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Abstract. We prove that under reasonable assumptions, every cat (compact abstract
theory) is metric, and develop some of the theory of metric cats. We generalise Mor-
ley’s theorem: if a countable Hausdorff cat T has a unique complete model of density
character λ ≥ ω1, then it has a unique complete model of density character λ for every
λ ≥ ω1.

Introduction

ÃLoś’s conjecture, subsequently known as Morley’s theorem, states that:

Let K be an elementary class in a countable language. Then K is cate-
gorical in one uncountable cardinal if and only if it is categorical in every
uncountable cardinal.

This was subsequently generalised, with some variations, to uncountable languages, as
well as to various kinds of non-elementary classes, and still serves as a first test-bed for
many non-first-order frameworks.

The class of Hilbert spaces satisfies a variant of ÃLoś’s conjecture which is not covered
by any previous result: A Hilbert space is uniquely characterised by its density character,
provided the latter is uncountable. This “positive instance” of ÃLoś’s conjecture is peculiar
for two reasons: First, we are dealing with a class of complete structures; since a countable
increasing union of complete structures is not in general complete, this is not an abstract
elementary class. Second, we measure the size of a structure by its density character
rather than its cardinality. Thus our example does not fit in the abstract elementary
classes programme, where most (if not all) of the work on uncountable categoricity to
date has been done. It should rather be viewed in the framework for the model-theoretic
study of Banach space structures set by Henson and Iovino in [Hen76, HI02], where the
density character is indeed the “correct” measure of size.

The present paper has two main goals:
First, we set up a model theoretic framework that generalises simultaneously first order

model theory and Henson’s logic for Banach space structures. In fact, the framework in
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question has already been defined as Hausdorff cats in [Ben03a], where we were mostly
interested in the properties of a big saturated universal domain. Here we show that every
(countable) Hausdorff cat admits a metric, which is unique up to uniform equivalence,
and has a natural class of complete sub-structures of the universal domain associated with
it, which we call its complete models. We see that saturated Banach space structures
(in the sense of Henson) are universal domains for Hausdorff cats, whose metric is the
norm metric, and whose complete models are the complete Banach space structures
approximately elementarily equivalent to the universal domain. The same holds for first
order theories, only the metric is discrete. Using the density character as a measure for
the size of a complete model we get a notion of categoricity which again generalises both
the first order case and Henson’s definitions.

Second, with the above definitions, we state and prove ÃLoś’s conjecture for arbitrary
countable Hausdorff cats. Doing this we borrow ideas from Iovino [Iov96] and Shelah
[She75].

In Section 1 we give a few reminders concerning the setting in which we work, and give
some examples.
In Section 2 we introduce the abstract notion of distance and show that in most reason-
able cases it corresponds to an actual definable metric.
In Section 3 we define the analogue of an elementary sub-model of the universal domain,
and generalise basic first-order model-theoretic results to this context.
In Section 4 we see how the notion of positive distance allows us to refine some simplicity-
and stability-related notions.
In Section 5 we put everything together and prove the main result, namely the uncount-
able categoricity theorem for Hausdorff cats.

1. Preliminary remarks about the framework

We aim for generality, and in particular we wish to obtain a theorem that extends the
first-order version. Our first step therefore is to take a relatively general framework and
look for natural assumptions that would allow us to carry out the argument.

The chosen framework is that of compact abstract theories, or cats. Cats were originally
introduced and developed in [Ben03a, Ben03b, Ben03c] with the intention of finding a
model-theoretic framework, which should be as general as possible while still allowing the
development of simplicity theory: dividing, local ranks, independence, canonical bases,
theory of definable groups, etc. Although this was indeed achieved using not much
more than some compactness assumption, it did not give rise to any applicable theory
of supersimplicity: classes of non-first-order structures (such as Hilbert spaces), which
by every intuition should be superstable, did not seem to be so (at least not with the
crude definitions we could give at that time). Also, with arbitrary cats there is no way
to capture the notion of a “complete” model (one notion of a model is that of an e.c.
model: indeed, Shelah proves in [She75] a variant of Morley’s theorem for this notion,
but this is not what we are looking for).
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On the other hand, real-life cats are not as wild as the most general case. In particu-
lar, their type-spaces are usually equipped with a Hausdorff (and compact) topology, a
property which has several implications:

• First, it removes an annoying question concerning the “correct language” for a
cat: given a category of structures that can be represented by a cat (a compact
abstract elementary category [Ben03a]), there is always a minimal language with
which this can be done, but it is not at all clear whether there is a maximal
one; on the other hand, a compact Hausdorff topology is maximal among the
compact topologies, so a Hausdorff cat is indeed equipped with a maximal (and
therefore “correct”) language.

• Second, it implies thickness [Ben03c], which is required for a full development of
simplicity theory.

• Third, and most importantly, we prove here that a Hausdorff cat (with a count-
able language) admits a definable metric which is unique up to uniform equiva-
lence. This in turn allows us to define complete models, as well as to develop a
satisfactory theory of supersimplicity, ω-stability, etc..

Thus we allow ourselves:

Convention 1.1. Throughout this paper we only consider Hausdorff cats, namely cats
whose type-spaces are (compact and) Hausdorff.

The development of ω-stability in the presence of a metric is closely related to (and
partially a generalisation of) Henson and Iovino’s model theory for Banach structures,
and in particular Iovino’s development of ω-stability in [Iov96]. There are still a few
essential differences in the approach:

• In Henson and Iovino’s treatment of Banach space structures, they consider the
metric as an extra-logical piece of information, whereas here it is deduced from
purely logical information. (In the special case of Banach space structures, all
the definable metrics are uniformly equivalent to the norm.)

• Since all the definable metrics are uniformly equivalent, they all induce the same
uniform structure on the space of types, whereas Henson and Iovino are more
lenient and consider any uniform structure on the space of types satisfying some
requirements. However, although various definitions make sense with their notion
of uniform structure, the applications we need seem to require that the uniform
structure be the one induced by the definable metric: Thus from our point of
view there is no real loss of generality here, and there is actually a significant
gain in simplicity of the exposition.

• Finally, Henson and Iovino work extensively with the syntactic notions of for-
mulas and approximations, whereas what we do is independent of any particular
choice of language. We find it many times convenient to ignore formulas and
work instead with the purely semantic notions of open and closed sets in the
logic topology. (This distinction is merely cosmetic.)
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Given a Hausdorff cat T , there are several additional “nice” conditions that come to
mind:

(i) We say that T is totally disconnected if its type-spaces are. In other words, T
is totally disconnected if there is a clopen basis for the type-space topology, and
therefore a possible choice of language with negation (although equality may still
be only type-definable). We may also say in this case that T admits negation.

(ii) We say that T has positive inequality, or that it is discrete, if for every surjective
map f : n → m, the map f ∗ : Sm(T ) → Sn(T ) is open (for finite n; we never
require the infinite analogue of this condition). This is equivalent to equality
being clopen, and implies that the universal domain is discrete in a sense that
will be defined below, whence the terminology.

(iii) We say that T is open, or that it eliminates the universal quantifier, if for every
injective map f : n → m, the map f ∗ : Sm(T ) → Sn(T ) is open. Here the finite
case implies the infinite one. A cat T is open if and only if for every partial types
p(x, y), the property ∀y p(x, y) is defined by a partial type in x.

For example, we show in [Ben03a] that first order cats are precisely those satisfying all
three conditions, and Robinson theories are characterised by the first two. Hyperimagi-
nary sorts on the other hand behave in an opposite manner: we do not expect them to
preserve any of the first two conditions, but we prove in [Ben03c] that they preserve the
third.

In this respect, the “analytic” examples for cats behave much like hyperimaginaries
in first-order theories: they are not totally disconnected and inequality is far from being
positive, but they are open.

Example 1.2. Every approximately elementary class of Banach space structures, pre-
sented as a cat (the universal domain being the unit ball of a saturated model, and the
positive properties being those definable with positive bounded formulas) is (Hausdorff
and) open. This is a consequence of Henson’s logic admitting universal quantification.

Example 1.3. Schrödinger’s cat M defined in [Ben] is open.

These examples, as well as the observation that hyperimaginary sorts preserve open-
ness, lead us to the impression that openness is a natural assumption even for cats which
are neither totally disconnected nor discrete; indeed, this assumption would make the
statements and proofs of several of our results below somewhat simpler. Still, with some
additional work (namely the introduction of the Q-topology in Section 3) we manage to
prove our results in the non-open case as well.

Notation and terminology are pretty much standard.
For convenience, we will assume most of the time that there is a single home sort :

in case there are several, some of the statements should be adapted accordingly. A
hyperimaginary sort is the quotient of a possibly infinite tuples in the home sort by a
type-definable equivalence relation. We use the term sort somewhat loosely: it can be
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the home sort, a hyperimaginary sort, or in fact any (possibly infinite) tuple of such
sorts: of course, a tuple of sorts can always be viewed as a hyperimaginary sort, so this
is legitimate.

Accordingly, lowercase letters a, b, etc., denote elements in any sort (so in fact they
may denote infinite tuples), and x, y, etc., denote variables. We consider each variable
to be associated to a fixed sort, and may in fact use it to designate that sort.

A relation is type-definable if it is logically equivalent to a partial type. The distinction
between this notion and that of a relation being definable, i.e., with a single formula, does
not make sense here, and the latter will therefore be avoided.

2. Distance and topology

In this section we will ordinarily use the Hausdorff assumption through the following
lemma:

Lemma 2.1. Let pi(xi, ai) be partial types for i < α, where each xi is a sub-tuple of a big
tuple of variables x. If

∧
i<α pi(xi, ai) is inconsistent, then there are formulas ϕi(xi, ai)

such that pi(xi, ai) ∧ ϕi(xi, ai) is contradictory for each i < α, and ²
∨

i<α ϕi(xi, ai).
Moreover, this can be done so that ϕi(xi, ai) is the false formula ⊥ for all but finitely
many i < α.

Proof. Then each pi(xi, ai) defines a closed set Ki ⊆ Sx(ā). Since Sx(ā) is compact
and Hausdorff, and

⋂
i Ki = ∅, we can find open neighbourhoods Ui ⊇ Ki such that⋂

i Ui = ∅, and moreover Ui = Sx(ā) for all but finitely many i < α. Each Ui is
defined by ¬qi(x, ā) for some partial type qi, so each qi(x, ā) contradicts pi(xi, ai), and
²

∨
i qi(x, ā).

Let x′
i = x r xi, ri(z̄, yi) = tp(ā, ai), and define q′i(xi, yi) = ∃x′

i, z̄ [ri(z̄, yi) ∧ qi(x, z̄)].
Then q′i(xi, ai) still contradicts pi(xi, ai), and ²

∨
i q

′
i(xi, ai) (since qi(x, ā) ` q′i(xi, ai)).

Finally, we can find a single formula ϕi(xi, ai) ∈ q′i(xi, ai) that contradicts pi(xi, ai), and
²

∨
i ϕi(xi, ai) as required.

For the moreover part, recall that Ui = Sx(ā) for all but finitely many i < α, and in such
case we may take qi = q′i = ϕi = ⊥. qed2.1

2.1. Distance. As we do not wish to assume that a metric is given externally, we define
an internal notion of abstract distance:

Definition 2.2. A distance is a reflexive type-definable relation ε(x, y) (without param-
eters). The variables x and y are of course in the same sort, and we say that ε is a
distance in that sort.
If ε(x, y) is a distance we define ←−ε (x, y) = ε(y, x). It is symmetric if ←−ε = ε. Otherwise
we define ←→ε = ε ∧←−ε .

The minimal distance is x = y, and the maximal one the true formula >. They will
be denoted by 0 and ∞, respectively.
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We say that ε ≤ ε′ if ε ` ε′, and ε < ε′ if ε ⊆ ε̊′, where we interpret ε and ε′ as subsets
of S2(T ) and ε̊′ is the interior of ε′ there. In other words, ε < ε′ if and only if there is
a partial type π (without parameters) such that ε ` ¬π ` ε′, so π ∧ ε is contradictory
and ² ε′ ∨ π, and we denote this ε <π ε′. In this case, by compactness there is a formula
ϕ ∈ π such that ε <ϕ ε′ (partial types are always assumed to be closed under finite
conjunction). Note that < is neither reflexive nor anti-reflexive: ε < ε holds if and only
if ε is clopen (and then ε <¬ε ε). In particular ∞ < ∞, and in fact 0 ≤ ε < ∞ for every
distance ε. We call a distance ε positive if ε > 0.

Finally, we say that d(a, b) ≤ ε if tp(a, b) ∈ ε and d(a, b) < ε if tp(a, b) ∈ ε̊. The
respective negations of these properties are denoted by d(a, b) > ε and d(a, b) ≥ ε. Note
that the latter is type-definable.

Lemma 2.3. Let ε be a distance, and p(x, y) a partial type (without parameters) con-
tradicting ε. Then there is a distance ε′ > ε such that p(x, y) contradicts ε′; if ε is
symmetric, then ε′ can also be taken to be symmetric.

