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5 DIMENSION THEORY AND PARAMETERIZED NORMALIZATION FOR

D-SEMIANALYTIC SETS OVER NON-ARCHIMEDEAN FIELDS

Y. FIRAT ÇELİKLER

Abstract. We develop a dimension theory for D-semianalytic sets over an arbitrary

non-Archimedean complete field. Our main results are the equivalence of several notions

of dimension and a theorem on additivity of dimensions of projections and fibers in char-

acteristic 0. We also prove a parameterized version of normalization for D-semianalytic

sets.

§1. Introduction and Notation. In this paper, we develop and investigate
several algebraic and geometric notions of dimension (see Definitions 3.1, 4.4
and 4.8) which are associated with D-semianalytic sets over an arbitrary non-
Archimedean complete fieldK. Our main result (Theorem 6.2) is the equivalence
of these notions of dimension in characteristic 0. We also prove some weaker rela-
tions between them in characteristic p > 0. In addition, a theorem on additivity
of dimensions of fibers and projection (Theorem 6.6) is proved in characteristic
0. One of the main tools for proving these results is the Parameterized Nor-
malization Lemma (Lemma 5.3) which also has applications to other problems
concerning the geometry of D-semianalytic sets apart from the ones mentioned
in this paper. The D-semianalytic sets that we are considering in this paper
are the subsets of (K◦)m × (K◦◦)n (see Definition 1.1) which are quantifier free
definable in the three sorted language which takes the members of Sm,n(E,K)
(see Definition 1.2) as the analytic functions over (K◦)m × (K◦◦)n as defined by
Lipshitz in [8]. Nevertheless we will avoid discussing this language in detail and
work with the Definition 1.8 for D-semianalytic sets instead.
In [9] Lipshitz and Robinson proved a smooth stratification theorem and ob-

tained some results similar to the ones in this paper in dimension theory of
quasi-affinoid subanalytic subsets of (K̄◦)m × (K̄◦◦)n where K is an arbitrary
non-Archimedean complete field and K̄ is an algebraically closed, complete ex-
tension ofK. These are definable (with quantifiers) subsets in the same language
as above containing members of Sm,n(E,K) as the analytic functions. Let K ′

be a complete extension of a complete non-Archimedean field K, let L1 and
L2 be two such languages having members of Sm,n(E,K) and Sm,n(E,K

′) as
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2 Y. FIRAT ÇELİKLER

their analytic functions respectively. As a subset of (K ′◦)m × (K ′◦◦)n which is
quantifier free definable in L1 is quantifier free definable in L2, the distinction
between the coefficient field and the field in which the points lie is unnecessary
in our case.
We also would like to mention some related results of other authors. Denef

and van den Dries introduced p-adic subanalytic sets and developed a dimension
theory for them in [5]. By the Quantifier Elimination Theorem (Theorem 1.1) of
[5] these subanalytic sets are in fact quantifier free definable subsets of Qm

p in the
language containing function symbols for each member of the Tate algebra Tm for
allm, a function symbolD for restricted division and the nth-power predicates Pn

as defined in [12] by Macintyre. Therefore they are analogues of D-semianalytic
sets in our setting. In [7] Haskell and Macpherson developed a dimension theory
for definable sets in the p-minimal setting. On the other hand, in [6] van den Dries
considers dimension functions over Tarski systems of definable sets and proves
existence of a unique dimension function (algebraic dimension) for Tarski system
of definable sets of each algebraically bounded henselian field of characteristic 0.
There are several similarities between his and our results in spite of the differences
between the settings. The main difference is that we are working on quantifier
free definable sets in a specific language containing analytic functions whereas in
[6], the author is interested in all definable sets in any suitable language provided
that the structure is algebraically bounded. Another difference is that the key
concepts of [6] like algebraic dimension and algebraic boundedness, as they are
stated, behave well for sets definable in an algebraic language as opposed to
an analytic language like ours. Nevertheless, the Parameterized Normalization
Lemma gives a weaker version of “algebraic boundedness” which is good enough
to carry out the somewhat similar arguments in our analytic setting. In a similar
way the restricted Krull dimension (Definition 3.1) can be seen as an analytic
analogue of algebraic dimension of [6] and our main results Theorem 6.2 and
Theorem 6.6 state that, in case Char K = 0, the notions of dimensions that
we consider in this paper are all equivalent and satisfy conditions similar to the
axioms of a dimension function of [6]. As those axioms are stated for a dimension
function over a Tarski system of sets, some minor adjustments are needed.
Our main motivation and basic tools come from the following sources. In [8]

it was shown that the theory of algebraically closed complete non-Archimedean
fields in the three sorted language involving the members of the rings of separated
power series Sm,n, the norm function |·| and the restricted division operationsD0

and D1 admits quantifier elimination. These division operations are as follows.

D0 : K2 → K◦, defined as D0(x, y) =

{

x/y if |x| ≤ |y| 6= 0

0 otherwise

D1 : K2 → K◦◦, defined as D1(x, y) =

{

x/y if |x| < |y|

0 otherwise.

As an immediate corollary to this result, one sees that the quantifier free de-
finable and definable sets in this language over algebraically closed complete
non-Archimedean fields coincide. Lipshitz and Robinson generalized this result
to more general classes of definable sets in [10]. In [9] some of the geometric
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properties of the subanalytic subsets of (K̄◦)m× (K̄◦◦)n were investigated where
K̄ is an algebraically closed, complete non-Archimedean field and we will use
some of the same ideas. On the other hand Lipshitz and Robinson established
many results in commutative algebra of the rings of separated power series and
related algebras in [11]. Results from this paper will help us obtain algebraic
geometry like results between the D-semianalytic sets and the algebras associ-
ated with them. Noetherianness of (a property that we use without mentioning
throughout the paper), and having Weierstrass Division Theorems for the sepa-
rated power series rings are two of the key results we will often borrow from this
source.
In more detail, the outline of this paper is as follows. After preliminary ground

work, in Section 3, we introduce a restricted Krull dimension of algebras associ-
ated with D-semianalytic sets and prove its nice behavior under operations like
adjoining fractions and ground field extensions. In Section 4 we investigate a
geometric notion of dimension and prove that, in case we are working over a
field of characteristic 0, a D-semianalytic set can be decomposed into finitely
many D-semianalytic manifolds. The maximum of geometric dimensions of such
manifolds will dominate the restricted dimension of the associated algebra. Next
we turn our attention to a weaker notion of geometric dimension and make a
first attempt to establish the relations between these dimensions. In Section 5
it is proved (Lemma 5.3) that given a D-semianalytic set X , it is possible to ob-
tain a finite collection of normalized quasi-affinoid algebras the union of whose
associated D-semianalytic sets is X . Furthermore if some of the variables in the
algebra are designated to be parameter variables then the normalization maps
preserve the parameter structure in the algebra and the restricted dimension as
well. As in many of the results mentioned above, normalization is fundamental in
establishing the link between the geometry of definable sets and the algebras of
functions over them. As another application, apart from the ones mentioned in
this paper, one can easily obtain the Quantifier Elimination Theorem (Theorem
3.8.1) of [8] using the Parameterized Normalization Lemma. Finally in Section
6 we make use of this normalization to establish further connections between
the notions of dimension. Lastly we prove (Theorem 6.6) that, in characteristic
0, if a D-semianalytic set’s projection onto a subspace of dimension m contains
a dense subset of points with fibers of dimension d, then the dimension of the
D-semianalytic set is at least d+m.
Throughout this paper K will denote a field which is complete with respect to

a non-Archimedean norm, K ′ will denote an arbitrary complete field extension
of K and K̄ will denote an algebraically closed complete extension of K.

Definition 1.1. For any non-Archimedean complete field K, K◦ will denote
its valuation ring and K◦◦ will denote the maximal ideal of K◦. Or in other
words

K◦ = {a ∈ K : |a| ≤ 1},
K◦◦ = {a ∈ K : |a| < 1}.

We are interested in analytic functions over the set (K◦)m × (K◦◦)n and a
natural choice for such functions is the members of separated power series rings
Sm,n(E,K). Following Definition 2.1.1 of [11], these rings are obtained as follows.
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Definition 1.2. Let x = (x1, ..., xm) and ρ = (ρ1, ..., ρn) denote multi vari-
ables, fix a complete, quasi-Noetherian subring E of K◦ (which also has to be
a Discrete valuation ring in case Char K = p > 0) and let {ai}i∈N be a zero
sequence in K◦, and B be the local quasi-Noetherian ring

(E[a0, a1, ...]{a∈E[a0,a1,...]:|a|=1})
∧,

where ∧ denotes the completion in | · |. Let B be the family of all such rings.
Define the separated power series ring

Sm,n(E,K) := K ⊗K◦

(

lim
−−→
B∈B

B 〈x〉 [[ρ]]

)

.

For f =
∑

α,β aα,βx
αρβ ∈ Sm,n(E,K), the Gauss norm of f is defined as

||f || := sup
α,β

|aα,β|.

Note that in general the rings Sm,n(E,K) are not complete in the Gauss norm,
but for many choices of the quasi-affinoid ring E they are complete. We refer
the reader to Remark 2.1.2 and Theorem 2.1.3 of [11] for a detailed discussion
of this aspect of the Sm,n(E,K).
We will usually denote Sm,n(E,K) by Sm,n, which will not lead to a confusion.

The elements of a separated power series ring are convergent on the set (K◦)m×
(K◦◦)n. The term quasi-affinoid is used to refer to objects associated with such
rings.
In order to incorporate the restricted division operations D0 and D1 into an

algebraic context, we follow [9] and work in generalized rings of fractions. To be
able to define those rings, we first introduce more terminology. A quasi-affinoid
algebra A is an algebra of the form A := Sm,n/J for some integersm, n and ideal
J of Sm,n. For a quasi-affinoid algebra A = Sm,n/J , variables y = (y1, ..., yM )
and λ = (λ1, ..., λN ) not appearing in Sm,n, define

A 〈y〉 [[λ]]s := Sm+M,n+N/JSm+M,n+N .

More generally if A, B1 and B2 are quasi-affinoid algebras, where

B1 = A 〈y1, ...., ym1
〉 [[λ1, ..., λn1

]]s /I1

and
B2 = A 〈ym1+1, ...., ym2

〉 [[λn1+1, ..., λn2
]]s /I2

then as in Definition 5.4.2 of [11], define the separated tensor product of B1 and
B2 over A as

B1 ⊗
s
A B2 := A 〈y1, ..., ym2

〉 [[λ1, ..., λn2
]]s /(I1 ∪ I2).

