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FORCING AXIOMS, SUPERCOMPACT CARDINALS, SINGULAR

CARDINAL COMBINATORICS

MATTEO VIALE

The purpose of this communication is to present some recent advances
on the consequences that forcing axioms and large cardinals have on the
combinatorics of singular cardinals. I will introduce a few examples of
problems in singular cardinal combinatorics which can be fruitfully attacked
using ideas and techniques coming from the theory of forcing axioms and
then translate the results so obtained in suitable large cardinals properties.
The first example I will treat is the proof that the proper forcing axiom

PFA implies the singular cardinal hypothesis SCH, this will easily lead to a
new proof of Solovay’s theorem that SCH holds above a strongly compact
cardinal. I will also outline how some of the ideas involved in these proofs
can be used as means to evaluate the “saturation” properties of models of
strong forcing axioms likeMM or PFA.
The second example aims to show that the transfer principle (ℵù+1,ℵù)։

(ℵ2,ℵ1) fails assuming Martin’s Maximum MM. Also in this case the result
can be translated in a large cardinal property, however this requires a famil-
iarity with a rather large fragment of Shelah’s pcf-theory.
Only sketchy arguments will be given, the reader is referred to the forth-
coming [25] and [38] for a thorough analysis of these problems and for
detailed proofs.

The singular cardinal problem. Cardinal arithmetic is a central subject
in modern set theory and one of the key problems in this domain is to
evaluate the gimel function κ 7→ κcof(κ) for a singular cardinal κ. There are
various reasons why this question has become so relevant. First of all it is a
folklore result that the behavior of the exponential function κë is completely
determined by the interplay between the gimel function and the powerset
function ë 7→ 2ë restricted to the class of regular cardinals (see [15] I.5). Two
standard exercises in a graduate course in set theory are to show Cantor’s
inequality 2ë > ë for all ë and to prove that κcof(κ) > κ for all singular κ.
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On the other hand one of the first application of forcing has been the result
of Easton that Cantor’s inequality is the unique non trivial restriction that
the powerset function can have on the class of regular cardinals [9]. What
has been surprising is the richness of properties of the gimel function. The
singular cardinal hypothesis SCH asserts that κcof(κ) = κ+ + 2cof(κ) for all
singularκ, i.e., has always the least possible value. In the early seventiesmuch
effort has been devoted to analyze this principle. The first relevant results
have been Silver’s proof that SCH holds for all singular cardinals if it holds
already for all singular cardinal of countable cofinality [28], Solovay’s proof
that SCH holds for all singular cardinals which are above a strongly compact
cardinal [29] and Jensen’s covering lemma showing that the failure of SCH

required the existence of 0♯ [8]. Another major result of Silver has been the
proof of the consistency of ¬SCH relative to the existence of a supercompact
cardinal (see [15] theorem 21.4). In the late seventies Magidor [20] has
shown that SCH can first fail even at ℵù. In the eighties the works ofWoodin
(unpublished) and Gitik [14] have considerably reduced the large cardinals
hypothesis needed to obtain the consistency of ¬SCH and Gitik proved that
¬SCH is equiconsistent with the existence of a measurable cardinal κ of
Mitchell order κ++, which is a rather weak large cardinal hypothesis. Thus
SCH holds above a sufficiently large cardinal while the consistency of ¬SCH

requires the existence of models of ZFC with measurable cardinals. These
results linked the study of the gimel function to the theory of large cardinals.
In the beginning of the eighties Shelah obtained a dramatic improvement of
Silver’s result and showed that

(ℵù)
ℵ0 < ℵù4 + (2

ℵ0)+

holds in ZFC [26]. Shelah’s proof gave rise to a variety of new techniques
which are the basic ingredients of pcf-theory (the theory of possibles cofinal-
ities) and which have become the key tools to attack many difficult problems
concerning the combinatorics of singular cardinals.

Forcing axioms. During the eighties Shelah’s refinement of the forcing
techniques led to the introduction of the strongest forcing axioms: the proper
forcing axiom PFA (Baumgartner and Shelah [4]) and Martin’s maximum
MM (Foreman,Magidor and Shelah [12]). These axioms are a strengthening
of Martin’s axiomMA and assert a principle of saturation of the universe of
sets with respect to a large class of forcing notions: a modelM of these ax-
ioms has the property that a variety of sets which will exist in an appropriate
forcing extension overM actually exists inM . These axioms are sufficiently
strong to settle many of the classical problems which are independent of
ZFC, for example MM and PFA both decide that 2ℵ0 = ℵ2 and that SCH

holds.1 The theory produced by these axioms is opposite to the theory of L:

