SOME REMARKS ON ONE-BASEDNESS

FRANK O. WAGNER

ABSTRACT. A type analysable in one-based types in a simple theory is itself one-based.

1. INTRODUCTION

Recall that a type p over a set A in a simple theory is *one-based* if for any tuple \bar{a} of realizations of p and any $B \supseteq A$ the canonical base $Cb(\bar{a}/B)$ is contained in $bdd(\bar{a}A)$. One-basedness implies that the forking geometry is particularly well-behaved; for instance one-based groups are bounded-by-abelian-by-bounded. Ehud Hrushovski showed in [3, Proposition 3.4.1] that for stable stably embedded types onebasedness is preserved under analyses: If p is stable stably embedded in a supersimple theory, and analysable (in the technical sense defined in the next section) in one-based types, then p is itself one-based. Zoé Chatzidakis then gave another proof for supersimple structures [1, Theorem 3.10, using semi-regular analyses. We shall give an easy direct proof of the theorem stated in the abstract, thus removing the hypotheses of stability, stable embedding, or supersimplicity; it is similar to Hrushovski's proof, but does not use germs of definable functions (which work less well in simple unstable theories), and has to deal with non-stationarity of types. While we are at it, we shall also generalize the notion of bounded closure and one-basedness to Σ -closure and Σ -basedness, where Σ is an \emptyset -invariant collection of partial types (thought of as small). This may for instance be applied to consider one-basedness modulo types of finite SU-rank, or modulo superstable types.

Our notation is standard and follows [5]. Throughout the paper, the ambient theory will be simple, and we shall be working in \mathfrak{M}^{heq} , where

Date: 21 January 2003.

²⁰⁰⁰ Mathematics Subject Classification. 03C45.

Key words and phrases. stable, simple, one-based, internal, analysable. I should like to thank Zoé Chatzidakis for fruitful discussions.

FRANK O. WAGNER

 \mathfrak{M} is a sufficiently saturated model of the ambient theory. Thus tuples are tuples of hyperimaginaries, and dcl = dcl^{heq}.

2. Σ -closure

In this section Σ will be an \emptyset -invariant family of partial types. We first recall the notions of internality and analysability.

Definition 1. Let π be a partial type over A. Then π is

- (almost, resp.) internal in Σ , or (almost, resp.) Σ -internal, if for every realization a of π there is $B \coprod_A a$ and \bar{b} realizing types in Σ based on B, such that $a \in \operatorname{dcl}(B\bar{b})$ (or $a \in \operatorname{bdd}(B\bar{b})$, respectively).
- analysable in Σ , or Σ -analysable, if for any $a \models \pi$ there are $(a_i : i < \alpha) \in \operatorname{dcl}(A, a)$ such that $\operatorname{tp}(a_i/A, a_j : j < i)$ is Σ -internal for all $i < \alpha$, and $a \in \operatorname{bdd}(A, a_i : i < \alpha)$.

A type $\operatorname{tp}(a/A)$ is foreign to Σ if $a \, {\textstyle \bigcup}_{AB} \overline{b}$ for all $B \, {\textstyle \bigcup}_A a$ and \overline{b} realizing types in Σ over B.

Definition 2. The Σ -closure $\Sigma cl(A)$ of a set A is the collection of all hyperimaginaries a such that tp(a/A) is Σ -analysable.

We think of Σ as a family of small types. For instance, if Σ is the family of all bounded types, then $\Sigma cl(A) = bdd(A)$. Other possible choices might be the family of all types of SU-rank $< \omega^{\alpha}$, for some ordinal α , or the family of all superstable types. If P is an \emptyset -invariant family of types, and Σ is the family of all P-analysable types to which all types in P are foreign, then $\Sigma cl(A) = cl_P(A)$ as defined in [5, Definition 3.5.1]; if P consists of a single regular type p, this in turn is the p-closure from [2] (see also [4, p. 265]).

Remark 1. In general $bdd(A) \subseteq \Sigma cl(A)$; if the inequality is strict, then $\Sigma cl(A)$ has the same cardinality as the ambient monster model, and hence violates the usual conventions. However, this is usually harmless. Note that $\Sigma cl(.)$ is a closure operator.