Proof. The asymmetric case follows from S2(T ) being a normal topological space. If

ε′ > ε and ε is symmetric, then
←→
ε′ > ε as well, whence the symmetric case. qed2.3

Definition 2.4. Let (εi : i < α) be distances in various sorts. Then their product is a
distance in the corresponding α-tuple of sorts, defined by

∏
εi(x<α, y<α) =

∧
i<α εi(xi, yi).

Clearly, if εi = ∞ for all but finitely many i < α, and the rest are positive, then
∏

εi

is positive as well. The converse is:

Lemma 2.5. Let ε be a distance in the sort of α-tuples. Then ε > 0 if and only if there
are positive (εi : i < α), all but finitely many of which are equal to ∞, and ε ≥

∏
εi, and

we can always take them to be symmetric.

Proof. As we said above, if (εi : i < α) verify all the assumptions then
∏

εi > 0, so
ε ≥

∏
εi =⇒ ε > 0.

Conversely, assume that ε > 0, and let ϕ(x<α, y<α) be such that ε >ϕ 0. Then
ϕ(x<α, y<α)∧

∧
i<α xi = yi is contradictory, and by Lemma 2.1 there are formulas ψi(x, y),

all of which contradict x = y and all but finitely many being the false formula ⊥, such
that ² ¬ϕ∨

∨
i<α ψi(xi, yi). If ψi = ⊥ then set εi = ∞, otherwise use Lemma 2.3 to find

a distance εi > 0 contradicting ψi. Then
∏

εi `
∧

i<α ¬ψi(xi, yi) ` ¬ϕ ` ε, as required
(and in fact, ε >ϕ

∏
εi). This still holds if we replace each εi with ←→εi . qed2.5

Definition 2.6. Given two distances ε, ε′ we define:

(ε + ε′)(x, y) = ∃z [ε(x, z) ∧ ε′(z, y)]

We wite 2ε for ε + ε, etc..

The sum of two distances is a distance, and addition of distances is associative. On
the other hand, addition is not commutative, and the sum of two symmetric distances



UNCOUNTABLE DENSE CATEGORICITY IN CATS 7

can be asymmetric. We could define
←→
+ by ε

←→
+ ε′ =

←−−→
ε + ε′, which is commutative and

yields symmetric distances, but would not be associative, which we find an even greater
fault.

The triangle inequality is satisfied in the sense that d(a, b) ≤ ε ∧ d(b, c) ≤ ε′ =⇒
d(a, c) ≤ ε + ε′.

Lemma 2.7. Assume that ε0 + ε1 < ε. Then there are ε′0 > ε0 and ε′1 > ε1 such that
ε′0 + ε′1 < ε, and if εi is symmetric then so can be ε′i.

Proof. Assume that ε0 + ε1 <ϕ ε, so ϕ(x, z) ∧ ε0(x, y) ∧ ε1(y, z) is contradictory. By
Lemma 2.1 there are formulas χi(x, y) contradicting εi for i < 2 such that ² ¬ϕ(x, z) ∨
χ0(x, y) ∨ χ1(y, z). By Lemma 2.3 we can find ε′i > εi contradicting χi for i < 2, and

then ε′0 + ε′1 <ϕ ε as well. If εi is symmetric, we may replace ε′i with
←→
ε′i . qed2.7

Corollary 2.8. For every ε > 0 there is ε′ > 0 such that ε > 2ε′.

Proof. Apply Lemma 2.7 to ε > 0 + 0, and let ε′ = ε′0 ∧ ε′1. qed2.8

Lemma 2.9. If ε is a distance then ε =
∧

ε<ε′ ε
′; if ε is symmetric, the same holds if we

only consider symmetric ε′.
In particular, x = y if and only if d(x, y) ≤ ε for every positive ε.

Proof. One inclusion is clear, the other is by Lemma 2.3. If ε is symmetric then ε =∧
ε<ε′

←→
ε′ . qed2.9

2.2. Topology. Fix a sort (say the home sort), and let X be a set of elements in that sort.
We define a subset F ⊆ X as closed in the logic topology on X if it is defined in X by some
partial type with parameters. Thus, an open set is one defined by the negation of some
partial type. There is little importance whether we require the parameters to be taken in
X or not: if p(x,A) is any partial type and q(y) = tp(A/X) then p′(x) = ∃y q(y)∧p(x, y)
defines the same set in X and only contains parameters in X.

For a distance ε > 0 and an element a we define the closed ball of radius ε around a in X
as BX(a, ε) = {b ∈ X : d(a, b) ≤ ε}. (If one is bothered by balls of “asymmetric radius”,
one can restrict the definition to symmetric ε, or define BX(a, ε) = {b ∈ X : d(a, b) ≤
←→ε }, bearing in mind that ε > 0 =⇒ ←→ε > 0. This will make no difference.) It turns out
that balls of positive radius suffice in order to define the logic topology:

Proposition 2.10. A subset U ⊆ X is open if and only if for every a ∈ U there is ε > 0
such that BX(a, ε) ⊆ U .

Proof. For right to left, assume that for every a ∈ U there is εa > 0 such that BX(a, εa) ⊆
U , and let ϕa be such that εa >ϕa 0. Then X r U is closed in the logic topology, as it
defined in X by the partial type

∧
a∈U ϕa(x, a).

For left to right, let U ⊆ X be an open set, so its complement is defined by a partial
type p(x,A), and let a ∈ U =⇒ a 6² p. Set q(y, Z) = tp(a,A) and r(x, y) = ∃Z p(x, Z) ∧
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q(y, Z). Then r(x, y) is contradicts x = y, so by Lemma 2.3 there exist ε > 0 contradicting
r. On the other hand ¬r(x, a) defines a subset of U (since ² q(a,A)), and we obtain
BX(a, ε) ⊆ U . qed2.10

It follows that, just as in the classical metric space setting, the family {B(a, ε) : ε > 0}
forms a basis to the neighbourhoods of a, and the logic topology is also a distance topology.

It should be remarked that in a first order theory, or more generally in a cat with pos-
itive inequality (as defined in Section 1), this topology is simply the discrete topology,
which is why we also call such cats discrete. On the other hand, in natural analytic ex-
amples which come with an interesting metric topology, such as Banach space structures
and probability measure algebras, this extra-logical topology turns out to coincide with
the logical one.

We defined the logic topology as a relative topology, by saying when a set is closed
or open in a superset. There is also an absolute notion of a set being closed, namely
completeness (there does not seem to be an absolute notion of openness).

Recall that a net is something of the form (ai : i ∈ I) where I is a directed partially
ordered set, that a net in a topological space X converges to a point a if for every
neighbourhood a ∈ U there is i ∈ I such that j ≥ i =⇒ aj ∈ U , and that if A ⊆ X then
its closure in X, which will be denoted by ĀX , is precisely the set of limits in X of nets
in A. If X satisfies the first countability axiom (every point has a countable basis for its
neighbourhoods) then we can replace “net” with “sequence”.

Definition 2.11. A Cauchy net is a net (ai : i ∈ I) in a single sort such that for every
ε > 0 there is iε ∈ I such that j, j′ ≥ iε =⇒ d(aj, aj′) < ε.

Definition 2.12. A set A in a single sort is complete if every Cauchy net in A converges
to a point in A.

Proposition 2.13. A set A of elements in a sort S is complete if and only if it is closed
in dcl(A) ∩ S. It is then closed in every superset.

Proof. Assume that A is complete and A ⊆ B. If a ∈ ĀB, then a is the limit of a net
(ai : i ∈ I). As every convergent net is Cauchy, the net (ai) converges to a unique limit
in A. It follows that a ∈ A.
Conversely, let B = dcl(A) ∩ S, and assume that A is closed in B. Let (ai : i ∈ I) be a
Cauchy net in A. For every ε > 0 let iε ∈ I be as in Definition 2.11. Then the partial type∧

ε>0 ε(x, aiε) is finitely consistent: for ε0, . . . , εk−1 find j ≥ iε0
, . . . , iεk−1

(as I is directed)
and then aj realises it. By compactness we find a such that

∧
ε>0 ε(a, aiε). Then a ∈ B,

and ai → a, so by assumption a ∈ A. qed2.13

In particular, every sort of the universal domain is complete.

2.3. Metric cats.
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Definition 2.14. (i) Given a sort x (more precisely, x is a variable which designates
its associated sort), we define E>0(x) = {ε(x, x′) : ε > 0}, i.e., the set of all
positive distances in x.

(ii) A basis of positive distances in x is a family E ⊆ E>0(x) which is co-final in the
sense that for every ε > 0 there is ε′ ∈ E such that ε > ε′.

(iii) cfdist(x) is the minimal cardinality of a basis of positive distances in x (in other
words, cfdist(x) = cf(E>0(x),≥)). If cfdist(x) ≤ ω, we say that the sort x is
metric.

(iv) We say that T is metric if its home sort is (if T has several home sorts, then it
is metric if all are).

Most of the time the sort in question is fixed by the context, so we may omit it. In
the special case that x is in the home sort, we write cfdist(T ) instead of cfdist(x) (so T
is metric if cfdist(T ) ≤ ω).

Clearly, if T is metric, then the sorts of finite and countable tuples in the home sort are
also metric, as are quotients thereof by equivalence relations definable using countably
many formulas.

Lemma 2.15. Let E ⊆ E>0 be such that
∧
E =

∧
ε∈E ε = 0, and assume in addition that

E is closed under finite conjunctions. Then E is a basis of positive distances.

Proof. Assume that ε >ϕ 0 for some formula ϕ. Since
∧
E = 0, and ϕ(x, y) contradicts

x = y, there is a finite subset {ε0, . . . , εn−1} ⊆ E such that ϕ contradicts
∧

i<n εi = ε′ ∈ E .
Therefore ε ≥ ε′ (and in fact ε >ϕ ε′). qed2.15

Corollary 2.16. cfdist(x) is the minimal cardinality of a set E ⊆ E<0(x) such that∧
E = 0.

Proof. The conjunction of a basis of positive distances is zero, which gives one inequality.
For the other, if

∧
E = 0 and |E| is minimal, then either E = {0} or it is infinite: in

either case, closing it under finite intersection should not change its cardinality, and then
conclude by Lemma 2.15. qed2.16

Finally, note that if ε > 0, then any formula ϕ(x, y) ∈ ε(x, y) can also be viewed as
a distance, and as such ϕ > 0. Thus, if E is the set of all ε > 0 on the home sort
which can be defined by a single formula then

∧
E = 0 and |E| ≤ |T |. It follows that

cfdist(T ) ≤ |T |, and if T is countable then it is metric.
If T is metric we can find a basis of positive distances which can be enumerated as

a decreasing sequence (εn : n < ω). We may further assume by Corollary 2.8 that the
decreasingly enumerated basis satisfies in addition εi > 2εi+1 for every i, which may be
quite useful (thinking of εi as the distance 2−i). However, we can do better than this,
and construct an actual definable metric on the home sort:

Definition 2.17. Let Ux denote the set of elements (of the universal domain) in the
sort of x. A mapping f : Ux → R is definable if for every r the properties f(x) ≥ r and
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f(x) ≤ r are type-definable.
This is the same as saying that the mapping Sx(T ) → R sending tp(a) 7→ f(a) is
continuous (and therefore implies that the range of f is compact).

In particular, a metric on Ux is definable if it is definable as a mapping from U2
x to R+.

Assume now that T is metric, or more generally that we work in a fixed metric sort.
Let (ε 1

n
: n < ω) be distances on this sort such that ε 1

n
> ε 1

n+1

and
∧

ε 1

n
= 0. As for

every ε > ε′ we can find ε > ε′′ > ε′, we may extend our sequence to (εq : q ∈ Q ∩ [0, 1])
such that q > r =⇒ εq > εr.

Define h(a, b) = inf{q : d(a, b) ≤ εq}. Then h(a, b) = sup{q : d(a, b) ≥ εq} as well (we
convene that inf ∅ = 1 and sup ∅ = 0), and h(x, y) is a definable function:

[h(x, y) ≤ r] ≡
∧

q>r

[d(x, y) ≤ εq] [h(x, y) ≥ r] ≡
∧

q<r

[d(x, y) ≥ εq].

Since we may (and do) assume that each εq is symmetric, so is the function h(x, y), and
h(a, b) = 0 ⇐⇒ a = b. Unfortunately, there is no reason that h should satisfy the triangle
inequality.

We could define d(a, b) = infc |h(a, c)− h(c, b)|: this would be a metric and induce the
logic topology, but it is not necessarily definable (it is definable if we assume that T is
open).

Instead, we can obtain a definable metric by re-scaling h. For this we need the following
technical result:

Notation 2.18. Let D denote the set of dyadic numbers in [0, 1].

Lemma 2.19. Let g : [0, 1]2 → [0, 1] be symmetric, non-decreasing, and satisfy for all
u,w, t ∈ [0, 1]: g(0, t) = t and if g(u,w) < t then there is u < v ≤ 1 such that g(v, w) < t.

Then there is a function f : D → [0, 1] such that:

(i) f is strictly increasing.
(ii) For all n: f( 1

2n ) ≤ 1
2n .

