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Abstract
Restricted to first-order formulas, the rules of inference in the

Curry-Howard type theory are equivalent to those of first-order predi-
cate logic as formalized by Heyting, with one exception: ∃-elimination
in the Curry-Howard theory, where ∃x : A.F (x) is understood as
disjoint union, are the projections, and these do not preserve first-
orderedness. This note shows, however, that the Curry-Howard theory
is conservative over Heyting’s system.

The meaning of the title becomes clear if we take the intuitionistic mean-
ing of the logical constants to be given in Curry-Howard type theory, CH.
This is the basic theory of types built up by means of ∀ and ∃, as outlined in
[Howard, 1980] and presented in some detail by Martin-Löf, for example in
[Martin-Löf, 1998], as part of his intuitionistic theory of types. The quantifier
∀ denotes in this system the operation of taking cartesian products

∀x :A.F (x) = Πx:AF (x)

and ∃ denotes the operation of taking disjoint unions

∃x :A.F (x) = Σx:AF (x).

First-order formulas can be regarded as formulas of CH and the intuition-
istic rules of inference are all derivable, as rules of term formation, in CH.1

1The term of type A corresponding to a proof in HL of A will in general have to contain
variables representing the first-order function symbols in HL as well as a variable of type
D, representing the domain of individuals. The latter variable represents the implicit
assumption of first-order logic that the domain of individuals is non-empty.
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But the converse is not true: there are, for example, closed normal terms
of CH whose types are first-order formulas, but which are not first-order
proofs. This has to do with the rule of existential quantification elimination
in CH, which expresses the intended meaning of the existential quantifier as
disjoint union:

p :∃x :D.F (x) ⇒ p1:D, p2:F (p1)

where t : A means that t is an object of type A or, equivalently, a proof of
A. Even when D is the type of individuals and ∃x : D.F (x) is a first-order
formula, providing that x occurs in F (x), F (p1) is not a first-order formula.
In intuitionistic logic as formalized by Heyting, which we denote by HL, this
rule of existential quantifier elimination can be replaced by

p :∃x :D.F (x), q :∀x :D[F (x) → C] ⇒ [[p, q]] :C.

The aim of this paper is to show that, in spite of the stronger form of
existential quantifier elimination in CH, every first-order formula deducible
in CH is also deducible in HL.2

In order to treat the full system of HL, we include disjunction among
the operations of CH. Disjunction is also a disjoint summing operation, but
it cannot be formalized as such in CH without the introduction of further
proposition and propositional function constants. For example, with the
introduction of the type N of natural numbers it can be defined by

A ∨B := ∃x :N[(x = 0 → A) ∧ (x 6= 0 → B)]

In fact, it would suffice to introduce just the two-element type, together with
a propositional function defined on it whose values are the absurd proposition
0 for one element and ¬0 for the other; but we will be content here to simply
stick to the usual, unsatisfactory, formalization of disjunction.

1 The System CH

The formulas, terms and the relation of definitional equivalence ≡ must be
simultaneously defined.

2This result was conjectured in [Tait, 1994, p. 59], where it was also remarked that
I remembered once having proved it. For the case of CH and HL without disjunction,
the present proof (which may or may not be the basis for that memory) has existed, in
a slightly defective form, since at least 1997. The defect was corrected for me by Frank
Pfenning.
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The relation constants in CH are either propositional constants or are
constants for propositional functions on A, for some sentence, i.e. formula
without free variables, A. No further kind of relation symbols are needed.
For example, one might want also to consider the case of symbols A, F
and G, where A denotes a type, F a propositional function on A and G a
propositional function of two variables, such that Gab is defined when a :A
and b :Fa. But we can simply regard G as a propositional function on ∃x :
A.Fx, since (a, b) is of this type. The atomic formulas are the propositional
constants and the expressions Et, where E denotes a propositional function
on A and t is a term of type A. Among the propositional constants will be 0,
denoting the absurd proposition (i.e. the initial or null type). Since we are
concerned with pure logic, there will be no constants for objects of atomic
type. (Individual and function constants in the language of first-order logic
can be represented by free variables.)

For each formula A we assume given an infinite supply of symbols, called
the free variables of sign A. We denote these variables by vA, or when the
sign is given by the context or is irrelevant, by v. For distinct formulas A and
B, the free variables of sign A are distinct from those of sign B. Note that
A is not a part of the syntax of vA, which is an atomic symbol. (It would
suffice to introduce variables vA only for normal formulas A. See below for
the definition of normality.) If F (vA) and A are formulas not containing x,
then ∀x : A.F (x) and ∃x : A.F (x) are formulas. x is called a bound variable
and has no type. Its meaning is given only in the context of the quantifier
∀x : A or ∃x : A or the lambda operator λx : A (see below) which binds it.
(So, when vA actually occurs in F (vA), F (x) is not a formula. Similarly, if
vA actually occurs in the term t(vA), then t(x) is not a term. ) If A and B
are formulas, then so is A ∨B.

Abbreviations:
A → B := ∀x :A.B

A ∧B := ∃x :A.B

where x does not occur in B.

¬A := A → 0

The terms and their types are as follows:
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Every variable of sign A is a term of type A.