Fact 2. The following are equivalent:

- (1) $\operatorname{tp}(a/A)$ is foreign to Σ .
- (2) $a \perp_A \Sigma cl(A)$.
- (3) $a \, \, \, \, \, \, _{A} \operatorname{dcl}(aA) \cap \Sigma \operatorname{cl}(A).$
- (4) $\operatorname{dcl}(aA) \cap \Sigma \operatorname{cl}(A) \subseteq \operatorname{bdd}(A).$

Proof: This follows immediately from [5, Proposition 3.4.12]; see also [5, Lemma 3.5.3].

 Σ -closure is well-behaved with respect to independence.

Lemma 3. Suppose $A \, {\downarrow}_B C$. Then $\Sigma cl(A) \, {\downarrow}_{\Sigma cl(B)} \Sigma cl(C)$. More precisely, for any $A_0 \subseteq \Sigma cl(A)$ we have $A_0 \, {\downarrow}_{B_0} \Sigma cl(C)$, where $B_0 = dcl(A_0B) \cap \Sigma cl(B)$. In particular, $\Sigma cl(AB) \cap \Sigma cl(BC) = \Sigma cl(B)$.

Proof: Let $B_1 = \Sigma cl(B) \cap dcl(BC)$. Then $C \, {igstyle }_B A$ implies $C \, {igstyle }_{B_1} A$, and $tp(C/B_1)$ is foreign to Σ by Fact 2 (3 \Rightarrow 1). Hence $C \, {igstyle }_{B_1} \Sigma cl(A)$, and $C \, {igstyle }_{B_1} A_0$.

Since $\operatorname{tp}(A_0/B_0)$ is foreign to Σ by Fact 2, we obtain $A_0 \, \bigcup_{B_0} \Sigma \operatorname{cl}(B_0)$. But $\Sigma \operatorname{cl}(B_0) = \Sigma \operatorname{cl}(B) \supseteq B_1$, whence $A_0 \, \bigcup_{B_0} C$ by transitivity, and finally $A_0 \, \bigcup_{B_0} \Sigma \operatorname{cl}(C)$ by foreignness to Σ again. \Box

3. Σ -basedness

Again, Σ will be an \emptyset -invariant family of partial types.

Definition 3. A type p over A is Σ -based if $\operatorname{Cb}(\overline{a}/\Sigma \operatorname{cl}(B)) \subseteq \Sigma \operatorname{cl}(\overline{a}A)$ for any tuple \overline{a} of realizations of p and any $B \supseteq A$.

Remark 4. Equivalently, $p \in S(A)$ is Σ -based if $\bar{a} \downarrow_{\Sigma cl(\bar{a}A) \cap \Sigma cl(B)} \Sigma cl(B)$ for any tuple \bar{a} of realisations of p and any $B \supseteq A$.

Lemma 5. Suppose $\operatorname{tp}(a/A)$ is Σ -based, $A \subseteq B$, and $a_0 \in \Sigma \operatorname{cl}(\bar{a}B)$, where \bar{a} is a tuple of realizations of $\operatorname{tp}(a/A)$. Then $\operatorname{tp}(a_0/B)$ is Σ -based.

Proof: Let \bar{a}_0 be a tuple of realizations of $\operatorname{tp}(a_0/B)$, and $C \supseteq B$. There is a tuple \tilde{a} of realizations of $\operatorname{tp}(a/A)$ such that $\bar{a}_0 \in \operatorname{\Sigmacl}(\tilde{a}B)$; we may choose it such that $\tilde{a} \downarrow_{\bar{a}_0 B} C$. Then $\operatorname{\Sigmacl}(\tilde{a}B) \cap \operatorname{\Sigmacl}(C) \subseteq \operatorname{\Sigmacl}(\bar{a}_0 B)$ by Lemma 3.

Put $X = \operatorname{Cb}(\tilde{a}/\Sigma \operatorname{cl}(C))$. By Σ -basedness of $\operatorname{tp}(a/A)$ we have

$$X \subseteq \Sigma cl(\tilde{a}A) \cap \Sigma cl(C) \subseteq \Sigma cl(\bar{a}_0B).$$

As $\tilde{a} \downarrow_X \Sigma cl(C)$ we get $\tilde{a}B \downarrow_{XB} \Sigma cl(C)$, and hence $\bar{a}_0 \downarrow_Y \Sigma cl(C)$ by Lemma 3, where $Y = \Sigma cl(XB) \cap dcl(\bar{a}_0XB)$. As $Y \subseteq \Sigma cl(C)$, we have

$$\operatorname{Cb}(\bar{a}_0/\Sigma \operatorname{cl}(C)) \subseteq Y \subseteq \Sigma \operatorname{cl}(XB) \subseteq \Sigma \operatorname{cl}(\bar{a}_0B).$$

Lemma 6. If tp(a) and tp(b) are Σ -based, so is tp(ab).