1The proof that SCH and 2ℵ0 = ℵ2 follow from MM already appeared in [12], where
this axiom was introduced. Later on Todorčević and Veličković showed that PFA implies
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while the axiom of constructibility V = L is a principle of minimality (i.e.,
the only sets which exist are those which are necessary in the theory ZFC),
forcing axioms are maximality principles in the sense that they assert the
actual existence of a large number of sets which can only be shown to exist
consistently in ZFC. These axioms have been thus extremely useful to obtain
the consistency of many principles whose negation is known to hold in L,
the first and simplest example being Suslin’s hypothesis which fails in L and
holds in amodel ofMA [30]. There are however a number of other interesting
conjectures which holds in models of PFA, for example Moore has shown
that PFA solves positively the “five element basis” problem, i.e., in a model
of this forcing axiom there are five uncountable linear orders such that, given
any other uncountable linear order, at least one of them embeds into it [23].
While the actual formulation of these axioms is rather technical and re-
quires a sophisticated knowledge of forcing, there are a number of simple
combinatorial principles which are a consequence of these axioms andwhich
can be used to interpolate the proofs of many consequences of PFA orMM.
This will be substantiated in the next section. Moreover the models of these
forcing axioms are currently obtained by an appropriate forcing which col-
lapses a supercompact cardinal to ℵ2. It is a matter of fact that many of
the consequences of these axioms can be translated in interesting properties
of the supercompact cardinal from which a model of these axioms has been
obtained. This is particularly the case in all questions concerning singular
cardinals because the size of the forcing to produce a model of MM is so
small with respect to the size of the combinatorial object that are under
investigation that the properties of these objects are almost unaffected after
the forcing. Thus a result concerning the properties of singular cardinals
obtained using PFA or MM can almost certainly be translated in a theo-
rem concerning the properties of singular cardinals above a supercompact
cardinal. This will be the case in all of the problems that we will examine.

§1. PFA, SCH and the P-ideal dichotomy. In [38] a number of proofs that
PFA implies SCH are presented. The core of these proofs is the introduction
of a family of covering properties which imply SCH and follow from at least
two combinatorial principles which holds under PFA: the simplest of which
being the P-ideal dichotomy PID, and the other being Moore’s reflection
principle MRP. The original proof of SCH from PFA factors through MRP

and the key covering properties which I’m going to introduce below and
in the next section have been isolated analyzing it.2 Nonetheless here I

2ℵ0 = ℵ2 [34], while the proof that SCH follows from PFA is the major result of my Ph.D.
thesis [36].
2The reader interested inMRP and its applications is referred to [22], where a number of

new consequences of PFA which have been proved using this axiom are listed and references
to the pertinent papers provided. Other applications ofMRP appears in [5]. In [38] and [37]
the reader can find proofs of SCH assuming MRP.
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will only sketch a proof that PID implies SCH. The reason is that PID is
an elementary combinatorial statement dealing with objects and concepts
which are familiar to any mathematician and the proof that PID implies SCH

is at reach for anyone able to understand the statement of theorem 1.2.

1.1. The P-ideal dichotomy. The P-ideal dichotomy has been introduced
in its full generality by Todorčević [33] developing on previous works by
himself [32] and Abraham and himself [2].
LetZ be a set and [Z]≤ℵ0 = {X ⊆ Z : |X | ≤ ℵ0}. I ⊆ [Z]≤ℵ0 is a P-ideal
if it is an ideal and for every countable family {Xn}n ⊆ I there is an X ∈ I
such that for all n, Xn ⊆

∗ X (where ⊆∗ is inclusion modulo finite).

Definition 1.1 (Todorčević [33]). The P-ideal dichotomy (PID) asserts
that for every P-ideal I on [Z]≤ℵ0 for some fixed uncountable Z, one of
the following holds:

(i) There is Y uncountable subset of Z such that [Y ]ℵ0 ⊆ I .
(ii) Z =

⋃
n An with the property that An is orthogonal to I (i.e., X ∩ Y is

finite for all X ∈ [An]ℵ0 and Y ∈ I) for all n.

In simple words (i) says that I is large since it is the largest possible
ideal on the countable subsets of an uncountable Y , on the other hand (ii)
says that I is small since it reduces to the Frechet ideal on every An i.e.,
I ∩ [An]

≤ℵ0 = [An]
<ℵ0 is the smallest possible ideal which contains all finite

sets. Note that (i) and (ii) are incompatible conditions.
PID is a principle which follows from PFA and which is strong enough
to rule out many of the standard consequences of V = L. For example
Abraham and Todorčević [2] have shown that underPID there are no Souslin
trees while Todorčević has shown that PID implies the failure of �(κ) on all
regular κ > ℵ1 [33]. Due to this latter fact the consistency strength of this
principle is considerable. Another interesting result by Todorčević is that
PID implies that b ≤ ℵ2.