(iii) For every t, u ∈ D ∩ (0, 1]:

t + u ≤ 1 =⇒ g(f(t), f(u)) < f(t + u)

Proof. We will define f by steps, at the nth step extending its domain to { k
2n : 0 ≤ k ≤ 2n}

and verifying that the properties above hold for the part of f already defined.
For n = 0 we start with f(0) = 0, f(1) = 1, noting in particular that the third

requirement holds vacuously.
For n ≥ 1, we only need to choose f( k

2n ) for odd 0 < k < 2n. For k ≥ 3 we look for

f(k−1
2n ) < s < f(k+1

2n ) such that for all 0 < k′ ≤ 2n−k+1
2

:

g(s, f( k′

2n−1 )) < f(k+2k′−1
2n )(*)

First, we note that s = f(k−1
2n ) satisfies (*) for all 0 < k′ ≤ 2n−k+1

2
: by the induction

hypothesis, the third property of f holds for t = k−1
2n and u = k′

2n−1 which are positive of
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sum ≤ 1. By the assumption on g, for each 0 < k′ ≤ 2n−k+1
2

there is sk′ > f(k−1
2n ) which

satisfies (*) for that value of k′. Let s′ = min{sk′ : 0 < k′ ≤ 2n−k+1
2

}. Then s′ > f(k−1
2n ),

and we may choose f( k
2n ) such that f(k−1

2n ) < f( k
2n ) < min{s′, f(k+1

2n )}. In particular:

g(f( k
2n ), f( k′

2n−1 )) < f(k+2k′−1
2n ) for all 0 < k′ ≤ 2n−k+1

2
(**)

Having chosen f( k
2n ) for all 3 ≤ k < 2n we choose f( 1

2n ). By the induction hypothesis
we have

0 < f( 1
2n−1 ) ≤

1
2n−1 .

By the assumption on g

g(0, 1
2
f( 1

2n−1 )) = 1
2
f( 1

2n−1 ) < f( 1
2n−1 ),

and therefore there is 0 < s0 ≤ 1 such that

g(s0,
1
2
f( 1

2n−1 )) < f( 1
2n−1 ).

Similarly, for 0 < k′ < 2n−1:

g(0, f( k′

2n−1 )) = f( k′

2n−1 ) < f(2k′+1
2n ),

so there is sk′ > 0 such that:

g(sk′ , f( k′

2n−1 )) < f(2k′+1
2n ).

Defining f( 1
2n ) = min{ 1

2
f( 1

2n−1 ), sk : 0 ≤ k < 2n−1}, we obtain:

(i) 0 < f( 1
2n ) < f( 1

2n−1 ).
(ii) f( 1

2n ) ≤ 1
2n .

(iii) g(f( 1
2n ), f( 1

2n )) < f( 1
2n−1 ).

(iv) g(f( 1
2n ), f( k′

2n−1 )) < f(2k′+1
2n ) for 0 < k′ < 2n−1.

Let us now verify the properties of f for the new values. Strict monotonicity follows
directly from the construction, and the second property was taken care of. We still have
to show that if k, k′ > 0 and k + k′ ≤ 2n then:

g(f( k
2n ), f( k′

2n )) < f(k+k′

2n ).(***)

– If both k and k′ are even: Then (***) holds by the induction hypothesis on n.
– If one is odd and the other even: As g is symmetric we may assume that k is odd and
k′ is even. If k = 1, we took care of (***) when we chose f( 1

2n ). If k ≥ 3, then we have
from (**):

g(f( k
2n ), f( k′

2n )) < f(k+k′−1
2n ) < f(k+k′

2n )

– If both k and k′ are odd: If k = k′ = 1, we took care of (***) when we chose f( 1
2n ).

Otherwise, by symmetry of g we may assume that k ≥ 3 and we have from (**):

g(f( k
2n ), f( k′

2n )) ≤ g(f( k
2n ), f(k′+1

2n )) < f(k+k′

2n )

Thus everything is fine and the induction may proceed. qed2.19
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We now define g : [0, 1]2 → [0, 1] by:

g(t, u) = sup{h(a, b) : ∃c h(a, c) ≤ t ∧ h(c, b) ≤ u}.

Claim. This g satisfies the assumptions of Lemma 2.19.

Proof of claim. Clearly, g is symmetric and non-decreasing, and g(0, t) = t. Also,
g(0, t) = t The first statement is clear. As for the second, if g(u,w) < t, then the
following partial type is inconsistent: [h(x, y) ≥ t] ∧ [h(x, z) ≤ u] ∧ [h(z, y) ≤ w]. This is
in turn equivalent to

∧
t′<t[h(x, y) ≥ t′] ∧

∧
v>u[h(x, z) ≤ v] ∧ [h(z, y) ≤ w], so by com-

pactness there are t′ < t and v > u such that [h(x, y) ≥ t′] ∧ [h(x, z) ≤ v] ∧ [h(z, y) ≤ w]
is inconsistent. It follows that g(v, w) ≤ t′ < t. qedClaim

It follows that there is a function f as in the conclusion of Lemma 2.19. In particular,
f is strictly increasing, so we may define:

d(a, b) = inf{t : h(a, b) < f(t)} = sup{t : h(a, b) > f(t)}.

Observe that d(a, b) ≥ r if and only if: ∀(t ∈ D)(t < r → h(a, b) ≥ f(t)), whereby:

[d(x, y) ≥ r] ≡
∧

t<r

[h(x, y) ≥ f(t)]

And similarly:

[d(x, y) ≤ r] ≡
∧

t>r

[h(x, y) ≤ f(t)]

Thus d is definable. Also, as h is symmetric so is d, and d(a, b) = 0 ⇐⇒ a = b (since
limn→∞ f( 1

2n ) = 0). Finally, for all a, b, c:

h(a, b) ≤ g(h(a, c), h(c, b))

Whereby:

d(a, b) = inf{t : h(a, b) < f(t)}

≤ inf{t : g(h(a, c), h(c, b)) < f(t)}

≤ inf{t : ∃u,w g(f(u), f(w)) < f(t), h(a, c) < f(u), h(c, b) < f(w)}

≤ inf{t : ∃u,w f(u + w) ≤ f(t), h(a, c) < f(u), h(c, b) < f(w)}

= inf{u + w : h(a, c) < f(u), h(c, b) < f(w)}

= d(a, c) + d(c, b)

We have therefore proved:

Theorem 2.20. A sort is metric if and only if it admits a definable metric, in which
case the metric topology coincides with the logic topology on that sort.
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Proof. We have just shown that every metric sort admits a definable metric. Conversely,
if d is a definable metric, then ([d(x, y) ≤ 1

n
] : n < ω) is a countable basis of positive

distances on the sort in question. This also implies that the metric topology is the same
as the one induced by all the positive distances. qed2.20

Most of the cats we’d be interested in are metric. First order theories and their likes
are even discrete, and analytic cats admit natural definable metrics, be it the norm metric
in Banach space structures, or µ(a ⊕ b) in the case of probability algebras.

An additional very instructive example, albeit somewhat artificial, is the cat of ω-
tuples of a (say) first order theory T , denoted by T×ω. The natural definable metric (or
ultrametric) would be something like d(a<ω, b<ω) = 2− sup{n : a<n=b<n}.

If we replace ω by any greater cardinal, the resulting cat is clearly not metric, even
though it is constructed from metric building blocks. We prove that this is essentially the
only example of a non-metric cat, and the metric building blocks can be reconstructed:

Lemma 2.21. Assume that (εn : n < ω) are symmetric distances such that εn > 2εn+1

for all n < ω (or even just εn > εn+1 and εn ≥ 2εn+1). Then E =
∧

n εn is an equivalence
relation, and x/E is a metric sort.

Proof. E is symmetric and reflexive since each εn is, and the assumption that εn ≥
2εn+1 assures us that it is transitive as well, whereby an equivalence relation. For
every n < ω, the partial type ε̄n(x/E, y/E) (which is a conventional notation for
∃x′y′ E(x′, x)∧E(y′, y)∧εn(x′, y′)) is a distance in the sort x/E, and

∧
ε̄n ≡ [x/E = y/E].

It would therefore suffice to show that each ε̄n is positive. Recall that by assumption
εn > εn+1, and let ϕn(x, y) be such that εn >ϕn εn+1. Then ϕn(x, y) ∧ εn+1(x, y) is con-
tradictory, whereby ϕn(x, y)∧E(x, y) and ϕ̄n(x/E, y/E)∧x/E = y/E are contradictory
as well. It follows that ε̄n >ϕ̄n 0, as required. qed2.21

Theorem 2.22. Let x be in a non-metric sort. Then there are equivalence relations
{Ei(x, y) : i < cfdist(T, x)} such that

∧
i Ei(x, y) ≡ [x = y], and for each i the sort x/Ei

is metric.

Proof. This follows immediately from Lemma 2.21. qed2.22

Thus, if the home sort is not metric, we may always decompose it into metric sorts,
designating those as the new home sorts. We may therefore assume:

Convention 2.23. Hereafter, all the cats we consider are metric, i.e., have metric home
sort(s).

3. Models

3.1. Pre-models. One delicate issue when working with cats is the question of which
subsets of the universal domain are considered as models: just taking existentially closed
subsets as was done in [Ben03a] is not a satisfactory solution, as this is very language-
dependent. Alternatively, we recall that in a first order theory one can characterise an
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elementary sub-model of the universal domain as a subset M such that the set of types
over M realised in M (from now on we just call them realised types) is dense in S(M).
We can therefore define:

Definition 3.1. A pre-model of T is a subset M of a universal domain of T (or of any
e.c. model of T ) such that for every n < ω, the realised n-types are dense in Sn(M).

In other words, M is a pre-model if for every formula ϕ(x̄, m̄), where m̄ ∈ M , if there
is ā (in the universal domain) such that ¬ϕ(ā, m̄) then there is such ā in M .

Since pre-models have a purely topological characterisation, this is a language-
independent notion. It is more general than the (language-dependent) notion of an e.c.
model:

Lemma 3.2. If M is an e.c. model in some language, then it is a pre-model.

Proof. Assume that m ∈ M and ² ¬ϕ(a,m). Then there is ψ contradicting ϕ such that
² ψ(a,m), and since M is e.c. there is a′ ∈ M such that ² ψ(a′,m), and in particular
² ¬ϕ(a′,m). qed3.2

Moreover, if we have a language with negation (such as in first-order logic) then the
notions of e.c. model and pre-model agree.

Unfortunately, a pre-model is far from being adequate to play the role of a model: in
fact, it is needs not even be definably closed (for example, any dense subset of an infinite
dimensional Hilbert space is a pre-model for the theory of Hilbert spaces). For the time
being, however, this notion will do.

The reader might be suspicious about the requirement being for every n < ω, rather
than just for n = 1 as in first order logic. This is inevitable if we want our scope to include
non-open cats (such as Robinson theories which have no first order model companion).
For example, one may find then a formula ϕ(x<n) (with hidden parameters in M) such
that ¬ϕ(x<n) defines a non-empty (open) set in Sn(M), but its projection to S1(M) on
any coordinate i < n, defined by ∃x0, . . . , x̂i, . . . xn−1 ¬ϕ(x<n), has empty interior. The
following notion is meant to handle this difficulty:

Definition 3.3. Let A be any set of parameters and x (a variable designating) a sort.
A basic Q-open set (for quantifier-open) in Sx(A) is one defined by a formula
∃y ¬ϕ(x, y, A), where y is any tuple of variables.
The family of basic q-open sets in Sx(A) forms a basis for a topology which we call the
Q-topology.

In other words, a basic Q-open set is the projection to Sα(A) of a basic open set
of Sα+β(A), for some β, and we may always assume that β < ω. It follows that the
Q-topology on Sα(A) is a refinement of the ordinary topology, and it is the minimal
topology such that the projection Sα+ω(A) → Sα(A) is open when Sα+ω(A) is taken with
the ordinary topology. In fact, whenever α ≤ β the projection map Sβ(A) → Sα(A) is
open when both spaces are taken in Q-topology.
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The Q-topology coincides with the ordinary one if and only if T is open. If not,
then it is strictly stronger than a Hausdorff topology, and therefore cannot be compact.
Nevertheless, we shall see that it is a quite useful notion. For example:

Definition 3.4. A set X ⊆ Sα(A) is Q-dense if it is dense in the Q-topology.

Proposition 3.5. A set M is a pre-model if and only if the realised types are Q-dense
in S1(M).