For 0 we have only the rule of

0-elimination
t :0 ⇒ N(A, t) :A.

∨-introduction

t :A ⇒ [t, B] :A ∨B, [B, t] :B ∨ A.

∨-elimination If vA does not occur in C or in the sign of any free variable
in s(vA) and vB does not occur in C or in the sign of any free variable in
t(vB), then

r :A ∨B, s(vA) :C, t(vB) :C ⇒ [r, λx :A.s(x), λx :B.t(x)] :C.

∀-introduction If vA does not occur in the sign of any free variable occurring
in t(vA) or F (vA), then

t(vA) :F (vA) ⇒ λx :At(x) : ∀x :A.F (x).

∀-elimination
f : ∀x :AF (x), s :A ⇒ fs :F (s).

∃-introduction

s :A, t :F (s) ⇒ (s, t) : ∃x :A.F (x).

and, to repeat,

∃-elimination

p : ∃x :AF (x) ⇒ (p1) :A, (p2) :F (p1).
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≡, defined below, is an equivalence relation on the set of terms and for-
mulas.

t :A, A ≡ B ⇒ t :B

expresses that the types of a term form an equivalence class. It also turns
out that

s ≡ t, s :A ⇒ t :A

Terms and formulas that can be obtained from one another by renaming
bound variables will be identified.

The components of a term are as follows: a variable has no components;
t is a component of

N(A, t), (s, t), (t, s), [t, A], [t, A], [r, s, t], [r, t, s], [t, r, s], ts, st, t1, t2

and t(vA) is a component of λx :A.t(x), where vA is the least variable of sign A
not occurring in λx :A.t(x). (We assume that there is a fixed enumeration of
variables.) The components of a formula are as follows: atomic formulas have
no components, the components of A∨B are A and B, and the components of
∀x :A.F (x) and ∃x :A.F (x) are A and F (vA), where vA is the least variable of
sign A not occurring in ∀x :A.F (x). The subterms of a term t form the least
set M containing t and containing all components of terms in M . A subterm
s of a term t is not in general a part of t. Rather, it will correspond to parts
s′(x1, . . . , xn) (n ≥ 0) of t, called instances of s in t, where s = s(v1, . . . , vn).
It is understood that the xi are distinct and the vi are distinct and the vi do
not occur in t. When we wish to speak of an occurrence of a subterm of t as
a part of t, we shall refer to it as a subterm part of t.

The Conversion Rules define the left-hand term by means of the right-
hand term.

N(0, s) CONV s

N(∀x :A.F (x), s)t CONV N(F (t), s)

N(∃x :A.f(x), s)1 CONV N(A, s)

N(∃x :A.F (x), s)2 CONV N(F (N(A, s)), s)

[[r, B], λx :A.s(x), λx :B.t(x)] CONV s(r)

[[A, r], λx :A.s(x), λx :B.t(x)] CONV t(r)

[r, λx :A.s(x), λx :B.t(x)]u CONV [r, λx :A.(s(x)u), λx :B.(t(x)u)]
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where u is a term or is 1 or 2.

[λx :A.t(x)]s CONV t(s)

(s, t)1 CONV s (s, t)2 CONV t

We say that s initially converts to t

s i− CONV t

iff s = qr1 · · · rn, t = pr1 · · · rn, 0 eqn and q CONV p.
A term is called a matrix iff it is not a variable and its only proper

subterms are variables. Every term other than a variable is of the form
t(s1, . . . , sn) where t(v1, . . . , vn) is a matrix, unique except for the naming of
the free variables.

Definition The relations s n−RED t (s n-reduces to t) s RED t (s reduces
to t) between terms is defined for n > 0 by

• s 1−RED s.

• If s i− CONV t, then s 1−RED t.

• If t(v1, . . . vn) is a matrix and ri 1−RED si (i = 1, . . . n), then
t(r1, . . . rn) 1−RED t(s1, . . . , sn).

• If r1−REDs and sn−REDt, then rn + 1−REDt.

• s n−RED t for some n iff s RED t.

s > t

will mean that p RED t for some p obtained by replacing an occurrence of
a subterm q of s by r, where q CONV r. (So s > t implies s RED t, but
because of the first clause in the definition of RED, the converse does not
always hold.

The two fundamental theorems concerning CH are:
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CHURCH-ROSSER THEOREM

r RED s, t ⇒ there is a u such that s, t RED u

WELLFOUNDEDNESS THEOREM Every sequence

t0 > t1 > t2 > · · ·

is finite.

COROLLARY Every term reduces to a unique normal term (i.e. a term
which cannot be strictly reduced)—its normal form.

Now we complete our definition of the terms and their types by defining

s ≡ t ⇐⇒ there is a u such that s, t RED u

A ≡ B ⇐⇒ they are built up in the same way from pairwise ≡ terms.

≡ is obviously decidable equivalence relation between both terms and for-
mulas. From now on, we will speak of the type of a term t of CH, meaning
the unique normal type of t.

The simple terms of CH are variables or of one of the forms

N(A, s), [t, A], [A, t], [r, s, t], λx :A.s(x), (s, t)

where, in the third case, s and t are of course lambda-terms. Every term t
can be written uniquely as

t0t1 · · · tn = (· · · (t0t1) · · · tn)

where n ≥ 0, t0 is simple and each of t1, . . . tn is either 1, 2 or a term. Note
that when t is normal and n > 0, then t0 must be a variable. (It is to ensure
this that the conversion rules for N(A, s)t and [r, s, t]u are needed, as Frank
Pfenning pointed out to me.)