3 Nonetheless in [2] and [33] it is shown that this
principle is consistent with CH. Other interesting applications of PID can be
found in [2], [3], [33] and [35].

PID impliesSCH. First of all the problem is simplified using Silver’s result
that SCH holds if it holds for all singular cardinals of countable cofinality
[28]. By a standard calculation the latter holds assuming the conclusion of
the following:

Theorem 1.2. PID implies ëℵ0 = ë for all regular ë ≥ 2ℵ0 .

A sketch of the proof: For any cardinal κ of countable cofinality,

D = {D(n, â) : n < ù, â ∈ κ+}

3In [33] it is shown that any gap in P(ù)/ FIN is either an Hausdorff gap or a (κ,ù)
gap with κ regular and uncountable. By another result of Todorčević ([32] Lemma 3.10) if
b > ℵ2 there is an (ù2, ë) gap in P(ù)/ FIN for some regular uncountable ë. Thus PID is not
compatible with b > ℵ2.



FORCING AXIOMS AND SINGULAR CARDINAL COMBINATORICS 103

is a covering matrix for κ+ if:

(i) for all n and α, |D(n, α)| < κ,
(ii) for all α ∈ κ+, D(n, α) ⊆ D(m,α) for n < m,
(iii) for all α ∈ κ+, α ⊆

⋃
n D(n, α),

(iv) for all α < â ∈ κ+, if α ∈ D(n, â), then D(n, α) ⊆ D(n, â),
(v) for all X ∈ [κ+]ℵ0 there is ãX < κ

+ such that for all â , there is n such
that D(m, â) ∩ X ⊆ D(m, ãX ) for all m ≥ n.

Fact 1.3. For any κ > 2ℵ0 singular cardinal of countable cofinality, there
is a covering matrix D on κ+.

To define such a D, let for all â , φâ : κ → â be a surjection and (κn)n be a
strictly increasing sequence of regular cardinals converging to κ.
Define by induction on â :

D(n, â) = {â} ∪ φâ [κn] ∪ {D(n, ã) : ã ∈ φâ [κn]}.

It is easy to check properties (i), . . . , (iv) for D. To check property (v)
observe that for any countableX ⊆ κ+ themapøX : κ

+ → (P(X ))ù defined
by α 7→ 〈X ∩D(n, α) : n ∈ ù〉 is constant on an unbounded subset S of κ+,
since κ > 2ℵ0 . Now ãX = min(S) satisfies (v) for X . ⊣

We remark that here and fact 1.5 below are the unique part in the proof of
theorem 1.2 in which the cardinal arithmetic assumption κ > 2ℵ0 is used.
Moreover this hypothesis is inessential for fact 1.3. It is possible to prove
its conclusion without any cardinal arithmetic assumption with the help of
some pcf-techniques ([36] Lemma 4.2). We will come back to this in the
next section.
Let D be a covering matrix for κ+. D covers κ+ if there is an unbounded
subsetA of κ+ such that [A]ℵ0 is covered byD, i.e., for everyX ∈ [A]ℵ0 there
is a Y ∈ D such that X ⊆ Y .

Definition 1.4. CP holds if D covers κ+ whenever D is a covering matrix
for κ+ and κ has countable cofinality.

Now the theorem follows once the following facts are proved.

Fact 1.5. Assume CP. Then ëℵ0 = ë, for every ë ≥ 2ℵ0 of uncountable
cofinality.

This is a proof by induction which uses CP only in the inductive stage
where ë is the successor of a cardinal κ of countable cofinality. In this case
a covering matrix D on κ+ exists by the previous fact and by CP there is an
unbounded A ⊆ κ+ such that [A]ℵ0 is covered by D. Now:

(κ+)ℵ0 = |[A]ℵ0 | ≤ |
⋃

{[D(n, â)]ℵ0 : n ∈ ù, â ∈ κ+}| = κ+.

The latter equality holds because by property (ii) of D eachD(n, â) has size
less than κ, now the inductive assumption can be used to obtain that each
[D(n, â)]ℵ0 has size less than κ. ⊣
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Lemma 1.6. PID implies CP.

Let κ be a cardinal of countable cofinality and D be a covering matrix on
κ+ and set:4

I = {X ∈ [κ+]ℵ0 : X ∩D(n, α) is finite for all n, α}.

Claim 1.7. I is a P-ideal.