Proof. For left to right, we assume that M is a pre-model, and prove that every non-
empty basic Q-open set in S1(M) contains a realised type. Indeed, such a set is of the
form ∃ȳ ¬ϕ(x, ȳ) with parameters in M , and ¬ϕ(x, ȳ) has a realisation somewhere. Since
M is a pre-model, it has a realisation a, b̄ ∈ M , so in particular a is a realisation of
∃ȳ ¬ϕ(x, ȳ) in M .
For the converse, we assume that the realised types are Q-dense in S1(M), and prove
by induction on n < ω that if ¬ϕ(x<n) is consistent with parameters in M then it is
realised in M . For n = 0 there is nothing to prove, so we assume for n and prove for
n + 1. If ¬ϕ(x<n+1) is consistent with parameters in M then ∃x<n ¬ϕ(x<n+1) defines a
non-empty Q-open set in S1(M). By assumption it is realised by some an ∈ M . Then
¬ϕ(x<n, an) is consistent with parameters in M , and we conclude using the induction
hypothesis. qed3.5

3.2. Co-heirs.

Definition 3.6. Let M ⊆ A, and p ∈ S(A). Then p co-inherits from M , or is a co-heir
of its restriction to M , if it is in the closure in S(A) of types realised in M . In other
words, if for every formula ϕ(x, a) over A, if p ` ¬ϕ(x, a) then there is m ∈ M such that
² ¬ϕ(m, a).
This definition will mostly be used when M is a pre-model.

Thus by definition, a set M is a pre-model if and only if every type p ∈ S(M) (in any
tuple of variables) co-inherits from M .

Lemma 3.7. Assume that M ⊆ A ⊆ B, and p ∈ S(A) co-inherits from M . Then p has
an extension to B which co-inherits from M .

Proof. Since p co-inherits from M , there is a net (aσ : σ ∈ Σ) in M such that
tp(aσ/A) → p. Since S(B) is compact, the net (tp(aσ/B) : σ ∈ Σ) has a converging
sub-net (tp(aσ′/B) : σ′ ∈ Σ′), say with limit q ∈ S(B). Then q co-inherits from M . On
the other hand tp(aσ′/A) → p, and since in a Hausdorff space limits are unique q is an
extension of p. qed3.7

Definition 3.8. Let M be a pre-model, M ⊆ A, and c a tuple possibly outside A. Then
tp(c/A) splits over M if there are tuples a, b ∈ A such that a ≡M b but a 6≡cM b.

Lemma 3.9. A co-heir is a non-splitting extension.
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Proof. Assume that p ∈ S(N) does indeed split over M . Then there are a, b ∈ N such
that a ≡M b, and contradicting formulas ϕ, ψ, such that p ` ϕ(x, a) ∧ ψ(x, b).
As T is Hausdorff there are ρ, χ such that ϕ ` ¬ρ, ψ ` ¬χ and ² ρ ∨ χ. Therefore
p ` ¬(ρ(x, a)∨χ(x, b)), and as it is a co-heir there is c ∈ M such that ² ¬(ρ(c, a)∨χ(c, b)).
As a ≡M b we get ¬ρ(c, a) ∧ ¬χ(c, a), contradicting ² ρ ∨ χ. qed3.9

Lemma 3.10. A co-heir is a non-dividing extension.

Proof. Let M ⊆ A where M is a pre-model, and let p ∈ S(A) co-inherit from M . Let
A ⊆ N where N is |M |+-saturated, and let p′ ∈ S(N) extend p co-inheriting from M . As
it is a non-splitting extension, it is easy to see that p′ does not divide over M , so neither
does p. qed3.10

Lemma 3.11. Every type over a pre-model M is Lascar strong.

Proof. Exactly as in the proof of [KP97, Proposition 5.4], the existence of non-splitting
extensions of types over M implies that if a ≡M b then there are {ci : i < n} such that
a,c0, c1, . . . and b, c0, c1, . . . are both M -indiscernible. It follows that a and b have the
same Lascar strong type (as c0) over M . qed3.11

These results accumulate to:

Proposition 3.12. If T is stable, M is a pre-model, and p ∈ S(M), then p has a unique
non-dividing extension to any set, which is its unique co-heir over that set.

3.3. Type omission. This is yet another variant of the classical omitting type theorem.
We adapt the proof of [Poi85, Chapter 10.a], pointing out at the same time the usefulness
of the Q-topology (in non-open cats).

We recall that a nowhere dense set is one whose closure has empty interior, and a
meagre set is a countable union of nowhere dense sets. In the first order context we
know that these notions are intimately related to type omission. As above, when dealing
with a cat that is not open, the Q-topology yields a more adequate notion; we call the
corresponding notions nowhere Q-dense and Q-meagre, respectively.

Lemma 3.13. A set X ⊆ Sα(A) is nowhere Q-dense if and only if for some (every)
β ≥ ω, the pull-back of X to Sα+β(A) is nowhere dense (in the ordinary topology).

Proof. Fix some β ≥ ω, and let Y ⊆ Sα+β(A) be the pull-back of X. Let X̄ and Ȳ
denote the closure of X in the Q-topology and the closure of Y in the ordinary topology,
respectively. We need to prove that X̄ has empty Q-interior if and only if Ȳ has empty
ordinary interior.
For this, observe at first that X̄ is defined by

∧
{∀w ϕ(x,w) : X ` ∀w ϕ(x,w)}, where x

is a tuple of α variables and w can be any tuple, whereas Ȳ is defined by
∧
{ϕ(x, y) : X `

∀y ϕ(x, y)} where y is a fixed β-tuple (all formulas here may have hidden parameters in
A).
Assume now that ¬ψ(x, z) is consistent, and we may assume that z is finite. Since β ≥ ω
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we may assume that z ⊆ y, and even then there are still infinitely many variables in
y r z. Therefore ¬ψ(x, z) ` Ȳ if and only if ¬ψ(x, z) ` ∀w ϕ(x,w) for every ϕ(x,w) such
that X ` ∀w ϕ(x,w), if and only if ∃z ¬ψ(x, z) ` X̄, as required. qed3.13

Notation 3.14. Assume that ϕ(x, y) and ψ(x, y) are contradictory, and define
πϕ,ψ(x, y<ω) = ∃y ϕ(x, y) ∧

∧
i<ω ψ(x, yi).

Lemma 3.15. The partial type πϕ,ψ defines a nowhere Q-dense set (and since it is closed,
it is in particular nowhere dense).

Proof. It is closed, so we only need to verify that its Q-interior is empty. Assume
the contrary, namely that there is a formula χ(x, y<ω, z) such that ∃z ¬χ(x, y<ω, z) `
πϕ,ψ(x, y<ω), and ¬χ is consistent, say ² ¬χ(a, b<ω, c). Then ² πϕ,ψ(a, b<ω), so there
is b′ such that ² ϕ(a, b′), and therefore ¬ψ(a, b′). Since χ has only finitely many vari-
ables actually appearing in it there is i < ω such that yi does not appear in χ, so
² ¬χ(a, b0, . . . , bi−1, b

′, bi+1, . . . , c) as well, contradicting ¬χ ` πϕ,ψ. qed3.15

Lemma 3.16. Assume that A is countable and not a pre-model. Then there is a pair of
contradicting formulas ϕ(x, y), ψ(x, y) and a tuple a ∈ A in the length of x, such that if
(bi : i < ω) is an enumeration of all the tuples in A of the length of y, then ² πϕ,ψ(a, b<ω).

Proof. If A is not a pre-model, then there are a ∈ A and a negative formula ¬ψ(a, y)
which has a realisation b, but has none inside A. There is a formula ϕ(x, y) ∈ tp(a, b)
contradicting ψ, and ² πϕ,ψ(a, b<ω). qed3.16

It follows that if T has a countable language, then the set of types p ∈ Sω(T ) whose
realisations are not enumerations of pre-models is meagre (it is also Q-meagre, but we
do not need that). Now the standard Baire category argument yields:

Theorem 3.17. Let T be a cat with a countable language, and Xn ⊆ Sn(T ) Q-meagre
sets for every n < ω. Then T has a pre-model which omits every Xn.

Proof. The set of all types p ∈ Sω(T ) of enumerations of pre-models omitting every Xn

cannot be empty, since its complement is meagre, and a compact Hausdorff space cannot
be meagre. qed3.17

3.4. Complete models. We know that if A is any set (in a single sort) then Ā ⊆ dcl(A).
In the case of pre-models we have equality in the home sort:

Lemma 3.18. Let M be a pre-model (so in particular, it is a set of real elements). Then
M̄ = dclh(M) = bddh(M), where the superscript h means that we restrict the definable
or bounded closure to the home sort.

Proof. We already know that M̄ ⊆ dclh(M) ⊆ bddh(M). On the other hand, Lemma 3.11
implies that dcl(M) = bdd(M), so in particular dclh(M) = bddh(M). In order to
conclude we need to show that a ∈ dclh(M) =⇒ a ∈ M̄ .
If a ∈ dclh(M) then p(x) = tp(a/M) defines a. Assume that ε >ϕ 0. Then q(x) =
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∃y p(y) ∧ ϕ(x, y) is a partial type, and a ² ¬q(x) (since ¬ϕ(a, a)). Since M is a pre-
model, there is b ∈ M such that b ² ¬q(x) =⇒² ¬ϕ(b, a) =⇒ a ∈ B(b, ε). As this holds
for every ε > 0, we obtain a ∈ M̄ . qed3.18

We define:

Definition 3.19. A complete model is the closure M̄ of a pre-model M .

As M and M̄ are interdefinable, if M is a pre-model then so is M̄ . Therefore, a
complete model is precisely a closed pre-model. By Proposition 2.13, this is the same as
a complete pre-model, where completeness is taken in the sense of convergence of Cauchy
nets, whence the terminology.

We leave it to the reader to verify the “converse” to this definition, namely that any
dense subset of a complete model is a pre-model.

Since complete models are defined as closed sets, their size is more accurately measured
by their density character than by than their cardinality:

Definition 3.20. If M is a complete model then its density character, denoted ‖M‖, is
the minimal cardinality of a dense subset of M .

Definition 3.21. A cat T is λ-categorical if it has a unique complete model (up to
isomorphism) of density character λ.

3.5. Principal types. Here we need to introduce some new notation:

Notation 3.22. Given a partial type p(x) (with parameters) and a distance ε, we define
p(xε) = ∃y [ε(x, y) ∧ p(y)] and p(x<ε) = ∀y [d(y, x) < ε → p(y)]. Mind that p(xε) is a
partial type, whereas p(x<ε) only defines an Q-closed set.
We will ordinarily use the form x<ε inside negations, so one should remember that
¬p(x<ε) = ∃x′ [d(x, x′) < ε ∧ ¬p(x′)], which is an Q-open set.

The idea behind these definitions is than an element can contain infinitely much infor-
mation (think of the cat of ω-tuples of elements of a first order theory, which is metric),
but when quantifying over a ball of positive radius around an element we only retain
finitely much of the information contained in that element.

For example, in a first order theory we know that if π(x,B) is a partial type and
a ² ¬π, then there is ψ(x, b) ∈ π such that a ² ¬ψ. In particular, the parameter b is a
finite tuple. The analogue of this observation is the following:

Lemma 3.23. Assume that ¬ϕ(a, b). Then there exists ε > 0 on the sort of b and a
formula ψ(x, y) such that ² ¬ψ(a, bε) and ¬ψ(x, y<ε) ` ¬ϕ(x, y).

Proof. Let p(x, y) = tp(a, b). Then
∧

ε>0 p(x, y2ε) contradicts ϕ(x, y), whereby p(x, y2ε)
contradicts ϕ(x, y) for some ε > 0, which we may assume symmetric. This is equivalent
to p(x, yε) contradicting ϕ(x, yε). Let ψ(x, y) = ϕ(x, yε) (or, if one insists on the syntactic
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distinction between a formula and a partial type, find ψ contradicting p(x, yε) such that
ϕ(x, yε) ` ψ(x, y)). Then ¬ψ(a, bε), and

¬ψ(x, y<ε) = ∃y′ [d(y, y′) < ε ∧ ¬ψ(x, y′)]

` ∃y′ [d(y, y′) < ε ∧ ¬ϕ(x, y′ε)]

= ∃y′ [d(y, y′) < ε ∧ ¬∃y′′[d(y′, y′′) ≤ ε ∧ ϕ(x, y′′)]]

` ¬ϕ(x, y). qed3.23

By Theorem 3.17 on one hand and Proposition 3.5 on the other, a partial type can
be omitted in a pre-model if and only if the closed set it defines has empty Q-interior
(assuming that we are dealing with a countable language). As we are more interested in
complete models than in pre-models, we need an appropriately modified version, which
is in fact an adaptation of Henson’s notion of a principal type to our context:

Definition 3.24. A complete type p ∈ S(A) is principal (over A) if for every ε > 0 the
closed set defined by p(xε) in S(A) has non-empty Q-interior.

In the definition of a principal type we did not require that p actually belong to the
Q-interior of p(xε). However, if p is principal and ε > 0 is given, find ε′′ > ε′ > 0
such that ε > 2ε′′: if q(x) is in the Q-interior of p(xε′), then there is ψ such that
q(x) ` ∃y ¬ψ(x, y) ` p(xε′). Therefore p(x) ` q(xε′) ` ∃y ¬ψ(x<ε′′ , y) ` p(xε′+ε′′) ` p(xε),
so p is in the Q-interior of p(xε).

Proposition 3.25. Assume that M is a complete model, A ⊆ M , and p(x) ∈ S(A) is a
principal type in a metric sort. Then p is realised in M .

