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SOME MODEL THEORY OF SHEAVES OF MODULES

MIKE PREST, VERA PUNINSKAYA, AND ALEXANDRA RALPH

Abstract. We explore some topics in the model theory of sheaves of modules.

First we describe the formal language that we use. Then we present some
examples of sheaves obtained from quivers. These, and other examples, will

serve as illustrations and as counterexamples. Then we investigate the notion

of strong minimality from model theory to see what it means in this context.
We also look briefly at the relation between global, local and pointwise versions

of properties related to acyclicity.

1. Introduction

Let X be a topological space, OX a sheaf of rings (with 1) on X. By Mod-OX

we denote the (Grothendieck abelian) category of sheaves of OX -modules. Such
sheaves of modules arise in a great variety of (geometric, analytic, algebraic) sit-
uations. Often those arising in practice satisfy some further conditions (such as
being quasi-coherent) but here we work in complete generality, in part because one
of the motivating examples is the representation of modules as sheaves over the
Gabriel-Zariski (=dual-Ziegler) spectrum (see [8]), in which context it is not even
clear what ‘quasicoherent’ should mean.

For unexplained terms we refer the reader to [4], [12] for sheaf theory, [5], [11]
for the algebra and abelian categories and to [1], [2] for the more general category
theory ([1] in particular has a good deal of information on axiomatisation of locally
finitely presented categories).

If we assume that every OX -module is a direct limit of finitely presented OX -
modules (i.e. that Mod-OX is locally finitely presented) then we can develop
a reasonable model theory for OX -modules. By a finitely presented object of a
category C we mean an object M such that the representable functor C(M,−) (i.e.
HomC(M,−)) commutes with direct limits: for every directed system ((Nλ)λ, (gλµ :
Nλ −→ Nµ)λ<µ) with limit (N, (gλ∞ : Nλ −→ N)λ) every morphism f : M −→ N
factors through some gλ∞. Usually we write simply (A,B) for the set or group of
morphisms from A to B.

Suppose that C is locally finitely presented and that G is a set of finitely presented
objects which is generating in the usual sense (that for any non-zero morphism
f : A −→ B in C there is a morphism a : G −→ A with G ∈ G and fa 6= 0). For
example, we might take G to contain a copy of every finitely presented object of C.
Set up the corresponding many-sorted, first-order, language LG as follows.

There is a sort sG for each object G. For each morphism g : G −→ H with
G, H ∈ G there is a unary function symbol from sort sH to sG. Each object M of
C becomes an LG-structure in the natural way: sGM = C(G, M) and the action
between sorts corresponding to g as above is composition with g, that is C(g,M) :
C(H,M) −→ C(G, M) by f 7→ fg. We refer to the elements of sGM = C(G, M) as
the elements of M of sort G. This is a natural extension of the identification of
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elements of a module M over a ring R with the R-linear maps from R to M (with
f : R −→ M corresponding to f1 ∈ M).

We do not know necessary and sufficient conditions for Mod-OX to be locally
finitely presented but there is the following partial result.

Theorem 1.1. [9, 5.6] If X has a basis of compact open sets then, for any sheaf
OX of rings on X, the category of all OX-modules is locally finitely presented. The
sheaves of the form j!OU with U compact open form a generating set of finitely
presented objects.

Here j : U −→ X is the inclusion, j! is the extension by zero functor (see later
for the definition) and OU is the restriction, OX |U , of the structure sheaf, OX , to
U .

Therefore, throughout the paper, we deal with categories Mod-OX

where X has a basis of compact open sets. Moreover the language that
we use will always be that based on G = {j!OU : U is compact open}. Because X
has a basis of compact open sets this allows us to embed Mod-OX as a full subcat-
egory of the category of contravariant functors (i.e. “presheaves”) on G (thought
of as a full subcategory of Mod-OX) .

Proposition 1.2. Suppose that X has a basis of compact open sets. Then the
restricted Yoneda map which, on objects, is F 7→ (−, F ) � G, is a full and faithful
functor from Mod-OX to (Gop,Ab).

Proof. If we replace G by the full subcategory, mod-OX , of finitely presented objects
of Mod-OX then this is by, for instance, [1, 1.26].

Then note that for every F ∈ Mod-OX the functor (−, F ) on mod-OX is de-
termined by its restriction to G since (−, F ) is right exact and since every finitely
presented object C of Mod-OX has a finite presentation of the form

⊕
Hj −→⊕

Gi −→ C −→ 0, by objects Hj , Gi of G. Similarly any natural transformation
from (−, F ) � G to (−, F ′) � G extends uniquely to a functor from (−, F ) � mod-OX

to (−, F ′) � mod-OX and this is enough for us to deduce that we have a full em-
bedding. �

Proposition 1.3. Suppose that X has a basis of compact open sets. Then the
category Mod-OX is a definable subcategory of the functor category (Gop,Ab).