Let {Xn : n ∈ ù} ⊆ I we need to find an X ∈ I which contains all Xn
modulo finite. Set Y =

⋃
n Xn. Then Y is countable. Let ãY be the ordinal

provided by property (v) of the covering matrix. By a standard diagonal
argument find an X ⊆ Y such that Xn ⊆

∗ X and X ∩K(m, ãY ) is finite for
allm and n. Properties (iv) and (v) of the matrix guarantee that X has finite
intersection with all K(n, α), so X ∈ I . ⊣
Now remark that if Z ⊆ κ is any set of ordinals of size ℵ1 and α ∈ κ+ is
larger than sup(Z), there must be an n such that Z∩D(n, α) is uncountable.
This means that I 6⊆ [Z]ℵ0 , since any countable subset of Z ∩D(n, α) is not
in I .
This forbids I to satisfy the first alternative of the P-ideal dichotomy. So
the second possibility must be the case, i.e., we can split κ+ in countably
many sets An such that κ =

⋃
n An and [An]

ℵ0 ∩I = ∅ for each n. Moreover
since κ+ is regular at least one An is unbounded in κ

+. The following claim
is proved along the same lines of the previous one:

Claim 1.8. [An]
ℵ0 is covered by D for every n. ⊣

This is enough to get that PID implies CP and to complete the proof of the
main theorem 1.2.

§2. A family of covering properties for forcing axioms and large cardinals.
We now present a family of covering properties CP(κ, ë) indexed by pairs of
regular cardinals ë < κ. The key features of these covering properties are
extracted by the analysis of the proof that PID (or MRP) implies SCH. In
this section we will also briefly sketch how to use these covering properties
to obtain many classical results like:

• the failure of 2(κ) assuming that κ is above a strongly compact ë
(Solovay [29]),

• the failure of 2(κ) for all κ > ℵ1 assuming PFA (Todorčević [31]),
• Solovay’s result that SCH holds above a strongly compact cardinal
(Solovay [29]).

In the next section we will present some original results which use these
covering properties to analyze the “saturation” of models of ZFC with a
strongly compact cardinal or of models of MM. Elaborating on the proof
thatPID impliesSCHwe generalize the notion of a coveringmatrix as follows:

4Moore first noticed that a covering property of this sort holds under PFA (in fact follows
fromMRP) reading a draft of [37].
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Definition 2.1. For regular cardinals ë < κ, D={D(ç, â) : ç < ë, â ∈ κ}
is a ë-covering matrix for κ if:

(i) â ⊆
⋃
ç<ëD(ç, â) for all â ,

(ii) |D(ç, â)| < κ for all â and ç,
(iii) D(ç, â) ⊆ D(î, â) for all â < κ and for all ç < î < ë,
(iv) for all â < ã < κ and for all ç < ë, there is î < ë such that D(ç, â) ⊆
D(î, ã).

A ë-covering matrix D is downward coherent if for all α < â < κ and ç < ë,
there is î < ë such that D(ç, â) ∩ α ⊆ D(î, α).
A ë-covering matrix D is locally downward coherent if for all X ∈ [κ]≤ë,
there is ãX < κ such that for all â < κ and ç < ë, there is î < ë such that
D(ç, â) ∩ X ⊆ D(î, ãX ).
âD ≤ κ is the least â such that for all ç and ã, otp(D(ç, ã)) < â . D is
trivial if âD = κ

The previous notion of a covering matrix D for the successor of a κ
of countable cofinality is an example of a locally downward coherent ù-
covering matrixD for κ+ with âD = κ. There are several means to construct
covering matrices:

Lemma 2.2 ([36] Lemma 4.2). Assume κ is singular of cofinality ë. Then
there is a ë-covering matrixD on κ+ such that D is locally downward coherent
and âD = κ.

Lemma 2.3 (Cummings and Schimmerling [7]). Assume κ is regular. Then
there is a κ-covering matrix D on κ+ such that D is downward coherent and
âD = κ.

Lemma 2.4 (Jensen). Assume 2κ. Then there is an ù-covering matrixD on
κ+ which is downward coherent and such that âD = κ.

The first lemma is a generalization of fact 1.3. Its proof ties up the notion
of a covering matrix with some interesting square-like principles on singular
cardinals. Recall that a Jensen matrix on the successor of a singular cardinal
κ of countable cofinality is an ù-covering matrixD on κ+ with âD = κ such
that for all α of uncountable cofinality:

⋃

n∈ù

[D(n, α)]ℵ0 ⊆
⋃

n<ù,â<α

[D(n, â)]ℵ0 .

Jensen constructed such a matrix from square at κ and GCH. Magidor
and Foreman introduced the notion of “very weak square” [11]. This is a
square-like principle on the successor of a singular κ of countable cofinality
which is consistent with κ being larger than a supercompact. There are two
equivalent formulation of this principle: one is slightly stronger than the
statement that there is a club of points of cofinality ℵ1 in the approachability
ideal I[κ+], the other is that there is a Jensen matrix on κ+. On the other
hand, Shelah has shown that for any fixed uncountable cofinality less than
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κ there is always a stationary set S in I[κ+] of points with this cofinality
[27]. One direction of the Magidor and Foreman’s equivalence can be used
to produce an ù-covering matrix D with âD = κ such that for club many
α ∈ S:

⋃

n∈ù

[D(n, α)]ℵ0 ⊆
⋃

n∈ù,â<α

[D(n, â)]ℵ0 .