Proof. By assumption there is a definable metric d on the sort of x. We may assume that
d takes only values in [0, 1]. We identify a real number r > 0 with the positive distance

defined by d(x, y) ≤ r. For every n, let Vn ⊆ S(A) denote the Q-interior of p(x
1

2n ). Since
p is principal, p ∈ Vn for all n.
We will construct a sequence (an : n < ω) in M , such that d(an, an+1) < 1

2n−1 , and
tp(an/A) ∈ Vn. Since d ≤ 1 V0 = Sα(A) and we may take a0 to be any element in M .
Assume that an is already chosen. Since tp(an/A) ∈ Vn we can find b ² p (possibly
outside M) such that d(an, b) ≤ 1

2n . Let U ⊆ S(Aan) denote the pull-back of Vn+1

there, and let W ⊆ S(Aan) denote the set defined by {d(an, x) < 1
2n−1}. Then U and

W are Q-open and open, respectively, so U ∩ W is Q-open, and it is non-empty since it
contains tp(b/Aan). Therefore there exists an+1 ∈ M such that tp(an+1/A) ∈ Vn+1 and
d(an, an+1) < 1

2n−1 , as required.
Once the construction is finished, we see that d(an, am) < min{ 1

2n−2 ,
1

2m−2} follows by

induction from d(an, an+1) < 1
2n−1 . Thus (an) is a Cauchy sequence, and since M is

complete it has a limit a ∈ M . But then a ²
∧

n p(x
1

2n ) =⇒ a ² p, as required. qed3.25
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Corollary 3.26. Assume that T has a countable language, |A| ≤ ω, and p is a partial
type over A with at most ω variables. Then there exists a complete model M ⊇ A omitting
p if and only if p is not principal.

Proof. Since T has a countable language and p is in countably many variables, the sort of
p is metric. Thus, if p is not principal, there is a distance ε > 0 such that p(xε) is nowhere
Q-dense, and can therefore be omitted in a pre-model M ⊇ A. As every realisation of
p has distance at least ε from M , p is also omitted from M̄ . On the other hand, if p is
principal, it is realised in every such model by Proposition 3.25. qed3.26

Proposition 3.27. Assume that (ai : i < α) is a sequence (in possibly different sorts)
such that tp(ai/Aa<i) is principal for every i < α. Then tp(a<α/A) is principal.

Proof. We would like to prove by induction on α. If we know this for α, then α + 1
reduces to the case where α = 2; and if α is limit, then by Lemma 2.5 the statement
follows from the induction hypothesis.
We are left with the case α = 2. We write b = a0, a = a1, and may assume that A = ∅.
Write p(y) = tp(b) and q(x, y) = tp(a, b). We need to prove that if εx, εy > 0 then
q(xεx , yεy) has non-empty Q-interior.
By assumption, q(x, b) belongs to the Q-interior (in S(b)) of q(xεx , b). In other words,
there is a formula ϕ(x, y, z) such that q(x, b) ` ∃z ¬ϕ(x, b, z) ` q(xεx , b). Let c be such
that ¬ϕ(a, b, c). By compactness there is ε′y > 0 such that ¬ϕ(a, bε′y , c). Since we lose no
generality by decreasing εy, we may assume that εy = ε′y.
Again by assumption there is χ(y, w) such that p(y) ` ∃w¬χ(y, w) ` p(yεy). Then
q(x, y) ` ∃zw [¬ϕ(x, yεy , z) ∧ ¬χ(y, w)], and:

¬ϕ(x, yεy , z) ∧ ¬χ(y, w) ` ¬ϕ(x, yεy , z) ∧ ∃y′ εy(y, y′) ∧ p(y′)

` ∃y′ εy(y, y′) ∧ p(y′) ∧ ¬ϕ(x, y′, z)

` ∃y′ εy(y, y′) ∧ q(xεx , y′)

≡ q(xεx , yεy). qed3.27

Lemma 3.28. Assume that tp(a/A) is principal and b ∈ dcl(aA). Then tp(b/A) is
principal.

Proof. We may assume that A = ∅. Let p(x) = tp(a), q(y) = tp(b) and r(x, y) = tp(a, b).
Assume that εy >ϕ 0 on the sort of y. This means that r(x, y) ∧ r(x, z) ∧ ϕ(y, z) is
contradictory, whereby there are εx > ε′x > 0 on the sort of x and a formula ψ(x, y)
contradicting r(x, y) such that r(x, y) ∧ ¬ψ(x<εx , z) ∧ ϕ(y, z) is contradictory.
Since p is principal there is a formula χ(x, t) such that p(x) ` ∃t¬χ(x, t) ` p(xε′x). Then
clearly, q(y) ` ∃xt¬χ(x, t)∧¬ψ(x, y). On the other hand, assume that ¬χ(x, t)∧¬ψ(x, y).
Then p(xε′x), which means there is x′ such that p(x′) ∧ d(x, x′) ≤ ε′x < εx, whereby
¬ψ(x′<εx , y). On the other hand, since p(x′) there is y′ such that r(x′, y′). It follows that
¬ϕ(y, y′), so q(yεy) as required. qed3.28
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3.6. Approximate saturation. In first order model theory we have the notions of a
κ-saturated model and a κ-compact model, which coincide for κ > |T | but may give
a finer distinction for small values of κ (in particular, every model is ω-compact). On
a finer inspection it turns out that when dealing with Hausdorff cats, the notion of κ-
saturation has to be slightly adjusted: for κ > |T | this changes nothing, and for κ ≤ |T |
the modified notion is what we need in order to generalise classical theorems.

Definition 3.29. Let λ be an infinite cardinal. A complete model M is approximately
λ-saturated if for every type p(x,M) ∈ S(M), every ε > 0 on the sort of x, and every dis-
tance ε′ on the sort of (an enumeration of) M which can be expressed as the conjunction
of less than λ positive distances, there is b ∈ M such that ² p(bε,M ε′).

Proposition 3.30. For λ > ω, approximate λ-saturation coincides with λ-saturation.
(This is assuming, as we do, that the home sort is metric. Otherwise one needs to
require λ > cfdist(T ).)

Proof. Let M be approximately λ-saturated. Let A ⊆ M , |A| < λ, and p(x) ∈ S(A)
is in the home sort. In fact, just in this proof, all variables will be in the home sort.
Write M = (mi : i < ξ), and we may assume that A = (mi : i < µ) for some µ < λ. Let
ε′(x<ξ, y<ξ) be

∧
i<µ xi = yi, which can be expressed as the conjunction of µ × ω < λ

positive distances. By approximate λ-saturation, p(xε) is realised in M for every ε > 0,
and the same holds for every q ∈ S(B) where B ⊆ M , |B| < λ.
Let (εi : i < ω) be a basis of positive distances. Construct a sequence (bi, pi : i < ω),
where pi ∈ S(Ab<i) and bi ∈ M realises pi(x

εi). For i = 0 we choose p0 = p. For i + 1,
we know that pi(x) ∧ εi(x, bi) is consistent (since bi ² pi(x

εi)) so pi+1 is any completion
to Ad≤i. Once we choose pi, we choose some bi ∈ M realising pi(x

εi), which exists by the
previous argument.
Let b realise

∧
i<ω pi: then it realises p, and it is an accumulation point of {bi : i <

cfdist(T )}, so b ∈ M as required. qed3.30

3.7. Ehrenfeucht-Mostowski models.

Convention 3.31. Let (I,<) be a totally ordered set. Although the following definitions
could make sense for finite I, we usually assume that I is infinite. We denote a finite
subset of I by i = {i0, . . . , in−1} ∈ [I]n, and convene that this notation implies that
i0 < · · · < in−1.

Definition 3.32. A generalised I-sequence is something of the form (an
i : n < ω, i ∈ [I]n),

where each an
i is a possibly infinite tuple.

Notation 3.33. Given such a generalised sequence (an
i : n < ω, i ∈ [I]n) we define by

induction on n:

ân
{i0,...,in−1}

= ân−1
{i1,...,in−1}

, . . . , ân−1
{i0,...,ij−1,ij+1,...,in−1}

, . . . , ân−1
{i0,...,in−2}

, an
{i0,...,in−1}

(so ân
i contains an awful lot of repetitions when n starts growing, but that’s the way we

like it.)
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Definition 3.34. A generalised I-sequence (an
i : n < ω, i ∈ [I]n) is indiscernible if tp(ân

i )
depends only on n for every n < ω.

Lemma 3.35. For every cardinal κ there is a cardinal λ (in fact, λ = i(2|T |+κ)+ will
always do) such that if (an

i : n < ω, i ∈ [λ]n) is a generalised λ-sequence and |an
i | ≤ κ for

every n, i, then there is an indiscernible generalised sequence (bn
i : n < ω, i ∈ [ω]n) such

that for every i ∈ [ω]n there is i′ ∈ [λ]n such that b̂n
i ≡ ân

i′. Moreover, we may always take
it so that a0

∅
= b0

∅
.

Proof. Just like for ordinary sequences. qed3.35

Definition 3.36. A sequential pre-model is a generalised I-sequence (an
i ) such that |an

i | ≤
|T | for every i ∈ [λ]n, and for every j ∈ [i]n−1, every consistent negative formula with
parameters in ân−1

j has a realisation in an
i . (Such a sequence is in particular a pre-model.)

An Ehrenfeucht-Mostowski pre-model is a sequential pre-model which is indiscernible as
a generalised sequence.

Proposition 3.37. Ehrenfeucht-Mostowski pre-models exist.

Proof. Construct a very long sequential pre-model, by choosing a basic sequence of ele-
ments and then by adding witnesses at each level, such that |an

i | ≤ |T | for each n, i: since
|ân−1

j | ≤ |T | for all j ∈ [i]n−1 (by the induction hypothesis), |T | witnesses should indeed
suffice. Then apply Lemma 3.35. qed3.37

Proposition 3.38. Let α be an ordinal, M = (an
i : n < ω, i ∈ [α]n) an Ehrenfeucht-

Mostowski pre-model A ∈ [M ]|T |. Then there are at most |T | types over A realised in
M .

Proof. The classical proof works. There is J ∈ [α]≤|T | such that A ⊆ MJ = (an
i : n <

ω, i ∈ [J ]n). For every n < ω, i ∈ [α]n and singleton (or finite tuple) b ∈ ân
i , the

type tp(b/A) depends only on the position of b in ân
i and on the quantifier-free type

of i in (α,<, cj : j ∈ J) (where the constant cj is interpreted as j). There are |T |
possibilities for the former since |an

i | ≤ |T |, and for the latter since |J | ≤ |T | and α is
well ordered. qed3.38

4. Refining simplicity and stability

4.1. Simplicity.

Definition 4.1. We say that p(x) ε-divides over c if p(xε) divides over c.

Proposition 4.2. A partial type p(x, b) divides over c if and only if it ε-divides over c
for some positive distance ε.

Proof. One direction is clear. For the other, assume that p divides over c. Since p(x) is
equivalent to

∧
ε>0 p(xε), there is a finite set of positive distances (εi : i < n) such that∧

i<n p(xε
i ) divides over c. Then ε′ =

∧
i<n εi is positive, as the intersection of finitely

many positive distances, and p(xε′) divides over c. qed4.2
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Corollary 4.3. T is simple if and only if, for every set A, singleton a, and ε > 0, there
is A0 ⊆ A such that |A0| ≤ |T | and tp(a/A) does not ε-divide over A0.

Definition 4.4. Let ε be a distance on the sort of α-tuples (or on any imaginary sort,
but we still designate the sort by the symbol α). Then κε

α(T ) is the minimal cardinal (or
∞ if non exists) such that for every a (of the appropriate sort or length) and every set
A, there exists A0 ⊆ A, |A0| < κε

α(T ), such that tp(a/A) does not ε-divide over A0.
Define κα(T ) = sup{κε

α(T ) : ε > 0 is a distance on the appropriate sort}.

Proposition 4.5. κα(T ) does not depend on α.

Proof. We prove that κα(T ) = κ1(T ) for every α.
We first show that κα(T ) ≥ κ1(T ). Let A be a set, a a singleton, and ε > 0 a distance
on the home sort. Let ε′ = ε ×∞α−1: ε′ is a positive distance ε′ on the sort of α-tuples
and d(a<α, b<α) ≤ ε′ ⇐⇒ d(a0, b0) ≤ ε. Let a′ be the α-tuple consisting of α occurrences
of a, and let p(x) = tp(a/A), p′(x′) = tp(a′/A). Then by definition there is A0 ⊆ A,

|A0| < κα(T ), such that p′(x′ε
′

) does not divide over A0. Therefore p(xε) does not divide
over A0, as required.
For κα(T ) ≤ κ1(T ), we may assume that T is simple, since otherwise κ1(T ) = ∞ by
[HKP00, Remark 4.3]. By Lemma 2.5 it would suffice to prove that κε

n(T ) ≤ κ1(T ) for
every n < ω and every ε > 0 of the form ε =

∏
i<n εi (so εi > 0 for every i < n).