Proof. First we need the fact (see below for a reference) that for any sheaf F ∈
Mod-OX and open set U ⊆ X we have (j!OU , F ) ' FU . Since the open sets cor-
responding to objects of G are compact it is then clear that the following sentences
axiomatise the sheaf property.
∀xU (

∧n
i=1 resU,Ui

xU = 0 → xU = 0)
∀xU1 , ..., xUn

(
∧n

i,j=1 resUi,Ui∩Uj
xUi

= resUj ,Ui∩Uj
xUj

→ ∃xU (
∧n

i=1 resU,Ui
xU =

xUi
))

where U ranges over compact open sets and {U1, ..., Un} ranges over finite open cov-
ers of U by compact open sets. Here and elsewhere we use res(F )

U,V for the restriction
map (in F ) from (F )U to (F )V .

The paragraphs which follow should clarify why these are sentences of our lan-
guage. �

It is an immediate consequence that all the usual results and machinery of the
model theory of modules, including pp-elimination of quantifiers, hold in the context
of Mod-OX for the language described.

The form of a pp formula φ(v1, ..., vn) where the sort of vi is Vi (meaning the
sort corresponding to j!OVi

) is ∃w1, ..., wm

∧
k Σivirik + Σjwjsjk = 0. Here, if the

sort of wj is Wj , then for each k there is a sort Uk such that rik : j!OUk
−→ j!OVi
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and sjk : j!OUk
−→ j!OWj

- so each term virik, wjskj represents an element of sort
Uk.

In order to understand the language beyond this formalism it is necessary to
understand the morphism groups of the form (j!OU , j!OV ) where U, V are compact
open. The basic fact we use is that j! is left adjoint to the restriction functor.

Let j : U −→ X be the inclusion of an open set in X. Then j! is the functor from
Mod-OU to Mod-OX defined on objects G ∈ Mod-OU by j!G.V = {s ∈ G(V ∩U) :
supp(s) is closed in V } for V ⊆ X open (it is the sheafification of the presheaf
extension by zero of G). Here the support of a section s is supp(s) = {x ∈ X :
sx 6= 0} where sx is the value of s in the stalk above x. Define the restriction of
F to U, denoted j∗F or F |U , by F |U .V = FV for V ⊆ U open. Then, e.g. [4,
p.108/9], j! is left adjoint to j∗ : for every G ∈ Mod-OU and F ∈ Mod-OX we have
(j!G, F ) ' (G, F |U ).

Therefore we have the immediate re-interpretation of the “elements” of a sheaf
F ∈ Mod-OX namely sUF = (j!OU , F ) ' (OU , F |U ) ' FU. That is, the elements
of F of sort U are precisely the sections of F over U, where U is compact open.

We remark that if we wished sections of F over arbitrary open sets to be consid-
ered as “elements” then an infinitary language, a multi-sorted Lκ∞ where κ is the
least cardinal such that every open cover of an open set has a subcover of cardinality
less than κ, would be more appropriate.

How should we re-interpret the function symbols of the language? Let r ∈
(j!OU , j!OV ) (here “j” is used for both embeddings U −→ X, V −→ X with-
out, we hope, causing confusion). Then r ∈ j!OV .U = {s ∈ OV (U ∩ V ) :
supp(s) is closed in U} = {s ∈ OX(U ∩ V ) : supp(s) is closed in U}. That is,
(j!OU , j!OV ) may be identified with the group of sections of the structure sheaf
OX over U ∩ V with support which is closed in U. In particular, if U ⊆ V then
(j!OU , j!OV ) = OXU (recall that the support of a section over an open set is always
closed in that open set).

Lemma 1.4. The action of r ∈ (j!OU , j!OV ) on F ∈ Mod-OX , regarded as a map
from FV to FU, is restriction from FV to F (U ∩ V ), followed by multiplication by
r, regarded as an element of OX(U ∩ V ), followed by inclusion in FU .

Proof. Note that since supp(r) (regarded as an element of OX(U ∩ V )) is closed in
U , any section of F (U ∩ V ) which is a multiple of r can be extended to a section
of FU (by defining it to be 0 on the, open, complement of supp(r) in U).

That the action is exactly as described can be deduced by following through the
adjunction isomorphism at the level of stalks. �

In particular, if U ⊆ V then the action of r ∈ (j!OU , j!OV ) is restriction to U
followed by multiplication by r. Note that the element 1 ∈ OXU corresponds, for
each V ⊇ U , to the element in (j!OU , j!OV ) whose action on any sheaf F ∈ Mod-OX

is just restriction, resV,U , from V to U .

Let us look at the simplest formulas to see what they say.
Consider the annihilator formula vr = 0 where v has sort U, and r ∈ (j!OV , j!OU )

that is, r : sU −→ sV . Then F |= ar = 0 iff resF
U,U∩V (a).r = 0 where in the latter

equation we regard r ∈ OX(U ∩ V ).
More generally if we consider the formula Σiviri = 0 where ri has sort Ui and

ri ∈ (j!OV , j!OUi
) then F |= Σiairi = 0 iff “ΣiresF

Ui,Ui∩V (ai).ri = 0” where the
sum may be interpreted as a sum of sections over V.

