
A Finite Model–Theoretical Proof of a
Property of Bounded Query Classes within

PH

Leszek Aleksander Ko lodziejczyk
Institute of Philosophy

Warsaw University
Krakowskie Przedmieście 3, 00-047 Warsaw, Poland

e-mail: l.kolodziejczyk@zodiac.mimuw.edu.pl

April 29th, 2004

Abstract

We use finite model theory (in particular, the method of FM–truth
definitions, introduced in [MM01] and developed in [K04], and a nor-
mal form result akin to those of [Ste93] and [G97]) to prove:

Let m ≥ 2. Then:
(A) If there exists k such that NP ⊆ ΣmTIME(nk)∩ΠmTIME(nk),

then for every r there exists kr such that PNP [nr] ⊆ ΣmTIME(nkr)∩
ΠmTIME(nkr);

(B) If there exists a superpolynomial time–constructible function
f such that NTIME(f) ⊆ Σp

m ∩Πp
m, then additionally PNP [nr] (

Σp
m ∩Πp

m.

This strengthens a result by Mocas ([M96]) that for any r, PNP [nr] (
NEXP .

In addition, we use FM–truth definitions to give a simple sufficient
condition for the Σ1

1 arity hierarchy to be strict over finite models.

It is widely believed that the polynomial hierarchy is properly contained in
the nondeterministic exponential time class NEXP . However, even a fairly

1

restricted fragment of the polynomial hierarchy — PNP , the class of problems
solvable in polynomial time by a deterministic machine with access to an NP
oracle — has not been proven to be smaller than NEXP . Moreover, the
problem whether PNP equals NEXP seems difficult, as it is known to have
contradictory relativizations (see [BT94] or [BFFT01] for an oracle under
which PNP = NEXP).

The largest parts of PH currently known to be separated from NEXP
are the bounded query fragments of PNP . In [FLZ92], it was shown that

PNP [no(1)] (NEXP . Later, Mocas ([M96]) improved this result by showing
that for any fixed r, PNP [nr] is also a proper subclass of NEXP .

In the present paper, we prove the following theorem:

Theorem 0.1. Let m ≥ 2. Then:
(A) If there exists k such that NP ⊆ ΣmTIME(nk)∩ΠmTIME(nk), then

for every r there exists kr such that PNP [nr] ⊆ ΣmTIME(nkr)∩ΠmTIME(nkr);
(B) If there exists a superpolynomial time–constructible function f such

that NTIME(f) ⊆ Σp
m ∩ Πp

m, then additionally PNP [nr] (Σp
m ∩ Πp

m.

Note that the theorem can be interpreted as a strengthening of Mocas’
result, which immediately follows from either (A) or (B). Indeed, consider
e.g. (B) and assume that PNP [nr] = NEXP . Then the hypothesis of (B) is
satisfied for m = 2, so PNP [nr] (Σp

2 ∩ Πp
2 ⊆ NEXP = PNP [nr]. Contradic-

tion.
The proof uses finite model theory. We show that any PNP [nr] property

of finite models can be expressed by a second order sentence in a particular
normal form, very similar to normal forms studied in [Ste93] and [G97]. We
then show that if the assumption of (A) holds for a given m, then there
is a Σ1

m FM–truth definition (in the sense of M. Mostowski; see [MM01])
for the class of sentences in the normal form, from which the conclusion of
(A) follows via a result of [K04] and the fact that PNP [nr] is closed under
complementation. (B) is established in a similar way.

The paper is divided into four sections. After the preliminary section
1, we prove (A) of theorem 0.1 in section 2 and (B) in section 3. Section
4 offers some generalizations, remarks and related results, in particular a
simple sufficient condition for the arity hierarchy of Σ1

1 to be strict in finite
models.

2

1 Preliminaries

All models are finite with built–in arithmetic. In other words, the universe
of a model M is always an initial segment M = {0, . . . ,M − 1} of the
natural numbers, and the vocabulary σ always contains a fixed arithmetical
subvocabulary σ0 (consisting, say, of the predicates +,×,≤ and the constants
0,MAX) whose symbols are interpreted in the standard way (e.g. +(x, y, z)
holds in a model iff x+ y = z in N).

Vocabularies are finite and relational, although individual constants are
allowed. A model of vocabulary σ is referred to as a σ–model.

A logic is any function L which assigns to a vocabulary σ a decidable set
of words over some alphabet (the set of L–sentences over σ) and a decidable
relation |=L

σ between σ–models and L–sentences over σ (the truth relation,
normally denoted by just |= if no confusion arises). If ϕ is an L–sentence
over σ, then MOD(ϕ) denotes the set of σ–models M such that M |= ϕ. We
say that MOD(ϕ) is defined by ϕ.

