A DICHOTOMY IN CLASSIFYING QUANTIFIERS FOR FINITE MODELS

SAHARON SHELAH ${ }^{1}$ AND MOR DORON

Abstract

We consider a family \mathfrak{U} of finite universes. The second order quantifier $Q_{\mathfrak{R}}$, means for each $U \in \mathfrak{U}$ quantifying over a set of $n(\mathfrak{R})$-place relations isomorphic esto a given relation. We define a natural partial order on such quantifiers called interpretability. We show that for every $Q_{\mathfrak{R}}$, ever $Q_{\mathfrak{R}}$ is interpretable by quantifying over subsets of U and one to one functions on U both of bounded order, or the logic $L\left(Q_{\mathfrak{R}}\right)$ (first order logic plus the quantifier $\left.Q_{\mathfrak{R}}\right)$ is undecidable.

Contents

1. Introduction 1
1.1. Background 1
1.2. Notations Conventions And Primary Definitions 3
1.3. Summation of Previous Results. 4
2. Limitations on The Classification of Q_{ε} in The Finite 5
3. Primary Analyses 6
4. The Complicated Case of The Dichotomv 9
5. The Simple Case of The Dichotomy 10
5.1. Formalizing The Assumptions And The Main Theorem 10
5.2. Proof of The Main Theorem in The 2-place Case 10
6. Proof of The Main Theorem in The General Case 13
References 25

1. Introduction

1.1. Background. In this work we continue [1], but it is self contained and the reader may read it independently. Our aim is to analyze and classify second order quantifiers in finite model theory. The quantifiers will be defined as follows:
$\left(^{*}\right)$ Let U be a finite universe, and n a natural number. Let K be a class of n-place relations on U closed under permutations of U. Define Q_{K} to be the quantifier ranging over the relations in K.
We will usually work on quantifiers of the form $Q_{R}=Q_{K_{R}}$ where R is a n-place relation over U and K_{R} is defined by: $K_{R}:=\left\{R^{\prime} \subseteq{ }^{n} U:(U, R) \approx\left(U, R^{\prime}\right)\right\}$. We define below two partial orders on the class of such quantifiers, called: interpretability and expressibility. It will be interesting to consider the class K of n-place relations definable in some logic \mathfrak{L}, that is such that there exists a formula $\varphi(r) \in \mathfrak{L}(r$ is

[^0]a n-place relation symbol) and $R \in K$ iff $(U, R) \models \varphi(r)$. In [2] the problem was solved for the case: K is definable in first order logic and U is infinite. It was shown that in this case Q_{K} is equivalent (in the sense of interpretability) to one of only four quantifiers: trivial (first order), monadic, quantifying over 1-1 functions or full second order. A revue paper of this result is [3]. If we do not assume Q_{K} to be first order definable but keep assuming U is infinite we get a classification of Q_{K} by equivalence relations. Formally from 4] we have:

Theorem 1.1. Let U be an infinite countable universe, and K be as in (*). Then there exist a family \mathbf{E} of equivalence relations on U, such that Q_{K} and $Q_{\mathbf{E}}$ are equivalent (each is interpretable by the other).

We remark that if U is infinite not nessesarily countable then the situation is more complicated, but if we assume $L=V$ then we have the same result. [1] deals with the case U is finite. Under this assumption we get a reasonable understanding of Q_{R}, we can "bound" it between two simple and close quantifiers (close meaning that the size of one is a polynomial in the size of the other). Formally:

Theorem 1.2. Let U be a finite universe, and R a n-place relation on U. Then there exist a natural number $\lambda=\lambda(R)$, and equivalence relation E on U such that uniformly we have:
(1) Q_{E} and Q_{λ}^{1-1} are interpretable by $Q_{R}\left(Q_{\lambda}^{1-1}\right.$ is the quantifier ranging over 1-1 partial functions with domain $\leq \lambda$.
(2) If $|U| \geq \lambda^{n}$ then Q_{R} is expressible by $\left\{Q_{E}, Q_{\lambda^{n}}^{1-1}\right\}$.
(3) If $|U|<\lambda^{n}$ then every 2-place relation on a subset $A \subseteq U$ with cardinality $\leq|U|^{1 / 2 n}$ is interpretable by Q_{R}.
Where"uniformly" means the formulas used to express and interpret are independent of U and depend on n alone.