Consider the divisibility formula r | v, that is, ∃w(v = wr), where v has sort
U , r ∈ (j!OU , j!OV ) and w has sort V. Then F |= r | a iff ∃b ∈ FV such that
resF

V,U∩V (b).r = resF
U,U∩V (a).
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In particular, setting RU = OXU, we see that the language, LRU
, of RU -modules

is a part of that of OX -modules whenever U is compact open. For, each function
symbol r in the former language may be regarded as a function symbol in the latter
language since r ∈ (RU , RU ) ' (OXU,OXU) ' OXU ' (j!OU , j!OU ), noting that
(j!OU , j!OU ) ' (OU , (j!OU ) |U ) ' ((j!OU ) |U )(U) ' (j!OU )(U) ' OUU ' OXU .

Therefore we have the following.

Lemma 1.5. If U ⊆ X is compact open and φ(v̄) is a formula in the language
of OXU -modules then there is a formula φ′(v̄′) (pp if φ is pp) in the language
of OX-modules with variables (free and bound) all of sort U such that for every
F ∈ Mod-OX and for every tuple ā in the OXU -module FU we have FU |= φ(ā)
iff F |= φ′(ā).

Note that the “ā” on the two sides of this equivalence refer, strictly speaking, to
different, but equivalent, objects.

Corollary 1.6. If U ⊆ X is compact open, F ∈ Mod-OX and if H is a pp-definable
subgroup of the OXU -module FU then H is also a pp-definable subgroup of the sheaf
F in sort U .

The converse to the corollary is far from being true, as will be clear in various
of the examples that we present.

2. Examples from quivers

First we obtain a useful collection of examples from representations of certain
quivers. Given one of these particular quivers, one may construct a topological
space and a sheaf of rings on it (corresponding to a ring structure assigned to the
quiver), such that the category of sheaves of modules is equivalent to the category of
representations of the quiver (that is, to the category of modules over the associated
path algebra). As well as providing a rich source of examples with which to test
conjectures and illustrate results, in the other direction it can be fruitful to take
the viewpoint that representations are sheaves of modules (e.g. see [3]).

Example 2.1. Let X = {x, y} be equipped with the topology which has open sets,
∅, X and U = {y}. Let ρ : R −→ S be a homomorphism of rings. Define OX = OX,ρ

to be the presheaf of rings with OX .X = R, OX .U = S, resOX

X,U = ρ.
Since no open set has a non-trivial open cover, OX is a sheaf. For the same

reason every presheaf over OX is actually a sheaf. If F ∈ Mod-OX then FX is
an R-module, FU is an S-module and resF

X,U : FX −→ FU is a homomorphism
of R-modules, where FU is regarded as an R-module via ρ. Conversely, given
M ∈ Mod-R, N ∈ Mod-S and an R-linear map M −→ NR, we can form a sheaf
from this data. It is easy to check directly that we have an equivalence of categories
but we can also see this as follows.

By 1.2 OX and j!OU together generate Mod-OX . Both of these are projective
objects: (OX ,−) ' Γ(−), (j!OU ,−) ' ΓU (−), where Γ denotes the global sections
functor, and both these functors are exact because an exact sequence in Mod-OX is
also an exact sequence of presheaves in this case and hence is an exact sequence at
every open set.

Therefore Mod-OX is equivalent to the category of right modules over End(OX⊕

j!OU ) and this is the matrix ring
(

(OX ,OX) (OX , j!OU )
(j!OU , j!OU ) (j!OU ,OX)

)
. Now (OX ,OX) '

OXX ' R, (OX , j!OU ) ' j!OUX = 0, (j!OU , j!OU ) ' (OU , (j!OU ) |U ) ' (OU ,OU ) '
S and (OX , j!OU ) = Γ(j!OU ) = 0. Therefore End(OX⊕j!OU ) is the upper triangu-

lar matrix ring
(

R S
0 S

)
. A right module over this matrix ring is given by a pair
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(MR, NS) of modules together with an S-linear morphism MR ⊗R SS −→ NS but,
noting that HomS(MR⊗RSS , NS) ' HomR(MR,HomS(SS , NS)) ' HomR(MR, NR),
we see that this is just the category of structures (M,N, ρ) appearing above.

Note that if m is a global section of the sheaf (MR, NS , f : MR −→ NR) then
mx = m and my = fm.

In the particular case where ρ : R −→ S is id : R −→ R we have Mod-OX '
Mod-R(A2) - the category of representations of the quiver A2 in Mod-R, where A2

is the quiver shown.

• // •

An example of such a ringed space OX , from algebraic geometry, is given by
taking C to be an irreducible curve, x a closed point of C and y the generic point of
C. Then the local ring OC,x is such a space, with X = {x, y} and with ρ : R −→ S
being k[C](x) −→ k(C) where k[C] is the coordinate ring of the curve C, k[C](x) is
its localisation at the ideal, (x), generated by x and k(C) is the field of quotients
of k[C].