By Theorem 5.2.6 of [11] this product is independent of presentations of B1 and
B2.
Let K ′ be a complete field extension of K and E′ ⊂ K ′ be a complete, quasi-

Noetherian ring. Assume Sm,n(E,K) ⊂ Sm,n(E
′,K ′) and let B1 be as above,

then we will follow Definition 5.4.9 of [11] and say the K ′-affinoid algebra

B′
1 = S0,0 ⊗

s
S0,0(E,K) B1 := Sm,n(E

′,K ′)/I1 · Sm,n(E
′,K ′)

results from B1 by ground field extension from (E,K) to (E′,K ′). Note that by
Lemma 4.2.8 of [11], Sm,n(E

′,K ′) is faithfully flat over Sm,n(E,K).
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With this notation established, we are ready to define one of the main objects
of our study.

Definition 1.3. Following the Definition 5.3.1 of [11], a generalized ring of
fractions over a quasi-affinoid algebra A is inductively defined as follows:
i) A is a generalized ring of fractions over A.
ii) If B is a generalized ring of fractions over A, y, λ multi-variables not

appearing in the presentation of B, and g, f1, ..., fM , F1, ..., FN ∈ B , then

B 〈f/g〉 [[F/g]]s := B 〈y〉 [[λ]]s /({gyi − fi}
M
i=1 ∪ {gλj − Fj}

N
j=1)

is also a generalized ring of fractions over A.

We would like to note that this definition is a generalization of the definition
of affinoid generalized rings of fractions. These rings are discussed in Subsection
6.1.4 of [3].
Let

B = A 〈y1, ..., yM 〉 [[λ1, ..., λN ]]s /({giyi − fi}
M
i=1 ∪ {Gjλj − Fj}

N
j=1)(∗)

be a generalized ring of fractions over the quasi affinoid algebra A = Sm,n/J
where gi, fi, Gj , Fj are elements of Sm+M,n+N . There is a natural corre-
spondence between a maximal ideal m of Sm+M,n+N which contains the ideal
J ∪ ({giyi − fi}

M
i=1 ∪ {Gjλj − Fj}

N
j=1) and a maximal ideal mB of B. With this

notation we can state the next definition.

Definition 1.4. Let B be as in Equation (∗), then the domain of B over A
is the set

DomAB := {mB ∈ Max B : J ∪ {giyi − fi}
M
i=1 ∪ {Gjλj − Fj}

N
j=1 ⊂ m

and gi, Gj 6∈ m for all i, j}.

Remark 1.5. i) This definition depends on the specific presentation of the
quasi-affinoid algebra B, but is independent of the representatives chosen for gi,
fi, Gj , and Fj in the presentation.
ii) The reader should be warned that above definition is slightly different than

the definition of the domain in Definition 2.2 of [10] which is a subset of Max
A rather than Max B. We choose to make this change for simplicity in later
arguments. Actually by Theorem 4.1.1 (Nullstellensatz) of [11], for each maximal
ideal m of Sm+M,n+N , Sm+M,n+N/m is an algebraic extension of K and by this
theorem and by induction it is easy to see that there is a natural one to one (but
not necessarily onto) map σB : DomAB → Max A. The image of the map σB
is the definition for DomAB in [10]. Therefore the deviation from the notation
of other authors is not significant.
iii) Let A be a quasi-affinoid algebra and B1 and B2 be two isomorphic quasi-

affinoid A algebras which are generalized rings of fractions over A, and let σB1
:

DomAB1 → Max A and σB2
: DomAB2 → Max A be the maps mentioned above,

then σB1
(DomAB1) and σB2

(DomAB2) coincide by Remark 2.3 of [10].

Let B be a generalized ring of fractions over Sm,n. Since DomAB is defined
in terms of maximal ideals, it is more closely related to quantifier free definable
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subsets of (K̄◦)m × (K̄◦◦)n than those of (K◦)m × (K◦◦)n where K̄ is an alge-
braically closed complete extension of K. As we are interested in quantifier free
definable subsets of (K◦)m × (K◦◦)n we introduce another notation to denote
the K ′-rational points in domains over Sm,n where K ′ is a complete extension
of K.

Definition 1.6. Let B be as in Equation (∗) with A = Sm,n, the K
′-rational

points in DomSm,nB is the projection of the set

{p̄ ∈ (K ′◦)m+M × (K ′◦◦)n+N : (giyi − fi)(p̄) = 0, (Gjλj − Fj)(p̄) = 0

and gi(p̄) 6= 0, Gj(p̄) 6= 0 for all i, j}

onto (K ′◦)m × (K ′◦◦)n, and it is denoted by K ′-Domm,nB.

Notice that the above projection is one to one, analytic and is also the re-
striction of the aforementioned map σB1

between DomSm,nB and Max Sm,n to

maximal ideals that correspond to points in (K ′◦)m+M ×(K ′◦◦)n+N . Notice also
that K ′-Domm,nB is an open subset of (K ′◦)m× (K ′◦◦)n in the metric topology.
If B is a generalized ring of fractions over Sm,n then in a natural way members

of B can be seen as analytic functions onK ′-Domm,nB. This observation enables
us to give the next definition.

Definition 1.7. Let B be a generalized ring of fractions over Sm,n and I be
an ideal of B. We will write K ′-Domm,nB ∩ V (I)K′ for the subset of (K ′◦)m ×
(K ′◦◦)n which consists of points inK ′-Domm,nB that are zeros of all the elements
of I.

At the beginning of this paper we mentioned that the D-semianalytic sets
are quantifier free definable subsets of (K◦)m × (K◦◦)n in the language of [8].
This is a three sorted language containing function symbols for the members
of Sm,n for each m and n, as well as the norm function | · | and the restricted
division functions D0 and D1. By putting any quantifier free formula in this
language into disjunctive normal form and observing that a negated formula of
the type ¬(f(x, ρ) = 0) is equivalent to the formula (|f(x, ρ)| > 0) we arrive at
the equivalent definition for D-semianalytic sets below.

Definition 1.8. A D-semianalytic subset of (K◦)m× (K◦◦)n is a finite union
of sets of the form K-Domm,nBi∩V (Ii)K for some generalized rings of fractions
Bi over Sm,n and ideals Ii ⊂ Bi.

At this point, we would like to mention the domain of a special type of gener-
alized ring of fractions.

Definition 1.9. If B is a generalized ring of fractions over Sm,n which is
obtained by imposing the condition that at each inductive step in forming B,
the ideal (g, f1, ..., fM , F1, ..., FN ) is the unit ideal, then DomSm,nB is called an
R-domain over Sm,n.

The significance of the R-domains comes from the fact that they are gen-
eralizations of rational domains of affinoid geometry (Definition 5 of subsection
7.2.3 of [3]). An important property of R-domains is that in case U = DomSm,nB
is an R-domain, and B′ is a generalized ring of fractions over Sm,n such that
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DomSm,nB
′ = U , then by Proposition 5.3.6 of [11] B is isomorphic to B′. There-

fore it is possible to associate a quasi-affinoid ring of functions OK(U) := B to
every such R-domain U . Note that although this ring of functions also depends
on the choice of the quasi-Noetherian ring E as well as the field K (see Definition
1.2), we are suppressing this dependence for simplicity of notation.

§2. Preliminaries. In this section we establish some basic facts about quasi-
affinoid algebras which help technical aspects of our discussions in the following
sections.

Lemma 2.1. For any maximal ideal m of a quasi-affinoid algebra A, Am is a
universally catenary ring.

Proof. By Corollary 4.2.2 of [11], (Sm,n)m is a regular ring of Krull dimension
m+ n. By Theorem 17.8 of [13], any regular local ring is Cohen-Macaulay, and
by Theorem 17.9 of [13] any quotient of a Cohen-Macaulay ring is universally
catenary. As A is a quotient of the form Sm,n/J , the statement follows. ⊣

Lemma 2.2. Sm+1,n and Sm,n+1 are both faithfully flat over Sm,n, hence for
any quasi-affinoid algebra A, we have that A ⊂ A 〈z〉 and A ⊂ A [[z]]s where the
variable z does not appear in the presentation of A.

Proof. For the first statement, let K̄ be an algebraically closed complete
extension of K and assume that we have shown that both Sm+1,n(E, K̄) and
Sm,n+1(E, K̄) are faithfully flat over Sm,n(E, K̄). By Lemma 4.2.8 of [11],
Sm,n(E, K̄) is faithfully flat over Sm,n(E,K) and therefore Sm+1,n(E, K̄) and
Sm,n+1(E, K̄) are both faithfully flat over Sm,n(E,K) which in turn implies that
Sm+1,n(E,K) and Sm,n+1(E,K) being faithfully flat over Sm,n(E,K). Hence
we may assume that K is algebraically closed.
Next observe that by the Nullstellensatz (Theorem 4.1.1 of [11]) each maximal

ideal of Sm,n is of the form (x1−a1, ..., xm−am, ρ1− b1, ..., ρn− bn) ·Sm,n where
ai, bj ∈ K, |ai| ≤ 1, |bj| < 1 for all i, j. Therefore by Theorem 7.2(3) of [13], it
is enough to show that Sm+1,n and Sm,n+1 are flat over Sm,n and by Theorem
7.1 of [13], it is enough to check that for each maximal ideal n of Sm+1,n or
Sm,n+1 the localizations (Sm+1,n)n and (Sm,n+1)n are flat over (Sm,n)m where
m = n ∩ Sm,n. Note that again by the Nullstellensatz m is a maximal ideal of
Sm,n.
On the other hand by Theorem 22.4 of [13], (Sm+1,n)n and (Sm,n+1)n are

flat over (Sm,n)m if and only if ((Sm+1,n)n)
∧ and ((Sm,n+1)n)

∧ are flat over
((Sm,n)m)

∧ where ∧ denotes the completion with respect to the maximal ideals.
Now, it is easy to see that

((Sm+1,n)n)
∧ ≃ ((Sm,n+1)m)

∧ ≃ K [[z1, ..., zm+n+1]]

which is faithfully flat over K [[z1, ..., zm+n]] ≃ ((Sm,n)n)
∧, and the first state-

ment of the lemma follows.
The second statement easily follows just by writing A = Sm,n/J , A 〈z〉 =

Sm+1,n/JSm+1,n (or A [[z]]s = Sm,n+1/JSm,n+1) and observing

JSm+1,n ∩ Sm,n = JSm,n+1 ∩ Sm,n = J

because of faithful flatness. ⊣
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As a consequence of the above lemma, for A = Sm,n/J a quasi-affinoid algebra,
I an ideal of A and z a variable not appearing in the presentation of A, we get
(A/I) 〈z〉 = A 〈z〉 /IA 〈z〉.
Let us make an observation about the presentation of elements in quasi-affinoid

algebras before we continue with the next lemma. Suppose f̄ ∈ A 〈z〉 and f ∈
Sm+1,n is such that the canonical image of f in A 〈z〉 = Sm+1,n/JSm+1,n is f̄ .
Write f =

∑

i ciz
i for ci ∈ Sm,n and let ai denote the canonical image of ci in

A, then f̄ has a presentation

f̄ =
∑

i

aiz
i.