The notion of a logic closed e.g. under negation is defined in the natural
way. We assume familiarity with commonly used logics such as first order lo-
gic (FO), second order logic (SO) and the prenex classes of second order logic
(Σ1

m). In second order formulae, we sometimes use numerical superscripts to
indicate the arity of relational variables — thus, Rr is an r–ary variable. We
also often use the same symbols to denote relations and relational variables.

If L and L′ are logics, then L ≤ L′ (“L′ is at least as expressive as
L”) means that for any L–sentence ϕ there is an L′–sentence ϕ′ such that
MOD(ϕ) = MOD(ϕ′). L ≡ L′ holds if L ≤ L′ and L′ ≤ L. L < L′ holds
if L ≤ L′ but not L ≡ L′. For any vocabulary σ, L ≤σ L′ means that
for any L–sentence ϕ of vocabulary σ there is an L′–sentence ϕ′ such that
MOD(ϕ) = MOD(ϕ′). L ≡σ L′ and L <σ L′ are defined accordingly.

We assume familiarity with standard computational complexity classes
such as P , NP or PH. Recall that the Σp

m level of PH can be defined
as

⋃
k∈ω ΣmTIME(nk), where ΣmTIME(f) consists of problems solvable in

time f by a Σm machine, i.e. an alternating machine which starts in an
existential state and makes at most (m− 1) alternations between existential
and universal states on any input. The same holds for Πp

m and the dual
notion of ΠmTIME.

The class PNP [nr] consists of those problems which may be solved by
a deterministic polynomial–time oracle machine which makes at most nr

queries to an NP oracle on an input of size n (note that when considering

3

problems defined as classes of σ–models for some σ, we take the size of a given
σ–model M to be equal to M , and not to the length of a standard code for
M, which may be polynomially larger). The nondeterministic exponential
time class NEXPTIME is defined as

⋃
k∈ωNTIME(2n

k
).

If L is a logic and C is a complexity class, we say that L captures C if
for any σ and any class of σ–models K, it holds that K ∈ C if and only
if K = MOD(ϕ) for some L–sentence ϕ. If every L–definable class K (of
σ–models) is in C, we say that model checking for L (over σ) is in C. If every
class in C (of σ–models) is L–definable, L is said to capture at least C (over
σ)1.

A well-known result is that Σ1
m captures Σp

m for any m ([F74],[Sto77]).

1.1 FM–truth definitions

We prove our main result using FM–truth definitions. The idea of FM–truth
definitions was introduced in [MM01] and developed in [K04]. The present
subsection discusses the basic definitions and results related to this concept.

Definition 1.1. A relation R ⊆ ωn is FM–represented by the (first order)
σ0–formula ϕ(x) if and only if: for any a ∈ ωn, ϕ(a) is true in almost all
σ0–models if R(a) holds, and false in almost all σ0–models if R(a) does not
hold. R is FM–representable if there is a formula which FM–represents it.

Theorem 1.2 ([MM01]; FM-representability theorem). R ⊆ ωn is FM–
representable if and only if it is of degree ≤ 0′ (recursive with an RE oracle).

The notion of FM–representability was intended as a finite model counter-
part of the classical notions of definability (in a model, esp. in the standard
model of arithmetic) or representability (in a theory) of arithmetical rela-
tions. One consequence of the FM–representability theorem is that, just as
in the standard model of arithmetic or in arithmetical theories, also in finite
models we may freely talk about operations and relations connected to the
syntax of logics (such as “formula x is the result of preceding formula y with

1Note that it is more usual to define “L captures C” and the other related notions over
models with a built–in linear ordering, and not built–in arithmetic. In our framework,
some logics (such as first order logic) may capture larger complexity classes than in the
usual one. However, if a logic semantically contains deterministic transitive closure logic
(DTC), it is able to define the arithmetical relations from the ordering, so its expressive
power is the same in both frameworks.

4

an existential quantifier) — all these relations are decidable, so we simply
use the formulae which FM–represent them. Care must be taken, however,
since FM–representation works “asymptotically”: a formula ϕ which FM–
represents some relation will only tell us whether a given tuple a is in the
relation if we look at the truth value of ϕ(a) in a sufficiently large model.

Henceforth, pwq stands for the Gödel number of the string w (we assume
that some appropriate gödelization has been carried out).

The concept of truth FM–truth definition is a finite model analogue of
Tarski’s notion of truth definiton:

Definition 1.3. Let L be a logic and σ be a vocabulary. We say that the
σ–formula TrL,σ(x) is an FM–truth definition for L over σ if and only if for
every L–sentence ψ of vocabulary σ,

M |= ψ ≡ TrL,σ(pψq)

holds for almost all σ–models M.

Remark. Under our definition of logic, there are logics for which the no-
tion of a formula with a free (first order) variable does not, strictly speaking,
make sense. The formal way to deal with this problem is to think of such
“formulae” as sentences of vocabulary (σ + c), where c is a new individual
constant. The details of a suitable redefinition of “FM–truth definition” are
left to the reader.