2 Proof of the Church-Rosser Theorem

In what follows, we just write N(t) for N(A, t), [t] or, when necessary, [t]1 for
[t, B], [t]2 for [B, t], and λxt(x) for λx :At(x). The Church-Rosser Theorem,
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in any case, has nothing to do with type structure. It applies to the set of
‘terms’ built up from type-less variables by means of the operations

N(t), [t], [r, s, t], (s, t), st, t1, t2, λxt(x)

subject to the conversion rules stated above. (This is in contrast to the
Wellfoundedness Theorem, which has everything to do with type structure—
as witnessed by the example [λx(xx)]λx(xx).)

Lemma 1 If s′ is obtained from s by simultaneously replacing terms ti by
terms t′i, where ti 1−RED t′i, then s 1−RED s′.

The proof is by induction on s. If s is one of the terms ti, then there is
nothing to prove. So let s = S(p1, . . . , pn), where S(v1, . . . , vn) is a matrix.
Then s′ = S(p′1, . . . , p

′
n) is the result of substituting the t′i’s for the ti’s in the

pj’s. By the induction hypothesis, pj 1−RED p′j for each j, from which the
result follows by definition. 2

Lemma 2 Let r CONV s and r 1 − RED t. Then there is a term u such
that s 1−RE u and t 1−RED u.

The proof is by induction on r.
If s = t or r = t, set u = s and if r = s, set u = t. So we assume that r, s

and t are distinct. This implies that r does not convert to t. It follows that
t is obtained by replacing subterms of r by terms to which they 1-reduce.

Case 1. r = N(p)q], s = N(p) and t = N(p′)q′. Then set u = N(p′).
Case 2. r = [[r0]e, λxr1(x), λxr2(x)]. We can assume e = 1, the other

case being exactly the same. So s = r1(r0) and t = [[r′0]e, λxr′1(x), λxr′2(x)],
where the r′j’s are obtained by replacing subterms of the rj’s by terms to
which they 1-reduce. Set u = r′1(r

′
0).

Case 3. r = [r0, λxr1(x), λxr2(x)]p, s = [r0, λx(r1(x)p), λx(r2(x)p)] and
t = [r′0, λxr′1(x), λxr′2(x)]p′. Set u = [r′0, λx(r′1(x)p′), λx(r′2(x)p′)]

Case 4. r = (λxp(x))q, s = p(q) and t = λxp′(x)q′, where λp(x) 1 −
RED λxp′(x) and q 1−RED q′. Set u = p′(q′).

Case 5 . r = (s, p)1 and t = (s′, p′)1. Set u = s′.
Case 6. r = (p, s)2 and t = (p′, s′)2. Set u = s′ 2

Lemma 3 Let r 1−RED s and r 1−RED t. Then there is a term u such
that s 1−RED u and t 1−RED u.
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r
1−RED−−−−→ s

1−RED

y y1−RED

t −−−−→
1−RED

u

Proof by induction on r. Let r = r0 · · · rn, where r0 is simple. The 1-
reduction of r to s is called internal iff s = s0 · · · sn, where s0 is simple and
ri 1−RED si for each i. If the 1-reduction is not internal, we call it external.

Case 1. The 1-reductions of r to s and t are both internal. Then s =
s0 · · · sn and t = t0 · · · tn, where ri 1-reduces to both si and ti for each i.
Assume n > 0. Then the induction hypothesis applies to yield, for each
i, a ui such that both si and ti 1-reduce to ui. Then s and t 1-reduce to
u = u0 · · ·un.

If n = 0, then r = r0 is a simple term N(r′), [r′], [r′, r′′, r′′′], (r′, r′′) or
λxr′(x) and the result follows easily by the induction hypothesis.

Case 2. Both 1-reductions are external. First, suppose r0 · · · rk converts
to some r′, s = r′sk+1 · · · sn and t = r′tk+1 · · · tn. By the induction hypothesis,
there is a ui for each i > k such that si and ti 1-reduce to ui. So s and t
1-reduce to u = r′uk+1 · · ·un.

But there is another possibility, namely that

r0 = [[p0]e, λxp1(x), λxp2(x)]

s = pe(p0)s1 · · · sn, where the ri’s 1-reduce to si’s and

t = [[p0]e, λx(p1(x)r1), λx(p2(x)r1)]t2 · · · tn

where the ri’s 1-reduce to the ti’s fpr i > 1. By the induction hypothesis,
si and ti 1-reduce to some ui for i > 1. Let u′ = pe(p0)s1. Then s and t
1-reduce to u′u2 · · ·un.