Example 2.2. For another example, take X = {x, y1, ..., y5} with open sets ∅, X, Ui =
{yi} and the unions of the Ui. Take rings and ring homomorphisms Ri, i = 0, ..., 5,
ρi : R0 −→ Ri, i = 1, ..., 5 and define the presheaf OX on X by:
OX .X = R0, OX(Ui1 ∪ ... ∪ Uit

) = Ri1 × ... × Rit
for i1, ..., it distinct elements

of {1, ..., 5}, resOX

X,Ui1∪...∪Uit
= ρi1 × ... × ρit

and restriction between unions of the
Ui are the projection maps. One may check that OX is in fact a sheaf.

Let F be a presheaf over OX . Then FX is an R0-module, FUi ∈ Mod-Ri and
resF

X,Ui
is an R0-linear map from FX to FUi where the latter is regarded as an

R0-module via ρi : R0 −→ Ri. If F̃ denotes the sheafification of F (in this example
not every presheaf is a sheaf) then we have F̃ (Ui1 ∪ ... ∪ Uit) = FUi1 × ...× FUit ,
F̃X = FX and the restriction maps in F̃ are the obvious ones. Observe that it can
happen that 0 is the only global section yet F̃ 6= 0.

In particular if Ri = R for each i and if all the ρi are idR then Mod-OX '
Mod-R( ˜̃

D4) where ˜̃
D4 is the quiver shown.

•

• •

• •oo

__@@@@@@@

OO

??������� // •

Example 2.3. Let X = {x, y, z} with open sets ∅, X, U = {y, z}, V = {z}. Take
rings and homomorphisms ρ : R −→ S, σ : S −→ T and define a presheaf OX on
X by OX .X = R, OX .U = S, OX .V = T and with ρ, σ giving the restriction maps.
Clearly this is a sheaf and also every presheaf is a sheaf.

In particular if R = S = T and ρ = σ = idR then Mod-OX ' Mod-R(A3) where
A3 is the quiver shown.

• // • // •

3. Strongly minimal sheaves

First we consider the notion of strongly minimal sheaf of modules, comparing it
to that of strongly minimal module. At first sight, in view of the definition for the
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latter, we might say that an OX -module is strongly minimal if it is not finite and
every definable subset is finite or has finite complement. (In the case of modules
it is equivalent to require that every pp-definable subgroup is finite or is the whole
module.) Here, however, we have to take account of the fact that we are working
with a many-sorted structure. If there are infinitely many sorts then, since every
variable is sorted, the whole structure (the union of sorts) is not definable. Also,
there is the question of what we should mean by a finite structure.

In a one-sorted language a structure is finite iff it has no proper elementary
extensions and it is the latter which is the property which matters, so let us say
that F ∈ Mod-OX is finite if each sort of F is finite. Clearly this is equivalent to
F having no proper elementary extensions. Then we say that an OX -module F is
strongly minimal if it is not finite and if for every pp formula φ with one free
variable, of sort U say, φ(F ) is either finite or equal to F (U). Example 3.1 below
shows that the resulting notion of strongly minimal is language-dependent. Of
course even if we start with a 1-sorted structure which is strongly minimal then the
expansion of this structure obtained by adding the sort of ordered pairs is no longer
strongly minimal in the above sense. This suggests that the “correct” definition
of strongly minimal structure should be something along the following lines: the
category of sorts should be generated by a set of sorts which are strongly minimal
(in the usual sense) and which are non-orthogonal. For example, the category of
(all imaginary) sorts based on the two-sorted language (with no extra structure)
is generated by two strongly minimal sets which are orthogonal, so should surely
not be regarded as a strongly minimal structure but, if a definable bijection (or,
perhaps more convincingly, a finite-to-finite relation) between these two generating
sets is added, then the resulting structure should be regarded as strongly minimal.

Example 3.1. Let R be the path algebra k(A2) where k is an infinite field and let
OX be the corresponding ringed space, as described in the previous section. Since
OX(U) = k for each non-empty open set U this is a strongly minimal sheaf (clearly
k has no proper, non-trivial pp-definable subgroups in either language since its au-
tomorphism group is k). Yet the corresponding R-module is not strongly minimal.

Example 3.2. A more decisive example is given by taking the same ringed space
and considering the sheaf F given by FU = k = FX and having 0 for the non-
trivial restriction map. This sheaf is, according to the definition above, strongly
minimal yet it has two orthogonal types.

Example 3.2 shows that the given definition of strong minimality should not be
used in the general case. Nevertheless we will see that the above, naive, definition
does seem to be reasonable if we assume that the space X is T1 (see 3.7 below) and
so we will make do with the above, somewhat provisional, definition in this section.

The next two examples show that our conditions do not carry over to stalks.

Example 3.3. If a sheaf is finite it does not follow that every stalk is finite. Let
X = {x1, .x2, ...., xn, ..., y} have for open sets all the co-initial sets Uk = {xn : n ≥
k} ∪ {y} together with the empty set. Note that every open set is compact. Let OX

be the constant sheaf Z and let F be the OX-module with F (Uk) = Z2k and with
restriction maps being the canonical inclusions. According to our definition this is
a finite sheaf but the stalk at y is the Prüfer group Z2∞ .