For any logics L,L′, if there is an L′–formula which is an FM–truth
definition for L over vocabulary σ, we say that L′ defines FM–truth for L
over σ and write L �σ L′.

Using the FM–representability theorem, one may prove a finite model
version of the Gödel diagonal lemma, and derive from it a version of Tarski’s
famous theorem on the undefinability of truth: no (reasonable) logic closed
under negation defines FM–truth for itself.

Theorem 1.4 ([MM01]; Tarski’s theorem, finite version). If L is a logic
closed under first order quantification, forming conjunctions with first order
formulae, and negation, then for any σ it is not true that L �σ L.

When considering one of the usual logics met in finite model theory, one
can often actually give an exact characterization of the logics for which it
defines FM–truth. For our current purposes, we will only need such charac-
terizations for the Σ1

m and Π1
m classes:

5

Theorem 1.5 ([K04]). For any m, L and σ: L �σ Σ1
m if and only if there

exists a number k such that model checking for L over σ is in ΣmTIME(nk).
Analogously for Π1

m and ΠmTIME.

The “only if” part of theorem 1.5 is essentially trivial. The proof of the
“if” part, while also simple, requires a result stating that the difficulty of
defining FM–truth for a logic depends only on its expressive power, not on
the peculiarities of its syntax (theorem 3.2 in [K04]).

2 PNP [nr] versus Σp
m

We turn now to a proof of (A). The key observation is that for any given r, all
PNP [nr] properties of finite models can be defined by second order sentences
in a particular normal form:

Lemma 2.1. Let σ be a vocabulary and let r ≥ 1. Then any PNP [nr] class
of σ–models can be defined by a sentence of the form

∃Rr(ϕ(R)&¬ψ(R)),

where ϕ, ψ are Σ1
1 formulae of vocabulary σ with R as the unique free variable.

This normal form result is very similar to results proved for logics cap-
turing relativized logarithmic space classes by I. Stewart (theorem 3.3.1 and
corollary 3.3.1 of [Ste93]) and G. Gottlob (theorem 4.9 and corollary 5.3 of
[G97]). The proof is also almost identical to the one given by Gottlob. We
present it here in some detail so that the reader may verify that it is con-
structive; we will need this fact in the next section (see the proof of lemma
3.3).

The class of SO sentences in the form given by the lemma will be denoted
by SNFr (“SNF” stands for Stewart Normal Form, a term coined in [G97]
to refer to the normal form for logics capturing relativized LOGSPACE).

Proof. Let K be a PNP [nr] class of σ–models. Thus, there is a polynomial–
time deterministic oracle machine T and an NP language L ∈ {0, 1}∗ such
that K = {M : M is a σ–model and T1 accepts M using L as its oracle}.
Furthermore, T makes at most M r oracle queries on input M. Thus, the
string oans(M) of all oracle answers in the computation of T on input M

6

(ordered chronologically) has length at most M r. Recall that there is a cano-
nical correspondence between binary strings of length M r and r–ary relations
over M .

We introduce two classes of (σ + Rr)–models (where R is a relational
symbol not contained in σ). The classes K1 and K2 are defined as follows:

(1) Given (M, R), consider the machine T+
R which behaves as T except

that before making its i–th oracle query (for i = 1, . . . ,M r), it looks at the
i–th bit of the string corresponding to R — and then makes a reqular query
to L if the bit is 1, simulates a negative answer without querying if the bit
is 0. (M, R) is in K1 iff: (a) all queries regularly made by T+

R on input M
are answered positively, and (b) T+

R accepts M.
(2) Given (M, R), consider the machine T−R which behaves as T except

that before making its i–th oracle query (for i = 1, . . . ,M r), it looks at the
i–th bit of the string corresponding to R — and then makes a reqular query
to L if the bit is 0, simulates a positive answer without querying if the bit
is 1. (M, R) is in K2 iff all queries regularly made by T+

R on input M are
answered negatively.

Consider now the second order sentence γ := ∃Rr(ϕ(R)&¬ψ(R)) (where
ϕ(R) is ϕ, now treated as a formula of vocabulary σ with R as a free variable;
similarly for ψ(R)). Certainly, γ has the required form, so it remains to check
that it defines K.

It is fairly easy to see that K1 is in NP and K2 is in co-NP . Let ϕ, ψ be Σ1
1

sentences of vocabulary (σ+R) such that K1 = MOD(ϕ), K2 = MOD(¬ψ).
Consider now the second order sentence γ := ∃Rr(ϕ(R)&¬ψ(R)) (where

ϕ(R) is ϕ, now treated as a formula of vocabulary σ with R as a free variable;
similarly for ψ(R)). Certainly, γ has the required form, so it remains to check
that it defines K.