Case 3. One of the 1-reductions, say the 1-reduction of r to s, is external
and the other is internal. So r0 · · · rk CONV r′, s = r′sk+1 · · · sn, where
ri1-reduces to si for i > k, and t = t0 · · · tn, where ri 1-reduces to ti for
each i. By Lemma 2, r′ and t0 · · · tk 1-reduce to some u′. By the induction
hypothesis, si and ti 1-reduce to some ui for i > k. So s and t 1-reduce to
u′uk+1 · · ·un. 2

Lemma 4 If r m − RED s and r n − RED t then there is a u such that
s n−RED u and t m−RED u.
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Proof:

r = r11 −−−→ r12 −−−→ · · · −−−→ r1m = sy y y y
r21 −−−→ r22 −−−→ · · · −−−→ r2my y y y
... −−−→ ... −−−→ ... −−−→ ...y y y y

t = rn1 −−−→ rn2 −−−→ . . . −−−→ rnm = u

where each arrow denotes a 1-reduction.

This completes the proof of the Church-Rosser Theorem.3

3 Proof of the Wellfoundedness Theorem

We want to prove that every term t is wellfounded, i.e. that every sequence
t = p0 > p1 > p2 > · · · is finite.

Definition of Computability. We define the notion of a computable term
of type A by induction on A.

• A term of atomic type is computable iff it is well-founded.

• A term of type A ∨B is computable iff it is well-founded and

– if it reduces to a term [s, B], then s is a computable term of type
A.

– If it reduces to a term of type [A, s], then s is a computable term
of type B.

• A term f of type ∀x :A.F (x) is computable iff ft is a computable term
of type F (t) for every computable term t of type A.

3This method of proof was first presented for the type-free theory of combinators in
a seminar at Stanford in the Spring of 1965. It was noted at the time that a suitable
definition of 1-reduction could also be given for the type-free lambda calculus.
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• A term p of type ∃x :A.F (x) is computable iff p1 is a computable term
of type A and p2 is a computable term of type F (p1).

We define the notion of a c-extension of a term t of type A by induction
on A. If A is atomic or a disjunction B ∨C, then t is the only c-extension of
t. If A = ∀x :BF (x), then the c-extensions of t are precisely the c-extensions
of ts for all computable terms s :B. If A = ∃x :BF (x), then the c-extensions
of t are precisely the c-extensions of t1 and t2. So the c-extensions of t are
all the terms of atomic or disjunctive type of the form ts1 · · · sn, where the
si are either 1, 2 or are computable. Clearly, t is computable iff all of its
c-extensions are computable.

The rank |A| of a formula A is defined by

|A| = Max{|B|+ 1 | B is a component of A}

Lemma 5 For each type A

a) Every variable v of type A is computable.

b) Every computable term of type A is well-founded.

c) If s is a computable term of type A and sREDt, then t is computable.

The proof is by induction on |A|.
a) We need only show that all c-extensions s = vs1 · · · sn of v are well-

founded. (When s is of type B ∨ C, it cannot reduce to a term of the form
[r, C] or [B, r].) The si which are terms are of types of rank < |A| and so,
by the induction hypothesis, are well-founded. It immediately follows that s
is well-founded.

b) Let s be computable and consider the c-extension t = ss1 · · · sn of
s, where the terms among the si are variables. t is computable and hence
well-founded. So s must be well-founded.

c) We need first to show that all c-extensions tt1 · · · tn of t are well-
founded. But if such a term were not well-founded, then neither would
the c-extension st1 · · · tn of s be, contradicting the computability of s. Sec-
ondly, if tt1 · · · tn reduces to [r, C] or [B, r], then so does st1 · · · tn and so r is
computable. 2
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It follows from b) that in order to prove that every term is well-founded,
it suffices to prove that every term is computable. By an c-instance of a
term t we will mean any result of replacing each variable throughout t by a
computable term of the same type. So by a) above, t is a c-instance of itself.

COMPUTABILITY THEOREM Every c-instance of a term t is com-
putable.

The proof is by induction on t. If t is a variable, this is immediate. If
t = rs, where r and s are terms, then by the induction hypothesis, the c-
instances of r and s are computable. So any c-instance of t is computable
by definition. Similarly, if t = s1 or t = s2, then s is computable by the
induction hypothesis, and so t is computable by definition. So we need only
consider terms t of the form N(s, A), [q, r, s], [s, B], [B, s], (r, s) or λx :As(x).

Let t′ be a c-instance of t. Consider any c-extension p = t′t1 · · · tn of t′.
We need first to show that p is well-founded. Consider a sequence

(1) p = p0 > p1 > · · ·

It will be convenient to assume that, for each k, pk+1 is obtained by converting
exactly one occurrence of a subterm of pk.

We have first to show that (1) is finite. Recall that if the step from pk to
pk+1 is obtained by converting an initial part of pk, i.e.

pk = rs1 · · · sm, r CONV r′, pk+1 = r′s1 · · · sm,

we call it an external reduction; otherwise, an internal reduction.
Secondly, we must show that, if p reduces to a term of the form [q, B]

or [B, q], then q is computable. But, if we have already shown that the
sequence (1) is finite, we may assume that its last term pm is normal. But
then it follows from the Church-Rosser Theorem that pm is of the form [q, B]
or [B, q] (since the only reductions of terms of this form are internal). We
need therefore only show that, for each sequence 1), if the last term is of one
of these forms, then it is computable.

Given any sequence t0, t1, . . . of terms, by its >-subsequence, we mean the
maximum subsequence ti0 > ti1 > . . . .

