d, there is a structure B = (�,≺) isomorphic to A such
that deg(B) = d. This fact is easily established via coding any set X into B
by arranging that

2n ≺ 2n + 1 if n ∈ X,
2n + 1 ≺ 2n if n /∈ X.

The Turing degree spectrum of a countable structure A is

DgSp(A) = {deg(B) : B ∼= A}.

Slaman [76] and Wehner [80] have independently constructed examples of
Turing degree spectra of structures consisting of all nonzero Turing degrees.
This is not always the case. Downey and Jockusch [16] have shown that any
Boolean algebra of low Turing degree has a computable copy, and Thurber
[79], and Knight and Stob [50] have further extended this result to Boolean
algebras of low2 and low4 Turing degrees, respectively. They have conjectured
that a similar result holds for Boolean algebras of any lown Turing degree.
Jockusch and Soare [39] proved that for every nonzero c.e. Turing degree d,
there is a linear order of Turing degree d, which does not have a computable
isomorphic copy. Downey, Seetapun and Knight [18] extended this result
to an arbitrary nonzero Turing degree. Downey asked if there are familiar
mathematical structures, such as linear orders, whose Turing degree spectra
consist exactly of all nonzero Turing degrees. This question remains open.
However, Miller has a partial answer.
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Theorem 4.1 (Miller [64]). There is a linear order whose Turing degree
spectrum does not include 0, but includes all nonzero ∆2 Turing degrees.

Miller’s proof uses the technique of permitting below a ∆2 set.
A countable structureA is automorphically trivial if there is a finite subsetF
of the domain A such that every permutation of A, whose restriction on
F is the identity, is an automorphism of A. For example, every infinite
linear order is automorphically nontrivial. Knight [47] proved that for
an automorphically nontrivial structure A, and a Turing degree d with d ≥
deg(A), there is a structureB ∼= A such that deg(B) = d. That is,DgSp(A) is
closed upwards. On the other hand, for an automorphically trivial structure,
all isomorphic copies have the same Turing degree. Building on Knight’s
result, we can show that for any (countable) structure, there is a copy in
which the complete diagram, and all of the n-diagrams have the same Turing
degree.

Theorem 4.2 (Harizanov, Knight and Morozov [32]). For every automor-
phically trivial structureA, we haveDc(A) ≡T D0(A). For every automorphi-
cally nontrivial structure A, and every set X ≥T Dc(A), there exists B ∼= A
such that

Dc(B) ≡T D0(B) ≡T X.

The following result shows that whenever a structure with a certain inter-
esting Turing degree spectrum is found, then there are such structures within
some well-known classes of algebraic structures.

Theorem 4.3 (Hirschfeldt, Khoussainov, Shore and Slinko [36]). For ev-
ery automorphically nontrivial (countable) structure G, there is a symmetric
irreflexive graph, a partial order, a lattice, a ring, an integral domain of arbi-
trary characteristic, a commutative semigroup, and a 2-step nilpotent group,
A, such that DgSp(A) = DgSp(G).
Since the Turing degree of a structure is not invariant under isomorphisms,
Jockusch introduced the following complexity measure of the isomorphism
type of a structure.

Definition 3. The (Turing) degree of the isomorphism type of A, if it
exists, is the least Turing degree in DgSp(A).
The next theorem establishes that the Turing degree of the isomorphism
type of a structure without a computable copy, which satisfies a certain con-
dition on effective extendability of embeddings, does not exist. We say that
a structure A satisfies the effective extendability condition if for every finite
structure C isomorphic to a substructure of A, and every embedding f of C
intoA, there is an algorithm that determines whether a given finite structure
D extending C can be embedded intoA by an embedding extending f. (For
example, Slaman and Soare [77] showed that the c.e. Turing degrees, with
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the usual order relation of Turing degrees, satisfy the effective extendability
condition.)
Theorem 4.4 (Richter [74]). Assume that a structure A satisfies the effec-
tive extendability condition. If the degree of the isomorphism type of A exists,
then it must be 0.
For example, a (countable) linear order satisfies the effective extendability
condition. Thus, a linear order that is not isomorphic to a computable one,
does not have a degree of its isomorphism type. Also, the isomorphism
class of a tree without a computable copy does not have a degree of its
isomorphism type.
Theorem 4.5 (Richter [74]). Let T be a theory in a finite language L such
that there is a computable sequence A0,A1,A2, . . . of finite structures for L,
which are pairwise nonembeddable. Assume that for every set X ⊆ �, there is
a (countable) model AX of T such that AX ≤T X , and for every i ∈ �,