Let M ∈ K and let R0 ⊆ M r be the relation corresponding to oans(M)
(if oans(M) is shorter than M r, let R0 be any relation corresponding to a
string which has oans(M) as an initial substring). Then (M, R0) is in K1

and K2, so M |= γ.
Let M |= γ and let R ⊆ M r be such that (M, R) |= ϕ, (M, R) |= ¬ψ.

Then (M, R) is in both K1 and K2, so, by an inductive argument, the string
corresponding to R either simply is oans(M) or contains oans(M) as an
initial substring. In any case, T+

R works on input M exactly as T does, and
since (M, R) ∈ K1, we know that T+

R accepts M. Then so does T , and
therefore M is in K

Thus, the proof that γ defines K is completed.

7

Once we have the above lemma, the proof of (A) presents no further
difficulty. Fix m and assume that the hypothesis of (A) holds for m. It
follows from this assumption and from theorem 1.5 that for any vocabulary
σ, Σ1

1 �σ Σ1
m, Σ1

1 �σ Π1
m.

Fix r and a vocabulary σ. Let SatΣ(x) (resp. SatΠ(x)) be a Σ1
m (resp.

Π1
m) FM–truth definition for Σ1

1 over the vocabulary (σ +Rr). Consider the
following formula Tr(x):

∃pϕq∃pψq(x = p∃Rr(ϕ(R)&¬ψ(R))q & ∃Rr(Satσ(pϕq)&¬SatΠ(pψq))).

T r(x) is clearly equivalent to a Σ1
m formula, and one may easily verify

that it is an FM–truth definition for SNFr over σ.
Thus, again by theorem 1.5, for every r and σ there exists a number kr

such that PNP [nr] ⊆ ΣmTIME(nkr) over σ. In particular, such kr exists for
the vocabulary (σ0 + P 1) where P 1 is some chosen unary predicate. Note
that models of this vocabulary can be identified with binary words. Thus,
PNP [nr] ⊆ ΣmTIME(nkr) as classes of languages over {0, 1}.

The inclusion PNP [nr] ⊆ ΠmTIME(nkr) follows from the closure of PNP [nr]

under complementation.

3 PNP [nr] versus Σp
m ∩ Πp

m

The proof of (B) is quite similar to the proof of (A), although it requires some
more care. We introduce a logic Lr which captures PNP [nr], and show that
if Σp

m ∩ Πp
m contains NTIME(f) for a superpolynomial time–constructible

f , then for every vocabulary σ, Lr �σ ∆1
m (i.e. there is a Σ1

m FM–truth
definition for Lr which is equivalent to a Π1

m formula). (B) will then follow
by Tarski’s theorem.

Remark. ∆1
m is not necessarily a logic, even under the liberal notion of

section 1, so it is a slight abuse of notation to write Lr �σ ∆1
m. Never-

theless, it remains true that if there is a ∆1
m FM–truth definition for some

L over some vocabulary σ, then there is a Σp
m ∩ Πp

m property which is not
L–definable.

The logic Lr we will use is defined as follows. For any vocabulary σ, the
Lr–sentences over σ are ordered pairs 〈T1, T2〉, where:

8

• T1 is a (code of a) deterministic oracle machine, equipped with a poly-
nomial time clock and a query counter which prohibits T1 from asking
more than nr oracle queries on inputs of size n;

• T2 is a (code of a) nondeterministic Turing machine equipped with a
polynomial time clock.

The semantics is straightforward: M |= 〈T1, T2〉 iff T1 accepts M when
using the language recognized by T2 as its oracle.

Obviously, Lr captures exactly PNP [nr]. Note that it follows from theorem
1.5 that already if the hypothesis of (A) holds for a given m, we have Lr �σ

Σ1
m, Lr �σ Π1

m for every σ. To obtain Lr �σ ∆1
m, however, we will need the

(apparently) stronger assumption that Σp
m ∩ Πp

m contains a superpolynomial
nondeterministic time class.

We will also need a simple but important observation on FM–representing
computable relations (or, more generally, recursively enumerable relations).
Given a relation R ⊆ ωn and a formula ϕR(x) which FM–represents it, call
ϕR decent if it has the property that: (a) for any a ∈ ωn, if there exists a
model M such that M |= ϕR(a), then a ∈ R, and (b) if M |= ϕR(a), then
also M′ |= ϕR(a) whenever M ′ > M . Thus, a decent formula is one which
“never falsely claims” that some tuple is in the relation it FM–represents, and
additionally “never withdraws such a claim” when passing to larger models.
The observation is:

Proposition 3.1. For any recursively enumerable relation R ⊆ ωn, there is
a decent formula which FM–represents it.

