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SOME REMARKS ON ONE-BASEDNESS

FRANK O. WAGNER

Abstract. A type analysable in one-based types in a simple the-
ory is itself one-based.

1. Introduction

Recall that a type p over a set A in a simple theory is one-based if
for any tuple ā of realizations of p and any B ⊇ A the canonical base
Cb(ā/B) is contained in bdd(āA). One-basedness implies that the
forking geometry is particularly well-behaved; for instance one-based
groups are bounded-by-abelian-by-bounded. Ehud Hrushovski showed
in [3, Proposition 3.4.1] that for stable stably embedded types one-
basedness is preserved under analyses: If p is stable stably embedded
in a supersimple theory, and analysable (in the technical sense defined
in the next section) in one-based types, then p is itself one-based. Zoé
Chatzidakis then gave another proof for supersimple structures [1, The-
orem 3.10], using semi-regular analyses. We shall give an easy direct
proof of the theorem stated in the abstract, thus removing the hy-
potheses of stability, stable embedding, or supersimplicity; it is similar
to Hrushovski’s proof, but does not use germs of definable functions
(which work less well in simple unstable theories), and has to deal
with non-stationarity of types. While we are at it, we shall also gen-
eralize the notion of bounded closure and one-basedness to Σ-closure
and Σ-basedness, where Σ is an ∅-invariant collection of partial types
(thought of as small). This may for instance be applied to consider
one-basedness modulo types of finite SU-rank, or modulo superstable

types.

Our notation is standard and follows [5]. Throughout the paper, the
ambient theory will be simple, and we shall be working in M

heq, where

Date: 21 January 2003.
2000 Mathematics Subject Classification. 03C45.
Key words and phrases. stable, simple, one-based, internal, analysable.
I should like to thank Zoé Chatzidakis for fruitful discussions.

1

http://arxiv.org/abs/1904.06054v1


2 FRANK O. WAGNER

M is a suffiviently saturated model of the ambient theory. Thus tuples
are tuples of hyperimaginaries, and dcl = dclheq.

2. Σ-closure

In this section Σ will be an ∅-invariant family of partial types. We
first recall the notions of internality and analysability.

Definition 1. Let π be a partial type over A. Then π is

• (almost, resp.) internal in Σ, or (almost, resp.) Σ-internal, if for
every realization a of π there is B |⌣A

a and b̄ realizing types

in Σ based on B, such that a ∈ dcl(Bb̄) (or a ∈ bdd(Bb̄),
respectively).

• analysable in Σ, or Σ-analysable, if for any a |= π there are
(ai : i < α) ∈ dcl(A, a) such that tp(ai/A, aj : j < i) is Σ-
internal for all i < α, and a ∈ bdd(A, ai : i < α).

A type tp(a/A) is foreign to Σ if a |⌣AB
b̄ for all B |⌣A

a and b̄ realizing
types in Σ over B.

Definition 2. The Σ-closure Σcl(A) of a set A is the collection of all
hyperimaginaries a such that tp(a/A) is Σ-analysable.

We think of Σ as a family of small types. For instance, if Σ is the
family of all bounded types, then Σcl(A) = bdd(A). Other possible
choices might be the family of all types of SU -rank < ωα, for some
ordinal α, or the family of all superstable types. If P is an ∅-invariant
family of types, and Σ is the family of all P -analysable types to which
all types in P are foreign, then Σcl(A) = clP (A) as defined in [5,
Definition 3.5.1]; if P consists of a single regular type p, this in turn is
the p-closure from [2] (see also [4, p. 265]).

Remark 1. In general bdd(A) ⊆ Σcl(A); if the inequality is strict,

then Σcl(A) has the same cardinality as the ambient monster model,

and hence violates the usual conventions. However, this is usually

harmless. Note that Σcl(.) is a closure operator.

Fact 2. The following are equivalent:

(1) tp(a/A) is foreign to Σ.
(2) a |⌣A

Σcl(A).

(3) a |⌣A
dcl(aA) ∩ Σcl(A).

(4) dcl(aA) ∩ Σcl(A) ⊆ bdd(A).
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Proof: This follows immediately from [5, Proposition 3.4.12]; see also
[5, Lemma 3.5.3]. �

Σ-closure is well-behaved with respect to independence.

Lemma 3. Suppose A |⌣B
C. Then Σcl(A) |⌣Σcl(B)

Σcl(C). More pre-

cisely, for any A0 ⊆ Σcl(A) we have A0 |⌣B0

Σcl(C), where B0 =

dcl(A0B) ∩ Σcl(B). In particular, Σcl(AB) ∩ Σcl(BC) = Σcl(B).