FRANK O. WAGNER

Proof: Let \bar{a} and \bar{b} be tuples of realizations of $\operatorname{tp}(a)$ and $\operatorname{tp}(b)$, respectively, and consider a set A of parameters. We add $\operatorname{\Sigmacl}(\bar{a}\bar{b}) \cap \operatorname{Cb}(\bar{a}\bar{b}/\operatorname{\Sigmacl}(A))$ to the language. By Σ -basedness of $\operatorname{tp}(a)$ we get

$$\operatorname{Cb}(\bar{a}/\operatorname{\Sigmacl}(A)) \subseteq \operatorname{\Sigmacl}(\bar{a}) \cap \operatorname{Cb}(\bar{a}\bar{b}/\operatorname{\Sigmacl}(A)) = \operatorname{dcl}(\emptyset),$$

whence $\bar{a} \perp \Sigma cl(A)$; similarly $\bar{b} \perp \Sigma cl(A)$.

Put $b_1 = \operatorname{Cb}(\bar{b}/\Sigma \operatorname{cl}(\bar{a}A))$, and choose $\bar{a}'A' \models \operatorname{tp}(\bar{a}A/b_1)$ with $\bar{a}'A' \downarrow_{b_1} \bar{a}\bar{b}A$. Then $b_1 \in \Sigma \operatorname{cl}(\bar{a}'A')$; by Σ -basedness of $\operatorname{tp}(a)$ and Lemma 5 applied to $\bar{a}b_1 \in \Sigma \operatorname{cl}(\bar{a}\bar{a}'A')$ we have $\operatorname{Cb}(\bar{a}b_1/\Sigma \operatorname{cl}(AA')) \subseteq \Sigma \operatorname{cl}(\bar{a}b_1A')$.

If $Y = \Sigma cl(\emptyset) \cap dcl(b_1)$, then $A \bigcup_Y b_1$ by Lemma 3, as $b_1 \in \Sigma cl(\bar{b})$ by Σ -basedness of tp(b) and because $\bar{b} \bigcup \Sigma cl(A)$; since $tp(A'/b_1) = tp(A/b_1)$ we also have $A' \bigcup_Y b_1$, whence $A' \bigcup_Y \bar{a}b_1A$, and $A' \bigcup_{YA} \bar{a}b_1$. As $\Sigma cl(YA) = \Sigma cl(A)$, Lemma 3 implies

$$Cb(\bar{a}b_1/\Sigma cl(A)) = Cb(\bar{a}b_1/\Sigma cl(AA')) \subseteq \Sigma cl(\bar{a}b_1A') \cap \Sigma cl(A)$$
$$\subseteq \Sigma cl(\bar{a}b_1) \subseteq \Sigma cl(\bar{a}\bar{b}),$$

by Lemma 3 since $A' \, {\color{black} \downarrow}_{\bar{a}b_1Y} A$. On the other hand, put $C = \operatorname{Cb}(\bar{a}b_1/\Sigma \operatorname{cl}(A))$. Then $\bar{b} \, {\color{black} \downarrow}_{b_1} \Sigma \operatorname{cl}(\bar{a}A)$ by definition of b_1 , whence $\bar{a}\bar{b} \, {\color{black} \downarrow}_{\bar{a}b_1} \Sigma \operatorname{cl}(A)$; as $\bar{a}b_1 \, {\color{black} \downarrow}_C \Sigma \operatorname{cl}(A)$ we get $\bar{a}\bar{b} \, {\color{black} \downarrow}_C \Sigma \operatorname{cl}(A)$, whence $\operatorname{Cb}(\bar{a}\bar{b}/\Sigma \operatorname{cl}(A)) \subseteq C$. So

$$Cb(\bar{a}\bar{b}/\Sigma cl(A)) = Cb(\bar{a}b_1/\Sigma cl(A)) \cap Cb(\bar{a}\bar{b}/\Sigma cl(A))$$
$$\subseteq \Sigma cl(\bar{a}\bar{b}) \cap Cb(\bar{a}\bar{b}/\Sigma cl(A)) = dcl(\emptyset),$$

whence $\bar{a}\bar{b} \perp \Sigma cl(A)$.