Proof. This fact is implicitly contained in the proof of the FM–representability
theorem in [MM01]; we give an explicit argument nonetheless. If R ⊆ ωn is
RE, then it is defined in N by a Σ0

1 formula, i.e. an FO–formula of the form
∃yψ(x,y) where ψ consists of a string of bounded quantifiers followed by a
quantifier–free matrix. It is well–known that we may assume w.l.o.g. that
the quantifiers in ψ are bounded by variables and not by complex terms (see
e.g. [HP93]).

The matrix of ψ is a boolean combination of equalities between some
polynomials in x,y, and z, where z is the tuple of variables which are qu-
antified in ψ. Therefore, since the z’s are bounded from above by the x’s
and/or y’s, there is a polynomial p(x,y) such that for any choice of tuples
a,b to interpret x,y respectively, the truth of ψ(a,b) does not depend on
any number greater than p(a,b).

9

Let ϕR(x) be ∃yξ(x,y), where ξ is ψ modified in the following way: the
original quantifier prefix of ψ is left unchanged, and the matrix is replaced
by the conjunction of an FO–formula expressing “there exists p(x,y)” and a
formula which arises from the original matrix by eliminating all the complex
terms (i.e. substituting ∃w(+(x1, x2, w)&w = x3) for x1 +x2 = x3 etc.). It is
not difficult to see that ϕR is a decent formula which FM–represents R.

Actually, one can show that being FM–represented by some decent for-
mula is exactly equivalent to being RE. We leave out the (easy) proof of this
fact as we do not need it.

We now prove a lemma which states that if the hypothesis of (B) holds
for m, then there exist Σ1

m and Π1
m FM–truth definitions for Σ1

1 which are,
in a sense, well–behaved.

Lemma 3.2. If Σp
m ∩ Πp

m contains NTIME(f) for some superpolynomial
time–constructible f , then for any vocabulary σ there exists a Σ1

m formula
Sat+Σ(x) and a Π1

m formula Sat+Π(x) such that:

• Sat+Σ(x) and Sat+Π(x) are FM–truth definitions for Σ1
1 over σ;

• there is a computable function which assigns to a Σ1
1 sentence ψ over σ a

number bound(ψ) such that both Sat+Σ and Sat+Π recognize the truth va-
lue of ψ correctly in all σ–models of cardinality greater than bound(ψ).

Proof. Fix σ. From now on, any model M appearing in the proof is a σ–
model.

We may assume w.l.o.g. that f(n) is of the form ng(n), where g is some
computable function satisfying limn→∞g(n) = ∞; if not, then we may find
such g for which ng(n) ≤ f(n) — here it is not required for ng(n) to be time–
constructible, computability will suffice.

Clearly, there exists a computable function h such that g(h(n)) ≥ n for
all n.

It is well–known that there exists a Turing machine T which solves the
problem:

“given input (M, pψq), where ψ is a Σ1
1 sentence,

is it true that M |= ψ?”

in nondeterministic time M lh(ψ). So, the machine T̃ which, given input
(M, pψa0iq), disregards the string 0i and simulates T on (M, pψq) actually

10

works in NTIME(M g(lh(ψa0i))), and hence in NTIME(f), when restricted
to inputs of the form (M, pψa0h(lh(ψ))−lh(ψ)q).

Since the function h is computable, then by proposition 3.1 there is a
decent formula ϕh(x, y) which FM–represents its graph. Consider now a
machine T ∗ which on input (M, pψa0iq) does the following:

• using the time–constructibility of f , keep a clock for, say, 2f ; if a
computation tries to use more than this allotted amount of time, stop
and reject;

• check whether M |= (ϕh(lh(ψ), i+ lh(ψ)); if not, reject;

• else work as T̃ on the input and accept iff T̃ does.

Clearly, for all sufficiently large M, the machine T ∗ accepts (M, pψa0iq)
if and only if i = h(lh(ψ)) − lh(ψ) and M |= ψ. Moreover, T ∗ works in
NTIME(O(f)) ⊆ NTIME(f) ⊆ Σp

m ∩ Πp
m, so there is a Σ1

m formula ϕ∗Σ(x)
— equivalent to a Π1

m formula ϕ∗Π(x) — which is true of w in M iff T ∗ accepts
(M, w).

Let Sat+Σ(x) be

∃w(“w = pxazq where z is a string of zeroes”

& ϕh(lh(x), lh(w)) & ϕ∗Σ(w)),

and let Sat+Π(x)) be defined analogously using ϕ∗Π. It is not hard to see that
Sat+Σ(x) and Sat+Π(x) are FM–truth definitions for Σ1

1 over σ. It therefore
remains to check that given ψ, we can compute bound(ψ) such that Sat+Σ(x)
(or, equivalently, Sat+Π(x)) works properly for ψ in all models larger than
bound(ψ).