Let t = N(A, s) and t′ = N(A, s′). Then pm is of the form

N(A, qm)qm
i+1 · · · qm

n ,
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where i is the number of external conversions in the sequence (1) up to pm,
st1 · · · ti RED qm and tj RED qm

j for j = i+1, . . . , n. There can be at most
n such external conversions in this sequence. Let p′m = N(A, s′t1 · · · tn). Do
for sufficiently large m p′m > p′m+1. So if the sequence of pm’s were infinite,
so would be the >-subsequence of the p′m’s. But s′t1 · · · tn is computable.
Hence (1) is finite. Moreover, the last member of the sequence cannot be of
the form [q, B] or [B, q].

Let t = [q, r, s]. Then t′ = [q′, r′, s′]. As in the previous case, we can
assume that n = 0, so that p0 = t′ and pm = [qm, rm, sm]. There are two
cases: first, there are no external conversions in the sequence of pm’s. Then,
since q′, r′, s′ are all computable, the >-subsequences of the sequences of the
qm’s, rm’s and sm’s must all be finite; and hence the sequence of pm’s is
finite. Moreover, its last member cannot be of the form [q, B] or [B, q]. The
other case is that there are no external conversions up to pm = [qm, rm, sm],
but qm = [p, B] or [B, p] and pm+1 = rmp or smp. But, rm, sm and p are
computable. Since q′ is of disjunctive type and reduces to [p, B] or [B, p],
then p is by definition, computable. Hence, the term pm+1 = rmp or smp is
computable and the sequence of pi’s is finite. Let t = [s, B] and t′ = [s′, B].
Then n = 0 and pm = [sm, B] for all m. By the induction hypothesis, s′ is
computable. So the sequence of sm’s is finite; i.e. the sequence of pm’s is
finite and its member are computable. Similarly for t = [B, s].

Let t = (r, s) and t′ = (r′, s′). If there are no external reductions in
the sequence of pm’s, then pm = (rm, sm)tm1 · · · tmn and, since r′, s′ and the
terms among the ti’s are computable, the >-subsequences of the rm’s and
sm’s are finite; hence so is the sequence of pm’s. Otherwise some pm is of
the form rmt2 · · · tn or smt2 · · · tn. But, by the induction hypothesis, r′ and
s′ are computable. So, for large enough m, pm is computable. If there is
an external reduction in the sequence, let the first one be at pk+1, so that
pk = (rk, sk) and pk+1 = rk or sk. But r′ RED rk and s′ RED sk and, by
the induction hypothesis, r′ and s′ are computable.

Finally, let t = λxs(x) (dropping the type for the sake of brevity). Then
t′ = λxs′(x). Again, if there are no external conversions in the sequence of
pm’s, then pm = (λxsm(x))tm1 · · · tmn and the finiteness of the sequence (1)
follows from the computability of s′(v), t1, . . . , tn. So let there be an external
conversion, first occurring at pm+1 = sm(tm1 )tm2 · · · tmn . But, by the induction
hypothesis, since t1 is a computable term, s′(t1) is computable, being a c-
instance of s(v). Hence, the subsequence of pj’s for j > m is a sequence of
computable terms. 2

13



So, again, by part (b) of Lemma 5, the Wellfoundedness Theorem is
proved.4

4 Embedding HL in CH

Let D be a fixed type symbol. (Think of D as the domain of individual over
which the first-order variables range.) We write D ∧D ∧D for D ∧ (D ∧D),
D ∧ D ∧ D ∧ D for D ∧ (D ∧ (D ∧ D)), etc., and (r, s, t)) for (r, (s, t)),
(r, s, t, u) for (r, (s, (t, u))), etc. First-order terms are terms of type D built
up in the usual way from variables of type D and n-ary first-order function
variables, i.e. variables of type Dn = [D → (D → (· · · (D → D) · · · ))] (n +
1 occurrences of D). The atomic first-order formulas are either 0 or are of the
form R(t1, . . . , tn), where R is a symbol for a propositional function defined
on D ∧ · · · ∧ D (n D’s) and the tk are first-order terms. The first-order
quantifiers are introduced by

∀xF (x) := ∀x :D.F (x)

∃xF (x) := ∃x :D.F (x)

So, the first-order formulas are built up from atomic first-order formulas using
→, ∧, ∨ and the first-order quantifiers. These are the formulas of HL. The
rules of inference of HL are the usual ones of intuitionistic predicate logic,
including the rule of inference from 0 to any formula A.

Let
∆ := {Dn | n < ω}

First-order terms t are built up from variables with signs in ∆; i.e. they are
deductions of D from ∆ in CH. Namely, if t is a variable, it is of type D.

4This method of proof, using ‘computability’ predicates, goes back to [Tait, 1963; Tait,
1967], where it is applied to prove the existence of normal forms for closed terms in the
case of a single atomic type N with no existential quantification and no disjunction and
with the following introduction and elimination rules for N. The introduction rules are
0:N and t :N ⇒ S(t) :N, and the elimination rule is

r :A, s :N → (A → A), t :N ⇒ R(r, s, t) :A

where R is defined by the conversion rules

R(r, s, 0) CONV r R(r, s, S(t)) CONV stR(r, s, t).
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Let t = vt1 · · · tn, where v is of type Dn and the ti are first-order terms. Then
each ti is a deduction of D from ∆ and so, by n applications of ∀-elimination,
so is t. So all valid formulas of HL are valid in CH under the assumption of
∆. The proof-theoretic version of this is

EMBEDDING THEOREM

Γ `HL A ⇒ Γ ∪∆ `CH A

The proof is routine,5 by induction on the length of the given deduction
of A in HL, except for when the last inference of the deduction is an instance
of ∀-elimination or ∃-elimination.