On the other hand if g =
∑

i diz
i is another element of Sm+1,n whose canonical

image is f̄ and h1, ..., hk ∈ Sm,n are generators of J , then

f − g =
∑

i

(ci − di)z
i = h1

∑

i

a1iz
i + ...+ hk

∑

i

akiz
i,

where aji ∈ Sm,n for all i, j. Comparing the coefficients of zi on both sides we
see that ci − di ∈ J for all i. This shows that such a presentation of f̄ is unique.
A similar statement is true for A [[z]]s by the same argument.

Lemma 2.3. Let A be a quasi-affinoid algebra, I an ideal of A, z a variable
not appearing in the presentation of A, then

IA 〈z〉 = {
∞
∑

i=0

aiz
i ∈ A 〈z〉 : ai ∈ I for all i},

similarly

IA [[z]]s = {
∞
∑

i=0

aiz
i ∈ A [[z]]s : ai ∈ I for all i}.

Proof. For both assertions, the inclusion ⊆ is clear. For the other inclusion,
write A = Sm,n/J , and let Ī be the preimage of I in Sm,n, Ī ⊃ J . Let f =

∑

aiz
i

be an element of either Sm,n 〈z〉 where ai ∈ Ī for all i (the case f ∈ Sm,n [[z]]s
is similar). Multiplying with a constant, we may assume that ||f || = 1 where
|| · || denotes the Gauss Norm. By Lemma 3.1.7 of [11], there are || · ||-strict
generators for Ī. Let those generators be b1, ..., bk. There is a B ∈ B such that
for each i, there are c1i, ..., cki ∈ B 〈x1, ..., xm, z〉 [[ρ1, ..., ρn]]s which satisfy

ai = c1ib1 + ...+ ckibk
||ai|| ≥ supj{||cji|| · ||bj||}.

Hence we have a presentation of the element f as

f = b1
∑

i

c1iz
i + ...+ bk

∑

i

ckiz
i.

Note that each
∑

i cjiz
i ∈ B 〈x1, ..., xm, z〉 [[ρ1, ..., ρn]]s and hence f ∈ ĪSm,n 〈z〉.

⊣

We wish to make a note about the contraction and extension of ideals in quasi-
affinoid algebras. If A = Sm,n/J is a quasi-affinoid algebra, it is not necessarily
the case that a ring of the form A 〈f/g〉 or A [[f/g]]s contains A, as among many
other possibilities, gz− f can be a unit of the ring A 〈z〉 or A [[z]]s. Still A 〈f/g〉
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and A [[f/g]]s are A-algebras in a natural way and so it is possible to talk about
extension of an ideal I of A to A 〈f/g〉 or A [[f/g]]s and contraction of an ideal
I ′ of A 〈f/g〉 or A [[f/g]]s to A.
The last two lemmas in this section cover some technical aspects of the proof

of the Parameterized Normalization Lemma (Lemma 5.3).

Lemma 2.4. Let φ : A →֒ B be a finite monomorphism of quasi-affinoid
algebras and A′ be a quasi-affinoid A algebra. Then φ induces a finite map
ψ : A′ → A′ ⊗s

A B and the nilradical of A′ contains Ker (ψ).

Proof. The first assertion is due to Proposition 5.4.8 of [11]. For the second
assertion, notice that because ψ : A′ → A′ ⊗s

A B is a finite map extending φ, by
Theorem 9.3 of [13] for each maximal ideal m of A′ there is a maximal ideal m̄ of
A′⊗s

AB such that m̄∩ψ(A′) = ψ(m). Let a ∈ A′ and assume there is a maximal
ideal n of A′ such that a 6∈ n. Note that by the Nullstellensatz (Theorem 4.1.1
of [11]), the nilradical of a quasi-affinoid algebra ring coincides with its Jacobson
radical and therefore in this case a is not in the nilradical of A′. Then clearly
ψ(a) 6∈ n̄, and hence a 6∈ Ker(ψ). ⊣

Lemma 2.5. Let A be a quasi-affinoid algebra and c be a nilpotent element
of A 〈y1, ..., yM 〉 [[λ1, ..., λN ]]s, then c =

∑

(α,β) aα,βy
αλβ where each aα,β is a

nilpotent element of A. Therefore if

φ : A 〈y1, ..., yM 〉 [[λ1, ..., λN ]]s →֒ B,

is a finite injection of quasi-affinoid algebras then φ induces a finite injection

φ′ : A/N (A) 〈y1, ..., yM 〉 [[λ1, ..., λN ]]s →֒ B/N (B),

where N (A) and N (B) denote the nilradicals of A and B respectively.

Proof. For the first assertion, first assume that M = 1, N = 0 or M = 0,
N = 1. By assumption there is an s such that cs = 0 and by Lemma 2.3 this
implies that as0 = 0 which in turn implies that a0 ∈ N (A). Therefore c − a0
is also nilpotent and proceeding inductively we see that each ai is a nilpotent
element of A. Now for the general case of arbitrary M and N we once again
make use of Lemma 2.3 and argue inductively.
For the second assertion, finiteness of φ′ is clear as N (A) ⊂ φ−1(N (B)).

Let c ∈ φ−1(N (B)) then c is itself nilpotent and by the first assertion c ∈
N (A)A 〈y1, ..., yM 〉 [[λ1, ..., λN ]]s. Now the second assertion follows from Lemma
2.3. ⊣

§3. Restricted Dimension. In this section we will discuss a restricted no-
tion of Krull Dimension which is more closely related to the geometric properties
of D-semianalytic sets than the Krull dimension (denoted k-dim).

Definition 3.1. Let A be a quasi-affinoid algebra and B a generalized ring
of fractions over A such that DomAB 6= ∅. For an ideal I of B we define the
Dom A-dimension of I in B, denoted dimAB/I, as

dimAB/I := sup{k-dim Bm/IBm : m ∈ DomAB}

If DomAB = ∅, then we define dimAB/I := −1.
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Remark 3.2. i) Dom A-dimension of I in B behaves well under the operation
of forming generalized rings of fractions. That is, if B′ is a generalized ring of
fractions over B (hence over A also), then dimAB/I ≥ dimAB

′/IB′. We prove
this fact in Lemma 3.6.
ii) Notice that in these terms we can write

k-dim B/I = dimBB/I.

so that the following results about Dom A-dimension have their analogues for
Krull dimension of B/I.
iii) Notice also that dimSm,nB/I = −1 means that there is no maximal

ideal m ∈ DomSm,nB which contains I and therefore in that case we have
K ′-Domm,nB ∩V (I)K′ = ∅ where K ′ is a complete field extension of K. On the
other hand if dimSm,nB/I = 0, and p1, ..., pk are minimal primes of I in B, then
each pi is either a maximal ideal of B or there is no maximal ideal m ⊃ pi such
that m ∈ DomSm,nB, hence V (I)K′ ∩K ′-Domm,nB is a finite or an empty set.

Next we will establish basic facts about this restricted dimension to help us
understand its connection with the geometry of the D-semianalytic sets.

Lemma 3.3. Let A be a quasi-affinoid algebra and B be a generalized ring of
fractions over A, then

dimAB/I = sup{k-dim B/p : where I ⊂ p ∈ Spec B and there exists

m ∈ DomAB containing p}.

Proof. Write A = Sm,n/J and B = Sm+M,n+N/J
′ and let Ī be the ideal

corresponding to I in Sm+M,n+N . Assume p0 ⊃ Ī ⊃ J ′ is a prime ideal and m is
a maximal ideal of Sm+M,n+N such that m ∈ DomAB and such that dimAB/I =
k-dim (Sm+M,n+N )m/Īm. Now take a maximal prime ideal chain

Īm ⊂ q0 ⊂ ... ⊂ qd = mm ⊂ (Sm+M,n+N )m

such that dimAB/I = d and let p0 be the minimal prime divisor of Ī such that
(p0)m = q0. Now assume that n ⊂ Sm+M,n+N is another maximal ideal lying
over p0. By Lemma 2.1 and Corollary 4.2.2 of [11],

ht p0 =m+ n+M +N − k-dim (Sm+M,n+N )m/(p0)m

=m+ n+M +N − k-dim (Sm+M,n+N )n/(p0)n. ⊣

Given an ideal I of Sm,n(E,K) it is natural to expect k-dim Sm,n(E,K)/I to
be the same as Sm,n(E,K

′)/ISm,n(E,K
′) whereK ′ is a complete field extension

of K. In fact we can obtain a more general result as follows. Let E′ ⊂ K ′◦ be
a complete, quasi-Noetherian ring and let A be Sm,n(E,K)/J for some ideal J
and assume

B = A 〈y〉 [[λ]]s /({giyi − fi}, {Gjλj − Fj}) = Sm+M,n+N (E,K)/J ′

a generalized ring of fractions over A. Let A′ and B′ be results of ground field
extension from (E,K) to (E′,K ′) of A and B respectively. That is

A′ := Sm,n(E
′,K ′)/J · Sm,n(E

′,K ′),
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and

B′ = Sm+M,n+N(E′,K ′)/J ′ · Sm+M,n+N (E′,K ′).

By Lemma 4.2.8 of [11], Sm,n(E
′,K ′) is faithfully flat over Sm,n(E,K), therefore

if m ∈ DomAB, then there is an m′ ∈ DomA′B′ such that m′ ∩ B = m and we
can state the following corollary.

Corollary 3.4. dimAB/I = dimA′B′/IB′.

Proof. Observe that the following is a consequence of [13], Theorem 15.1.
Claim. Suppose m ∈ DomA′B′ and m ⊃ IB′. Put n := B ∩ m and suppose n

is a maximal ideal. Then n ∈ DomAB, n ⊃ I and

k-dim (B/I)n = k-dim (B′/IB′)m.

In particular, since the map B → B′ is faithfully flat, from the claim and the
discussion above we have

dimAB/I ≤ dimA′B′/IB′.