This property of D is enough to show that D is locally downward coherent
and the construction is carried out in ZFC. As we’ve seen in the previous
section, this lemma is essential in the proof that PID implies SCH.
The matrices produced by the second lemma are the key combinatorial
devices to prove all the results in the next section. The matrices constructed
in the third lemma are useful to obtain proofs that 2κ fails whenever either
κ is uncountable and PFA holds or κ ≥ ë and ë is strongly compact.5

Definition 2.5. CP(κ, ë) holds if there isA unbounded subset of κ such that
[A]ë is covered by D whenever D is a locally downward coherent ë-covering
matrix on κ.

To give a flavor on how these covering properties are applied we show the
following.

Theorem 2.6. Assume PID. Then CP(κ,ù) holds for all regular κ ≥ ℵ2.

This is just a variation of the proof that PID implies CP in the previous
section.

Theorem 2.7. Assume κ ≥ ë > è are regular cardinals and ë is strongly
compact. Then CP(κ, è) holds.

Proof. Recall that ë is strongly compact if for every κ ≥ ë there is a
ë-complete fine measure on [κ]<ë. It is not hard to see that this entails that
for every regular κ ≥ ë, there is a ë-complete uniform ultrafilter U on κ.
Now let è < ë ≤ κ be regular cardinals with ë strongly compact and fix
a è-covering matrix D = {D(α, â) : α ∈ è, â ∈ κ} for κ and a uniform
ë-complete ultrafilter U on κ. Let Aãα = {â > ã : ã ∈ D(α, â)} and Aα =
{ã ∈ κ : Aãα ∈ U}. Since è < ë, by the ë-completeness of U , for every ã ∈ κ,
there is an α < è such that Aãα ∈ U . Thus

⋃
α<è Aα = κ. So there is α < è

such that Aα ∈ U . In particular Aα is unbounded. Now let X be a subset of
Aα of size è. Then A

ã
α ∈ U for all ã ∈ X . Since |X | = è < ë,

⋂
ã∈X A

ã
α ∈ U

and thus is non-empty. Pick â in this latter set. Then X ⊆ D(α, â). Since
X is an arbitrary subset of Aα of size è, we conclude that [Aα]

è is covered
by D. This concludes the proof.6 ⊣

5Section 2.2.1 of [36] contains a proof by Todorčević of this result which allows for a
stronger conclusion: when applied to a 2(κ) sequence it produces an ù-covering matrix on
κ which can still deny the property CP(κ, ù) to be defined below. For the sake of simplicity
we will content ourselves to the current formulation of the lemma.
6Remark that this proof uses only property (i) of D.
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Theorem 2.8. Assume CP(κ+, ù). Then 2κ fails.

Proof. Assume to the contrary thatCP(κ+, ù) and2κ hold. By lemma2.4,
2κ implies that there is D = {D(n, â) : n ∈ ù, â < κ} downward coherent
ù-covering matrix on κ+ with âD = κ. Now by CP(κ+, ù) there is A
unbounded subset of κ+ such that [A]ℵ0 is covered by D.
We first claim that for every â there is n such that A ∩ â ⊆ D(n, â). If
this is not the case find a â such that A∩ â 6⊆ D(n, â) for all n. Now find X
countable subset of A ∩ â such that X 6⊆ D(n, â) for all n. By CP(κ,ù), X
is contained in D(n, α) for some n and α. By the downward coherence of D
there should be anm such thatX ⊆ D(n, α)∩â ⊆ D(m, â). This contradicts
the very definition of X . Now find â such that otp(A∩ â) > κ. Then, since
A ∩ â ⊆ D(n, â) for some n, κ < otp(A ∩ â) ≤ otp(D(n, â)) ≤ κ. This is
the desired contradiction. ⊣

The combination of the last two theorems gives an alternative proof of
Solovay’s result that 2κ fails for all κ above a strongly compact cardinal.
Using the preceding results it is also straightforward to obtain a proof of
Solovay’s theorem that SCH holds above a strongly compact cardinal.