Example 3.4. Modify the example above by taking F (Uk) = Zk
2k ⊕ Q (and inclu-

sions for the restriction maps). Then this sheaf is strongly minimal according to
our definition. But the stalk at y will be Z(ℵ0)

2∞ ⊕Q, which is not strongly minimal.

We do, however, have the following, which is an immediate consequence of 1.6.
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Corollary 3.5. If F is a strongly minimal sheaf then, for each compact open U ⊆
X, FU is a strongly minimal or finite OXU -module.

Example 3.6. The converse is false. With notation as in Example 2.1, take R =
S = k to be an infinite field and let F be the sheaf with FX 1-dimensional, FU
2-dimensional and resF

X,U an embedding. Then the formula ∃yX(x = yXresX,U )
defines an infinite, co-infinite subset of FU , so F is not strongly minimal. On the
other hand both FX and FU are strongly minimal modules.

The next lemma indicates why good separation properties on the space accom-
modate the naive definition of strong minimality.

Lemma 3.7. Suppose that F ∈ Mod-OX and that there are disjoint open subsets
U, V of X such that both F (U) and F (V ) are non-zero and at least one of these is
infinite. Then F is not strongly minimal.

Proof. Since U∩V = ∅ we have, by the glueing property of the sheaf F , F (U∪V ) =
F (U)⊕F (V ) with the restriction maps from F (U ∪V ) to F (U) and F (V ) being the
projections. Then the subgroups 0⊕F (V ) and F (U)⊕0 of F (U ∪V ) are definable,
being the kernels of these maps so, if F were strongly minimal, each would have to
be finite or all of F (U ∪ V ). �

Lemma 3.8. If F is strongly minimal then for every function symbol r from sort
U to sort V we have that the image of r : F (U) −→ F (V ) is finite or all of F (V )
and the kernel of this map is finite or all of F (U).

Proof. Since both the kernel and image of r are pp-definable this is immediate. �

Suppose from now on in this section that the space X is T1 (that is, given
x ∈ X then for every y ∈ X with y 6= x there is an open set containing x and not
containing y) and let F be a strongly minimal OX -module.

Set U = UF = {U compact open : FU is infinite }. Since F is not finite U 6= ∅.

Lemma 3.9. For all U, V ∈ U there is W ∈ U with W ⊆ U ∩ V.

Proof. For every y ∈ U ∩ V choose, if possible, a compact open neighbourhood Vy

of y contained in U ∩ V with FVy finite and hence, by 3.8, with resU,Vy
= 0. If

we can do this then, by the mono property of the sheaf F we have resU,U∩V = 0
and similarly resV,U∩V = 0. So, by the glueing property of the sheaf F we have
F (U ∪ V ) = FU ⊕ FV , contradiction as in 3.7 . �

Lemma 3.10. If U =
⋃

λ Uλ with U ∈ U and all Uλ compact open then, for some
λ, FUλ is infinite (that is Uλ ∈ U).

Proof. Let s ∈ FU be non-zero. If each FUλ were finite then, as in the proof of
3.9, we would have resUUλ

s = 0 but then, also as in that proof, we could deduce
s = 0 - contradiction. �

Lemma 3.11. Let U ∈ U . Then there is y ∈ U such that for every compact open
neighbourhood V of y with V ⊆ U , we have FV infinite (that is, V ∈ U).

Proof. Otherwise (cf. proof of 3.9) we could cover U by compact open sets Vλ with
FVλ finite, in contradiction to 3.10. �

Lemma 3.12. |
⋂
U |≤ 1.

Proof. Let x ∈
⋂
U if such exists. Let U ∈ U . By 3.11 there is y ∈ U and a compact

open neighbourhood V of y with V ⊆ U and with V ∈ U , therefore with x ∈ V.
But if y 6= x there exists such V with x /∈ V. So it must be that x = y. This is true
for any point in

⋂
U and so there must be at most one such point. �
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Lemma 3.13. If x ∈
⋂
U then U forms a basis of open neighbourhoods of x.

Proof. Let U ′ be any open neighbourhood of x and let U ∈ U contain x. Choose
a compact open set V with x ∈ V ⊆ U ∩ U ′. Each y ∈ U \ V has a compact open
neighbourhood Vy not containing x, hence with FVy finite and hence, by 3.8, with
ker(resUVy ) = FU . If FV also were finite then, since the Vy together with V cover
U , we would have a contradiction, by 3.10. Therefore V ∈ U , as required. �

Example 3.14. It is possible that
⋂
U = ∅. For, take X to be an infinite set and

take the cofinite sets for the non-empty open sets: so X is T1. Let k be an infinite
field and take the structure sheaf to be the constant sheaf k.

Define F by FU = k if U 6= ∅ and set all restriction morphisms to be the
identity map. Clearly F is strongly minimal (or see 3.17 below) and U consists of
all non-empty open sets, but

⋂
U = ∅.

The next example shows that if U ′ ⊇ U are compact open and U ∈ U it need
not be the case that U ′ ∈ U .