In case (2) of the theorem if we want to have "interpretable" instead of "expressible" then the situation is more complicated and we deal with it in this paper. Since U is a "large" universe we check the "asymptotic behavior", that is we consider a class \mathfrak{U} of finite universes with unbounded cardinality. For each $U \in \mathfrak{U}$ let $\mathfrak{R}[U] \subseteq{ }^{n} U$ be an n-place relation on U. We will see that there is a dichotomy y in the behavior of $Q_{\mathfrak{R}[U]}$, that relates to cases (1) and (2) of theorem 1.2 Formally we prove:

Theorem 1.3. Let \mathfrak{R} be as above. Then exactly one of the following conditions holds:
(1) $Q_{\mathfrak{R}[U]}$ is uniformly interpretable by 1-1 functions and 1-place relations both of bounded cardinality.
(2) For each $m \in \mathbb{N}$, there exist $U \in \mathfrak{U}$ such that we can uniformly interpret number theory up to m, by $Q_{\mathfrak{R}[U]}$.

We prove this theorem in sections 3 to 6 . In section 3 we analyze the situation, and give a condition for the dichotomy. In section 4 we prove that if the condition of section 3 hold then part (2) of theorem 1.3 is satisfied. In section 5 we prove, for the 2-place case that if the condition does not hold then part (1) of the theorem is satisfied. In section 6 we prove the same for the n-place case. In section 2 we show that in the finite case we can not get a full understanding of $Q_{\mathfrak{K}}$ similar to what we have in the countable case (not even for expressibility).

1.2. Notations Conventions And Primary Definitions.

Convention 1.4.

(1) \mathfrak{U} is a class of finite universes, possibly with repetitions. So formally: $\mathfrak{U}=$ $\left\{U_{i}: i \in \mathfrak{I}\right\}$ for an index class \mathfrak{I} and we allow $U_{i}=U_{j}$ for $i \neq j \in \mathfrak{I}$. We will usually not be so formal and will write $U \in \mathfrak{U}$ and it should be understood as $i \in \mathfrak{I}$ and $U=U_{i}$. We assume $\sup \{|U|: U \in \mathfrak{U}\}=\aleph_{0}$.
(2) \mathfrak{K} is a function on \mathfrak{U} and for all $U \in \mathfrak{U}, \mathfrak{K}[U]$ is a set of n-place relations on U (where $n=n(\mathfrak{K})$ is a natural number), closed under permutations of U. This means: if $R_{1}, R_{2} \subseteq{ }^{n} U$ and $\left(U, R_{1}\right) \approx\left(U, R_{2}\right)$ then $R_{1} \in \mathfrak{K}[U] \Leftrightarrow R_{2} \in$ $\mathfrak{K}[U]$.
(3) $\overline{\mathfrak{K}}$ is a sequence of such functions. We write $\overline{\mathfrak{K}}=\left(\mathfrak{K}_{0}, \ldots, \mathfrak{K}_{l g(\overline{\mathfrak{K}})-1}\right)$.
(4) \mathfrak{R} is a function on \mathfrak{U} and for each $U \in \mathfrak{U}, \mathfrak{R}[U]$ is a n-place relation over U (where $n=n(\mathfrak{R})$ is a natural number).
(5) r is a $n(\Re)$-place relation symbol.
(6) For all $U \in \mathfrak{U}$ if S is a n-place relation on U, and F is a m-place function on U, then s and f are a n-place relation symbol and a m-place function symbol respectively. We write $(U, S) \models s(\bar{a})$ iff $\bar{a} \in s$, and $(U, F) \models f(\bar{b})=c$ iff $F(\bar{b})=c$. (That is for all $\left.c \in U, \bar{a} \in{ }^{n} U, \bar{b} \in{ }^{m} U\right)$.
(7) For all $U \in \mathfrak{U}$ and $n \in \omega, \bar{a} \in{ }^{n} U$ is a sequence of n elements in U. We write: $\bar{a}=\left(a_{0}, \ldots, a_{n-1}\right)$, and $\lg (\bar{a})=n$.