§3. “Saturation” properties of models of strong forcing axioms. Since forc-
ing axioms have been able to settle many of the classical problems of set
theory, we can expect that the models of a forcing axiom are in some sense
categorical. There aremanyways inwhich one can give a precise formulation
to this concept. For example, one can study what kind of forcing notions
can preserve PFA or MM, or else if a model V of a forcing axiom can have
an interesting inner model M of the same forcing axiom. There are many
results in this area, some of them very recent. First of all there are results
that shows that one has to demand a certain degree of resemblance between
V and M . For example assuming large cardinals it is possible to use the
stationary tower forcing introduced by Woodin7 to produce two transitive
modelsM ⊆ V of PFA (orMM or whatever is not conflicting with large car-
dinal hypothesis) with different ù-sequences of ordinals and an elementary
embedding between them. However M and V do not compute the same
way neither the ordinals of countable cofinality nor the cardinals. On the
other hand, König and Yoshinobu [17, Theorem 6.1] showed that PFA is pre-
served by ù2-closed forcing, while it is a folklore result thatMM is preserved
by ù2-directed closed forcing. Notice however that all these forcing notions
do not introduce new sets of size at most ℵ1. In the other direction, in [34]
Veličković used a result of Gitik to show that ifMM holds andM is an inner
model such thatùM2 = ù2, thenP(ù1) ⊆M and Caicedo and Veličković [5]
showed, using the mapping reflection principle MRP introduced by Moore
in [24], that ifM ⊆ V are models of BPFA and ùM2 = ù2 then P(ù1) ⊆M .

7[18] gives a complete presentation of this subject.
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In any case all the results so far produced show that any two modelsV ⊆W
of some strong forcing axiom and with the same cardinals have the sameù1-
sequences of ordinals. Thus it is tempting to conjecture that forcing axioms
produce models of set theory which are “saturated” with respect to sets of
size ℵ1. One possible way to give a precise formulation to this idea may be
the following:

Conjecture 3.1 (Caicedo, Veličković). Assume W ⊆ V are models of
MM with the same cardinals. Then [Ord ]≤ù1 ⊆W .

The reader will find in [38] a complete and detailed presentation of the
results below aswell as of their proofs. They are obtained elaborating further
on the ideas introduced in the previous sections.

Theorem 3.2. Assume MM. Let κ be a strong limit cardinal andW be an
inner model such that κ is regular inW and κ+ = (κ+)W . Then cof(κ) > ù1.

The following is the “large cardinal version” of the previous theorem:

Theorem 3.3. Assume κ ≥ ë where ë is strongly compact. LetW be an an
inner model such that κ is a regular cardinal ofW and such that (κ+)W = κ+.
Then cof(κ) ≥ ë.

This shows that above a strongly compact ë one cannot change the cofi-
nality of some regular κ to some è < ë and preserve at the same time κ+ and
the strong-compactness of ë. A consequence of these theorems is that Prikry
forcing on κ produces a generic extension in which MM fails and there are
no strongly compact cardinals below κ.
The next proposition is a variation of the original proof by Foreman,
Magidor and Shelah that MM implies κℵ1 = κ for all regular κ ≥ ℵ1 and
combined with the previous theorems8 shows that conjecture 3.1 cannot be
made false by set-forcing.

Proposition 3.4. Assume MM and that all limit cardinals are strong limit.
Moreover assume that the universe V is a set-generic extension of a classW
with the same ordinals of cofinality ù and ù1 and such that P(ù1)

W ⊆ W .
Then [Ord ]≤ù1 ⊆W .

The above results suggest that another interesting form of saturation of
models ofMM may hold. Gitik has shown [13] that assuming suitable large
cardinals it is possible to produce a model of set theory W and a generic
extension V ofW with the same cardinals and such that the firstW -regular
cardinal κ which is singular in V has an arbitrarily chosen uncountable co-
finality. However the ground modelW is obtained by a cardinal preserving
forcing which shoots Prikry sequences on a large number of cardinals be-
low κ. Thus this approach cannot work to disprove the following conjecture:

8In a model ofMM where all limit cardinals are strong limit, an inner modelW with the
same cardinal will have the same ordinals of cofinality at most ℵ1 by the above theorem and
will thus satisfy the hypothesis of the proposition below.
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Conjecture 3.5. AssumeW ⊆ V are models of MM with the same cardi-
nals. Then they have the same cofinalities.

§4. MM implies (ℵù+1,ℵù) 6։ (ℵ2,ℵ1). Recall that the Chang conjecture
(ë, κ)։ (è, í) holds for ë > κ ≥ è > í if for every structure 〈Y, ë, κ, ...〉with
predicates for ë and κ there isX ≺ Y such that |X ∩ë| = è and |X ∩κ| = í.
It is known that (ℵ2,ℵ1)։ (ℵ1,ℵ0) as well as many other Chang conjectures
are consistent relative to appropriate large cardinals assumptions. For ex-
ample (ℵ2,ℵ1) ։ (ℵ1,ℵ0) holds in models of MM and is consistent relative
to the existence of a measurable cardinal [26]. Turning to Chang conjectures
for larger cardinals, it is possible to see that (j(κ+è), j(κ+ã))։ (κ+è , κ+ã)
whenever κ is the critical point of a 2-huge embedding and ã < è < κ.
Developing on this, Levinsky, Magidor and Shelah in [19] showed that
(ℵù+1,ℵù)։ (ℵ1,ℵ0) is consistent relative to the existence of a 2-huge car-
dinal. However all the known examples of a consistent (κ+, κ) ։ (è+, è)
where κ is singular and è regular are such that è = cof(κ). Thus a folklore
problem in this field is the following:

Problem 4.1. Is it consistent that (κ+, κ)։ (è+, è) for some regular è and
singular κ of cofinality different than è?