For the first of these, suppose that A = F (t) is obtained in HL from
∀xF (x) = ∀x :D.F (x), where t is a first-order term. As we have just noted, t
is a deduction of D from ∆. By the induction hypothesis, there is a deduction
s in CH of ∀xF (x) from Γ ∪∆. Hence st is the required deduction of A.

For the second, let A be obtained in HL from ∃xF (x) and ∀x(F (x) → A),
where v is not in A. By the induction hypothesis, there are deductions p and
q in CH of these premises, respectively, from Γ ∪∆. So p2 is a deduction of
F (p1) and q(p1) is a deduction of F (p1) → A. Thus, [[p, q]] = q(p1)(p2) is
the required deduction of A. 2

So, in this sense, CH is an extension of HL. We now need to show that
it is conservative (in this sense) over HL, that is that Γ ∪∆ `CH A implies
Γ `HL A.

5 Quasi First-Order Terms and Formulas

Call a term p of CH existential if its type is of the form ∃yG(y). Call a term
or formula X of CH quasi-first-order (qfo) iff there is a first-order term or
first-order formula X ′, respectively, called an original of X, and there is a
list p1, . . . , pn (n ≥ 0) of distinct normal existential terms, called an e-list for
X, such that

• the type of pi is obtained by substituting p11, . . . , pi−11 for distinct free
variables of type D in a first-order formula.

5It is essentially proved in [Martin-Löf, 1998].
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• X is obtained by substituting p11, . . . , pn1 for distinct free variables in
X ′.

(Note that a qfo term or formula which is not first-order will have infinitely
many originals, obtained from one another by renaming free variables.) If
X has the e-list p1, . . . , pn, then the type of pk for k = 1, . . . , n is qfo and
has the e-list p1, . . . , pk−1. If ∀xF (x) and t :D are qfo, then so is F (t). Just
concatenate the e-list of p’s for ∀xF (x) with the e-list for t. Obviously, if
A → B, A ∧B or A ∨B is qfo, then so are A and B.

Lemma 6 Let t = vt1 · · · tn be a term of type A 6= D, where v is a variable
of qfo sign and the terms among the ti are all qfo. Then A is qfo.

The proof is by induction on n. If n = 0, the result is trivial. Assume
n > 0 and that vt0 · · · tn−1 is of qfo type A′.

If A′ is B → C, then A = C and the result is immediate.
If A′ = B ∧ C, then A is B or C and again the result is immediate.
If A′ = ∀x.F (x), then A = F (tn), where tn is of type D and so, by

assumption, qfo. Hence, as we noted above, A is qfo.
If A′ = ∃x.F (x), then tn = 1 or 2. If it is were 1, then A would be D.

So it must be 2. A = F (t01 · · · tn−11). If p1, . . . , pk is a concatenation of an
e-list for A′ and one for t, then p1, . . . , pk, t0 · · · tn−1 is an e-list for A. 2

Lemma 7 Let t be a normal deduction in CH of D from Γ ∪∆, where the
formulas in Γ are qfo, and assume that t has no subterm parts of the form
N(D, s) or [r, s, u] of type D. Then t is qfo.

The proof is by induction on t. Let t = t0t1 · · · tn, where t0 is simple. If
n = 0, then, since t = N(D, u) and [r, s, u] of type D are excluded, t must
be a variable of type D and so is a first-order term. So let n > 0. t0 must be
either a first-order function variable or a variable of first-order sign. In the
first case, t1, . . . , tn are all normal terms of type D and so, by the induction
hypothesis, satisfy the condition. Let pi1, . . . , piki

be an e-list for ti. Then
p11, . . . , pnkn is an e-list for t. Since the originals of all the ti are first-order
terms, so are the originals of t.

So assume that t0 is of first-order type. Then p = t0 · · · tn−1 must be of
type of the form ∃yG(y) and tn = 1. If ∃y.G(y) is qfo with e-list p1, . . . , pk,
then we are done: p1, . . . , pk, p is an e-list for t and the originals of t are
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variables vD. But, since the terms among t0, . . . , tn−1 are qfo by the induction
hypothesis, ∃yG(y) is qfo by Lemma 6. 2

Lemma 8 If t is a normal deduction of A from Γ ∪∆, where Γ consists of
first-order formulas, then every existential term occurring in A is a subterm
of t.