On the other hand, by Lemma 3.3 we may assume that

Ī · Sm+M,n+N(E′,K ′) ⊂ q0 ⊂ ... ⊂ qd ⊂ Sm+M,n+N (E′,K ′)

is a maximal chain of prime ideals with d = dimA′B′/IB′ and qd ∈ DomA′B′.
Thus by the Going Down Theorem and faithful flatness, p0 := q0 ∩ Sm,n is a
minimal prime divisor of Ī.
Let q be a minimal prime divisor of Ī · Sm+M,n+N(E′,K ′). By [13], Theorem

15.1

ht q = ht p0 + dim (Sm+M,n+N(E′,K ′))q/p0(Sm+M,n+N(E′,K ′))q
= ht p0

since q is a minimal prime divisor of Ī · Sm+M,n+N(E′,K ′), hence also of p0 ·
Sm+M,n+N (E′,K ′). So d = dim Sm+M,n+N/q for any such q. Thus by the Claim
above and Lemma 3.3, it suffices to show that there is a minimal prime divisor
q of p0Sm+M,n+N (E′,K ′) such that q ⊂ m for some m ∈ DomA′B′ such that
n := m ∩B is a maximal ideal. Since DomAB is a Zariski-open set containing a
point on p0, this follows from the faithful flatness. ⊣

In the rest of this section we will investigate the behavior of the restricted
dimension under the operation of forming generalized rings of fractions. By
Lemma 2.3, the following is easily proved.

Lemma 3.5. Let A = Sm,n/J be a quasi affinoid algebra, I ⊂ A a proper ideal,
z a variable not appearing in Sm,n. Then

k-dim A 〈z〉 /IA 〈z〉 = k-dim A [[z]]s /IA [[z]]s = k-dim A/I + 1.

Lemma 3.6. Let I be an ideal of Sm,n, f, g two elements of Sm,n and m be a
maximal ideal of Sm,n 〈z〉 containing I and gz − f but not g. Let n = Sm,n ∩m,
then k-dim (Sm,n)n/I(Sm,n)n = k-dim (Sm,n 〈z〉)m/(I ∪ {gz − f})(Sm,n 〈z〉)m.
The same statement is true if we replace Sm,n 〈z〉 with Sm,n [[z]]s.
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Proof. Once again we will only give the proof for Sm,n 〈z〉. It is easy to see
that

k-dim (Sm,n 〈z〉)m/I(Sm,n 〈z〉)m = k-dim (Sm,n)n/I(Sm,n)n + 1.

To show that

k-dim (Sm,n)n/I(Sm,n)n ≥ k-dim (Sm,n 〈z〉)m/(I ∪ {gz − f})(Sm,n 〈z〉)m,

it is enough to show that given a maximal chain

(I ∪ {gz − f}) · Sm,n 〈z〉 ⊂ p0 ⊂ ... ⊂ pd = m,

we can construct a strict chain

ISm,n 〈z〉 ⊂ q0 ⊂ ... ⊂ qd+1 = m.

Notice that no minimal prime of ISm,n 〈z〉 which is contained in m contains
gz − f . This is because by Lemma 2.3 such minimal primes are of the form
qSm,n 〈z〉 for some minimal prime q of I in Sm,n. Indeed if it is the case that
b1

∑

a1,iz
i + ... + bk

∑

ak,iz
i = gz − f with bj ∈ q, aj,i ∈ Sm,n, then we have

g = b1a1,i + ... + bkak,i ∈ q contradicting g 6∈ m. Now let q0 be a minimal
prime divisor of ISm,n 〈z〉 which is contained in p0. By the explanation above
paragraph, gz − f 6∈ q0, and therefore q0 6= p0. Hence setting qi := pi−1 for
1 ≤ i ≤ d+1 gives us the desired prime ideal chain. The argument for Sm,n [[z]]s
is similar. ⊣

In other words, the above lemma states that if dimAB/I = k-dim (B/I)m = d
for some maximal ideal m ⊃ I in DomAB, and g 6∈ m, then

dimAB/I = dimAB 〈f/g〉 /IB 〈f/g〉 ,

and of course similarly for B [[f/g]]s. As an immediate consequence we also see
that dimAB/I ≤ k-dim A.

§4. Manifolds and Geometric Dimension. In this section we will inves-
tigate the geometric properties of D-semianalytic sets more closely. Although
we aim to get smooth pieces of D-semianalytic sets which are manifolds, we
will not try to make the concept of manifolds precise to save time as all the
K-n-manifolds we consider will be D-semianalytic sets which are locally graphs
of n-dimensional open balls U in (K◦)n under power series converging on U
with coefficients from K. The reader can find a more general treatment of K-
analytic manifolds in Subsection 1.4 of [9]. Working with such manifolds, our
main tool will be the next well known theorem. For a proof we refer the reader
to Proposition 10.8 of [1].

Theorem 4.1 (Implicit Function Theorem). Let f1, ..., fn be elements of the
Tate Algebra Tm = K 〈x1, ..., xm〉, n ≤ m and ∆ be the determinant of the n-
dimensional minor ∂(f1, ..., fn)/∂(x1, ..., xn) of the Jacobian Matrix ∂f/∂x. Let
π be the projection map onto the space corresponding to variables xn+1, ..., xm.
Then for all p̄ ∈ V (f1, ..., fn)K satisfying ∆(p̄) 6= 0 there is a neighborhood U of
p̄ such that U ∩V (f1, ..., fn)K is the graph of a function on π(U) given by power
series convergent on π(U) with coefficients from K.
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This theorem is especially useful when it is used in conjunction with the fol-
lowing slightly modified results (Theorem 3.1 and 3.2) from [9].

Lemma 4.2. Suppose Char K = 0 and B is a generalized ring of fractions
over Sm,n, Let f1, ..., fk ∈ B, I be the ideal generated by f1, ..., fk, and let p be
a minimal prime divisor of I such that there is some n ∈ DomSm,nB, n ⊃ p, ht
p = r, then there are differential polynomials P1, ..., Pr, Q with integer coefficients
and a maximal ideal m ∈ DomSm,nB such that
i) Q(f) 6∈ m and P1(f)/Q(f), ..., Pr(f)/Q(f) generate pBm.
ii) some r× r minor of the Jacobian matrix ∂

∂x,ρ(P1(f)/Q(f), ..., Pr(f)/Q(f))

does not belong to pBm.

Lemma 4.3. Suppose Char K = p > 0 and B is a generalized ring of fractions
over Sm,n, Let f1, ..., fk ∈ B, I be the ideal generated by f1, ..., fk, and let p be a
minimal prime divisor of I of height r such that there is some p̄ ∈ K-Domm,nB,
let m be the corresponding maximal ideal of B. Then there is an l ∈ N, an R-
domain U such that p̄ is an element of the set of K-rational points in U and there
exist Hasse differential polynomials P1, ...Pr , Q, with coefficients in Fp, such that

Q(f), Pi(f) ∈ OK1/pl (U)p
l

,

where OK1/pl (U) := (E,K1/pl

)⊗s
(E,K) O(U)K , and

i) Q(f) 6∈ m and the nilradical of the ideal of Bm generated by P1(f)/Q(f), ...,
Pr(f)/Q(f) is pBm, and

ii) Some r × r minor of the Jacobian ∂
∂x,ρ(P1(f)/Q(f), ..., Pr(f)/Q(f))1/p

l

does not belong to q for any prime ideal q of OK1/pl (U) lying above p.

Next we will define a geometric notion of dimension to continue our investiga-
tion.

Definition 4.4. Define the geometric dimension, g-dim X , of a nonempty set
X ⊂ Km to be the greatest integer d such that the image of X under coordinate
projection onto a d dimensional coordinate hyper-plane has an interior point.
For X = ∅ define g-dim X = −1.
For p̄ ∈ Km define g-dim Xp̄ to be the minimum of g-dim X ∩ U where U is

a neighborhood of p̄.

Let B be a generalized ring of fractions over Sm,n, and let I be an ideal of
B. We use the customary notation I(V (I)K′ ∩ K ′-Domm,nB) to denote the
ideal {f ∈ B : f(p̄) = 0 for all p̄ ∈ V (I)K′ ∩ K ′-Domm,nB} of B. In the
rest of this paper we establish the connections between the geometric and the
weak dimensions (Definition 4.8) of K-Domm,nB ∩ V (I)K and the restricted
dimension dimSm,nB/I. As the restricted dimension is defined in terms of the
Krull dimension, it is more closely related to the geometric and weak dimensions
of K̄-Domm,nB ∩ V (I)K̄ where K̄ is an algebraically closed complete extension
of K. In order for the comparison between these different types of dimension
to be meaningful, we need to assume I = I(V (I)K ∩ K-Domm,nB) so that I
is the largest among the ideals of B which define the same D-semianalytic set
K-Domm,nB ∩ V (I)K . If that is the case for an ideal I, then it is also the case
for the minimal prime divisors of I as the next lemma shows.
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Lemma 4.5. Suppose B is a generalized ring of fractions over Sm,n, and I is
an ideal of B such that I = I(V (I)K′ ∩K ′-Domm,nB). Then I is a radical ideal
and if I = ∩s

i=1pi is an irredundant minimal prime decomposition of I, then
pi = I(V (pi)K′ ∩K ′-Domm,nB).

Proof. That I(V (I)K′ ∩K ′-Domm,nB) is a radical ideal is clear. The rest
of the assertion is also clear if I is prime, hence assume s > 1. Write Ji :=
I(V (pi)K′ ∩ K ′-Domm,n(B)), and assume fi ∈ Ji\pi. As we assumed ∩s

i=1pi

is an irredundant minimal prime decomposition of I, we can find gi which is
an element of (

⋂

j 6=i pj)\pi. Observe that for all p̄ ∈ V (I)K′ ∩ K ′-Domm,nB,

gi(p̄) 6= 0 implies fi(p̄) = 0, hence figi is an element of I(V (I)K′∩K ′-Domm,nB)
which is equal to I by assumption. Thus figi ∈ pi, a contradiction. ⊣

As a corollary to the above lemma we see that if I = I(V (I)K′∩K ′-Domm,nB)
then for each minimal prime ideal p of I there is a maximal ideal m ∈ DomSm,nB
containing p. Therefore k-dim B/I = dimSm,nB/I.

The Smooth Stratification Theorem for subanalytic subsets of (K̄◦)m×(K̄◦◦)n

is proved (Theorem 4.4) in [9] where K̄ is an algebraically closed complete ex-
tension of K. We would like to remind the reader that those sets are also
D-semianalytic by the Quantifier Elimination Theorem (Theorem 3.8.1) of [8].
The key step in proving the Smooth Stratification Theorem is Corollary 3.3 of
[9] and we are going to generalize this corollary to D-semianalytic subsets of
(K◦)m × (K◦◦)n.