Definition 1.5. For all \mathfrak{K} as in 1.42 we define the second order quantifier $Q_{\mathfrak{K}}$ to range over all relations in \mathfrak{K}. Formally we define the $\operatorname{logic} L\left(Q_{\mathfrak{K}_{1}}, \ldots, Q_{\mathfrak{K}_{m}}\right)$ to be first order logic but we allow formulas of the form $\left(Q_{\mathfrak{K}_{i}} r\right) \varphi(r)$ (r is a $n\left(\mathfrak{K}_{i}\right)$-place relation symbol) for all $1 \leq i \leq m$. Satisfaction is defined only for models with universe $U \in \mathfrak{U}$ as follows: $\models\left(Q_{\mathfrak{K}_{i}} r\right) \varphi(r)$ iff there exists $R^{0} \in \mathfrak{K}_{i}[U]$ such that $\left(U, R^{0}\right) \models \varphi(r)$.

Definition 1.6. We say that \mathfrak{K} (or $Q_{\mathfrak{K}}$) is definable in some logic \mathfrak{L} iff there exists a formula $\varphi(r) \in \mathfrak{L}(r$ is a $n(\mathfrak{K})$-place relation symbol) such that for all $U \in \mathfrak{U}$ and $R \subseteq{ }^{n(\mathfrak{K})} U:$

$$
(U, R) \models \varphi(r) \Longleftrightarrow R \in \mathfrak{K}[U]
$$

Notation 1.7. For \mathfrak{R} as in 1.44 we note $Q_{\mathfrak{R}}$ by $Q_{\mathfrak{K}_{\mathfrak{R}}}$ where $\mathfrak{K}=\mathfrak{K}_{\mathfrak{R}}$ is defined by:

$$
\mathfrak{K}[U]:=\left\{R^{1} \subseteq{ }^{n(\mathfrak{R})} U:\left(U, R^{1}\right) \approx(U, \mathfrak{R}[U])\right\}
$$