(The restriction of Γ to first-order formulas is necessary in virtue of our
decision to count a variable vB as an atomic symbol.) For, if B ∈ Γ were
to contain an existential term, then vB would be a counterexample to the
lemma. The proof is routine by induction on t. There are two cases in which
an existential term p may be introduced into a formula: One is A = F (s),
where s contains p, t = fs, and f is of type ∀x : B.F (x). The other is
A = F (p1), where t = p2 and p :∃xF (x). 2

Not all formulas derivable from first-order formulas and ∆ are qfo. For
example, let v be of sign ∀x∃yF (x, y). Then λx : Dvx2 is a deduction of
∀xF (x, vx1) from ∀x∃yF (x, y). Call a term of CH pure iff the type of each
of its subterms is either in ∆ or is qfo. We need to prove that, if there
is a deduction t of a qfo formula A from Γ ∪ ∆, where Γ consists of qfo
formulas, then there is a pure such deduction. The difficulty in proving this
straightforwardly by induction on t arises from the possible presence in t of
disjunction-elimination: for example, t might have a subterm of the form
[q, r, s], where the type of q is a non-qfo formula F ∨ G. We shall call such
a term [q, r, s] a critical term. When [q, r, s] is a critical term and neither q,
r, nor s have critical subterms, we call [q, r, s] a minimal critical subterm.

Lemma 9 Let t be a normal deduction in CH from Γ ∪ ∆ of A, where Γ
consists of qfo formulas, and let t = [q, r, s] be a minimal critical term. Then
there is a normal deduction t′ = [q′, r′, s′] of A from Γ∪∆ which contains no
critical subterms (and so is not itself critical).

The proof is by induction of the length |t| of t as a string of symbols.
Let q be of type F ∨ G. q cannot be of the form vt1 · · · tn, since otherwise
F ∨ G would be qfo by Lemma 6. It cannot be of the form [p, G] or [F, p],
since otherwise t would not be normal. If it is of the form N(F ∨G, p), then
t′ = N(A, p) suffices. The only other possibility is that q = [q∗, r∗, s∗], where
the type B ∨ C of q∗ must then be qfo. Let

r∗ = λx :Br0(x) s∗ = λx :Cs0(x).
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r0(vB) is normal. If it is of the form [p(vB), G], then let t′1(vB) be the normal
form of rp(vB). If r0(vB) = [F, p(vB)], then let t′1(vB) be the normal form of
sp(vB) In either case, t′1(vB) is a deduction from Γ∪∆∪{B} of A without a
critical subterm. If r0 is of neither of these forms, then t1(vb) = [r0(vB), r, s]
is a normal critical term of type A with |t1(vB)| < |t|. So, by the induction
hypothesis, there is again a deduction t′1(vB) of A from Γ∪∆∪{B} without a
critical term. Similarly, replacing B and r0(vB) by C and s0(vC), respectively,
we obtain a deduction t′2(vC) of A from Γ∪∆∪{C}. Hence [q′, λx :Bt′1(x), λx :
Ct′2(x)] is a deduction of A from Γ ∪∆ without critical subterms. 2

If a term t′ is obtained by replacing all occurrences of [q, r, s] in the normal
term t by occurrences of a normal term [q′, r′, s′] of the same type, then t′ is
normal. For the replacement creates no convertible subterms.

Lemma 10 If Γ ∪ ∆ `CH A, where Γ consists of qfo formulas and either
A is qfo or else A = D, then there is a pure deduction t′ in CH of A from
Γ ∪∆.

Let t be a normal deduction in CH of A from Γ ∪ ∆. The proof is by
induction on the number k(t) of critical subterms of t.

Let k(t) = 0. We proceed by induction on t.
We may suppose that t does not contain subterm parts of the form

N(D, s), since otherwise the induction hypothesis yields a pure deduction
s′ of 0 and we may take t′ = N(A, s′). So we have only the following cases:

If t = vt1 · · · tn), where the sign of v is in Γ ∪∆, the terms among the ti
are of type D. So, by Lemma 7, each term ti is qfo. Hence, by Lemma 6,
the type Aj of vt1 · · · tj is qfo for j = 1 . . . n. Hence, t′ = t is pure.

If t = [s, B], where A = B ∨ C or C ∨B, then t′ = [s′, B]
Let t = (r, s). If A = B ∧C, set t′ = (r′, s′). If A = ∃x, F (x), then r is of

type D and so, as we have already seen, r′ = r. Hence s′ is a pure deduction
of F (r′) and so, again, we may set t′ = (r′, s′).

If t = λx :Bs(x), apply the induction hypothesis to the deduction s(vB)
from Γ ∪∆ ∪ {B} to obtain s′(vB). Then t′ = λx :Bs′(x).

Now assume k(t) > 0. There is a minimal critical subterm [q, r, s] of t. By
Lemma 9, we may replace each occurrence of [q, r, s] in t by the corresponding
occurrence of a normal term p = [q′, r′, s′] of the same type with k(p) = 0,
obtaining a normal deduction t∗ of A from Γ ∪∆ with k(t∗) < k(t). By the
remark above, t∗ is normal, and so by the induction hypothesis we obtain
t′ = (t∗)′. 2
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6 Elimination of Left Projections

Let t be a normal pure deduction from Γ ∪ ∆. A list p1, . . . , pn of distinct
existential terms is called a base for t iff it is a shortest e-list for the type of
t.

In the following lemma, let Γ(v) and A(v) be obtained by everywhere
replacing p1 in (the formulas in) Γ(p1) and in A(p1), respectively, by v = vD.