Theorem 4.6 (Smooth Stratification of D-semianalytic Sets). Assume Char
K = 0. Let B be a generalized ring of fractions over Sm,n, I ⊂ B an ideal
which satisfies I = I(V (I)K ∩K-Domm,nB), then there are D-semianalytic K-
manifolds X1, ..., Xr (not necessarily disjoint) such that

V (I)K ∩K-Domm,nB = X1 ∪ ... ∪Xr

and maxi g-dim Xi = dimSm,nB/I= k-dim B/I.

Proof. We will actually only prove that maxi g-dim Xi ≥ dimSm,nB/I and
the other inequality will follow from Lemma 6.1.
The assertion is clear if there are no points in K-Domm,nB ∩ V (I)K in which

case I = (1). So assume there is a p̄ ∈ K-Domm,nB ∩ V (I)K . By Lemma 4.5
each minimal prime divisor pi of I satisfies pi = I(V (pi)K∩K-Domm,nB), hence
we may assume that I is prime. Let r be ht I. We will proceed by induction on
dimSm,nB/I.
Write f = (f1, ..., fk) for generators of I and apply Lemma 4.2 to I to get

a maximal ideal m ∈ DomSm,nB, I ⊂ m, together with differential polynomials
P1, ..., Pr, Q with integer coefficients and the determinant of an r × r minor ∆
of the Jacobian ∂

∂(x,ρ) (P1(f)/Q(f), ..., Pr(f)/Q(f)), such that ∆ 6∈ IBm. Notice

that because I is prime Pi(f) ∈ I for all i. In order to simplify the notation we
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may assume that

∆ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂P1(f)

∂x1
Q(f)−

∂Q(f)

∂x1
P1(f)

Q(f)2
· · ·

∂Pr(f)

∂x1
Q(f)−

∂Q(f)

∂x1
Pr(f)

Q(f)2

...
. . .

...

∂P1(f)

∂xr
Q(f)−

∂Q(f)

∂xr
P1(f)

Q(f)2
· · ·

∂Pr(f)

∂xr
Q(f)−

∂Q(f)

∂xr
Pr(f)

Q(f)2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Observe that each ∂Q(f)
∂xi

Pj(f)/Q(f)2 is in IBm. Therefore by elementary

properties of determinant, ∆ = ∆′/Q(f)r + g where g ∈ IBm and

∆′ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂P1(f)

∂x1
· · ·

∂Pr(f)

∂x1

...
. . .

...

∂P1(f)

∂xr
· · ·

∂Pr(f)

∂xr

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Therefore ∆ 6∈ IBm implies ∆′ 6∈ I.
Now define

X := {q̄ ∈ K-Domm,nB ∩ V (I)K : ∆′(q̄) 6= 0}.

For all q̄ ∈ X and maximal ideal n corresponding to q̄ we have, by Theo-
rem 30.4 of [13], P1(f), ..., Pr(f) generate IBn (it is easy to show that for an
n ∈ DomSm,nB, Bn is regular). Notice that, in this case there is a rational
neighborhood W of q̄ such that P1(f), ..., Pr(f) generate IO(W ) and by Theo-
rem 4.1, there is a rational neighborhood U ⊂ W of q̄ such that V (I)K ∩ U is
the graph of analytic functions over some m+n− r dimensional open poly-disc.
Notice also that X 6= ∅ by the assumption that I = I(V (I)K ∩ K-Domm,nB)
and because ∆′ 6∈ I.
On the other hand (V (I)K ∩K-Domm,nB)\X = V (I∪{∆′})K∩K-Domm,nB,

and because I is prime, we see that dimSm,nB/(I ∪ {∆′}) < dimSm,nB/I, and
the result follows by induction. ⊣

Note that our main tool in the above proof, Lemma 4.2 has an analogue,
Lemma 4.3 for the case Char K = p > 0. However Lemma 4.3 is much weaker
than Lemma 4.2 in the sense that the generators Pi(f)/Q(f) we get have coeffi-

cients in some K1/pl

and they work only locally. Therefore an analogue of Theo-
rem 4.6 can be proved similarly but with the additional condition [K : Kp] <∞
and with a local, rather than a global conclusion.

Theorem 4.7. Assume Char K = p > 0 and [K : Kp] < ∞. Let B be
a generalized ring of fractions over Sm,n, I ⊂ B an ideal of B, then for all
p̄ ∈ K-Domm,nB ∩ V (I)K , there is an R-domain U such that p̄ is an element
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of the set W of K-rational points in U and such that there exist D-semianalytic
K-manifolds X1, ..., Xr (not necessarily disjoint) such that

V (I)K ∩W = X1 ∪ ... ∪Xr.

Furthermore if J = I(W ∩ V (I)K) is an ideal of O(U)K , then supi g-dim Xi ≥
k-dim O(U)K/J .

The geometric dimension we have been using so far has the advantage that it
is based on open sets and the intersection of open sets with hyperplanes are open
subsets of those hyperplanes. This observation often helps us in determining the
dimension of the intersection of a D-semianalytic set with a hyperplane. On
the other hand, one naturally expects that the dimension of a union of a finite
number of sets is the maximum of the dimensions of the individual sets. For this
purpose it is convenient to use the next definition of dimension.

Definition 4.8. For a nonempty subset X of Km define the weak dimension,
w-dim X , to be the greatest integer d such that the image of X under coordinate
projection onto a d dimensional coordinate hyper-plane is somewhere dense. If
X is empty, define w-dim X = −1. For p̄ ∈ Km, w-dim Xp̄ is defined the same
way as in geometric dimension.

It is clear that the weak dimension of a set dominates the geometric dimension.
In Section 6 we explore further relationships between the geometric and the weak
dimension and prove that in characteristic 0, weak dimension of aD-semianalytic
set is equal to the geometric dimension of the set (Theorem 6.2). For the moment
there is an easy yet useful lemma that we can obtain right away.

Lemma 4.9. Let X = K-Domm,nB∩V (I)K , for a generalized ring of fractions
B over Sm,n and I an ideal of B satisfying I = I(K-Domm,nB ∩ V (I)K). If
w-dim X = m+ n, then g-dim X = dimSm,nB/I = m+ n.

Proof. If w-dim X = m + n, then since X is a locally closed somewhere
dense subset of (K◦)m × (K◦◦)n, X has to contain an interior point p̄. We may
assume that p̄ is the origin and the open ball with radius |ε| around the origin
is contained in X for some ε ∈ K◦. Notice that

Tm+n ≃ B′ := B 〈x1/ε, ..., xm/ε, ρ1/ε, ..., ρn/ε〉

and by Lemma 3.6, dimSm,nB/I ≥ k-dim B′/IB′. Now the result follows from
the fact that if J ⊂ Tm+n and V (J)K = (K◦)m+n then J = (0). ⊣

§5. Normalization. In this section we obtain a normalization lemma that
enables us to compare the geometric dimension of a D-semianalytic set with the
restricted dimension of the associated quasi-affinoid algebras, which we do in
Section 6. Note that there is no “global” normalization for quasi-affinoid algebras
in general. That is, given a quasi-affinoid algebra A = Sm,n/J , it is not always
possible to find integers m′, n′ and a finite monomorphism φ : Sm′,n′ → A.
An example of failure of normalization can be found in Example 2.3.5 of [11]
where it was shown that it is not possible to normalize the quasi-affinoid algebra
A = S1,1/(xρ) in the sense above. Nevertheless in Lemma 5.3 we show that given
a quasi-affinoid algebra B it is possible to obtain finitely many normalized (in a
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slightly different sense than the above one) quasi-affinoid algebras Bj with the
union of the corresponding D-semianalytic sets (see Definition 1.8) equal to the
D-semianalytic set corresponding to B, and the finite monomorphisms φj act
as Weierstrass changes of variables. On the other hand one may have a quasi-
affinoid algebra A, in whose presentation some of the variables are designated
as parameter variables. For example this will be the case for us when we prove
Theorem 6.2 and 6.6 on dimensions of D-semianalytic sets as we will make such a
distinction between the variables corresponding the target space of a projection
map π and the variables corresponding the fiber space. The maps φj we find in
Lemma 5.3 will also fix all the parameter variables and hence we call Lemma 5.3
the Parameterized Normalization Lemma. This lemma will also play an essential
part in the proof of a parameterized version of Theorem 4.6 in a subsequent
paper [4], in which we will generalize the main theorem of [2] by Bartenwerfer.
The proof of Lemma 5.3 closely follows the ideas in the proof of Theorem 6.1.2
(Finiteness Theorem) of [11].
Although we name Lemma 5.3 as the Parameterized Normalization Lemma,

all of the statements and observations in this section are about refinements of
the process of normalization. Our results are distributed in several separate
statements for ease in reading. Hence, when we refer to the Parameterized Nor-
malization Lemma as opposed to referring to Lemma 5.3 elsewhere in this paper,
we trust that the reader will take this to be a referral to all of the statements
and observations in this section.
Before we state the main result of this section, we will generalize R-domains

(see Definition 1.9) to the parameterized case. Although these domains are not
essential for our discussion about dimension in general, because R-domains play
an important role in non-Archimedean geometry and because our results are
expressed in full generality in terms of these domains, we will take time to define
them.
First let us observe a nice property about the K-rational points in a domain

of generalized ring of fractions which helps justify the terminology parameterized
families of R-domains below. Let A be a generalized ring of fractions over Sm,n

and f ∈ A 〈y1, ..., yM 〉 [[λ1, ..., λN ]]s, then we can write f =
∑

α,β aαβy
αλβ where

aα,β ∈ A. Let p̄ ∈ DomSm,nA, then

f(p̄, y, λ) :=
∑

α,β

aα,β(p̄)y
αλβ

is an element of SM,N . This fact easily follows from Definition 1.2.

Definition 5.1. Let Sm+M,n+N denote the ring of separated power series
over the variables x1, ..., xm; y1, ..., yM ; ρ1, ..., ρn and λ1, ..., λN . Define a param-
eterized family of R-domains (PRD) over Sm+M,n+N with parameters x1, ..., xm
and ρ1, ..., ρn defined by the parameter ring A and the function ring B (over
(E,K), see Definition 1.2) inductively as follows:
i) Max Sm+M,n+N is a PRD over Sm+M,n+N defined by function ring B =

Sm+M,n+N and parameter ring A = Sm,n.
ii) Suppose X is a PRD over Sm+M,n+N defined by parameter ring A, and

function ring B, and let A′ be a generalized ring of fractions over A, suppose
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that (f1, ..., fk, h1, ..., hl, g) generate the unit ideal of B, put

B′ := A′ ⊗s
A B 〈f1/g, ..., fk/g〉 [[h1/g, ..., hl/g]]s .