Example 3.15. Let X = N and take the open sets to be the cofinite sets. Set the
structure sheaf to be the constant sheaf Z. Define F by FU = Z2 if 1 ∈ U and
FU = Z2∞ if 1 /∈ U. Define the restriction morphisms to be the identity or the
inclusion of Z2 into Z2∞ , as appropriate. Then one may check that F is strongly
minimal and clearly U is not closed upwards.

In order to proceed further it seems that we need to assume further conditions.
We begin by adding the condition on F that if U ′ ⊇ U and U ∈ U then U ′ ∈ U -
say that U is upwards closed for short. For example, any flabby sheaf (one where
each restriction map is surjective) satisfies this condition.

Define subsheaves F0, F1 of F as follows. Note that it is enough to define them
on compact open sets since these form a basis of X.

For U compact open set F0U = FU if U /∈ U , F0U = 0 if U ∈ U and set F1U = 0
if U /∈ U and F1U = FU if U ∈ U . Note that F0 is a finite sheaf.

Lemma 3.16. Assume that U = UF is upwards closed. Then F0 and F1 are
subsheaves of F and F = F0 ⊕ F1.

Proof. We just have to check that the restriction morphisms of F preserve F0 and
F1. For F0 this follows from the assumption that U is upwards closed. In the case
of F1, if U ∈ U and V ⊆ U then either V ∈ U and then resF

UV takes F1U to F1V
by definition of F1 or V /∈ U in which case the restriction map is zero. The direct
sum decomposition of F then is immediate from the definitions of F0 and F1. �

The example 3.15 above shows that, without some assumption such as that U is
upwards closed, we do not have such a direct sum decomposition of F.

It follows, since F0 is finite, that F is strongly minimal iff F1 is strongly minimal
and so we may assume (under the assumption that U is upwards closed) that we
are dealing with a sheaf F with the property that if V is compact open and V /∈ U
then FV = 0.

Say that a filter base (that is, a set with the finite intersection property), U ,
of compact open sets is a maximal filter base if for every member U ∈ U and
for every (finite) open cover (Uλ)λ of U by compact open sets, there is some λ
such that Uλ ∈ U . Note that, assuming UF is upwards closed, UF does have this
property (3.10). Given any maximal filter base, U , of compact open sets and a
module M over the direct limit ring lim−→U∈U OXU define the sheaf, FUM , with
stalk M supported on U by FU,MU = M , regarded as an OXU -module via the
map OXU −→ lim−→V ∈V OXV , if U ∈ U and FUMU = 0 if U /∈ U (and with all
restriction maps being zero or the identity).
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Lemma 3.17. If U is a maximal filter base of compact open sets and if M is a
strongly minimal module over R = lim−→U∈U OXU then the sheaf FUM with stalk M

supported on U is strongly minimal.

Proof. Let φ(x) be a pp formula with free variable x of sort U ∈ U . Because the
restriction maps between open sets in U are identity maps and all other restriction
maps are zero, all bound variables and function symbols appearing in φ may be
replaced by variables of sort U ′ and function symbols from sort U ′ to itself, respec-
tively, where U ′ is a suitable member of U with U ⊇ U ′, in such a way that we
obtain a pp formula φ′ in the language of OXU ′-modules with the ‘same’ solution
set as φ. Via the canonical map OXU ′ −→ R we may regard φ′ as a formula in the
language of R-modules. By strong minimality of M the solution set of φ is either
finite or cofinite, as required. �

Returning now to our strongly minimal sheaf F = F1 we make our final assump-
tion, that

⋂
UF 6= ∅ and hence, by 3.12,

⋂
UF is a singleton.

Lemma 3.18. If
⋂
UF 6= ∅, say

⋂
UF = {z}, then U is upwards closed and consists

exactly of those compact open sets which contain z.

Proof. Suppose that U is compact open and that z ∈ U. By 3.13 there is a compact
open V ⊆ U with z ∈ V and V ∈ U . For each y ∈ U with y 6= z choose a compact
open neighbourhood Vy of y contained in U and with z /∈ Vy, hence with Vy /∈ U ,
hence with FVy finite. Let s ∈ FV and consider resV,V ∩Vy

s : if this section over
V ∩Vy is further restricted to any compact open subset of V ∩Vy it becomes 0 (since
z /∈ V ∩ Vy) and so, since V ∩ Vy is covered by compact open sets, resV,V ∩Vys = 0.
This is so for every Vy and so, by the glueing property of the sheaf F, there is a
section s′ of FU with resU,V s′ = s. Hence FU is infinite, as required. �

Lemma 3.19. Suppose that
⋂
UF 6= ∅. Let U ′ ⊇ U both be in U . Then, still

assuming F is such that, for every compact open set V , FV is either infinite or
zero, resF

U ′U is an isomorphism.