Ai is embeddable in AX ⇔ i ∈ X.
Then for every Turing degree d, there is a (countable) model of T whose
isomorphism type has degree d.
For example, as a corollary, we obtain that for every Turing degree d,
there is an Abelian group whose isomorphism type has degree d. Similarly,
we can prove that there is such a lattice. On the other hand, Richter [74]
showed that a modification of the previous theorem, obtained by replacing
Turing reducibility in AX ≤T X by the enumeration reducibility, yields a
very different conclusion—that there is a set X such that the isomorphism
type of AX does not have a degree. As a corollary, we obtain that there is a
countable Abelian group whose isomorphism type does not have a degree.
Sincemany countable structures do not have a degree of their isomorphism
type, Jockusch introduced the followingmeasure of complexity of structures,
which is invariant under isomorphisms.
Definition 4. Let α be a computable ordinal. The αth jump degree of a
structure A, if it exists, is the least Turing degree in {deg(B)(α) : B ∼= A}.
Obviously, the notion of the 0th jump degree of A coincides with the
notion of the degree of the isomorphism type of A. No nonstandard model
of PA has 0th jump degree. On the other hand, there is a nonstandard
model of PA with any first jump degree d′. Knight [47] showed that the
only possible first jump degree for a linear order is 0′. Downey and Knight,
building on the previous work of Ash, Jockusch and Knight [4], established
the following sharp result for the jump degrees of a linear order.
Theorem 4.6 (Downey and Knight [17]). Let a Turing degree d be such
that d ≥ 0(α), where α ≥ 1 is a computable ordinal. There is a linear order A
whose αth jump degree is d, and such thatA does not have �th jump degree for
any � < α.
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Jockusch and Soare have established a sharp result for the jump degrees
of a Boolean algebra.

Theorem 4.7 (Jockusch and Soare [37]). Let d be a Turing degree, and
n ∈ �.
(a) If a Boolean algebra has nth jump degree d, then d = 0(n).
(b) If d ≥ 0(�), then there is a Boolean algebra with �th jump degree d.
Csima’s results on the complexity of primemodels of a complete decidable
theory resolve the jump degree question for such prime models.

Theorem 4.8 (Csima [14], [13]). Let A be a prime model of a complete
decidable theory with no computable prime model.
(a) The structure A does not have a 0th jump degree.
(b) For every n ∈ � − {0}, A has the nth jump degree 0(n).

§5. n-diagrams of countable structures. Ash and Nerode [7] defined an
additional relation R on the domain A of a computable structure A to be
intrinsically c.e. on A if on all computable copies B of A, the image of R
is c.e. They showed that, under a suitable extra decidability condition, a
relation is intrinsically c.e. on A if and only if it is formally c.e. on A. A
relation is formally c.e. on A if it is definable in A by a c.e. disjunction of
existential formulae with finitely many fixed parameters. The Ash-Nerode
decidability condition is expressed in terms ofA and R, and follows from the
decidability of the existential diagram of (A, R).
A relation R is relatively intrinsically c.e. on A if for all copies B of A,
the image of R is c.e. relative to D0(B). Not every intrinsically c.e. relation
is relatively intrinsically c.e. The following relativized Ash-Nerode theorem
does not require an additional decidability condition.

Theorem 5.1 (Chisholm [11], Ash, Knight, Manasse and Slaman [3]). A
relation R is formally c.e. on A iff R is relatively intrinsically c.e. on A.
While the proof of Ash-Nerode theorem uses the priority argument, the
proof of the relativizedAsh-Nerode theoremuses forcing. Both theorems can
be extended within arithmetical and hyperarithmetical hierarchies (see [6]).
There are familiar structuresA such that for allB ∼= A, we haveDc(B) ≡T
D0(B). In particular, this is true for algebraically closed fields, and for other
structures for which we have effective elimination of quantifiers. In the
following theorem, we give syntactic conditions on A under which for all
B ∼= A, we haveDc(B) ≡T Dn(B). This result can be obtained using forcing,
as for the relativized Ash-Nerode theorem.

Theorem 5.2 (Harizanov, Knight and Morozov [32]). For a (countable)
structure A and n ∈ �, the following are equivalent:
(i) For every structure B ∼= A we have

Dc(B) ≤T Dn(B);



COMPUTABILITY-THEORETIC COMPLEXITY OF COUNTABLE STRUCTURES 471

(ii) There exist a finite sequence c ∈ A<� and a computable function d
assigning to every formula 	(x) a c.e. disjunction d	(c, x) of Σn+1 formulae
with parameters c, such that

AA |= (∀x)[	(x)⇔ d	(c, x)].