Then X ′ = DomSm+M,n+NB
′ is a PRD over Sm+M,n+N defined by the parameter

ring A′, and the function ring B′.

In other words, a PRD is obtained by relaxing the conditions in the induc-
tive construction of generalized rings of fractions whose domains are R-domains.
This is in the sense that we allow adjoining arbitrary fractions from the param-
eter ring A. The resulting domains are not necessarily R-domains, but their
specializations at suitable points from the parameter space are, as the following
remark indicates.

Remark 5.2. If X is a PRD over Sm+M,n+N defined by the parameter ring
A, and the function ring B then by Lemma 2.3 we can write

(†) B = A 〈y1, ..., yM+S〉 [[λ1, ..., λN+T ]]s /({gM+iyM+i − hM+i}
S
i=1 ∪

{GN+jλN+j −HN+j}
T
j=1).

Let p̄ ∈ K-Domm,nA and define

Bp̄ = SM+S,N+T /({gM+i(p̄, y, λ)yM+i − hM+i(p̄, y, λ)}
S
i=1 ∪

{GN+j(p̄, y, λ)λN+j −HN+j(p̄, y, λ)}
T
j=1).

Then DomSM,NBp̄ is an R-domain over SM,N .

The next lemma and its proof describes the main body of the normalization
process.

Lemma 5.3 (Parameterized Normalization Lemma). Adopting the notation of
Definition 5.1 let X be a PRD over Sm+M,n+N (E,K) defined by the function
ring B and the parameter ring A. Write B as in Equation (†) and let I be an
ideal of B, then there exist finitely many parameterized families of R-domains
Xj defined by the function rings Bj, parameter rings Aj (which are generalized
rings of fractions over Sm+M,n+N(E,K) and Sm,n(E,K) respectively), together
with ideals Ij ⊂ Bj satisfying IBj ⊂ Ij and integers Mj, Nj such that for any
complete extension K ′ of K
i) K ′-Domm+M,n+NB =

⋃

jK
′-Domm+M,n+NBj,

ii) K ′-Domm+M,n+NB ∩ V (I)K′ =
⋃

j(K
′-Domm+M,n+NBj ∩ V (Ij)K′),

iii) K ′-Domm+M,n+NBj ∩ V (Ij)K′ ∩K ′-Domm+M,n+NBi = ∅ for i 6= j,
iv) writing each Bj in the form

Bj = Aj

〈

y1, ...., yM+Sj

〉 [[

λ1, ..., λN+Tj

]]

s
/({yM+kgj,M+k − hj,M+k}

Sj

k=1 ∪

{λN+lGj,M+l −Hj,M+l}
Tj

l=1),

after Weierstrass changes of variables among y’s and among λ’s separately, there
are finite monomorphisms

φj : Aj/(Ij ∩ Aj)
〈

y1, ..., yMj

〉 [[

λ1, ..., λNj

]]

s
→֒ Bj/Ij .
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Proof. The proof will be in two steps and first we will assume X is relatively
simple.
Case 1.

B = A 〈y1, ..., yM 〉 [[λ1, ..., λN ]]s .

We will prove this case by induction on the pair (M,N). Assume the state-
ment holds for all B′ = A′ 〈y1, ..., yM ′〉 [[λ1, ..., λN ′ ]]s for some generalized ring of
fractions A′ over Sm,n with (M ′, N ′) < (M,N) in the lexicographic order. Let
f1, ...fk generate I and write fi = Σaiµν(x, ρ)y

µλν , where aiµν(x, ρ) ∈ A. Let Ī
be the ideal of B generated by {aiµν}. Then by Lemma 2.2 Ī ∩ A is the ideal
generated by the elements {aiµν} and by Lemma 2.3 I ⊂ Ī hence the assertion
(iv) of the lemma is satisfied for A0 = A, B0 = B, X0 = X , I0 = Ī, M0 = M ,
N0 = N and the identity map φ0.
Next we will form finitely many generalized rings of fractions such that on

each of them one of the f1, ..., fk will be preregular in the sense of Definition
2.3.7 of [11] and domain of each of them will be a PRD. Notice that by Lemma
3.1.6 of [11], there is a finite index set Z ⊆ NM × NN , such that for each
p̄ ∈ K ′-Domm,n(A) \ V (Ī ∩ A)K′ there is an i0, 1 ≤ i0 ≤ k and an index
(µ0, ν0) ∈ Z such that

|ai0µ0ν0(p̄)| ≥ |aiµν(p̄)| for all i, µ, ν
|ai0µ0ν0(p̄)| > |ai0µν(p̄)| for all ν < ν0 and all µ
|ai0µ0ν0(p̄)| > |ai0µν0(p̄)| for all µ > µ0.

For every i, 1 ≤ i ≤ k and (µ, ν) ∈ Z, define

Aiµν = A

〈

{

alαβ
aiµν

}

lαβ

〉[[

{

aiγδ
aiµν

}

γδ

]]

s

where (γ, δ) runs through all pairs in Z with δ < ν or with α > µ and where
(l, α, β) runs through all remaining tuples in {1, ..., k} × Z.
For all (i, µ, ν) ∈ {1, ..., k} × Z, also define

Biµν = Aiµν 〈y1, ..., yM 〉 [[λ1, ..., λN ]]s ,

and put Xiµν = DomSm+M,n+NBiµν . Notice that each Xiµν is a PRD and by
the discussion above we have

K ′-Domm+M,n+N (B) ∩ V (I)K′ = (K ′-Domm+M,n+NB ∩ V (Ī)K′) ∪
⋃

iµν

(K ′-Domm+M,n+NBiµν ∩ V (IBiµν )K′),

and K ′-Domm+M,n+NB ∩ V (Ī)K′ ∩K ′-Domm+M,n+NBiµν = ∅.
Notice that although a−1

iµν may not be a member of Biµν , again by Lemma

3.1.6 of [11] (strong Noetherianness) we have a−1
iµνfi ∈ Biµν and it vanishes on

every point in K ′-Domm,nBiµν ∩V (I)K′ so that by replacing I with I∪{a−1
iµνfi},

we may assume that aiµν = 1. Notice also that

K ′-Domm+M,n+NBiµν ∩K ′-Domm+M,n+NBiαβ = ∅,

for all (µ, ν), (α, β) ∈ Z, with (µ, ν) 6= (α, β) and in fact by further subdividing
into PRDs we may assume that the K ′-Domm+M,n+NBiµν are pairwise disjoint.
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Next we will concentrate on the individual PRDs defined above. Fix an
i0µ0ν0 ∈ {1, ..., k} × Z and define

gi0µ0ν0 =
∑

µ

ai0µν0y
µ.

Using gi0µ0ν0 , we define two PRDs

Vi0µ0ν0 = DomSm+M,n+NBi0µ0ν0 〈yM+1〉 /(yM+1gi0µ0ν0 − 1)
Wi0µ0ν0 = DomSm+M,n+NBi0µ0ν0 [[λN+1]]s /(λN+1 − gi0µ0ν0)

which satisfy Vi0µ0ν0 ∩Wi0µ0ν0 = ∅ and Vi0µ0ν0 ∪Wi0µ0ν0 = Xi0µ0ν0 . Hence it
is enough to show that the lemma holds for both Vi0µ0ν0 and Wi0µ0ν0 instead of
X . First we will find PRDs over Sm+M,n+N where the conclusion of the lemma
holds for Vi0µ0ν0 . Define

Gi0µ0ν0 = λν0 +
∑

ν 6=ν0,µ

ai0µνyM+1y
µλν

≡ yM+1fi0 mod (yM+1gi0µ0ν0 − 1)Bi0µ0ν0 〈yM+1〉

Observe that Gi0µ0ν0 and F = yM+1gi0µ0ν0 − 1 are preregular in λ and y
respectively. Thus after a Weierstrass change of variables among λ’s, Gi0µ0ν0

becomes regular in λN , and after a change of variables among y’s, F becomes
regular in yM+1. Note that both of these variable changes are automorphisms
of Bi0µ0ν0 〈yM+1〉.
Applying the Weierstrass Division Theorem (Theorem 2.3.8 of [11]) to first

divide by Gi0µ0ν0 , and then by F , we see that for some ideal I ′, there is a finite
monomorphism

(‡) ψ : Ai0µ0ν0 〈y1, ..., yM 〉 [[λ1, ..., λN−1]]s /I
′ →֒ Bi0µ0ν0 〈yM+1〉 /

(f1, ..., fk, F ).

Lexicographically (M,N − 1) < (M,N), so applying the inductive hypothesis,
there are finitely many parameterized families of R-domains Yj over Sm+M,n+N−1

defined by the parameter rings Aj and the function rings Cj (whose presentation
do not involve λN and yM+1), and there are ideals Jj ⊂ Cj satisfying I

′Cj ⊂ Jj ,
integers Mj ≤ M , Nj ≤ N − 1 and Weierstrass changes of variables ψj fixing
the parameter rings Aj such that each

ψj : Aj/(Jj ∩Aj)
〈

y1, ..., yMj

〉 [[

λ1, ..., λNj

]]

s
→֒ Cj/Jj

is a finite monomorphism and also the assertions (i), (ii) and (iii) of the lemma are
satisfied if we substitute K ′-Domm+M,n+N−1Ai0µ0ν0 〈y1, ..., yM 〉 [[λ1, ..., λN−1]]s
for K ′-Domm+M,n+NB, K ′-Domm+M,n+N−1Cj for K ′-Domm+M,n+NBj , I

′ for
I and Jj for Ij . Furthermore by Lemma 2.5 we may assume that each Jj is a
radical ideal of Cj .
Now define

Bj = Cj [[λN ]]s 〈yM+1〉 /(yM+1gi0µ0ν0 − 1)

and notice that each Bj is a generalized ring of fractions over Sm+M,n+N . Fur-
thermore each Xj = DomSm+M,n+NBj is a PRD over Sm+M,n+N .