Proof: Let B1 = Σcl(B) ∩ dcl(BC). Then C |⌣B
A implies C |⌣B1

A,

and tp(C/B1) is foreign to Σ by Fact 2 (3 ⇒ 1). Hence C |⌣B1

Σcl(A),

and C |⌣B1

A0.

Since tp(A0/B0) is foreign to Σ by Fact 2, we obtain A0 |⌣B0

Σcl(B0).

But Σcl(B0) = Σcl(B) ⊇ B1, whence A0 |⌣B0

C by transitivity, and

finally A0 |⌣B0

Σcl(C) by foreignness to Σ again. �

3. Σ-basedness

Again, Σ will be an ∅-invariant family of partial types.

Definition 3. A type p over A is Σ-based if Cb(ā/Σcl(B)) ⊆ Σcl(āA)
for any tuple ā of realizations of p and any B ⊇ A.

Remark 4. Equivalently, p ∈ S(A) is Σ-based if ā |⌣Σcl(āA)∩Σcl(B)
Σcl(B)

for any tuple ā of realisations of p and any B ⊇ A.

Lemma 5. Suppose tp(a/A) is Σ-based, A ⊆ B, and a0 ∈ Σcl(āB),
where ā is a tuple of realizations of tp(a/A). Then tp(a0/B) is Σ-based.

Proof: Let ā0 be a tuple of realizations of tp(a0/B), and C ⊇ B. There
is a tuple ã of realizations of tp(a/A) such that ā0 ∈ Σcl(ãB); we may
choose it such that ã |⌣ ā0B

C. Then Σcl(ãB) ∩ Σcl(C) ⊆ Σcl(ā0B) by

Lemma 3.

Put X = Cb(ã/Σcl(C)). By Σ-basedness of tp(a/A) we have

X ⊆ Σcl(ãA) ∩ Σcl(C) ⊆ Σcl(ā0B).

As ã |⌣X
Σcl(C) we get ãB |⌣XB

Σcl(C), and hence ā0 |⌣Y
Σcl(C) by

Lemma 3, where Y = Σcl(XB)∩dcl(ā0XB). As Y ⊆ Σcl(C), we have

Cb(ā0/Σcl(C)) ⊆ Y ⊆ Σcl(XB) ⊆ Σcl(ā0B). �

Lemma 6. If tp(a) and tp(b) are Σ-based, so is tp(ab).
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Proof: Let ā and b̄ be tuples of realizations of tp(a) and tp(b), re-
spectively, and consider a set A of parameters. We add Σcl(āb̄) ∩
Cb(āb̄/Σcl(A)) to the language. By Σ-basedness of tp(a) we get

Cb(ā/Σcl(A)) ⊆ Σcl(ā) ∩ Cb(āb̄/Σcl(A)) = dcl(∅),

whence ā |⌣ Σcl(A); similarly b̄ |⌣ Σcl(A).

Put b1 = Cb(b̄/Σcl(āA)), and choose ā′A′ |= tp(āA/b1) with ā′A′ |⌣b1
āb̄A.

Then b1 ∈ Σcl(ā′A′); by Σ-basedness of tp(a) and Lemma 5 applied to
āb1 ∈ Σcl(āā′A′) we have Cb(āb1/Σcl(AA

′)) ⊆ Σcl(āb1A
′).

If Y = Σcl(∅) ∩ dcl(b1), then A |⌣Y
b1 by Lemma 3, as b1 ∈ Σcl(b̄)

by Σ-basedness of tp(b) and because b̄ |⌣ Σcl(A); since tp(A′/b1) =
tp(A/b1) we also have A′ |⌣Y

b1, whence A
′ |⌣Y

āb1A, and A′ |⌣Y A
āb1.

As Σcl(Y A) = Σcl(A), Lemma 3 implies

Cb(āb1/Σcl(A)) = Cb(āb1/Σcl(AA
′)) ⊆ Σcl(āb1A

′) ∩ Σcl(A)

⊆ Σcl(āb1) ⊆ Σcl(āb̄),

by Lemma 3 since A′ |⌣ āb1Y
A. On the other hand, put C = Cb(āb1/Σcl(A)).

Then b̄ |⌣b1
Σcl(āA) by definition of b1, whence āb̄ |⌣ āb1

Σcl(A); as

āb1 |⌣C
Σcl(A) we get āb̄ |⌣C

Σcl(A), whence Cb(āb̄/Σcl(A)) ⊆ C. So

Cb(āb̄/Σcl(A)) = Cb(āb1/Σcl(A)) ∩ Cb(āb̄/Σcl(A))

⊆ Σcl(āb̄) ∩ Cb(āb̄/Σcl(A)) = dcl(∅),

whence āb̄ |⌣ Σcl(A). �

Corollary 7. If tp(ai) is Σ-based for all i < α, so is tp(
⋃

i<α ai).