Before we describe the algorithm, we note that checking whether M |=
(ϕh(lh(ψ), i+ lh(ψ)) on input (M, pψa0iq) requires (deterministic) time M l

for some fixed l independent of ψ. By assumption, f is superpolynomial, so
there is a c such that for all n ≥ c, f(n) ≥ nl.

Now compute bound(ψ) on input ψ as follows. Find the smallest model
M′ in which there is a w such that M′ |= χ(w), where χ(w) is

“w = pψazq where z is a string of zeroes” & ϕh(lh(ψ), lh(w)).

Since we may assume that both the conjuncts in χ are decent, this w will be
equal to pψa0h(lh(ψ))−lh(ψ)q and will also satisfy χ in all models larger than
M′. Let bound(ψ) := max(M ′, c).

11

Given any (M, w) withM ≥ bound(ψ), the machine T ∗ will recognize that
w is of the proper length in time M l ≤ f(M), and check whether T̃ accepts
(M, w) in time f(M). Thus, T ∗ will not exceed its time limit 2f(M), so it
will correctly answer whether M |= ψ, which proves that bound(ψ) is indeed
large enough.

We need one more observation: two important constructions associated
with the logic Lr are effective and can therefore be FM–represented by decent
formulae.

Lemma 3.3. There exist computable functions:

(a) neg, which assigns to (the Gödel number of) an Lr–sentence ξ (the
Gödel number of) the “negation” of ψ, i.e. an Lr–sentence neg(ξ)
which is true in exactly those models in which ξ is false;

(b) snf , which assigns to (the Gödel number of) an Lr–sentence ξ (the
Gödel number of) a Σ1

2 sentence snf(ξ) in SNFr such that ξ and snf(ξ)
are equivalent.

Proof. For (a), let ξ = 〈T1, T2〉. Then neg(pξq) is p〈T1, T2〉q, where T1 is T1

with accepting and rejecting states interchanged.
For (b), we just need to make sure that the construction in the proof of

lemma 2.1 can be carried out in an effective way. We sketch the argument.
Given pξq = p〈T1, T2〉q, we may effectively construct NP–machines TK1 , TK2

which recognize K1 and the complement of K2, respectively. Moreover, we
can compute a time bound for both of these machines: if T1 has an nk1

clock and T2 has an nk2 clock, then TK1 essentially runs as T1 except that it
will have to simulate T2 at most nr times (the exact number depends on the
additional input relation R) on strings of length ≤ nk1 (since T1 will not have
the time to write any longer strings on its oracle tape). So a rough estimate
of the time needed by TK1 is nk1 + nr+k1·k2 . Some additional time is needed
for looking at the bits of R, so we may take nr+k1·k2+1 as a suitable upper
bound. The same bound will do for TK2 .

Once TK1 , TK2 , and their time bounds are known, we can use them to
compute the Σ1

1 sentences ϕ, ψ which describe the action of TK1 and TK2 ,
respectively. We then set γ := ∃Rr(ϕ(R)&¬ψ(R)) and snf(pξq) := pγq.

By proposition 3.1, there exist decent formulae which represent the graphs
of neg and snf . Choose some such formulae and call them neg(x, y) and
snf(x, y), respectively.

12

We are now ready to give a proof of (B). Fix m and assume that the
hypothesis of (B) holds for m. Fix r and σ. Let Sat+Σ(x) and Sat+Π(x) be
the equivalent Σ1

m and Π1
m FM–truth definitions for Σ1

1 over (σ + Rr) given
by lemma 3.2. Let bound be the function from that lemma appropriate for
Sat+Σ and Sat+Π.

Recall that bound is a computable function. Thus, by a minor modifica-
tion of the proof of proposition 3.1, there is a first order σ0–formula large(x)
which satisfies the following three requirements for any given Σ1

1 sentence ψ
over (σ +Rr):

• M |= large(pψq) implies M ≥ bound(ψ);

• M |= large(pψq) for all sufficiently large M;

• if M |= large(pψq) and M ′ ≥M , then M′ |= large(pψq).

Consider now the formula good(x, x′, y, y′, pϕq, pψq, pϕ′q, pψ′q):

neg(x, x′) & snf(x, y) & snf(x′, y′)

& y = p∃Rr(ϕ(R)&¬ψ(R))q & y′ = p∃Rr(ϕ′(R)&¬ψ′(R))q

& large(pϕq) & large(pψq) & large(pϕ′q) & large(pψ′q).

Let TrΣ(x) be:

∃x′ . . . ∃pψ′q(good(x, x′, . . . , pψ′q) & ∃Rr(Sat+Σ(pϕq)&¬Sat+Π(pψq))),

and let TrΠ(x) be:

∃x . . . ∃pψ′q(good(x, x′, . . . , pψ′q) & ¬∃Rr(Sat+Σ(pϕ′q)&¬Sat+Π(pψ′q))).