Definition 1.8.
(1) We say that $Q_{\mathfrak{K}_{1}}$ is interpretable by $Q_{\mathfrak{K}_{2}}$ and write $Q_{\mathfrak{K}_{1}} \leq_{\text {int }} Q_{\mathfrak{K}_{2}}$ if there exist $k^{*} \in \omega$ and first order formulas: $\varphi_{k}(\bar{x}, \bar{r})=\varphi_{k}\left(x_{0}, \ldots, x_{n\left(\mathfrak{\kappa}_{1}\right)-1}, r_{0}, \ldots, r_{m-1}\right)$ for $k<k^{*}$ (each r_{l} is a $n\left(\mathfrak{K}_{2}\right)$-place relation symbol) and the following holds:
$\left(^{*}\right)$ For all $U \in \mathfrak{U}$ and $R \in \mathfrak{K}_{1}[U]$ there exists $k<k^{*}$ and $R_{0}, \ldots, R_{m-1} \in$ $\mathfrak{K}_{2}[U]$ such that $\left(U, R_{0}, \ldots, R_{m-1}\right) \models(\forall \bar{x})\left[R(\bar{x}) \equiv \varphi_{k}\left(\bar{x}, r_{0}, \ldots, r_{m-1}\right)\right]$.
(2) We say that $Q_{\mathfrak{K}_{1}}$ is expressible by $Q_{\mathfrak{K}_{2}}$ and write $Q_{\mathfrak{K}_{1}} \leq_{\exp } Q_{\mathfrak{K}_{2}}$ if there exist $k^{*} \in \omega$ and formulas in the $\operatorname{logic} L\left(Q_{\mathfrak{R}_{2}}\right): \varphi_{k}(\bar{x}, \bar{r})=\varphi_{k}\left(x_{0}, \ldots, x_{n\left(\mathfrak{\kappa}_{1}\right)-1}, r_{0}, \ldots, r_{m-1}\right)$ for $k<k^{*}$ (each r_{l} is a $n\left(\mathfrak{K}_{2}\right)$-place relation symbol) and $(*)$ holds.
(3) In (1) and (2) if $k^{*}=1$ we write $Q_{\mathfrak{K}_{1}} \leq_{1-\text { int }} Q_{\mathfrak{K}_{2}}$ and $Q_{\mathfrak{K}_{1}} \leq_{1-\exp } Q_{\mathfrak{K}_{2}}$ respectively.
(4) We write $Q_{\mathfrak{K}_{1}} \equiv{ }_{i n t} Q_{\mathfrak{K}_{2}}$ if $Q_{\mathfrak{K}_{1}} \leq_{i n t} Q_{\mathfrak{K}_{2}}$ and $Q_{\mathfrak{K}_{2}} \leq_{i n t} Q_{\mathfrak{K}_{1}}$. $\equiv_{\text {exp }}$ is defined in the same way.
(5) We define $Q_{\mathfrak{K}} \leq_{\text {int }}\left\{Q_{\mathfrak{K}_{0}}, \ldots, Q_{\mathfrak{K}_{l-1}}\right\}$ as in (1) only in (*) we allow $R_{0}, \ldots, R_{m-1} \in$ $\bigcup_{i=0}^{l-1} \mathfrak{K}_{i}[U]$. We write $Q_{\overline{\mathfrak{K}}}=\left\{Q_{\mathfrak{K}_{0}}, \ldots, Q_{\mathfrak{K}_{l g(\overline{\mathfrak{K}})-1}}\right\}$ when $\overline{\mathfrak{K}}=\left(\mathfrak{K}_{0}, \ldots, \mathfrak{K}_{l g(\overline{\mathfrak{K}})-1}\right)$. In the same way we define for $\leq_{\text {exp }}$.
(6) We define $Q_{\overline{\mathfrak{K}^{1}}} \leq$ int $Q_{\overline{\mathfrak{K}^{2}}}$ if $Q_{\mathfrak{K}_{i}^{1}} \leq_{\text {int }} Q_{\overline{\mathfrak{K}^{2}}}$ for all $i<l g\left(\overline{\mathfrak{K}^{1}}\right)$ again when $\overline{\mathfrak{K}^{1}}=\left(\mathfrak{K}_{0}^{1}, \ldots, \mathfrak{K}_{l g\left(\overline{\mathfrak{K}^{1}}\right)-1}^{1}\right)$. In the same way we define for $\leq_{\text {exp }}$.

Lemma 1.9.

(1) $\leq_{i n t}$ and $\leq_{\text {exp }}$ are partial orders, Hence $\equiv_{\text {int }}$ and $\equiv_{\exp }$ are equivalence relations on the class of quantifiers of the form $Q_{\mathfrak{K}}$.
(2) $Q_{\overline{\mathfrak{K}^{1}}} \leq_{\text {int }} Q_{\overline{\mathfrak{K}^{2}}}$ implies $Q_{\overline{\mathfrak{K}^{1}}} \leq_{\exp } Q_{\overline{\mathfrak{K}^{2}}}$.

Proof. Straight.
So $\leq_{\text {exp }}$ gives a hierarchy on on logics of the form $\mathfrak{L}\left(Q_{\overline{\mathfrak{K}}}\right)$, i.e under the assumptions of lemma 1.9 the expressive power of $\mathfrak{L}\left(Q_{\overline{\mathfrak{R}^{2}}}\right)$ is at least as strong as that of $\mathfrak{L}\left(Q_{\overline{\mathfrak{K}^{1}}}\right)$.