Corollary 7. If $tp(a_i)$ is Σ -based for all $i < \alpha$, so is $tp(\bigcup_{i < \alpha} a_i)$.

Proof: We use induction on β to show that $\operatorname{tp}(\bigcup_{i < \beta} a_i)$ is Σ -based, for $\beta \leq \alpha$. This is clear for $\beta = 0$; it follows from Lemma 6 for successor ordinals. And if β is a limit ordinal, then for any set A

$$\operatorname{Cb}(\bigcup_{i<\beta}a_i/\operatorname{\Sigmacl}(A)) = \bigcup_{i<\beta}\operatorname{Cb}(\bigcup_{j\le i}a_i/\operatorname{\Sigmacl}(A)) \subseteq \operatorname{\Sigmacl}(\bigcup_{i<\beta}a_i). \quad \Box$$

Lemma 8. If tp(a/A) is Σ -based and $a \, \sqcup A$, then tp(a) is Σ -based.

Proof: Let \bar{a} be a tuple of realizations of tp(a), and consider a set B of parameters. For every $a_i \in \bar{a}$ choose A_i with $tp(a_iA_i) = tp(aA)$ and $A_i \, \bigcup_{a_i}(\bar{a}, B, A_j : j < i)$. As $A_i \, \bigcup_{a_i} a_i$ we obtain $A_i \, \bigcup_{(\bar{a}, B, A_j : j < i)}$, whence $A_i \, \bigcup_{(A_i:j < i)} \bar{a}B$, and inductively $(A_j : j \leq i) \, \bigcup_{a} \bar{a}B$. Put $\bar{A} =$

4

 $\bigcup_{a_i \in \bar{a}} A_i; \text{ we just saw that } \bar{A} \perp \bar{a}B. \text{ Now tp}(a_i/\bar{A}) \text{ is } \Sigma\text{-based for all} \\ a_i \in \bar{a}, \text{ and so is tp}(\bar{a}/\bar{A}) \text{ by Corollary 7. As } \bar{a} \perp_B \bar{A}, \text{ Lemma 3 implies} \\ \operatorname{Cb}(\bar{a}/\Sigma \operatorname{cl}(B)) = \operatorname{Cb}(\bar{a}/\Sigma \operatorname{cl}(\bar{A}B)) \subseteq \Sigma \operatorname{cl}(\bar{a}\bar{A}) \cap \Sigma \operatorname{cl}(B) = \Sigma \operatorname{cl}(\bar{a}) \cap \Sigma \operatorname{cl}(B), \\ \text{where the last equality follows from } \bar{a}A \perp_{\bar{a}} B \text{ and Lemma 3.} \qquad \Box$

Corollary 9. If p is almost internal in Σ -based types, then p is Σ -based.

Proof: Suppose $p = \operatorname{tp}(a/A)$, and choose $B \bigcup_A a$ and \overline{b} such that $a \in \operatorname{bdd}(B\overline{b})$ and $\operatorname{tp}(b/B)$ is Σ -based for all $b \in \overline{b}$. Then $\operatorname{tp}(\overline{b}/AB)$ is Σ -based by Lemma 7, as is $\operatorname{tp}(a/AB)$ by Lemma 5, and $\operatorname{tp}(a/A)$ by Lemma 8.

Lemma 10. If tp(a) and tp(b/a) are Σ -based, so is tp(ab).

Proof: Consider a tuple $\bar{a}b$ of realizations of $\operatorname{tp}(ab)$, and a set A of parameters. As $\operatorname{tp}(\bar{a})$ and $\operatorname{tp}(\bar{b}/\bar{a})$ are both Σ -based, we may suppose $a = \bar{a}$ and $b = \bar{b}$. Put $C = \operatorname{Cb}(ab/\operatorname{\Sigmacl}(A))$; again we add $\operatorname{\Sigmacl}(ab) \cap C$ to the language. By Σ -basedness of $\operatorname{tp}(a)$ we get $a \perp \operatorname{\Sigmacl}(A)$.