Let us by ψ̄ denote the change of variables that we do to obtain ψ as in the
Equation (‡) and let ψ̄(Jj) denote the set of elements we obtain through applying
this operation on the ideal Jj . Let Ij be the ideal of Bj which is generated by
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I ∪ ψ̄(Jj). With this notation Lemmas 2.4 and 2.3 imply that for each j ψ
extends to a finite monomorphism

ψ̄j : Cj/Jj → Bj/Ij

whose kernel is contained in the nilradical of Cj/Ij which is trivial by the
assumption that Jj is a radical ideal of Cj . By Lemma 2.2 we also have

ψ̄−1
j (IBj) ∩ Cj ⊂ I ′Cj ⊂ Jj . Hence composing ψj with ψ̄j we get a finite

monomorphism

φj : Aj/(Ij ∩ Aj)
〈

y1, ..., yMj

〉 [[

λ1, ..., λNj

]]

s
→֒ Bj/Ij ,

as described in the statement (iv) of the lemma. In this case we also have
K ′-Domm+M,n+NBj∩V (IBj)K′ = K ′-Domm+M,n+NBj∩V (Ij)K′ and the state-
ments (i), (ii) and (iii) of the lemma follow easily with the substitution of
K ′-Domm+M,n+NBi0µ0ν0 〈1/gi0µ0ν0〉 for K

′-Domm+M,n+NB.
For partitioning Wi0µ0ν0 into PRDs, we follow the same lines as above, this

time using

F = λN+1 − gi0µ0ν0

which is preregular in λ.
Case 2.

B = A 〈y1, ..., yM+S〉 [[λ1, ..., λN+T ]]s /({gM+iyM+i − hM+i}
S
i=1 ∪

{GN+lλN+l −HN+l}
T
l=1).

Let B′ be A 〈y1, ..., yM+S〉 [[λ1, ..., λN+T ]]s, then by the discussion following
Lemma 2.3 there is an ideal I ′ ⊂ B′ corresponding to I. By Case 1 we can
find finitely many PRDs Yj over Sm+M+S,n+N+T defined by function rings B′

j ,

parameter rings Aj such that there are ideals Ij ⊂ B′
j containing I ′Bj , integers

Mj , Nj and finite monomorphisms φj

φj : Aj/(I
′
j ∩ Aj)

〈

y1, ..., yMj

〉 [[

λ1, ..., λNj

]]

s
→֒ B′

j/I
′
j ,

and the statements (i), (ii) and (iii) of the lemma are satisfied if we substi-
tute B′ for B, I ′ for I, B′

j for Bj , I
′
j for Ij and K ′-Domm+M+S,n+N+T for

K ′-Domm+M,n+N .
Notice that each B′

j/I
′
j can be thought of as a quotient of a generalized ring of

fractions Bj over Sm+M,n+N and an ideal Ij of Bj . Notice also that the domain
Xj of each Bj over Sm+M,n+N is a PRD. These Bj and Ij satisfy the statement
(i), (ii) and (iii) of the lemma. ⊣

Remark 5.4. i) This proof of Lemma 5.3 still works if we allow X to be the
domain of an arbitrary generalized ring of fractions. In that case the domains Xi

are not necessarily PRDs, but they are domains of generalized rings of fractions.
ii) Although we did not obtain a normalization theorem for the algebras in

consideration, the algebras Bj/Ij that come up at the end have the nice prop-
erty that the union of the associated D-semianalytic sets K ′-Domm+M,n+NBj ∩
V (Ij)K′ is the D-semianalytic set K ′-Domm,nB ∩ V (I)K′ that we started with.
Notice that the normalization process goes over the non-parameter y and λ
variables as long as it is possible, so after the Weierstrass changes of variables
y1, ..., yMj , λ1, ..., λNj become free variables. That is to say that intuitively the
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normalization process terminates when the “relations” remaining are only among
the parameter variables x and ρ.

In fact we can say something more about the Krull dimensions after the nor-
malization as the following lemma indicates.

Lemma 5.5. Let B be as in Lemma 5.3 and suppose that I is an ideal of B
satisfying I = I(K-Domm+M,n+NB ∩ V (I)K) then in Lemma 5.3, Ij can be
chosen such that k-dim B/I ≥ k-dim Bj/Ij. Moreover, in that case, for each
minimal prime divisor p of Ij there is a maximal ideal m ∈ DomSm+M,n+NBj

such that p ⊂ m.

Proof. Apply Lemma 5.3 to I, B, and A to get PRDs Xj defined by the
rings of functions Bj and parameter rings Aj , ideals Ij ⊂ Bj and integers Mj ,
Nj so that each

φj : Aj/(Ij ∩Aj)
〈

y1, ..., yMj

〉 [[

λ1, ..., λNj

]]

s
→֒ Bj/Ij

is a finite monomorphism, each φj is a Weierstrass maps among y and λ sepa-
rately and conditions (i), (ii) and (iii) of Lemma 5.3 are satisfied. Let us fix a j
and write

A = Ss,t/({gkxk − hk}sk=m+1 ∪ {ḡiρi − h̄i}ti=n+1)

Aj = Ss′,t′/({gkxk − hk}s
′

k=m+1 ∪ {ḡiρi − h̄i}t
′

i=n+1)
B = (A⊗s

A SS,T )/({Gkyk −Hk}Sk=M+1 ∪ {Ḡiλi − H̄i}Ti=N+1)

Bj = (Aj ⊗
s
A SS′,T ′)/({Gkyk −Hk}

S′

k=M+1 ∪ {Ḡiλi − H̄i}
T ′

i=N+1)

where m ≤ s ≤ s′, n ≤ t ≤ t′ and M ≤ S ≤ S′, N ≤ T ≤ T ′.
All is clear if Ij = Bj , hence assume that Ij is a proper ideal of Bj and let J

be a radical ideal of Aj which contains Ij ∩ Aj . Notice that φj induces a finite
map

φ′j : Aj/J
〈

y1, ..., yMj

〉 [[

λ1, ..., λNj

]]

s
→֒ Bj/(I ∪ J),

and by Lemma 2.4 the nilradical of Aj/J
〈

y1, ..., yMj

〉 [[

λ1, ..., λNj

]]

s
contains

the kernel of φ′j . By Lemma 2.5 that nilradical is the ideal J and by Lemma

2.3 it follows that φ′j is a finite monomorphism. Therefore by replacing Ij
with Ij ∪ I(K-Domm,nAj ∩ V (Ij ∩ Aj)K) · Bj we may assume that Ij ∩ Aj =
I(K-Domm,nAj ∩ V (Ij ∩Aj)K).
Now assume that p is a minimal prime divisor of Ij and let us write p̄ for the

corresponding ideal in Ss′+S′,t′+T ′ . Going back to the process of normalization
we see that Hk = 1 for k > S and Ḡi = 1 for i > T , hence Gk and Ḡi

are not contained in p̄ for k > S and i > T . On the other hand, by the
Going Up Theorem (Theorem 9.4 of [13]) for integral extensions, p∩φj(Aj/(Ij ∩
Aj)

〈

y1, ..., yMj

〉 [[

λ1, ..., λNj

]]

s
) has to be a minimal prime of the ring Aj/(Ij ∩

Aj)
〈

y1, ..., yMj

〉 [[

λ1, ..., λNj

]]

s
and therefore by Lemma 2.2 p̄∩Ss′,t′ is a minimal

prime divisor of the ideal corresponding to Ij ∩ Aj in Ss′,t′ . Because we have
Ij ∩ Aj = I(K-Domm,nAj ∩ V (Ij ∩ Aj)K), p̄ ∩ Ss′,t′ can not contain gk, ḡi for
k > m and i > n, and therefore neither can p̄. Hence there is a maximal ideal m
of Ss′+S′,t′+T ′ which contains p̄ but none of the gk, ḡi for k > m and i > n. So
by Lemma 3.6 we have

k-dim B/I ≥ k-dim (Ss′+S′,t′+T ′)m/p̄m = k-dim Bj/p.
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Finally let p′ be p̄ ∩ Ss+S,t+T . If there is a prime ideal q̄ between the ideal
corresponding to I in Ss+S,t+T and p′, and if q is the canonical image of q̄ in B,
and q′ is the ideal of Ss′+S′,t′+T ′ which corresponds to qBj then by the argument
above the gk, ḡi are not contained in q′ for k > m and i > n. Then again by
Lemma 3.6

k-dim B/q = k-dim Bj/qBj < k-dim Bj/p

contradicting the assumption that p is minimal over Ij as I ⊂ qBj. Therefore p
′

is a minimal prime divisor of the ideal corresponding to I in Ss+S,t+T and hence
it can not contain Gk, Ḡi for M < k ≤ S and N < i ≤ T by the assumption
that I = I(K-Domm+M,n+NB ∩ V (I)K), and so neither can p̄. This proves the
second statement of the lemma. ⊣

Remark 5.6. i) Notice that as in part (i) of Remark 5.4 the assumption that
K-Domm+M,n+NB is a PRD is again not necessary in the proof of the above
lemma.
ii) In fact we can make another improvement in the statement of Lemma 5.3.

We claim that each Ij can be chosen such that

Ij = I(K-Domm+M,n+NBj ∩ V (Ij)K).

We can assume that I = I(K-Domm+M,n+NB ∩ V (I)K) and apply Lemma
5.3. Let the ideals Ij be as in the statement of Lemma 5.5 so that k-dim B/I ≥
k-dim Bj/Ij for all j. It is clear that the statement is true if k-dim B/I = 0.
Assume that the claim holds for all generalized rings of fractions C and ideals
J ⊂ C such that k-dim C/J < d and assume k-dim B/I = d. Put

Jj = I(K-Domm+M,n+NBj ∩ V (Ij)K),

and replace each Ij with Jj in the statement of Lemma 5.3. Observe that the
assertions (i), (ii) and (iii) of Lemma 5.3 still hold and the assertion (iv) is still
true for all Jj satisfying k-dim Bj/Jj = k-dim Bj/Ij . On the other hand for
Jj satisfying k-dim Bj/Jj < k-dim Bj/Ij ≤ d, we apply Lemma 5.3 once again
replacing I with Jj and B with Bj . By induction and Lemma 5.5 we have the
claim.

In the next lemma we take the normalization one step further by applying the
normalization process also to the parameter rings Aj of Lemma 5.3.