Lemma 1.10. Let \mathfrak{L} be some logic and assume $\overline{\mathfrak{K}^{1}}, \overline{\mathfrak{K}^{2}}$ are definable in \mathfrak{L} (that is every \mathfrak{K}_{i}^{l} is, see definition (1.6) and $Q_{\overline{\mathfrak{K}^{1}}} \leq \exp Q_{\overline{\mathfrak{K}^{2}}}$ then:
(1) there exists a computable function that attach to every formula in $\mathfrak{L}\left(Q_{\overline{\mathcal{K}^{1}}}\right)$ an equivalent formula in $\mathfrak{L}\left(Q_{\overline{\mathfrak{K}^{2}}}\right)$.
(2) the set of valid sentences in $\mathfrak{L}\left(Q_{\overline{\mathfrak{K}^{1}}}\right)$ is recursive from the set of valid sentences in $\mathfrak{L}\left(Q_{\overline{\mathfrak{K}^{2}}}\right)$.

Proof. Easy.
1.3. Summation of Previous Results. We will use the following results. Proofs can be found in [1].

Definition 1.11.

(1) let λ be a function from \mathfrak{U} to \mathbb{N} such that $\lambda[U] \leq|U| / 2$. Define $\mathfrak{K}_{\lambda}^{\text {mon }}$ by $\mathfrak{K}_{\lambda}^{m o n}[U]:=\{A \subseteq U:|A|=\lambda[U]\}$. We note $Q_{\mathfrak{K}_{\lambda}^{m o n}}$ by $Q_{\lambda}^{\text {mon }}$.
(2) For λ as above define $\mathfrak{K}_{\leq \lambda}^{\text {mon }}$ by $\mathfrak{K}_{\leq \lambda}^{\text {mon }}[U]:=\bigcup\left\{\mathfrak{K}_{\mu}^{\text {mon }}: \mu \leq \lambda\right\}$. We note $Q_{\mathfrak{K}_{\leq \lambda}^{\text {mon }}}$ by $Q_{\leq \lambda}^{\text {mon }}$.
(3) For λ as above define $\mathfrak{K}_{\lambda}^{1-1}$ by $\mathfrak{K}_{\lambda}^{1-1}[U]:=\{f: U \rightarrow U:|\operatorname{Dom}(f)|=$ $\lambda[U]$, fone to one $\}$. We note $Q_{\mathfrak{K}_{\lambda}^{1-1}}$ by Q_{λ}^{1-1}.
(4) For λ as above define $\mathfrak{K}_{\leq \lambda}^{1-1}$ by $\mathfrak{K}_{\leq \lambda}^{1-1}[U]:=\bigcup\left\{\mathfrak{K}_{\mu}^{1-1}: \mu \leq \lambda\right\}$. We note $Q_{\mathfrak{K}_{\leq \lambda}^{1-1}}$ by $Q_{\leq \lambda}^{1-1}$.
(5) Let λ and μ be functions from \mathfrak{U} to \mathbb{N}. Define $\mathfrak{K}_{\lambda, \mu}^{e q}$ as follows: $\mathfrak{K}_{\lambda, \mu}^{e q}[U]$ is the collection of all equivalence relations on subsets of U with exactly $\lambda[U]$ classes, and the size of each class is $\mu[U]$. We note $Q_{\mathfrak{K}_{\lambda, \mu}^{e q}}$ by $Q_{\lambda, \mu}^{e q}$.
(6) Let λ and μ be as in 5 . Define $\mathfrak{K}_{\leq \lambda, \leq \mu}^{e q}$ as follows: $\mathfrak{K}_{\leq \lambda, \leq \mu}^{e q}$ is the collection of all equivalence relations on subsets of U with at most $\lambda[U]$ classes, and the size of each at most is $\mu[U]$. We note $Q_{\mathfrak{K}_{\leq \lambda, \leq \mu}^{e q}}$ by $Q_{\leq \lambda, \leq \mu}^{e q}$.
Remark 1.12. In [1] it is proved that $Q_{\lambda}^{\text {mon }} \equiv_{i n t} Q_{\leq \lambda}^{m o n}$ and $Q_{\lambda}^{1-1} \equiv_{i n t} Q_{\leq \lambda}^{1-1}$ so we will usually not distinguish between them.