It is not hard to see that TrΣ is equivalent to a Σ1
m formula, that TrΠ

is equivalent to a Π1
1 formula, and that both TrΣ and TrΠ are FM–truth

definitions for Lr over σ. Let us then check that TrΣ and TrΠ are equivalent.
It may be assumed that neither TrΣ(w) nor TrΠ(w) ever holds if w is

not the Gödel number of an Lr–sentence. So let M be a σ–model and let
pξq ∈ M for some Lr–sentence ξ. If there is no tuple 〈x′, . . . , pψ′q〉 such
that M |= good(pξq, x′, . . . , pψ′q), then we have M 6|= TrΣ(pξq) and M 6|=
TrΠ(pξq).

Otherwise, by the decency of the formulae neg and snf , it must be the
case that x′ = neg(pξq), that y = snf(pξq) = p∃Rr(ϕ(R)&¬ψ(R))q, and

13

that y′ = snf(neg(pξq)) = p∃Rr(ϕ′(R)&¬ψ′(R))q. Moreover, by the choice
of the formula large, M is large enough for Sat+Σ and Sat+Π to correctly
recognize, given any R ⊆M r, the truth value of ϕ, ψ, ϕ′, and ψ′ in (M, R).
Thus, M |= TrΣ(pξq) iff M |= ∃Rr(ϕ(R)&¬ψ(R)), that is, iff M |= ξ.
Similarly, M |= TrΠ(pξq) iff M 6|= ∃Rr(ϕ′(R)&¬ψ′(R)), that is, again, iff
M |= ξ. So, also in this case M |= TrΣ(pξq) iff M |= TrΠ(pξq), which proves
that TrΣ and TrΠ are indeed equivalent.

Hence, for any choice of r and σ, we have found a ∆1
m FM–truth definition

for Lr over σ. By the finite version of Tarski’s theorem, for any r and over
any σ which contains an individual constant, it holds that Lr is strictly less
expressive that ∆1

m, so PNP [nr] is properly contained in Σp
m ∩ Πp

m. It follows
that PNP [nr] (Σp

m ∩ Πp
m as classes of languages over {0, 1}.

4 Concluding remarks

I. There are no obstacles to extending the methods of sections 2 and 3 to
PΣp

i [nr] instead of just PNP [nr]. Thus, for any i, we obtain the following result:

Theorem 4.1. Let m ≥ i+ 1. Then:
(A) If there exists k such that Σp

i ⊆ ΣmTIME(nk)∩ΠmTIME(nk), then
for every r there exists kr such that PΣp

i [nr] ⊆ ΣmTIME(nkr)∩ΠmTIME(nkr);
(B) If there exists a superpolynomial time–constructible function f such

that ΣiTIME(f) ⊆ Σp
m ∩ Πp

m, then additionally PΣp
i [nr] (Σp

m ∩ Πp
m.

II. Recall that LOGSPACENP is PNP [O(log n)] ([W90],[BH91]). Thus, for
example, if there exists k such that NP ⊆ ΣmTIME(nk) ∩ ΠmTIME(nk),
then there also is some k′ such that LOGSPACENP ⊆ ΣmTIME(nk

′
) ∩

ΠmTIME(nk
′
). Obviously, appropriate analogues of part (B) of theorem

0.1, and of theorem 4.1, also hold.

III. Define (Σ1
1)
≤r as the subclass of Σ1

1 consisting of those formulae in which
the existential second order quanitifiers have arity at most r. The hierarchy
〈(Σ1

1)
≤r〉r∈ω is sometimes referred to as the Σ1

1 arity hierarchy. This hierar-
chy is known to be strict if we take into account vocabularies of arbitrary
arity ([A83]), but its strictness over a uniform vocabulary remains an open
problem.

Observe that if model checking for FO over any fixed vocabulary is con-
tained in NTIME(nk) — the number k may depend on σ — then there is

14

a Σ1
1 FM–truth definition for FO over any vocabulary σ. It is a routine task

to transform these definitions into Σ1
1 FM–truth definitions for (Σ1

1)
≤r, for

any r and over any σ. We therefore have:

Proposition 4.2. If for any σ there is k such that model checking for FO
over σ is in NTIME(nk), then for any σ and r there is kr such that mo-
del checking for (Σ1

1)
≤r over σ is in NTIME(nkr) (and thus the Σ1

1 arity
hierarchy is infinite — hence, by [F75], strict — over any σ).

Note that the hypothesis of the proposition is satisfied if LOGSPACE ⊆
NTIME(nk) for some k, in particular if NP contains DSPACE(f) for any
space–constructible function f which dominates log.