Let now a<n be an n-tuple, and A a set. By definition there is A0 ∈ [A]<κ1(T ) such that
p0(x0, A) = tp(a0/A) does not ε0-divide over A0. In other words, p0(x

ε0

0 , A) does not
divide over A0, so there is b0 such that d(a0, b0) ≤ ε0 and b0 |̂

A0

A. Proceed similarly,

setting at each step pi(xi, Ab<i) = tp(ai/Ab<i), and finding Ai ∈ [A]<κ1(T ) and bi such
that d(ai, bi) ≤ εi and bi |̂

Aib<i
A.

Set An =
⋃

i<n Ai ∈ [A]<κ1(T ). Then bi |̂
Anb<i

A for each i whereby b<n |̂
An

A, witness-

ing that tp(a<n/A) does not ε-divide over An, as required. qed4.5

We call this common value κ(T ).

Remark 4.6. In a first-order theory the zero distance is positive, so κ(T ) = κ0
1(T ) and

our definition of κ(T ) coincides with the classical one. However, when we turn to look on
infinitary sorts we see that κ0

λ(T ) = λ + κ0
1(T ), since the zero distance on infinite tuples

is practically never positive.

So T is simple if and only if κ(T ) < ∞, and we may define:

Definition 4.7. A cat T is supersimple if κ(T ) = ω. In other words, if ε-dividing of is
well founded, for every positive ε.

4.2. Stability. We are going to re-define the notion on λ-stability, and therefore that
of superstability, in the spirit of what we did above. We only define λ-stability when
λ ≥ |T | (where |T | is the minimal cardinality of a basis for the topology on the set of
types).
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Definition 4.8. Let ε > 0 be symmetric, and p, q ∈ S(A) be two types on the sort of ε.
Then p and q are ε-consistent if p(x) ∧ q(y) ∧ ε(x, y) is consistent. Otherwise, they are
ε-inconsistent.
If X ⊆ S(A) is such that every distinct p, q ∈ X are ε-inconsistent, then X is ε-
inconsistent. On the other hand, if every p ∈ S(A) is ε-consistent with some q ∈ X
then X is ε-dense.

Notice that p and q are ε-consistent if and only if p(x) ` q(xε).

Definition 4.9. T is α-λ-stable if λ ≥ |T |, and for every set |A| ≤ λ and ε > 0 on
α-tuples there is an ε-dense set X ∈ [Sα(A)]≤λ.
T is λ-stable if it is 1-λ-stable.
T is stable if it is λ-stable for some λ.

Lemma 4.10. Assume that λ ≥ |T | and α > 0. Then the following are equivalent:

(i) T is λ-stable.
(ii) T is α-λ-stable.
(iii) For every |A| ≤ λ and ε > 0, if X ⊆ Sα(A) is ε-inconsistent then |X| ≤ λ.

Proof. (i) =⇒ (ii). First let us prove that if T is λ-stable then it is n-λ-stable for every
0 < n < ω.
For n = 1 this is the assumption, so we assume for n and prove for n+1. Assume
therefore that |A| ≤ λ and ε′ > 0 is a distance on (n + 1)-tuples. One can find
a distance ε > 0 on singletons such that ε′ > εn+1. By assumption there are
singletons {ai : i < λ} such that {tp(ai/A)} is ε-dense in S1(A), and for every
i < λ there are n-tuples {bi,j : j < λ} such that {tp(bi,j/Aai) : j < λ} is εn-dense
in Sn(Aai). It follows that {tp(bi,jai/A) : i, j < λ} is εn+1-dense in Sn+1(A), and
a fortiori ε′-dense.
The case where α is infinite reduced to the finite case by Lemma 2.5.

(ii) =⇒ (iii). Assume that ε > 0 is given, and let ε′ > 0 be such that ε > 2ε′. Then the
existence of an ε′-dense subset X ∈ [Sα(A)]≤λ implies that every ε-contradictory
set must be of cardinality at most λ.

(iii) =⇒ (i). Assume not. Then there is ε > 0 and X ∈ [S1(A)]λ
+

which is ε-
inconsistent. Let X ′ ⊆ Sα(A) be its image under the diagonal map, and
ε′ = ε ×∞α−1. Then X ′ is ε′-inconsistent, even though ε′ > 0.

qed4.10

Remark 4.11. We changed (weakened) the definition of λ-stability, but not that of sta-
bility.

Proof. Since our definition of λ-stability is weaker than that of [Ben03b, Section 3] (where
stability is defined by counting types, without any density considerations), stability in
the sense of [Ben03b, Section 3] implies stability in our sense.
Conversely, if T is not stable in the sense of [Ben03b, Section 3], then there are contradict-
ing formulas ϕ0(x, y) and ϕ1(x, y) such that R(x = x, ϕ0, ϕ1, 2) = ∞. By compactness
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there exists ε > 0 such that ϕ0(x0, y) ∧ ϕ1(x1, y) ∧ ε(x0, x1) is inconsistent. For every
cardinal λ there is µ be such that 2<µ ≤ λ < 2µ, and as R(x = x, ϕ0, ϕ1, 2) = ∞ there
are {bσ : σ ∈ 2<µ} such that {ϕσ(i)(x, bσ¹i) : i < µ} is consistent for every σ ∈ 2µ.
Let B = {bσ : σ ∈ 2<µ}, and for every σ ∈ 2µ let pσ(x) ∈ Sn(B) be any completion of
{ϕσ(i)(x, bσ¹i) : i < µ} (here n = |x|). Then the set {pσ : σ ∈ 2µ} is an ε-inconsistent set of
cardinality 2µ > λ over a set of parameters of cardinality |B| = 2<µ ≤ λ. By Lemma 4.10
T is not λ-stable. Thus T is not stable. qed4.11

Lemma 4.12. A cat T is λ-stable if and only if λ ≥ |T | and for every |A| ≤ λ there is
B ⊇ A, |B| ≤ λ such that every 1-type over A is realised in B̄.

Proof. First, since the home sort is assumed to be metric, it follows from Lemma 4.10
that T is λ-stable if and only if for all such A there is X ⊆ S1(A) which is ε-dense for
every ε > 0 and |X| ≤ λ.
For right to left, X = {tp(b/A) : b ∈ B} is indeed ε-dense in S1(A) for all ε > 0.
For left to right, let X ⊆ S1(A) be ε-dense for every ε > 0 and |X| ≤ λ. Consider the
tree t = X<ω, and let t0 ⊆ t be the sub-tree consisting only of sequences p̄ = (p0, . . . , pn)

such that pm(x) ` pm+1(x
1

2m ) for every m < n.
Choose by induction on n elements bp̄ for every p̄ = (p0, . . . , pn) ∈ t0 such that bp̄ ² pn

and such that d(bp̄,pn+1
, bp̄) ≤

1
2n . Define B = {bp̄ : p̄ ∈ t0}, so |B| ≤ λ.

Let q ∈ S1(A) be given. For every n < ω choose pn ∈ X such that pn(x)∧q(y)∧d(x, y) ≤
1

2n+1 . Then (p0, . . . , pn) ∈ t0 for every n, and the sequence (b(p0,...,pn) : n < ω) is a Cauchy
sequence whose limit is a realisation of q. Thus B̄ realises every 1-type over A. qed4.12

Theorem 4.13 (Stability spectrum). Let T be stable, and let λ0(T ) be the minimal
cardinality at which T is stable. Then T is λ-stable if and only if λ<κ(T ) = λ ≥ λ0(T ).

Proof. We prove left to right first. By definition of λ0(T ), if T is λ-stable then λ ≥ λ0(T ).
If λ<κ(T ) 6= λ, then there is µ < κ(T ) such that λµ > λ, and we may also assume that
µ is minimal as such, so λ<µ = λ. Since µ < κ(T ) there exist a positive distance
ε > 0 and an increasing sequence of types (pi(x, b<i) : i < µ), such that pi+1(x) ε-divides
over b<i for all i. In other words, pi+1(x

ε) divides over b<i, say with respect to a ki-
inconsistence witness ψi(z<ki

). Let I =
⋃

i<µ λi+1. One can construct (cσ : σ ∈ I) such

that (cτ¹i+1 : i < µ) ≡ (bi : i < µ) for every τ ∈ λµ, and for every i < µ, σ ∈ λi and
j0 < · · · < jki−1 < λ: ² ψi(cσ,j0 , . . . , cσ,jki−1

).

For each i < µ and σ ∈ λi define qσ ∈ S(c∈λ<i) by induction on i: for i = j+1 let qσ be any
extension of qσ¹j(x) ∧ pi+1(x, cσ¹k+1 : k < i), and for i limit take qσ =

∧
j<i qσ¹j. Consider

some σ ∈ λi, and let Jσ = {(σ, l) : l < λ} ⊆ λi+1. Then for every σ′ ∈ Jσ there is a finite
bound (ki−1, if one wants to be precise) on the cardinality of {σ′′ ∈ Jσ : qσ′(x) ` qσ′′(xε)}
(this is just because ψi is a ki-inconsistency witness for pi+1(x

ε)). Thus, by a repeated
process of choosing an element of λ and throwing finitely many away, we may in fact
assume that for no two distinct σ′, σ′′ ∈ Jσ are qσ′ and qσ′′ ε-consistent. For every τ ∈ λµ

let qτ (x) =
∧

i<µ qτ¹i ∈ S(c∈λ<µ). Then {qτ : τ ∈ λµ} are pairwise ε-inconsistent over
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λ = λ<µ parameters, so T is not λ-stable.
For the converse, assume that λ = λ<κ(T ) ≥ λ0(T ). Since λ ≥ |T |, it would suffice
to prove that if M is a pre-model, |M | ≤ λ and ε > 0 then there is an ε-dense set
X ∈ [S(M)]≤λ. Since λ = λ<κ(T ), we can enumerate [M ]<κ(T ) = (Ai : i < λ). Since
κ(T ) ≤ |T |+, we can choose for every Ai a pre-model Ai ⊆ Mi ⊆ M of cardinality |T |.
We know that λ0(T ) ≥ |T | by definition, so for every i < λ there is Xi ∈ [S(Mi)]

≤λ0(T )

which is ε-dense. Since T is stable and Mi is a pre-model, every type of Mi has a unique
non-dividing extension to M , which is its co-heir. Let X be the collection of all these
extensions, so |X| ≤ λ.
For every p ∈ S(M) there is i < λ such that p(x) does not ε-divide over Mi. This means
that there is q ∈ S(M), ε-consistent with p, which is the unique non-dividing extension
of q0 = q¹Mi

. We can also find q′0 ∈ Xi which is ε-consistent with q0, and let q′ ∈ X be
its unique non-dividing extension to M . Let a ² q0, b ² q′0 such that d(a, b) ≤ ε and
ab |̂

Mi
M : then a ² q and b ² q′, showing that q and q′ are ε-consistent. Therefore p

and q′ are 2ε-consistent, so X is ε-dense. As for every ε′ > 0 there is ε > 0 such that
ε′ > 2ε, this shows that T is λ-stable. qed4.13

Remark 4.14. As in first order theories we may define κr(T ) to be κ(T ) if it is regular,
or κ(T )+ otherwise. Since for singular κ we have λκ = (λ<κ)<κ, the condition λ<κ(T ) = λ
is equivalent to λ<κr(T ) = λ.

Theorem 4.15 (Existence of saturated models). If T is λ-stable then it has a approxi-
mately saturated model of cardinality λ.

Proof. Assume that T is λ-stable.
Choose a pre-model M0 of cardinality ≤ λ. Given a pre-model |Mα| ≤ λ, let Xα ⊆ S1(Mα)
be distance-dense of cardinality ≤ λ, and let Mα+1 be a pre-model containing Mα and
a realisation of every p ∈ Xα, and still we may take |Mα+1| ≤ λ. For δ limit, define
Mδ =

⋃
α<δ Mα, and we stop at M = Mλ. We wish to prove that M̄ is approximately

λ-saturated.

Claim. Let (εi : i < µ < λ) be positive distances on the sort of M , ε̄ =
∧

εi, p ∈ S1(M)
and ε > 0 a positive distance for singletons. Then p(x3ε,M2ε̄) is realised in M .

Proof of claim. For α < λ let pα = p ¹ Mα, and find aα ∈ Mα+1 realising pα(xε).
By Lemma 2.5, every εi is only concerned with finitely many elements of M , whereby
ε̄ only is concerned with less than λ elements of M . If λ is regular, all these elements
belong to some Mα, and aα+1 ² p(xε,M ε̄).
We may therefore assume that λ is singular. We may also assume that the family (εi : i <
µ) is closed under finite conjunctions. Since λ = λ<κ(T ) we have in particular λ > cf(λ) ≥
κ(T ), so there must be some α0 < λ such that p(xε) does not divide over Mα0

. Without
loss of generality, we may assume that α0 = 0.
Let q ` p(xε) be a complete type over M that does not divide over M0, and qα = q ¹ Mα.
For each α, choose bα ² qα. Then bα |̂

M0

Mα, and we may also choose it such that also
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d(bα, aα) ≤ 2ε and bα |̂
aαMα

Mb<α.