Lemma 1.13. Let λ be a function from \mathfrak{U} to \mathbb{N}, and \mathfrak{E} a 2-place relation on \mathfrak{U} such that for all $U \in \mathfrak{U}, \mathfrak{E}[U]$ is an equivalence relation with at least $\lambda[U]$ classes each of which has at least $\lambda[U]$ elements (and possibly smaller classes). Then $Q_{\lambda, \lambda} \leq_{1-\text { int }}$ $Q_{\mathfrak{E}}$ 。
Proof. straight foreword. The interpreting formula is $\varphi\left(x, y, s_{0}, s_{1}, s_{2}\right):=s_{0}(x, y) \wedge$ $\neg s_{1}(x, y) \wedge s_{2}(x, y)$. (See [1] for similar proofs).
Theorem 1.14. For every \mathfrak{R} as in 1.44 there exists a function $\lambda_{0}=\lambda_{0}(\mathfrak{R})$ from \mathfrak{U} to \mathbb{N} such that:
(1) $Q_{\lambda_{0}}^{m o n} \leq_{i n t} Q_{\Re}$.
(2) There exists \mathfrak{R}_{1} with $n=n(\mathfrak{R})=n\left(\mathfrak{\Re}_{1}\right)$ and $\left|\operatorname{Dom}\left(\Re_{1}[U]\right)\right| \leq \lambda_{0}[U]+n$ for all $U \in \mathfrak{U}$, such that $Q_{\mathfrak{R}} \equiv$ int $\left\{Q_{\mathfrak{R}_{1}}, Q_{\lambda_{0}}^{\text {mon }}\right\}$.
The interpretation is done uniformly, that is the formulas used are independent of \mathfrak{R} (depend on $n(\mathfrak{R})$ alone).
Theorem 1.15. For each \mathfrak{R} there exists a function $\lambda_{1}=\lambda_{1}(\mathfrak{R})$ from \mathfrak{U} to \mathbb{N} such that uniformly: $Q_{\mathfrak{\Re}} \equiv_{\text {int }}\left\{Q_{\lambda_{0}}^{\text {mon }}, Q_{\lambda_{1}}^{1-1}, Q_{\Re_{1}}, Q_{\mathfrak{E}}\right\}$, where $n=n(\Re)=n\left(\Re_{1}\right)$ and for all $U \in \mathfrak{U}$, $\left|\operatorname{Dom}\left(\mathfrak{R}_{1}[U]\right)\right| \leq n \cdot \lambda_{1}[U]$ and $\mathfrak{E}[U]$ is an equivalence relation on U.
Remark 1.16. In the proof of theorem 1.3 we can assume without loss of generality that for all $U \in \mathfrak{U},|\mathfrak{R}[U]| \leq \lambda_{0}[U]+n(\mathfrak{R})$, this is true since we can interpret \mathfrak{R}_{1} instead of \mathfrak{R} (see 1.14). Similarly using 1.15 we can assume $|\mathfrak{R}[U]| \leq \lambda_{1}[U] \cdot n(\Re)$. Here we have an equivalence relation \mathfrak{E} that can change the bounds but the change will not be significant. Note also that $Q_{\lambda_{1}}^{1-1} \equiv_{i n t} Q_{n \cdot \lambda_{1}}^{1-1}$ (for all $n \in \omega$). So in the simple case of the dichotomy (theorem 5.3) we prove $Q_{\Re} \leq_{\text {int }}\left\{Q_{\lambda_{0}}^{m o n}, Q_{\lambda_{1}}^{1-1}\right\}$ but in the proof we will not pay attention to the size of the sets and functions we use.

2. Limitations on The Classification of $Q_{\mathfrak{K}}$ in The Finite

In this section we show that unlike the countable case in which we had an understanding of $Q_{\mathfrak{K}}$ by equivalence relations, in the finite case there are classes of relations we can not express.