Corollary 5.7. Using the notation of Definition 5.1 let X be a PRD over
Sm+M,n+N (E,K) defined by the function ring B. Let I be an ideal of B, then
there exist finitely many PRDs Xj defined by the function rings Bj, parameter
rings Aj, together with ideals Ij ⊂ Bj satisfying IBj ⊂ Ij and integers mj, nj,
Mj, Nj, mj + nj ≤ m + n, Mj + Nj ≤ M + N such that for any complete
extension K ′ of K
i) K ′-Domm+M,n+NB =

⋃

jK
′-Domm+M,n+NBj,

ii) K ′-Domm+M,n+NB ∩ V (I)K′ =
⋃

j(K
′-Domm+M,n+NBj ∩ V (Ij)K′),

iii) K ′-Domm+M,n+NBj ∩ V (Ij)K′ ∩K ′-Domm+M,n+NBi = ∅ for i 6= j,
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iv) writing each Bj as

Bj = Aj

〈

y1, ...., yM+Sj

〉 [[

λ1, ..., λN+Tj

]]

s
/({yM+kgj,M+k − hj,M+k}

Sj

k=1 ∪

{λN+lGj,M+l −Hj,M+l}
Tj

l=1),

where Aj = Ssj ,tj/Jj for some Jj ∈ Ssj ,tj/Jj and Ssj ,tj is the ring of separated
power series over the variables x1, ..., xsj and ρ1, ..., ρtj we have finite monomor-
phisms

φj : Smj ,nj

〈

y1, ..., yMj

〉 [[

λ1, ..., λNj

]]

s
→֒ Bj/Ij

such that
φ′j = φj |Smj,nj

: Smj ,nj →֒ Aj/(Ij ∩ Aj)

is also a finite monomorphism and φj is a Weierstrass change of variables among
x, ρ, y and λ variables separately.

Proof. After applying Lemma 5.3 to B and I, we apply it once again to Aj

and Ij by considering x and ρ variables as non-parameter variables and apply
Lemma 2.4. The statement mj + nj ≤ m+ n, Mj +Nj ≤ M +N follows from
Lemma 5.5. ⊣

§6. Applications of Parameterized Normalization. In this section we
apply the normalization process of the previous section to prove our main results.
We are primarily interested in establishing the relations between the dimensions
that can be associated with D-semianalytic sets. See Definitions 3.1, 4.4 and 4.8
for these concepts of dimension. We establish equalities among these dimensions
in Theorem 6.2, Corollary 6.3 and Lemma 6.4. As a final application, we prove
Theorem 6.6 which links the dimension of a D-semianalytic set over a field of
characteristic 0 with the dimension of its projection onto a coordinate hyperplane
and dimensions of fibers of points in this projection.

Lemma 6.1. Let B be a generalized ring of fractions over Sm+M,n+N , I an
ideal of B satisfying I = I(K-Domm+M,n+NB ∩ V (I)K), and π : (K◦)m+M ×
(K◦◦)n+N → (K◦)m × (K◦◦)n the projection map. If π(K-Domm+M,n+NB ∩
V (I)K) is a somewhere dense set, then k-dim B/I = dimSm+M,n+NB/I ≥ m+n.

Proof. Apply Lemma 5.5 to B and I considering (K◦)m × (K◦◦)n to be
the space of parameters to obtain generalized rings of fractions Bj , Aj , ideals
Ij ⊂ Bj and integersMj , Nj as described in the lemma. By Remark 5.6 we may
assume that Ij = I(K-Domm+M,n+NBj ∩ V (Ij)K). Notice that for some j0,
K-Domm,nAj0 ∩ V (Ij0 ∩Aj0)K has to be somewhere dense therefore by Lemma
4.9 k-dim Aj0/(Ij0 ∩Aj0) = dimSm,nAj0/(Ij0 ∩Aj0 ) = m+n, hence k-dim B/I ≥
k-dim Bj0/Ij0 ≥ m+ n. ⊣

Combining this lemma with Theorem 4.6, we have established the following.

Theorem 6.2. Assume Char K = 0. For a generalized ring of fractions B
over Sm,n and ideal I of B satisfying I = I(K-Domm,nB ∩ V (I)K),

w-dim K-Domm,nB ∩ V (I)K = g-dim K-Domm,nB ∩ V (I)K = k-dim B/I.

The following result about local and global dimensions of a D-semianalytic set
also easily follows.
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Corollary 6.3. Assume Char K = 0, then for a D-semianalytic set X we
have

g-dim X = sup
p̄∈X

g-dim Xp̄.

Proof. By the equality of the weak dimension and the geometric dimension in
Char K = 0, it is enough to consider sets of type K-Domm,nB∩V (I)K where B
is a generalized ring of fractions over Sm,n and I = I(K-Domm,nB∩V (I)K). By
Theorem 4.6,K-Domm,nB∩V (I) contains a (dimSm,nB/I)-dimensional manifold
and the result follows from Lemma 3.6. ⊣

A weaker result in the case Char K = p > 0 is the following.

Lemma 6.4. Suppose that Char K = p > 0, and K is algebraically closed or
[K : Kp] < ∞ and there is a countable basis for the topology of K◦. Then for a
D-semianalytic set X we have

g-dim X = sup
p̄∈X

g-dim Xp̄.

Proof. The case where K is algebraically closed is proved in Lemma 2.3 of
[11]. In the case [K : Kp] < ∞ and there is a countable basis for the topology
of K◦, by induction and Lemma 3.6 we see that for each p̄ ∈ X there is an R-
domain U such that p̄ is an element of the set W of K-rational points in U and
there is an ideal J ⊂ OK(U) such that for each R-domain U ′ ⊂ U such that p̄ is
an element of the setW ′ of K-rational points in U ′, k-dim OK(U ′)/I(W ′∩X) =
k-dim OK(U)/J . Now by Theorem 4.7 there is a neighborhood W ′′ of p̄ such
that W ∩W ′′ ∩X is a union of D-semianalytic K-manifolds Xi such that supi
g-dim Xi = k-dim OK(U)/J , which dominates w-dim W ∩W ′′ ∩X by Lemma
6.1. Now the result follows from the assumption that there is a countable basis
for the topology and the Baire Category Theorem for complete metric spaces. ⊣

Next we will concentrate on the case Char K = 0 and will prove additivity of
dimensions of fibers and projections. We will need some groundwork before we
can get to the main result.
For a subset S of (K◦)m+M × (K◦◦)n+N we will adopt the notation

S(d) := {p̄ ∈ (K◦)m × (K◦◦)n : w-dim S(p̄) ≥ d where S(p̄) denotes

the fiber of the point p̄ in S}.

We are interested in the situation where S(d) is a somewhere dense subset of
(K◦)m×(K◦◦)n. The next lemma shows that if S has this property and is broken
up into finitely many subsets, then one of those subsets also has this property.

Lemma 6.5. Let S be a subset of (K◦)m+M×(K◦◦)n+N and S(d) be somewhere

dense. Suppose S =
⋃k

i=1 Si, then there is an i0 such that S
(d)
i0

is somewhere
dense.

Proof. Let p̄ ∈ S, so that the fiber S(p̄) of p̄ in S is the union of fibers
Si(p̄) of p̄ in each Si. As there are only finitely many coordinate hyperplanes,
we may assume that there is a d-dimensional coordinate projection π such that
S(d) consists of points p̄ such that the projection π(S(p̄)) are somewhere dense.

Notice that π(S(p̄)) =
⋃k

i=1 π(Si(p̄)) hence for each p̄ ∈ S(d) there must be some
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ip̄ such that π(Sip̄(p̄)) is somewhere dense. Therefore p̄ ∈ S(d) implies p̄ ∈ S
(d)
ip̄

for some ip̄, which in turn implies S(d) =
⋃k

i=1 S
(d)
i . So there must be an i0 such

that S
(d)
i0

is somewhere dense. ⊣

If X ⊂ (K◦)m+M ×(K◦◦)n+N is of geometric dimension m+n+d then clearly
for some choice of coordinate hyperplane (K◦)m × (K◦◦)n, X(d) contains a non-
empty open set hence is somewhere dense. A natural question is the following.
If we know X(d) to be somewhere dense, is it true that g-dim X ≥ m + n + d?
In characteristic 0 the answer is positive.

Theorem 6.6. With the above notation suppose Char K = 0 and let X be a
D-semianalytic subset of (K◦)m+M × (K◦◦)n+N . If X(d) is somewhere dense,
then g-dim X ≥ m+ n+ d.

Proof. Since a D-semianalytic set is a finite union of sets of the form

K-Domm+M,n+NBi ∩ V (Ii)K ,

where each Bi is a generalized ring of fractions over Sm+M,n+N , by Lemma
6.5 we may assume that X = K-Domm+M,n+NB ∩ V (I)K for some general-
ized ring of fractions B and an ideal I = I(K-Domm+M,n+NB ∩ V (I)K). No-
tice that in this case the hypothesis for the second assertion of Lemma 5.5 is
satisfied and by Remark 5.6, Lemma 5.5 and Lemma 6.5 we can find gener-
alized rings of fractions B′ over Sm+M,n+N , A′ over Sm,n; an ideal J ⊂ B′

containing IB′, integers M ′, N ′ and a Weierstrass change of variables φ̄, such
that (K-Domm+M,n+NB

′∩V (J)K)(d) is somewhere dense, K-Domm+M,n+NB∩
V (I)K contains K-Domm+M,n+NB

′ ∩ V (J)K , and φ̄ induces a finite monomor-
phism

φ : A′/(J ∩ A′) 〈y1, ..., yM ′〉 [[λ1, ..., λN ′ ]]s →֒ B′/J.

Furthermore we have

dimSm+M,n+NB/I = k-dim B/I ≥ k-dim B′/J = dimSm+M,n+NB
′/J.

By part (ii) of Remark 5.6, we can also assume that

J = I(K-Domm+M,n+NB
′ ∩ V (J)K).

Next we observe that projection ofK-Domm+M,n+NB
′∩V (J)K onto (K◦)m×

(K◦◦)n is a somewhere dense set contained in K-Domm,nA
′ ∩ V (J ∩ A′)K . By

Lemma 4.9, we have k-dim A′/(J ∩ A′) ≥ dimSm,nA
′/(J ∩ A′) = m + n. Ob-

serve also that φ is an injection fixing parameters and taking fibers to fibers,
therefore if p̄ ∈ (K-Domm+M,n+NB

′ ∩ V (J)K)(d) and m is the maximal ideal
of A′ corresponding to p̄ then (A′/(J ∩A′) 〈y1, ..., yM ′〉 [[λ1, ..., λN ′ ]]s)/m, which
is isomorphic to SM ′,N ′ , is mapped injectively and finitely into (B′/J)/m. No-
tice that (B′/J)/m is a quasi-affinoid algebra which defines the D-semianalytic
subset X(p̄) of (K◦)M × (K◦◦)N . By assumption w-dim X(p̄) ≥ d and hence
M ′ +N ′ ≥ dimSM,N (B′/J)/m ≥ d by Theorem 6.2. Therefore

k-dim A′/(J ∩ A′) 〈y1, ..., yM ′〉 [[λ1, ..., λN ′ ]]s ≥ m+ n+ d

and the statement follows from Theorem 6.2. ⊣
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