For example, it will follow that if B is a linear order of type �k · 
, where

 is the order type of rationals, then

Dc(B) ≡T D2k(B).
Let A be a decidable linear order of type �k · 
. For any formula 	(x), we
obtain d	 as follows. For every tuple a, we can find a Σ2k+1 formula �a(x)
defining the orbit of a under the automorphisms of A. Then d	(x) is the
disjunction of the formulae �a(x), for a satisfying 	(x) in A.
We also have a general condition, analogous to the one in Theorem 5.2 (ii),
for the collapse of the (n+1)-diagram to the n-diagram,Dn+1(B) ≤T Dn(B).
We just have to replace in (ii) “formula 	(x)” by “Πn+1 formula 	(x)”.
Clearly, a countable structure is intrinsically relatively 1-decidable if and
only if its Π1-definable relations are formally c.e., uniformly in the defining
formulae. LetA be a computable structure for L, and letR be an additional
computable relation on its domain. The following result gives a general
sufficient condition for realizing every c.e. Turing degree as the image of R
in a computable isomorphic copy of A.
Let c be a finite sequence of elements in A. We say that an element
a ∈ A−R is free over c if for every existential formula �(x, u) with lh(x) =
lh(c), in L ∪ {R} with only positive occurrences of R, if (AA,R) �(c, a),
then there is a ′ ∈ R for which (AA,R) �(c, a ′).
Theorem 5.3 (Harizanov [30]). Let R be a computable relation on a com-
putable structure A. Assume that for every c ∈ A<�, we can effectively find
a ∈ A−R such that a is free over c. Then for every c.e. set Y ⊆ �, there is an
isomorphism f from A onto a computable structure B such that f(R) is c.e.
and f(R) ≡T Y .
In [66], Moses investigated 1-diagrams of linear orders, and proved that
a computable linear order is 1-decidable if and only if its successor relation
is computable. Using quantifier elimination, Moses showed that in a linear
order with a computable universe, the 1-diagram is computable relative to
the order relation together with the successor relation. For example, it then
follows fromTheorem 5.3 that for every c.e. setY ⊆ �, there is a computable
linear order B of order type � such that D1(B) ≡T Y .
The next result, which follows from the proofs in [32], gives a general
sufficient condition for realizing arbitrary possible Turing degrees for the
existential and atomic diagrams of isomorphic copies of a structure.
Theorem 5.4. Let A be a (countable) structure satisfying the following
conditions for every sequence c ∈ A<�.
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(C1)We can effectively find aΠ1 formula �(x, u) with lh(x) = lh(c), and a
sequence a ∈ Alh(u) such thatAA |= �(c, a), and for every Σ1 formula �(x, u),
we have

[AA |= �(c, a)]⇒ (∃a ′ ∈ Alh(u))[AA |= (�(c, a′) ∧ ¬�(c, a ′))].

(C0)We can effectively find a ∆1 formula �(x, u), given by a pair of Σ1,Π1
formulae, such that for two sequences of distinct elements, a, a ′ ∈ Alh(u),
disjoint from c, we have

AA |= �(c, a) ∧ ¬�(c, a ′).

Let the sets X,Y ⊆ � be such that X ≥T D0(A) and Y is c.e.a. in X . Then
there is a structure B ∼= A such that

D0(B) ≡T X ∧D1(B) ≡T Y.

Thus, there is a linear order B of order type � with D0(B) ≡T X and
D1(B) ≡T Y . A corresponding Π1 formula uses the successor relation,
and a corresponding ∆1 formula uses the order relation. Also, if A is the
interval Boolean algebra of (�,<), then there exists B ∼= A with D0(B) ≡T
X and D1(B) ≡T Y . A corresponding Π1 formula uses the unary atom
relation, and a corresponding ∆1 formula uses the binary relation of being
disjoint. Similarly, if A is the Abelian group Z�p ⊕ Z�

p2
, where p is a prime

number, then there exists B ∼= A with D0(B) ≡T X and D1(B) ≡T Y . A
corresponding Π1 formula uses the unary relation of not being divisible by
p, and a corresponding ∆1 formula uses the binary relation of one element
being a multiple by p of the other element.
If a structure A is 1-decidable, then the condition (C1) in Theorem 5.4
allows the existence of a computable copy B of A such that D1(B) is of an
arbitrary c.e. degree. We next investigate Turing degrees of all n-diagrams
of isomorphic copies of a structure.