Definition 2.1. For all $n \in \omega$ define \mathfrak{K}_{n} by: $\mathfrak{K}_{n}[U]:=\left\{R: R \subseteq{ }^{n} U\right\}$ for all $U \in \mathfrak{U}$.
Observation 2.2. For all $n \in \omega: Q_{\mathfrak{K}_{n+1}} \not$ lexp $Q_{\mathfrak{K}_{n}}$.
Proof. Suppose $Q_{\mathfrak{K}_{n+1}} \leq_{\exp } Q_{\mathfrak{K}_{n}}$, and assume that the formulas used for expressing are $\varphi_{k}\left(\bar{x}, r_{0}, \ldots, r_{m_{k}-1}\right)$ for $k<k^{*}$. Note $m=\max \left\{m_{k}: k<k^{*}\right\} \cup\left\{k^{*}\right\}$ and let $U \in \mathfrak{U}$. Then by these formulas we can express at most $m^{2} \cdot\left|\mathfrak{K}_{n}[U]\right|$ different relation. Since $\left|\mathfrak{K}_{n}[U]\right|=2^{|U|^{n}}$, if we choose U such that $|U|>\sqrt[n]{\log _{2}\left(m^{2}\right)}$ we get $|U|^{n}(|U|-1)>\log _{2}\left(m^{2}\right)$, hence $2^{|U|^{n}(|U|-1)}>m^{2}$, and hence $2^{|U|^{n+1}}>m^{2} \cdot 2^{|U|^{n}}$. So the maximal number of different expressible relations is smaller than $\left|\mathfrak{K}_{n+1}[U]\right|$, a contradiction.

We have that for $n>2, Q_{\mathfrak{K}_{n}}$ is not expressible by equivalence relations, unlike the countable case (see 1.1). Moreover we have:

Observation 2.3. For all $n \geq 2$:
(1) $Q_{\mathfrak{K}_{n}} Z_{\exp } Q^{1-1}$.
(2) $Q_{\mathfrak{K}_{n}} \not Z_{e x p} Q^{e q}$.

Proof. We prove (1). again suppose $Q_{\mathfrak{K}_{n}} \leq_{\text {exp }} Q^{1-1}$, and we use the notations of the previous proof. Note that $\mathfrak{K}^{1-1}[U]=|U|$!, and for $|U|$ large enough we have $|U|!<2^{|U| \cdot \log (|U|) \cdot c}$ where c is some constant. Moreover for all $n \geq 2$ and $|U|$ large enough we have $|U| \cdot \log (|U|) \cdot c<|U|^{n}$. So we get: $m \cdot\left|K^{1-1}[U]\right|<2^{|U|^{n}}$ which means the number of relations expressible is smaller than $\left|\mathfrak{K}_{n}[U]\right|$, a contradiction.

The proof of (2) is similar using: $\mathfrak{K}^{e q}[U] \leq|U|^{|U|} \leq 2^{|U| \cdot \log (|U|) \cdot c}$.
We get that in the finite case even for $n(\mathfrak{K})=2$, we can not express every $Q_{\mathfrak{K}}$ by 1-1 functions and equivalence relations.

3. Primary Analyses

Assumption 3.1. From here on, unless said otherwise, we assume that \mathfrak{R} (see 1.44) is fixed and $\lambda_{i}=\lambda_{i}(\Re)$ for $i \in\{0,1\}$ (see 1.14 and 1.15).

In this section we start the analyses of $Q_{\mathfrak{R}}$. For each universe U we define a natural number k which is the maximal size, in some sense, of an equivalence relation on U interpretable by $\mathfrak{R}[U]$. The size of k is an indicator of the degree of "complexity" of \mathfrak{R}. We will show that there is a dichotomy, ether \mathfrak{R} is very "complex" or it is "simple". this is made precise below.