Proof: We use induction on β to show that tp(
⋃

i<β ai) is Σ-based, for
β ≤ α. This is clear for β = 0; it follows from Lemma 6 for successor
ordinals. And if β is a limit ordinal, then for any set A

Cb(
⋃

i<β

ai/Σcl(A)) =
⋃

i<β

Cb(
⋃

j≤i

ai/Σcl(A)) ⊆ Σcl(
⋃

i<β

ai). �

Lemma 8. If tp(a/A) is Σ-based and a |⌣A, then tp(a) is Σ-based.

Proof: Let ā be a tuple of realizations of tp(a), and consider a set B
of parameters. For every ai ∈ ā choose Ai with tp(aiAi) = tp(aA) and
Ai |⌣ai

(ā, B, Aj : j < i). As Ai |⌣ ai we obtain Ai |⌣(ā, B, Aj : j < i),

whence Ai |⌣(Aj :j<i)
āB, and inductively (Aj : j ≤ i) |⌣ āB. Put Ā =
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⋃
ai∈ā

Ai; we just saw that Ā |⌣ āB. Now tp(ai/Ā) is Σ-based for all

ai ∈ ā, and so is tp(ā/Ā) by Corollary 7. As ā |⌣B
Ā, Lemma 3 implies

Cb(ā/Σcl(B)) = Cb(ā/Σcl(ĀB)) ⊆ Σcl(āĀ)∩Σcl(B) = Σcl(ā)∩Σcl(B),

where the last equality follows from āA |⌣ ā
B and Lemma 3. �

Corollary 9. If p is almost internal in Σ-based types, then p is Σ-based.

Proof: Suppose p = tp(a/A), and choose B |⌣A
a and b̄ such that

a ∈ bdd(Bb̄) and tp(b/B) is Σ-based for all b ∈ b̄. Then tp(b̄/AB) is
Σ-based by Lemma 7, as is tp(a/AB) by Lemma 5, and tp(a/A) by
Lemma 8. �

Lemma 10. If tp(a) and tp(b/a) are Σ-based, so is tp(ab).

Proof: Consider a tuple āb̄ of realizations of tp(ab), and a set A of
parameters. As tp(ā) and tp(b̄/ā) are both Σ-based, we may suppose
a = ā and b = b̄. Put C = Cb(ab/Σcl(A)); again we add Σcl(ab) ∩ C
to the language. By Σ-basedness of tp(a) we get a |⌣ Σcl(A).

Consider a Morley sequence (aibi : i < ω) in lstp(ab/C); we may
assume that (aibi : i < ω) |⌣C

abA. Since (ai : i < ω) |⌣C we get

ab |⌣(ai : i < ω). Moreover, as tp(ab/C) is foreign to Σ, we have
ab |⌣C

Σcl(aibi : i < ω). On the other hand C ∈ dcl(aibi : i < ω),
whence

C = Cb(ab/Σcl(aibi : i < ω)).

Put b′ = Cb(ab/Σcl(a, aibi : i < ω)). Then a ∈ b′, and b′ ∈ Σcl(ab)
by Σ-basedness of tp(b/a). Put X = Σcl(∅) ∩ dcl(b′). Then b′ |⌣X

(ai :

i < ω) by Lemma 3; as tp(b′/ai : i < ω) is Σ-based by Lemma 5 and
Corollary 7 applied to b′ ∈ Σcl(a, aibi : i < ω), so is tp(b′/X) by Lemma
8. Put C ′ = Cb(b′/Σcl(aibi : i < ω)), then C ′ ⊆ Σcl(b′) ⊆ Σcl(ab) by
Σ-basedness.

Now ab |⌣b′
Σcl(aibi : i < ω) by definition of b′; as b′ |⌣C′

Σcl(aibi :

i < ω) by definition, we get ab |⌣C′
Σcl(aibi : i < ω), whence C ⊆ C ′.

We obtain
C = C ′ ∩ C ⊆ Σcl(ab) ∩ C = dcl(∅),

whence ab |⌣ Σcl(A). �

Theorem 11. Let p be analysable in Σ-based types. Then p is Σ-based.

Proof: Suppose p = tp(a/A). Then there is a sequence (ai : i < α) ⊆
dcl(aA) such that a ∈ bdd(A, ai : i < α) and tp(ai/A, aj : j < i)
is internal in Σ-based types for all i < α. So tp(ai/A, aj : j < i) is
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Σ-based for all i < α by Corollary 9; we use induction on i to show
that tp(aj : j < i/A) is Σ-based. This is clear for i = 0 and i = 1;
by Lemma 7 it is true for limit ordinals, and by Lemma 10 it holds for
successor ordinals. �

Corollary 12. If p is analysable in one-based types, then p is itself

one-based. �
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