Again, this can be generalized to arity hierarchies of the higher prenex
classes of SO. Let (Σ1

m)≤r denote the subclass of Σ1
m consisting of formulae

in which the second order quantifiers in the initial existential quantifier block
have arity at most r (the arity of the other relational quantifiers is arbitrary).
We have:

Proposition 4.3. If there is k such that Πp
m−1 ⊆ ΣmTIME(nk), then

for σ and r there is kr such that model checking for (Σ1
m)≤r over σ is in

NTIME(nkr).

Note again that the hypothesis will hold e.g. if Σp
m contains Πm−1TIME(f)

for a time–constructible superpolynomial f .

IV. As pointed out in the introduction, our theorem 0.1 has as its conse-
quence the (already known) result that for any r, PNP [nr] (NEXPTIME.
It is perhaps worth noting that the largest syntactically defined fragments
of SO which can be separated from NEXPTIME by a similar argument
are the closures of Σ1

1 under second order quantifiers of bounded arity. For,
let SO≤r(Σ1

1) denote the closure of Σ1
1 under boolean connectives, first order

quantification, and second order quantification over relations of arity at most
r. Then we easily get:

Proposition 4.4. If NP ⊆ DSPACE(nk) for some k, then for any σ
there exists k′ such that all SO≤r(Σ1

1)–definable classes of σ–models are in
DSPACE(nk

′
),

from which it follows that SO≤r(Σ1
1) cannot define all NEXPTIME classes

of models.

15

V. We proved part (B) of theorem 0.1 by showing that if the hypothesis
of this part holds, then there is a ∆1

m FM–truth definition for the logic Lr

(over any vocabulary). Compared to the construction of Σ1
m and Π1

m FM–
truth definitions in the proof of part (A), the construction of a ∆1

m definition
required some more subtlety — and an additional assumption.

This suggests the following, possibly interesting, question: given a voca-
bulary σ, is there any natural characterization of the logics for which ∆1

m can
define FM–truth over σ? Clearly, for any such logic L there must exist some
k such that model checking for L over σ is contained in ΣmTIME(nk) ∩
ΠmTIME(nk). However, there appears to be no good reason to suspect
that this is sufficient, as the Σ1

m and Π1
m FM–truth definitions whose exi-

stence follows by theorem 1.5 from the existence of such a number k need
not be equivalent.

References

[A83] M. Ajtai, Σ1
1 Sentences on Finite Structures, in Annals of Pure

and Applied Logic 24(1983), pp. 1–48.

[BFFT01] H. Buhrman, S. Fenner, L. Fortnow and L. Torenvliet,
Two Oracles that Force a Big Crunch, in Computational Com-
plexity 10(2001), pp. 93–116.

[BH91] S. R. Buss and L. Hay, On Truth-Table Reducibility to SAT, in
Information and Computation 91(1991), pp. 86–102.

[BT94] H. Buhrman and L. Torenvliet, On the Cutting Edge of Relati-
vization: The Resource Bounded Injury Method, in Proc. Interna-
tional Colloquium on Automata, Languages and Program-
ming 1994, Springer–Verlag 1994, pp. 263–273.

[F74] R. Fagin, Generalized First-Order Spectra and Polynomial-Time
Recognizable Sets, in Complexity of Computation, SIAM-AMS
Proceedings 7(1974), pp. 43–73.

[F75] R. Fagin, A Spectrum Hierarchy, in Zeitschrift für Mathema-
tische Logik und Grundlagen der Mathematik 21(1975), pp.
123–134.

16

[FLZ92] B. Fu, H. Li, and Y. Zhong, Some Properties of Exponential Time
Complexity Classes, in Proc. Structure in Complexity Theory
Conference 1992, IEEE Computer Society Press 1992, pp. 50–57.

[G97] G. Gottlob, Relativized Logspace and Generalized Quantifiers over
Finite Ordered Structures, Journal of Symbolic Logic 62(1997),
pp. 545–574.

[HP93] P. Hájek and P. Pudlák, Metemathematics of First–Order
Arithmetic, Springer–Verlag 1993.

[K04] L. A. Ko lodziejczyk, Truth Definitions in Finite Models, in Jo-
urnal of Symbolic Logic 69(2004), pp. 183–200.

[M96] S. Mocas, Separating Classes in the Exponential-Time Hierar-
chy From Classes in PH, in Theoretical Computer Science
158(1996), pp. 221–231.

[MM01] M. Mostowski, On Representing Concepts in Finite Models, in
Mathematical Logic Quarterly 47(2001), pp. 513–523.

[Ste93] I. A. Stewart, Logical Characterization of Bounded Query Clas-
ses I: Logspace Oracle Machines, in Fundamenta Informaticae
18(1993), pp. 65–92.

[Sto77] L. Stockmeyer, The Polynomial-Time Hierarchy, in Theoretical
Computer Science 3(1977), pp. 1–22.

[W90] K. W. Wagner, Bounded Query Classes, in SIAM Journal on
Computing 19(1990), pp. 833–846.

17