Consider a Morley sequence $(a_ib_i : i < \omega)$ in lstp(ab/C); we may assume that $(a_ib_i : i < \omega) \perp_C abA$. Since $(a_i : i < \omega) \perp C$ we get $ab \perp (a_i : i < \omega)$. Moreover, as tp(ab/C) is foreign to Σ , we have $ab \perp_C \Sigma cl(a_ib_i : i < \omega)$. On the other hand $C \in dcl(a_ib_i : i < \omega)$, whence

$$C = \operatorname{Cb}(ab/\Sigma \operatorname{cl}(a_i b_i : i < \omega)).$$

Put $b' = \operatorname{Cb}(ab/\Sigma \operatorname{cl}(a, a_ib_i : i < \omega))$. Then $a \in b'$, and $b' \in \Sigma \operatorname{cl}(ab)$ by Σ -basedness of $\operatorname{tp}(b/a)$. Put $X = \Sigma \operatorname{cl}(\emptyset) \cap \operatorname{dcl}(b')$. Then $b' \perp_X (a_i : i < \omega)$ by Lemma 3; as $\operatorname{tp}(b'/a_i : i < \omega)$ is Σ -based by Lemma 5 and Corollary 7 applied to $b' \in \Sigma \operatorname{cl}(a, a_ib_i : i < \omega)$, so is $\operatorname{tp}(b'/X)$ by Lemma 8. Put $C' = \operatorname{Cb}(b'/\Sigma \operatorname{cl}(a_ib_i : i < \omega))$, then $C' \subseteq \Sigma \operatorname{cl}(b') \subseteq \Sigma \operatorname{cl}(ab)$ by Σ -basedness.

Now $ab \perp_{b'} \Sigma cl(a_i b_i : i < \omega)$ by definition of b'; as $b' \perp_{C'} \Sigma cl(a_i b_i : i < \omega)$ by definition, we get $ab \perp_{C'} \Sigma cl(a_i b_i : i < \omega)$, whence $C \subseteq C'$. We obtain

 $C = C' \cap C \subseteq \Sigma cl(ab) \cap C = dcl(\emptyset),$

whence $ab \perp \Sigma cl(A)$.

Theorem 11. Let p be analysable in Σ -based types. Then p is Σ -based.

Proof: Suppose $p = \operatorname{tp}(a/A)$. Then there is a sequence $(a_i : i < \alpha) \subseteq \operatorname{dcl}(aA)$ such that $a \in \operatorname{bdd}(A, a_i : i < \alpha)$ and $\operatorname{tp}(a_i/A, a_j : j < i)$ is internal in Σ -based types for all $i < \alpha$. So $\operatorname{tp}(a_i/A, a_j : j < i)$ is

FRANK O. WAGNER

 Σ -based for all $i < \alpha$ by Corollary 9; we use induction on i to show that $\operatorname{tp}(a_j : j < i/A)$ is Σ -based. This is clear for i = 0 and i = 1; by Lemma 7 it is true for limit ordinals, and by Lemma 10 it holds for successor ordinals.

Corollary 12. If p is analysable in one-based types, then p is itself one-based. \Box

References

- [1] Zoé Chatzidakis A note on canonical bases and modular types in supersimple theories, preprint, September 2002.
- [2] Ehud Hushovski. Locally modular regular types. In: Classification Theory, Proceedings, Chicago 1985 (ed. John Baldwin). Springer-Verlag, Berlin, D, 1985.
- [3] Ehud Hushovski. The Manin-Mumford conjecture and the model theory of difference fields, Ann. Pure Appl. Logic 112:43–115, no. 1, 2001.
- [4] Anand Pillay. *Geometric stability theory*. Oxford Logic Guides 32. Oxford University Press, Oxford, GB, 1996.
- [5] F. O. Wagner. Simple Theories. Mathematics and Its Applications 503. Kluwer Academic Publishers, Dordrecht, NL, 2000.

FRANK O WAGNER, INSTITUT GIRARD DESARGUES, UNIVERSITÉ CLAUDE BERNARD (LYON-1), MATHÉMATIQUES, 21 AVENUE CLAUDE BERNARD, 69622 VILLEURBANNE-CEDEX, FRANCE

E-mail address: wagner@desargues.univ-lyon1.fr

6