We prove that b<α |̂
Mα

M by induction on α. For α limit this would follow from the

induction hypothesis for β < α. For successors:

bα |̂
aαMα

Mb<α =⇒ bα |̂
b<αMα+1

M =⇒ b<α+1 |̂
Mα+1

M

On the other hand, we can also continue:

bα |̂
aαMα

Mb<α =⇒ bα |̂
M

b<α =⇒ bα |̂
Mα

b<α =⇒ bα |̂
M0

b<α

So the sequence (bi : i < λ) is independent over M0. Consider now r(Y ) = tp(M/M0, b<λ):
for every i < µ there is Ii ∈ [λ]<κ(T ) such that r(Y εi) does not divide over M0b∈Ii

. Let
I =

⋃
i<µ Ii. Since the family (εi : i < µ) is closed under finite conjunction, r(Y ε̄) does not

divide over M0b∈I , so there is N ∈ M ε̄ such that N |̂
M0b∈I

b<λ. Since |I| ≤ κ(T )×µ < λ

we can choose i ∈ λ r I, and bi |̂
M0b∈I

N =⇒ bi |̂
M0

N .

Find M ′ such that M ′ ≡NM0
M and M ′ |̂

NM0

bi. Then d(M,M ′) ≤ 2ε̄, and bi |̂
M0

M ′.

Since M ′ ≡ M and q(x,M) is the unique non-dividing extension of q0(x,M0), ² q(bi,M
′).

Since q(x, Y ) ` p(xε, Y ), we sum up and obtain ² p(a3ε
i ,M2ε̄), as promised. qedClaim

In order to conclude that M̄ is approximately saturated we need a few slight improve-
ments. First, we only considered types over M , but M and M̄ are interdefinable, so this
is fine. Second, we proved for 1-types, but by induction one obtains for n-types: as for
types of infinitely long tuples, since we only wish to realise something like p(xε,M ε′) for
ε > 0, this reduces to the finite case. qed4.15

Lemma 4.16. Assume that T is λ-stable, |A| ≤ λ, and (ai : i < λ+) is some sequence in
a finite (or countable) sort. Let ε > 0 be on that sort.
Then there exists a type p(x<λ+) of an A-indiscernible sequence, and a I ⊆ λ+ of order
type λ+, such that a∈I ² p(xε

<λ+).

Proof. Since T is λ-stable: λ<κ(T ) = λ.
We now construct (b̄i : i < λ+) = (bj

i : j < i < λ+) in the following manner. At the
ith step, we assume that b̄<i are known, and set Ai = Aa<ib̄<i. Since |Ai| + |T | ≤ λ,
we can embed Ai in a pre-model of cardinality λ, whence there is an ε-dense set Xi ∈
[S(bdd(Ai))]

≤λ. For every j < i we add to Xi the (unique) non-dividing extension of
every p ∈ Xj.

For j < i define ζj
i = min{k ≤ j : tp(ai/Aj) does not ε-divide over Ak} (at the worst,

ζj
i = j). Then there is cj

i |̂
A

ζ
j
i

Aj such that d(ai, c
j
i ) ≤ ε, and there is pj

i ∈ X
ζ

j
i

which is

ε-consistent with lstp(cj
i/Aζ

j
i
). This means that there is bj

i ² pj
i such that d(bj

i , c
j
i ) ≤ ε,

and we may assume that bj
ic

j
i |̂

A
ζ
j
i

Aj. To sum up, d(bj
i , ai) ≤ 2ε, and lstp(bj

i/Aj) is the

unique non-dividing extension of pj
i .
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For every i < λ+ let us define τi ∈ 2λ+

by τi(j) = 0 if and only if tp(ai/Aj+1) does
not ε-divide over Aj. For j < λ+ and σ ∈ 2j define Iσ = {i < λ+ : σ < τi} and
otp1(σ) = otp{k < j : σ(k) = 1}. Then define ξj = min{otp1(σ) : σ ∈ 2j, |Iσ| = λ+}.
By definition of κ(T ): Iσ 6= ∅ =⇒ otp1(σ) < κ(T ), and clearly |{σ ∈ 2j : otp1(σ) <
κ(T )}| ≤ λ<κ(T ) = λ for every j < λ+. It follows that if |Iσ| = λ+ (as is the case
for σ = ∅), then σ has arbitrarily long extensions in 2<λ+

having the same property.
Therefore ξj is always defined, and is increasing with j. Since it is bounded by κ(T ),
there must be ξ < κ(T ) and j0 < λ+ such that ξj = ξ for all j0 ≤ j < λ+.
Define an increasing sequence (ji ≤ ki < λ+ : i < λ+). We have already chosen j0; for
i > 0 we let ji = sup{kl + 1: l < i} < λ+. Then there is σ ∈ 2ji such that otp1(σ) = ξ
and |Iσ| = λ+, so let ki = min Iσ r ji. By definition of ξ it follows that tp(aki

/Aji
) does

not ε-divide over Aj0 . Therefore ζjI

ki
≤ j0, so tp(bji

ki
/Aji

) does not divide over Aj0 .

Set di = bji

ki
. Then (di : i < λ+) is an Aj0-independent sequence. Moreover, lstp(di/Aj0) ∈

Xj0 which is a set of cardinality λ, so by passing to a subsequence, still of length λ+, we
may further assume that lstp(di/Aj0) is constant. Then (di : i < λ+) is a Morley sequence
over Aj0 , and therefore in particular an A-indiscernible sequence. qed4.16

Proposition 4.17. Assume that T is λ-stable, |A| ≤ λ, and (ai : i < λ+) is some
sequence in a metric sort.
Then there exists a type p(x<λ+) of an A-indiscernible sequence, and a decreasing chain

of subsets λ+ ⊇ I0 ⊇ I1 ⊇ . . ., all of which of order type λ+, such that a∈In
² p(x

1

n

<λ+) for

every n < ω (where 1
n

is interpreted according to a fixed definable metric).

Proof. By induction we find such a decreasing sequence and types pn such that a∈In
²

pn(x
1

2n

<λ+). Then
∧

pn(x
1

2n

<λ+) is finitely consistent and therefore consistent, and it is a

complete type since 1
2n

→ 0. Call this type p. Then a∈In
² p(x

1

n

<λ+) as required. qed4.17

4.3. Morley rank. In this section we will define a variant of the Morley rank. In the
classical setting of a first order theory, one defines the Morley rank of formulas with
parameters (and subsequently of partial types). In a first order theory, a definable set
can be characterised as a type-definable set whose complement is type-definable as well.
Since in our context we do not have the luxury of clopen bases for the type-spaces, we
will define the Morley rank for type-definable sets and their complements.

For the time being, we work with sets in a fixed sort.

Convention 4.18. A set (in the fixed sort) definable by a partial type with parameters
(in a given set of parameters A) will be called (A)-closed. Here F , G, etc. always denote
closed sets.
An (A-)open set is the complement of an (A-)closed set. Here U , V , etc. always denote
open sets.

Given a set of parameters A, any A-invariant set can be viewed as a subset of S(A),
and then it is closed (open) by the definition above if and only if it is closed (open) in
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the type-space topology. In particular, a set is A-closed (A-open) if and only if it is
A-invariant and closed (open).

Since we let the set of parameters vary, we do not have a proper notion of closure or
of interior: if X is an A-invariant set then there is a minimal A-closed set containing
it, but this closure may decrease as A increases. Therefore when considering a given
family of such sets it may be convenient to fix a set of parameters A over which they are
all invariant. Then we can work in S(A), where each A-invariant set is a set of points
(complete A-types), and a well-defined notion of closure exists.

Definition 4.19. If U and V are open sets then V is strongly contained in U , in symbols
V < U , if there is a closed set F such that V ⊆ F ⊆ U (note that K is clopen if and
only if K < K).

Fact 4.20. Assume that F ⊆ U (so F is closed and U is open, by our notational con-
ventions). Then there is V (open) such that F ⊆ V < U .
Moreover, if both F and U are A-invariant, then we may choose V to be A-invariant as
well.

Proof. This is elementary point-set topology. qed4.20

Lemma 4.21. Let X be an A-invariant set: open, closed, or just an arbitrary collection
of A-types, and assume that F ⊆ X ⊆ U , where F and U are closed and open, respec-
tively, not necessarily A-invariant. Then there are sets F ′ and U ′, A-closed and A-open,
respectively, such that F ⊆ F ′ ⊆ X ⊆ U ′ ⊆ U .

Proof. Let B be a set of parameters containing A and the parameters for F and U .
Consider F as a subset of S(B), and let F ′ = {p¹A : p ∈ F} ⊆ S(A). Then, when
identified with their respective sets of realisations we have F ⊆ F ′ ⊆ X. Passing to
complements we get the same result on the other side. qed4.21

Definition 4.22. Let ε be a distance. Two closed sets F and G are ε-disjoint if
F (x)∧G(y)∧ ε(x, y) is contradictory (in other words, every two realisations of F and G,
respectively, are at distance greater than ε).

In particular, 0-disjointness is ordinary disjointness.

Definition 4.23. Let ε be a distance. We define the ε-Morley rank of open and closed
sets simultaneously by induction. If U is an open set we define:

(i) MRε(U) ≥ 0 if U 6= ∅.
(ii) MRε(U) ≥ α for limit α if MRε(U) ≥ β for every β < α.
(iii) MRε(U) ≥ α + 1 if there is an infinite family of disjoint closed sets (Fi : i < ω)

in U with MRε(Fi) ≥ α for all i < ω.

If F is a closed set, then MRε(F ) ≥ α if MRε(U) ≥ α whenever F ⊆ U .
We set MRε(U) = sup{α : MRε(U) ≥ α}: if this is a bounded set then the maximum is
attained, otherwise MRε(U) = ∞. Do the same for closed sets (the maximum is attained
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for a closed set F since it is for every U containing it).
(MR stands for “Rang de Morley”, but the wrong way around.)

Remark 4.24. (i) If F is an A-closed set then MRε(F ) =
min{MRε(U) : U is A-open and F ⊆ U}. This is immediate from the def-
initions and from Lemma 4.21.

(ii) If K is a clopen set then its Morley rank as an open or as a closed set coincide.

The rank we defined is continuous in the following sense:

Fact 4.25. For every A, ε and α, the set {p ∈ S(A) : MRε(p) ≥ α} is closed.

Proof. It is the complement of the union of all A-open sets with ε-Morley rank less than
α. qed4.25

One of the most important properties of any rank is that if one removes a small set
from a big one, one is left with a big set:

Proposition 4.26. (i) If MRε(F ) < MRε(U) then MRε(U r F ) = MRε(U).
(ii) If V ∩ F ⊆ G and MRε(G) < MRε(F ) then MRε(F r V ) = MRε(F ).

Proof. We prove simultaneously by induction on α that if MRε(F ) < α ≤ MRε(U)
then MRε(U r F ) ≥ α (we refer to this as the “open case”), and if V ∩ F ⊆ G and
MRε(G) < α ≤ MRε(F ) then MRε(F r V ) ≥ α (the “closed case”).

(i) We prove the open case. If α = 0 this is immediate, and if α is limit, then this
follows from the induction hypothesis for the open case. We therefore assume
for α, and prove the open case for α + 1.
Since MRε(F ) ≤ α, there are open W ′,W such that MRε(W ) ≤ α and F ⊆
W ′ < W . Since MRε(U) ≥ α + 1 there are ε-disjoint (Gi : i < ω) in U such that
MRε(Gi) ≥ α. Fix a set of parameters A over which all the mentioned sets are
invariant, so we can have a proper notion of closure.
Since MRε(W ) ≤ α, we can only have MRε(Gi ∩ W̄ ′) ≥ α for finitely many
values of i, and we might as well assume that MRε(Gi ∩ W̄ ′) < α for every i.
Then MRε(Gi r W ′) ≥ α by the induction hypothesis for the closed case, and
Gi r W ′ ⊆ U r F , so MRε(U r F ) ≥ α + 1.

(ii) We assume the open case for α, and prove the closed case for α.
We assume that F ∩ V ⊆ G and MRε(G) < α, so we can find G ⊆ W ′ < W
such that MRε(W ) < α. If U is such that F r V ⊆ U , then F ⊆ U ∪ W ′,
whereby MRε(W̄

′) < α ≤ MRε(U ∪ W ′), and by the open case: MRε(U) ≥
MRε((U ∪ W ′) r W̄ ′) = MRε(U ∪ W ′) ≥ α. Thus MRε(F r V ) ≥ α. (Here
the closure W̄ ′ can be calculated in S(A) for any set A over which all the sets
involved are defined.)

qed4.26

Lemma 4.27. Let F be a family of closed sets closed under finite intersections, and
G =

⋂
F . Then MRε(G) = minF∈F MRε(F ).
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Proof. Clearly, F ∈ F =⇒ MRε(G) ≤ MRε(F ). On the other hand, assume that G ⊆ U :
by compactness, F0 ⊆ U for some F0 ∈ F , so MRε(U) ≥ MRε(F0) ≥ minF∈F MRε(F ).

qed4.27

Proposition 4.28. Assume that F is A-closed, and for once consider it as a subset of
S(A). Then MRε(F ) = max{MRε(p) : p ∈ F} (in particular, the maximum is attained).