Lemma 11 Let t be a pure normal deduction of A(p1) from Γ(p1) ∪ ∆,
where the formulas in Γ(p1) are qfo and A(p1) is either qfo or = D. Let
p, p1, . . . , pn is a base for t, where p1, . . . , pn are pure normal terms. Let
∃xG(x) be the type of p. Then there is a pure deduction t′ of A(v) from
Γ(v) ∪∆ ∪ {G(v)} with base p′1, . . . , p

′
n.

If t is a variable, then A(p1) is in Γ(p1). So let t′ be a new variable u of
sign A(v).

If t = N(A(p1), s), then t′ = N(A(v), s′).
If t = [s, B(p1)], then t′ = [s′, B(v)].
If t = [B(p1), s], then t′ = [B(v), s′].
If t = [r, s, u], then t′ = [r′, s′, u′].
If t = λx :C(p1).s(x), then t′ = λx :C(v).s(x)′.
If t = (r, s), then t′ = (r′, s′).
If t = fs, where s is a term, then t′ = f ′s′.
If t = qe, where e is 1 or 2 and q 6= p, then t′ = q′e.
If t = p1, then t′ = v.
If t is p2, then A(p1) ≡ G(p1) and t′ is a new variable of sign G(v). 2

Lemma 12 Let Γ ∪ {A} be a set of qfo formulas. If t is a pure normal
deduction in CH of A from Γ ∪∆ with a null base and if Γ′ is the set of all
originals of each formula in Γ and A′ is an original of A, then Γ′ `HL A′ .

The proof is by induction on t.
If t = vA, then A′ is in Γ′.
If t = N(B, s), Then by the induction hypothesis, Γ′ `HL 0 and so

Γ′ `HL A′.
If t = [s, C], then s :B, where A = B ∨ C. By the induction hypothesis,

Γ′ `HL C ′ and so Γ′ `HL A′. Similarly for t = [B, s].
If t = [r, s, u], where r :B ∨ C, then by the induction hypothesis, Γ′ `HL

B′ ∨ C ′, Γ′ `HL B′ → A′ and Γ′ `HL C ′ → A′. So Γ′ `HL A′.
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If t = λx : B.s(x), then either A = B → C or else B = D and A =
∀xF (x). In the first case, B is qfo and so, by the induction hypothesis, we
have Γ′ ∪ {B′} `HL C ′ from which follows Γ′ `HL A′. In the second case,
Γ′ `HL F (v)′ and hence Γ′ `HL A′.

If t = (r, s), then either A = B ∧C, r :B and s :C or else A = ∃xF (x), x
occurs in F (x), r :D and s :F (r). In the first case, Γ′ `HL B′ and Γ′ `HL C ′

and so Γ′ `HL A′. In the second case, Γ′ `HL F (r)′. Let ∃xF ′(x) be an
original of ∃xF (x). r is qfo by Lemma 7. Hence, F (r)′ = F ′(r′), where r′

is an original for r. So A′ = ∃x(F (x)′) follows by ∃-elimination in HL from
F (r)′. So Γ′ `HL A′.

Let t = fs, where s is a term. Then either f :B → A and s :B, in which
case the induction hypothesis yields Γ′ `HL B → A and Γ′ `HL B, and so
Γ′ `HL A, or else f : ∀xF (x), s : D and A = F (r). In the latter case, r is a
normal term of type D and index 0. Hence, it is a term of HL and we have
Γ′ `HL ∀xF (x) and so Γ′ `HL A.

If t = pe, where e is 1 or 2. Let p be of existential type ∃xF (x). e = 2,
since otherwise A = D. So x is not in F (x), since otherwise A = F (p1)
would contain an occurrence of p1 and so t would not have a null base. By
the induction hypothesis, Γ′ `HL ∃xA′ from which Γ′ `HL A′ follows. Now
suppose that p is of type A ∧ B (if e = 1) or B ∧ A (if e = 2). In any case,
then, Γ′ `HL A′ ∧B′ and so Γ′ `HL A′. 2

7 Completeness of HL

Now we are in position to prove that CH is conservative over HL.

CONSERVATION THEOREM Let Γ consist of first-order formulas, let
A be qfo with original A′ and let

Γ ∪∆ `CH A.

Then
Γ `HL A′.

Let t be a normal pure deduction of A from Γ ∪ ∆. The proof is by
induction on the length of the bases of t. Since Γ consists of first-order
formulas, it follows from Lemma 8 that every element of a base of t is a
subterm of t and hence is pure and normal.
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If t has a null base, then A is first-order, i.e. A = A′. So the result follows
by Lemma 12.

So let t have base p, p1, . . . , pn and let A = A(p1) and let p be of type
∃xG(x). Since p, p1, . . . , pn is a base, ∃xG(x) contains no existential terms,
and so is first-order. Since p is pure and normal and has a null base,

Γ `HL ∃xG(x)

by Lemma 12. p1, . . . , pn are pure and normal, and so by Lemma 11, there
is a pure normal deduction t′ of A(vD) from Γ ∪ ∆ ∪ {G(vD)} with base
p′1, . . . , p

′
n. By the induction hypothesis, we therefore have

Γ ∪ {G(v)} `HL A.

So, by ∃-elimination in HL, Γ `HL A. 2
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