Theorem 5.5 (Chisholm and Moses [12]). There is a structureA that is n-
decidable and whose every computable copy is n-decidable, for all n, butA has
no decidable copy.

Knight extended Theorem 3.3 by characterizing possible sequences of
Turing degrees of n-diagrams of nonstandard models of PA.

Theorem 5.6 (Knight [46]). Let (dn)n∈� be an infinite sequence of Turing
degrees. Then the following are equivalent:
(i) There exists a nonstandard model A of PA such that

(∀n)[deg(Dn(A) = dn];

(ii) There exists an �-table (Cn)n∈� over a completion of PA, such that

(∀n)[deg(Cn) = dn].
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We do not know what possible sequences of Turing degrees are for
(Dn(B))n∈�, where B ∼= N .
Let A be a structure. For a single tuple a or concatenated tuples a, c
from A, we assume that their elements are all distinct. The standard back-
and-forth relations ≤α can be defined for arbitrary countable ordinals α.
However, we give a definition in the case when α is finite, and, for simplicity,
consider only structures A for a finite relational language. This assumption
simplifies the definition of ≤0.
Definition 5 (Barwise [8], Ash and Knight [6]). Let a, b be tuples from
A<� such that lh(a) ≤ lh(b). Then
(i) a ≤0 b if the open formulae true of a are true of b;
(ii) a ≤n+1 b if for every d , there exists c such that b, d ≤n a, c.
The following notion of independence from [32] uses the back-and-forth
relations and plays a fundamental role in the theorem that follows.

Definition 6. Let u be a tuple of distinct variables.
(i) The formula �(u, x) is 0-independent over u if it is open, and for every

c ∈ Alh(u), there exist a, a′ ∈ Alh(x) such that

AA |= �(c, a) and AA |= ¬ �(c, a′).

(ii) For n > 0, the formula �(u, x) is n-independent over u if it is Πn and
for every c ∈ Alh(u),

• there exists a such that AA |= �(c, a), and
• for every a withA |= �(c, a), and any a1, there exist a ′ and a ′1 such that

A |= ¬ �(c, a ′) and c, a, a1 ≤n−1 c, a ′, a′1.

In linear orders of order type �� or �� · 
, we use the n-independent
formulae similar to the ones used by Moses in [67]. The n-independent
formula over u says that x is greater than any element in u; and x < y if
n = 0, y is the successor of x if n = 1, x is a 1-limit if n = 2, x and y are
1-limits and y is the next one after x if n = 3, etc.
It will follow from the following general theorem that the sequences of
Turing degrees of n-diagrams of linear orders of the order type �� or �� · 

coincide with the sequences of Turing degrees of �-tables. The theorem is
proved using Ash’s method of α-systems, a framework for nested priority
constructions developed by Ash and Knight (see [6]). Our proof exploits a
metatheorem from [46], for coding and enumerating α-systems for α ≤ �.
The metatheorem provides a list of “abstract” conditions guaranteeing the
success of a priority construction.

Theorem 5.7 (Harizanov, Knight and Morozov [32]). Using the notions
above, assume that A is decidable, and that the relations ≤n are c.e. for n ∈ �,
uniformly in n. Assume also that for every n and every tuple u of variables,
we can effectively find a formula that is n-independent over u. Then for any
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�-table (Cn)n<�, there exists B ∼= A such that
Dn(B) ≡T Cn

for n ∈ �, uniformly in n.
The uniformity implies that Dc(B) ≡ ⊕n<�Cn.
A theoremanalogous to the previous one can be established for any (k+1)-
table (Cn)n≤k, where 1 ≤ k < �. It is enough to assume that A is k-
decidable, that the relations ≤0, . . . ,≤k−1 are c.e., and that for every u and
every n ≤ k, we can effectively find a formula that is n-independent over
u. For example, for any (2m)-table (Cn)n≤2m−1, where 1 ≤ m < �, there
is a linear order of the order type �m such that Dn(B) ≡T Cn for every
n ≤ 2m − 1.
In addition to linear orders, it would be worthwhile to investigate possible
sequences of Turing degrees of n-diagrams for other natural mathematical
structures. For models of completions of PA, see [32] for a conjecture about
a characterization of these sequences.
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