Proof. Let s ∈ FU ′. For each y ∈ U ′ \U choose a compact open neighbourhood Vy

of y such that FVy is finite and hence is zero. If we also have resU ′Us = 0 then, by
the mono property of F, we conclude s = 0. Hence resU ′U is monic. Hence, by 3.8,
it also is an epimorphism. �

Let z ∈ X, let U be the set of compact open sets containing z, let R =
lim−→U∈U OXU = OX,z be the stalk of OX at z and let M be an R-module. Then the
skyscraper sheaf with stalk M supported at z is given by FU = M if z ∈ U ,
FU = 0 otherwise and all restriction maps are zero or the identity. Since our space
X is assumed to be T1, so points are closed, this sheaf is just the extension by zero,
j!M , where we regard M as a sheaf over the closed set {z}.

Proposition 3.20. Let X be any space with a basis of compact open sets and let
OX be any sheaf of rings on X. Let M be a strongly minimal OX,x-module. Then
the skyscraper sheaf at x with value M is a strongly minimal OX-module.

Proof. The skyscraper sheaf, F say, referred to is defined by FU = M if x ∈ U
and FU = 0 if x /∈ U . For any (compact) open U ⊆ X we have the adjunction
(j!OU , F ) ' (OU , F |U ) ' FU . This isomorphism is functorial so we have, for every
compact open U ⊆ X with x ∈ U , a canonical identification of the corresponding
sort of F with M (and if x /∈ U the corresponding sort is 0). In a similar way the
function symbols of the language of OX -modules can be associated in a canonical
way to elements of the ring OX,x. Therefore, to every pp formula in the language
of OX -modules, we can associate, in a canonical way, a pp formula in the language
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of OX,x-modules in such a way that pp-definable subgroups of F correspond to
pp-definable subgroups of M , and the result then follows. �

Proposition 3.21. With assumptions as above, let F be a strongly minimal sheaf
and suppose that

⋂
U 6= ∅, where U = UF . Then F = F0 ⊕ F1 where F0 is a finite

sheaf and F1 is a skyscraper sheaf with stalk a strongly minimal module. Every
sheaf which has this form is strongly minimal.

Proof. Split F as F0⊕F1 as above. Applying lemma 3.19 to F1 we deduce that F1

is a sheaf with constant value, which clearly must be strongly minimal, supported
on U . Since U is just the filter base of all compact opens which contain the unique
point in

⋂
U it follows that F must be a skyscraper sheaf. The converse is clear. �

It would be nice to remove the assumption on UF and have a formulation which
allows a non-split extension by a finite sheaf: see example 3.15 above but also the
following example.

Example 3.22. Let X = N, take the cofinite sets for the open sets and take the
structure sheaf to be the constant sheaf Z. Define F by FU = Z2∞ for all U and
define the restriction map from U to V to be the identity unless 1 ∈ U and 1 /∈ V,
in which case define it to be the multiplication by 2 map. One may check that F is
strongly minimal.

If we assume that (X is T1 and) for every filter base U of compact open sets we
have

⋂
U 6= ∅ then X must be Hausdorff. To see this suppose that the Hausdorff

property fails, say x, y are distinct points of X such that every open containing x
intersects every open containing y. Then the set, U , of compact open sets containing
x or y forms a filter but then if z ∈

⋂
U we would have that x is in the closure of

z 6= x, contradicting that X is T1.

Proposition 3.23. Suppose that X is Hausdorff and that F ∈ Mod-OX . Then F
is strongly minimal iff F is a skyscraper sheaf with strongly minimal stalk.

Proof. Suppose that F is strongly minimal. First we show that in this Hausdorff
case the finite part, F0, is zero. Suppose otherwise and choose V compact open
with FV finite and non-zero. Let U ∈ U . By the argument of 3.11 there is y ∈ V
such that for every compact open V ′ ⊆ V with y ∈ V ′ we have FV ′ non-zero (and
finite). For each x ∈ U choose disjoint compact open neighbourhoods, Ux of x and
Vx of y. Since U is compact finitely many of these suffice to cover U so let V0 be the
intersection of the corresponding neighbourhoods Vx of y. Let V ′ be any compact
open neighbourhood of y contained in V0. Since, by construction, V ′ and U are
disjoint we have, as in 3.7, F (U ∪ V ) = FU ⊕FV , contradicting that F is strongly
minimal, as required.

Since (3.9) U has the finite intersection property and since each member of U is
compact, hence (because X is Hausdorff) closed,

⋂
U 6= ∅. Therefore 3.21 applies

and so, with notation as there, F = F1. �

Note that the Hausdorff condition is rather strong in the presence of our global
assumption that there is a basis of compact open sets: it implies that the space
is totally disconnected (of course, this does include the important example of the
Pierce sheaf representation of modules over commutative regular rings [6]).

Finally in this section, we remark that an analysis of sheaves of U-rank 1 may
be carried out along the lines above, with only minor changes.

4. Comparison of some global, local and pointwise properties

In this section we present mainly examples which show that there can be lit-
tle connection between global, local and pointwise properties. The properties we
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consider are related to purity (which is fundamental in the model theory of locally
finitely presented abelian categories) and/or relate to algebraic or sheaf-theoretic
homological triviality. We assume that the reader is acquainted with notions around
purity and injectivity either in the abelian context or in the more general categorical
context (as in, for instance, [1]).