Proof. Clearly, MRε(F ) ≥ MRε(p) for every p ∈ F . Conversely, assume that p ∈ F
and MRε(p) < MRε(F ). Then one can find p ∈ V < U such that MRε(U) < MRε(F ).
Setting F ′ = F r V we have MRε(F

′) = MRε(F ) and p /∈ F ′.
Write F0 = F , Fi+1 = F ′

i , and at the limits Fi =
⋂

j<i Fj, and continue as long as there

is p ∈ Fi such that MRε(p) < MRε(Fi) = MRε(F ). If the construction stops at Fα then
Fα cannot be empty, and MRε(p) = MRε(F ) for every p ∈ Fα. qed4.28

Corollary 4.29. If MRε(U) = α then there is a finite bound on the size of a family
of 2ε-disjoint closed sets in U of rank α. We call this bound the ε-Morley degree of U ,
denoted Mdε(U).

Proof. Assume that for every n < ω there is a family {F n
i : i ≤ n} of 2ε-disjoint closed

subsets of rank α. Let A be a set of parameters for all of them (including U), and for
every n < ω and i ≤ n let pn

i ∈ F n
i be a type of rank α, by Proposition 4.28. We will

now choose qn ∈ {pn
i : i ≤ n} by induction on n < ω such that the family {qn : n < ω} is

ε-disjoint. Assume that {qm : m < n} are already chosen. If each of pn
i (for i ≤ n) is not

ε-disjoint of some qm (m < n), then by the pigeonhole principle there are i < j ≤ n and
m < n such that both pn

i and pn
j are not ε-disjoint of qm, and therefore not 2ε-disjoint

of one another, contradicting the assumption. Therefore there is at least one pn
i which is

ε-disjoint of every qm: we may therefore choose qn = pn
i and proceed with the induction.

At the end, the family {qn : n < ω} ⊆ U is ε-disjoint and MRε(qn) = α for every n < ω,
contradicting MRε(U) = α. qed4.29

The usage of 2ε instead of ε in the definition of the Morley degree may be bothering,
but it seems inevitable, and in any case does not prevent the notion from being quite
useful. For closed sets we define the Morley degree much like we did for the Morley rank.

Definition 4.30. If F is a closed set and MRε(F ) = α then Mdε(F ) is defined as
min{Mdε(U) : F ⊆ U, MRε(U) = α}.

Note that by Lemma 4.21, if F is A-closed, then we may restrict ourselves to sets U
which are A-open.

Notation 4.31. If U is an A-open set and MRε(U) < ∞, then mMRε,A(U) = {p ∈
U : MRε(p) = MRε(U)}, where U is considered as a subset of S(A).

Lemma 4.32. Let p ∈ S(A) and assume that MRε(p) < ∞. Then there is an open set
U ⊆ S(A) such that p ∈ U , MRε(U) = MRε(p) and Mdε(U) = Mdε(p), and given a basis
for the topology we may assume that U is basic.
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Such a U determines p over A up to 2ε, in the sense that p ∈ mMRε,A(U) ⊆ p(x2ε),
where the latter is interpreted as a subset of S(A).

Proof. By definition of Mdε(p) there is an open set U ⊆ S(A) containing p having the
same Morley rank and degree as p. Given a basis for the topology on S(A), we can find
a basic open set p ∈ U ′ ⊆ U which would necessarily have the same Morley degree and
rank as p and U . By reason of Morley degree, if q is another type of the same ε-Morley
rank as p in U (or U ′), then it cannot be 2ε-disjoint of p. qed4.32

Definition 4.33. T is totally transcendental if for every ε > 0, every closed or open set
has an ordinal ε-Morley rank.

Proposition 4.34. A cat with a countable language is totally transcendental if and only
if it is ω-stable.

Proof. Assume that T is totally transcendental. If A is a countable set, since the language
is also countable there is a countable basis of open sets for S(A). Assume that ε′ > 0 is
given, and find ε > 0 such that ε′ > 2ε. Let X ⊆ S(A) be a countable set intersecting
mMRε,A(U) for every basic open U ⊆ S(A) such that mMRε,A(U) 6= ∅. By Lemma 4.32
for every p ∈ S(A) there is a basic open set U such that p ∈ mMRε,A(U) ⊆ p(x2ε) ⊆ p(xε′),
so p(xε′) ∩ X 6= ∅. It follows that X is ε′-dense, so T is ω-stable.
Conversely, assume that T is not totally transcendental, so MRε(S(T )) = ∞ for some
ε > 0. Since there are, up to automorphism, boundedly many basic closed sets (in
Hebrew: formulas with parameters), there is a bound α on the ranks of all ranked basic
closed sets, and therefore on the ranks of all ranked closed or open sets.
Assume that U is an open set, with MRε(U) = ∞ > α. Then there is an infinite family
of ε-disjoint unranked closed subsets in U , and let F, F ′ be two of them. By compactness
we may now find open sets V, V ′ and closed sets F̂ , F̂ ′ such that F ⊆ V ⊆ F̂ ⊆ U ,
F ′ ⊆ V ′ ⊆ F̂ ′ ⊆ U and F̂ , F̂ ′ are ε-disjoint. It follows that MRε(V ) = MRε(V

′) = ∞.
Iterating this process we obtain (Vσ : σ ∈ 2<ω) such that Vσi < Vσ for every σ ∈ 2<ω

and i < 2, and Vσ0 ∩ Vσ1 = ∅. Since Vσi < Vσ we can find a basic set Fσi such that
Vσi ⊆ Fσi ⊆ Vσ. Since a basic set requires only finitely many parameters, we only need
countably many for all of the sets (Fσ : 2<ω), and over this countable set there are 2ω

ε-inconsistent types, contradicting ω-stability. qed4.34

4.4. Prime models. We assume as usual that T is metric.

Lemma 4.35. If U is A-open and MRε(U) < ∞ for every ε > 0 then U contains a
principal type over A.

Proof. Choose a sequence εn → 0 of positive distances. We construct by induction a
decreasing sequence of A-open sets U = U0 > U1 > . . . such that Ui+1 ⊆ p(x4εi) for every
i and p ∈ Ui+1.
We start with U = U0. Once Ui is known, we choose pi ∈ Ui of minimal MRεi

-rank. By
Lemma 4.32 there is an open set Ui+1 such that pi ∈ mMRεi,A(Ui+1) ⊆ pi(x

2εi), and we
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may always assume that Ui+1 < Ui (otherwise find pi ∈ W < Ui and replace Ui+1 with
W ∩ Ui+1). Since pi is of minimal MRεi

-rank in Ui, and a fortiori in Ui+1, we get in fact
in fact Ui+1 = mMRεi,A(Ui+1) ⊆ pi(x

2εi).
It follows that Ui+1 ⊆ p(x4εi) for every p ∈ Ui+1.
Let X =

⋂
i<ω Ui. Then X =

⋂
i<ω Ūi 6= ∅, and we may choose p ∈ X. Then for every

ε > 0 there is i such that ε > 4εi, so p ∈ Ui+1 ⊆ p(xε). This shows that p ∈ U is
principal. qed4.35

Definition 4.36. Let A ⊆ B. Then B is constructed over A if there is an enumeration
B = {bi : i < α} such that tp(bi/Ab<i) is principal for every i < α.
A constructed model over A is a complete model M̄ ⊇ A such that the pre-model M is
constructed over A.

Proposition 4.37. If T is totally transcendental then constructed models exist over any
set.

Proof. Let A be a set, and let {∃yi ¬ϕi(x, yi, ai) : i < λ} enumerate all non-empty basic
Q-open sets in S1(A) (so x is a singleton, but yi may be a finite tuple). Construct a
sequence (bi : i < λ) as follows. By Lemma 4.35, for every i there are bi, ci such that
¬ϕi(bi, ci, ai) and tp(bi, ci/Ab<i) is principal. By Lemma 3.28 tp(bi/Ab<i) is principal.
Thus A′ = Ab<λ is constructed over A. Now let A0 = A and An+1 = A′

n. Then
M =

⋃
n<ω An is a pre-model, and M̄ is a constructed model over A. qed4.37

By Proposition 3.25 if M is a constructed model over A then it is prime over A, in the
sense that if M ′ is a complete model containing A then M embeds in M ′ over A. (We
are not interested in the issue of uniqueness of prime model).

Proposition 4.38. A constructed model (over A) is atomic (over A), by which we mean
that the type of every element over A is principal.

Proof. Let M̄ be a constructed model over A, where M is constructed as a pre-model over
A. By Proposition 3.27, tp(M/A) in principal. By Lemma 3.28, tp(M̄/A) is principal,
as is tp(a/A) for every a ∈ M̄ . qed4.38

5. The main theorem

We assume throughout that T is countable.

Proposition 5.1. If T is categoric in an uncountable cardinal λ then T is ω-stable.

Proof. Assume that T is not ω-stable, so there is a countable set A, a positive distance
ε and a sequence (ai : i < ω1) such that {tp(ai/A)} are ε-inconsistent. Since |Aa<ω1

| =
ω1 ≤ λ there is a complete model N ⊇ Aa<ω1

of density character λ.
Let M be an Ehrenfeucht-Mostowski pre-model of length λ. Then M̄ is the unique
complete model of density character λ, and we may therefore assume that N = M̄ .
Let ε′ > 0 be such that ε > 3ε′. Let B ⊆ M be countable such that A ⊆ B̄, and for
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every i < ω1 find bi ∈ M such that d(bi, ai) < ε′. Then {tp(bi/B)} are ε′-inconsistent,
and therefore distinct, contradicting Proposition 3.38. qed5.1

We prove:

Theorem 5.2. A countable cat T is categoric in some uncountable cardinal, then it is
categoric in every uncountable cardinal.

Proof. We will prove this along the lines of [She75]. For the purposes of the proof we
may assume that T is categoric in some uncountable cardinal, whereby it is ω-stable.
It follows that T has a approximately saturated model in every cardinal. For λ > ω
approximate saturation coincides with saturation, so T actually has a saturated model
in every uncountable cardinality, which is unique by the usual back-and-forth argument
(in fact the separable approximately saturated model is also unique, but this requires a
more elaborate argument, and in any case unnecessary for our purposes).
It is left to show that if there exists a non-saturated model in λ > ω then there exists
one in every λ′ > ω. Assume therefore that M is a complete model, ‖M‖ = λ, but M
is not λ-saturated. Then M is not even approximately λ-saturated, so there are A ⊆ M
with |A| = µ < λ, a distance ε1 > 0, and a type p ∈ S(A) such that p(xε1) is omitted in
M .
Since ‖M‖ = λ > µ there is ε0 > 0 and a sequence (ai : i < µ+) in M such that
d(ai, aj) > ε0 for all i < j < µ+.
By Proposition 4.17 there is an A-indiscernible sequence (bi : i < µ+) such that, if
q(x<µ+) = tp(b<µ+/A), then for every ε > 0 there is a subsequence (aij : j < µ+) satisfy-
ing q(xε

<µ+).

Let ϕ(x, t, y<n, z) be any formula, and assume that ∃t¬ϕ(x, t, b<n, a) is consistent where
a ∈ A. Then we claim that ∃t¬ϕ(x, t, b<n, a) 0 p(xε1). Indeed, let c, d be such that
¬ϕ(c, d, b<n, a). By Lemma 3.23 there exist a formula ψ(x, t, y<n, A) and ε2 > 0 such that
¬ψ(c, d, bε2

<n, A) and ¬ψ(x, t, y<ε2

<n , A) ` ¬ϕ(x, t, y<n, A). But then, for some I ∈ [µ+]n,
we may actually assume that d(b<n, a∈I) < ε2, in which case ¬ψ(c, d, a∈I , A). Then there
must c′, d′ ∈ M such that ¬ψ(c′, d′, a∈I , A). But: ¬ψ(c′, d′, a∈I , A) ` ¬ψ(c′, d′, b<ε2

<n , A) `
¬ϕ(c′, d′, b<n, A), and we assumed that M omits p(xε1).
Let A0 = ∅. Assuming that An ⊆ A is countable consider all consistent formulas of the
form ∃t¬ϕ(x, t, b<n, a) where a ∈ An. For each one, finitely many elements in A suffice
in order to show that some realisation of ∃t¬ϕ(x, t, b<n, a) does not satisfy p(xε1). In
all we need countably many elements from A, and their addition to An result in An+1

which is still countable. Let A′ =
⋃

An, and p′ = p ¹ A′. Therefore if ∃t¬ϕ(x, t, b<n, a)
is consistent and a ∈ A′ then ∃t¬ϕ(x, t, b<n, a) 0 p′(xε1).
It follows that if b<λ′ is any sequence similar to bµ+ over A′, then any completion of p′ to
a type over A′b<λ′ cannot be principal, and therefore cannot be realised in a constructed
model over A′b<λ′ . It follows that if λ′ > ω then the constructed model over A′b<λ′ is
not saturated (it is in fact not even ω1-saturated), and T is not λ′-categoric. qed5.2
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