First of all such Chang conjectures affect cardinal arithmetic. A simple
fact is the following:

Fact 4.2. Assume (κ+, κ) ։ (è+, è) for some singular κ. Then è+ ≤
ècof(κ).

Proof. Notice that κcof(κ) > κ. Now assume (κ+, κ) ։ (è+, è). Fix
ë > κ+ regular and large enough and let H (ë) denotes the family of sets
whose transitive closure has size less than è. Fix M ≺ 〈H (ë), κ+, κ, ....〉
with |M ∩ κ+| = è+ and |M ∩ κ| = è. Pick a family {Xα : α < κ

+} ∈ M

of distinct elements of [κ]cof(κ). By elementarity ofM , Xα ∩M 6= Xâ ∩M
for all α, â ∈ M ∩ κ+. Thus we have a family of è+ distinct elements of
[M ∩ κ]M∩cof(κ). Now |M ∩ κ| = è and |M ∩ cof(κ)| ≤ cof(κ). Thus

è+ ≤ |[M ∩ κ]M∩cof(κ)| ≤ ècof(κ). ⊣

Cummings in [6] has shown that these Chang conjectures can be studied
by means of pcf-theory as developed by Shelah9 and has obtained several
other restrictions on the combinatorics of the singular cardinals κ whichmay
satisfy an instance of the above problem. For example he has shown that
these Chang conjectures have a much stronger effect on cardinal arithmetic
than fact 4.2 and subsume the existence of very strong large cardinals, i.e.,
out of the scope of analysis of the current inner model theory: it can be
argued by the analysis brought up in [6] that if κ has countable cofinality
and (κ+, κ)։ (è+, è),2κ fails and SCH holds at κ. Following the pattern of
Cummings’ paper it is possible to apply some pcf-theory to obtain further

9[1] is a good introduction to the subject.
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constraints on the possible scenarios under which (ℵù+1,ℵù) ։ (ℵ2,ℵ1)
holds. By the above fact 4.2, this Chang conjecture is the first instance
of problem 4.1 which is possibly consistent with κ = ℵù and the failure
of the continuum hypothesis. The main result we can achieve is that a
mild reflection principle for stationary subsets of ℵ2 denies the consistency
of (ℵù+1,ℵù) ։ (ℵ2,ℵ1). Let S

κ
ë denote the subset of ë of points of

cofinality κ. A stationary subset of ë reflects on α if it intersects all the
closed and unbounded subsets of α.

Definition 4.3. Let ë be a regular cardinal. S(ë) holds if every family

of less than ë-many stationary subsets of Sℵ0ë jointly reflects on an ordinal of
cofinality less than ë. S∗(ë) holds if for every family {Sα : α < ë} of stationary

subsets of Sℵ0ë there are stationary many ä < ë such that Sα reflects on ä for
all α < ä.

It is clear that S∗(ë) implies S(ë). Moreover S∗(ë) holds if ë is weakly
compact10 and S∗(ℵ2) follows from a suitable fragment of MM. The exact
consistency strength of S(ℵ2) and S

∗(ℵ2) has been given by Magidor [21]
who showed that both these principles are equiconsistent with ℵ2 being a
weakly compact cardinal11 inL. Another scenario suggested by Foreman to
obtain S∗(ë) is the following: assume that I is a ë-complete, fine ideal which
concentrates on [κ]<ë and such that PI = P([κ]

<ë)/I is a proper forcing.
Then S∗(ë) holds. Here is a sketchy argument: First of all I is precipitous
since PI is proper ([10] Proposition 4.10). Let G be a generic filter for PI .

Then the ultrapowerM = V ([κ]
<ë) ∩ V/G defined in V [G ] is well-founded.