Example 4.1. Here is an example of a sheaf F which is not absolutely pure yet
which is such that, for each open set U ⊆ X, FU is an injective OXU -module and
which is such that for every x ∈ X the stalk Fx is an injective module over the ring
OX,x.

Let X = {x, y} with open sets ∅, X, U = {y}. Let OX be the ringed space with
OXX = k = OXU where k is some field. Let F ∈ Mod-OX ' Mod-k(A2).
1. For any open set V 6= ∅, OXV = k and hence FV is an injective OXV -module.
2. OX,x = k and OX,y = k and so Fz is injective in Mod-OX,z for each z ∈ X.

On the other hand, there are modules in Mod-k(A2) which are not absolutely
pure (=injective for this, noetherian, ring), such as the (simple projective) module
0 −→ k. The sheaf F corresponding to this has FX = 0, FU = k.

Example 4.2. Here is an example of X,OX and an OX-module F which is injec-
tive but for which there is an open set U ⊆ X such that FU is not an absolutely
pure OXU -module and for which there is a point x ∈ X such that Fx is not an
absolutely pure OX,x-module.

Let X = {x, y} with open sets ∅, X, U = {y} and let OX be given by OXX = Z(2)

(the ring of 2-adic integers), OXU = Z2 ' Z(2)/2Z(2) and resF
X,U the natural map.

So Mod-OX is equivalent to the category of representations of A2 with the source
a Z(2)-module, the sink a Z2-module and the map from the first to the second being
reduction modulo the maximal ideal (2).

Let F ∈ Mod-OX be given by FX = Z2 = FU , resF
X,U = id. Note that FX =

Z2 ∈ Mod-OXX = Mod-Z(2) is not absolutely pure, nor is Fx = Z2 ∈ Mod-OX,x =
Mod-Z(2). But, we claim, F ∈ Mod-OX is injective.

To see this suppose that α : F −→ G is an embedding in Mod-OX , so we have
monomorphisms αX : FX −→ GX, that is αX : Z(2) −→ GX, and αU : FU =
Z2 −→ GU and the commutative diagram shown.

Z(2)
αX //

res

��

GX

res

��
Z2 αU

// GU

Suppose that the pp-type of αX1 in GX strictly contains the pp-type of 1 in Z(2).
Then, by the characterisation of purity for the ring Z(2) (e.g. see [7, §Z]), it must
be that 2 divides αX1 in GX and hence 2 divides resG

X,UαX1 = αU resF
X,U1 in GU.

But that implies αU resF
X,U1 = 0 so resF

X,U1 = 0 - contradiction.
Therefore αX is a pure hence, since Z(2) is pure-injective, split embedding, say

GX = αXZ(2) ⊕H. Since GU is a Z2-module, res(αXZ(2)) is itself a direct sum-
mand of GU . So αF is a direct summand of G and we conclude that F is indeed
injective in Mod-OX .

A sheaf F is flabby if for every pair U ⊇ V of open sets the restriction map from
FU to FV is surjective. Given a basis B we say that F is flabby with respect to
B if the surjectivity condition holds for all pairs of open sets U ⊇ V in B. Injective
sheaves are cohomologically trivial (in the sense that their sheaf cohomology groups
Hi(X, F ) are zero for i > 0) and, more generally, the same is true of flabby sheaves
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though for very different reasons (consider the case where X is a one-point space
- every sheaf (= OX -module) has trivial sheaf cohomology but certainly need not
have trivial cohomology in the algebraic sense (i.e. need not be injective)). We
compare this with absolute purity.

Example 4.3. A sheaf F which is flabby with respect to a basis but which is not
flabby. Let X be a three-point space with open sets ∅, {x}, {y} and X. Let F be the
sheafification of the constant presheaf Z on X, so FU = Zn where n is the number
of connected components of U. This is not flabby: consider X - a connected open
non-empty set and V = {x},W = {y} - disjoint open subsets of X. Then resF

X,V ∪W

is the diagonal map Z −→ Z⊕Z which is not epi. But the connected open sets form
a basis and clearly F is flabby with respect to this basis.

We remark that F is not absolutely pure: for we can embed F into a flabby sheaf
E. Then E satisfies the condition that every section over V ∪W , in particular every
element of F (V ∪W ), is the restriction of a section over X and this can be expressed
by pp formulas but fails to be true in F .

Example 4.4. A flabby sheaf need not be absolutely pure. If X is discrete (for
example, a one-point space) then every sheaf is flabby but in general it is far from
being the case that every sheaf=module over

∏
x∈X OX,x is absolutely pure.

Proposition 4.5. ([10, 4.7.2]) If F is absolutely pure then F is flabby with respect
to inclusions of compact open sets.

Proof. Fix an embedding f : F −→ E with E flabby. If U ⊇ V are compact open
and a ∈ FV then we have E |= ∃yU (resU,V y = fa) and hence, since F is absolutely
pure, F |= ∃yU (resU,V y = a). Therefore the restriction map resF

U,V is onto. �
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