Let j : V → M be the associated generic elementary embedding. Since I
is ë-complete and fine, we have that the critical point of j is ë. Now let

{Sα : α < ë} ∈ V be a family of stationary subsets of Sℵ0ë . It is clear that
M models that j({Sα : α < ë}) = {Tα : α < j(ë)} is a family of stationary

subset of Sℵ0
j(ë)
. Now Tα = j(Sα) and j(Sα)∩ ë = Sα for all α < ë. Since P

is proper, Sα is a stationary subset of ë in V [G ] so it is certainly a stationary
subset of ë in M . Then M models that j(Sα) reflects on ë for all α < ë.
Now the argument to show that S∗(ë) holds in V is routine.12 The main
result is the following:

Theorem 4.4. S(ℵ2) implies (κ
+, κ) 6։ (ℵ2,ℵ1) for all singular κ of count-

able cofinality.

10This is a routine fact if we use the following definition of weak compactness: ë is weakly
compact if for every transitive modelM of ZFC minus the powerset axiom such thatM has
size ë and H (ë) ⊆ M , there is an elementary embedding ofM into a transitive structure N
with critical point ë.
11I thank Assaf Sharon for pointing out this latter result to me and Paul Larson for a proof

that S∗(ℵ2) follows fromMM.
12Notice that we’ve hidden a (possibly very) large cardinal assumption in the requirement

that P is proper. See [10] for a presentation of generic large cardinals.
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We introduce some basic concepts of pcf-theory. Let κ be a singular car-
dinal. Shelah has shown that there is an increasing sequence of regular cardi-
nals {κî : î < cof(κ)} converging to κ and a family F = {fα : α < κ

+} ⊆∏
î<cof(κ) κî which is strictly increasing and cofinal under the ordering of

eventual dominance <∗ (where f <∗ g if the set of ç < cof(κ) such that
f(ç) ≥ g(ç) is bounded). Such an F is called a scale.

Definition 4.5. An ordinal13 ä < κ+ of cofinality larger than cof(κ) is
a good point for a scale F = {fα : α < κ

+} on
∏
î<cof(κ) κî iff there is

X unbounded subset of ä and î < cof(κ) such that fα(ç) < fâ(ç) for all
α < â ∈ X and all ç > î.

The following fact can be proved:

Fact 4.6. Assume κ is singular of countable cofinality. Then (κ+, κ) ։

(è+, è) implies that the set of ä of cofinality è+ which are not good for a scale
F is stationary in κ+.

The main result follow from the above fact and theorem 4.7:

Theorem 4.7. Assume S(ë). Let κ be singular of cofinality less than ë. Let
F = {fα : α < κ

+} ⊆
∏
î<cof(κ) κî be a scale. Then the set of good points

for F is a club in Sëκ+ .

A comment is in order. Sharon has first exploited the idea of using joint
reflection of stationary subsets of ℵn to investigate S

ℵn
ℵù+1
and has proved the

following:14

Theorem 4.8 (Sharon). Assume 2ℵn < ℵù and S
∗(ℵn). Then the set of

good points for a scale in Sℵn
ℵù+1
equals modulo a club the set of approachable

points.

From the two theorems above it can be inferred:

Corollary 4.9. AssumeMM. Then the set of approachable points is a club

in Sℵ2
ℵù+1
.

Remark that Magidor (unpublished) has shown thatMM implies that the

set of non-good points for a scale inSℵ1
ℵù+1
is stationary. The interested reader

is referred to the forthcoming [25] for a proof of the above theorems.

§5. Some open problems. First of all there are the two conjectures:

Conjecture 5.1 (Caicedo, Veličković). Assume W ⊆ V are models of
MM with the same cardinals. Then [Ord ]≤ù1 ⊆W .

Conjecture 5.2. AssumeW ⊆ V are models of MM with the same cardi-
nals. Then they have the same cofinalities.

Aproblemwhich seems to be related to the first conjecture is the following:

13We adopt standard terminology, see again [6] for a fast review of these concepts.
14The reader can find a definition of approachable point in [1] or even in [6]. I do not

introduce it here for the sake of simplicity.
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Problem 5.3. DoesMM imply that ℵù is not a Jónsson cardinal?

Recall that κ is Jónsson if for everyf : [κ]<ù → κ there isX proper subset
of κ of size κ which is f-closed, i.e., f[[X ]<ù] ⊆ X .
A link between problem5.3 and conjecture 5.1 is the following observation:
ifW ⊆ V are counterexamples to the conjecture at ℵù and [ℵn]

ℵn ⊆W for
all n, thenW models that ℵù is Jónsson. Moreover König has shown that
MM is consistent with ℵù not being Jónsson [16].
These problems concern the properties of singular cardinals in models
of strong forcing axioms. On the other hand a question which calls for a
solution in ZFC is suggested by the results of the previous section:

Problem 5.4. Is the Chang conjecture (ℵù+1,ℵù)։ (ℵ2,ℵ1) consistent?
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KURT GÖDEL RESEARCH CENTER FORMATHEMATICAL LOGIC

UNIVERSITY OF VIENNA,WÄHRINGER STRASSE 25
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