Definition 3.2. Let $\tau=\left\{f_{0}, \ldots, f_{m_{1}}, s_{0}, \ldots, s_{m_{2}}, c_{0}, \ldots, c_{m_{3}}\right\}$ be a vocabulary, that is f_{i} are $n\left(f_{i}\right)$-place function symbols, s_{i} are $n\left(s_{i}\right)$-place relation symbols and c_{i} are individual constants. Define:
(1) for all $U \in \mathfrak{U}$ a model for τ on U is $M=\left(U, f_{0}^{M}, \ldots, f_{m_{1}}^{M}, s_{0}^{M}, \ldots, s_{m_{2}}^{M}, c_{0}^{M}, \ldots, c_{m_{3}}^{M}\right)$, where f_{i}^{M} are $n\left(f_{i}\right)$-place functions on U, s_{i}^{M} are $n\left(s_{i}\right)$-place relations on U and $c_{i}^{M} \in U . U$ is called the universe of M and noted by $|M|$.
(2) a model for τ on \mathfrak{U} noted by \mathfrak{M} is a function from \mathfrak{U} such that for all $U \in \mathfrak{U}$, $\mathfrak{M}[U]$ is a model for τ on U. Note that the function $U \mapsto(U, \mathfrak{R}[U])$ is a model for $\{r\}$ on \mathfrak{U}, we will not be as formal and say that \mathfrak{R} is.
(3) Assume $r \in \tau$. We say that \mathfrak{M} expand (or is an expansion of) \mathfrak{R} if for all $U \in \mathfrak{U}, r^{\mathfrak{M}[U]}=\mathfrak{R}[U]$. More generally:
(4) Let $\tau \subseteq \tau^{\prime}$ be dictionaries, and let \mathfrak{M} and \mathfrak{M}^{\prime} be models on \mathfrak{U} for τ and τ^{\prime} respectively. We say that \mathfrak{M}^{\prime} expand \mathfrak{M} if $\mathfrak{M}^{\prime} \mid \tau=\mathfrak{M}$. That means for all $U \in \mathfrak{U}$ and $f_{i} \in \tau, f_{i}^{\mathfrak{M}^{\prime}[U]}=f_{i}^{\mathfrak{M}[U]}$, and similarly for relation symbols and constants.
(5) We call τ SIMPLE if:
(a) τ is finite.
(b) For all $i \leq m_{1}, n\left(f_{i}\right)=1$.
(c) For all $i \leq m_{2}, n\left(s_{i}\right)=1$.
(6) We call M a SIMPLE model for τ on U if:
(a) τ is simple.
(b) M is a model for τ on U.
(c) For all $i \leq m_{1}, f_{i}^{M}$ is a one to one function and $\left|\operatorname{Dom}\left(f_{i}^{M}\right)\right| \leq \lambda_{1}[U]$.
(d) For all $i \leq m_{2},\left|s_{i}^{M}\right| \leq \lambda_{0}[U]$.
(7) We call \mathfrak{M} a SIMPLE model for τ on \mathfrak{U} if for all $U \in \mathfrak{U}, \mathfrak{M}[U]$ is a simple model for τ on U.
(8) Let $U \in \mathfrak{U}$ and R a $n(\mathfrak{R})$-place relation on U. We call M a SIMPLE expansion of R on U for vocabulary τ if:
(a) $r \in \tau$.
(b) M is a model for τ on U.
(c) $r^{M}=R$.
(d) The restriction of M to $\tau \backslash\{r\}$ is a simple model for $\tau \backslash\{r\}$ on U. In particular $\tau \backslash\{r\}$ is a simple vocabulary.
(9) We call \mathfrak{M} a sImPLE expansion of \mathfrak{R} (on \mathfrak{U}) for vocabulary τ, if for all $U \in \mathfrak{U}, \mathfrak{M}[U]$ is a simple expansion of $\mathfrak{R}[U]$ for τ on U.
Definition 3.3. Let $\tau=\left\{f_{0}, \ldots, f_{m_{1}}, s_{0}, \ldots, s_{m_{2}}, c_{0}, \ldots, c_{m_{3}}\right\}$ be a vocabulary, and Δ a set of formulas in τ. Let M be a model for τ on $U, m \in \omega, A \subseteq U$, and $\bar{a} \in{ }^{m} U$. Define:
(1) The Δ-type of \bar{a} over A in M is:
$t^{\prime}(\bar{a}, A, M):=\left\{\varphi(\bar{x}, \bar{b}): \varphi(\bar{x}, \bar{y}) \in \Delta, \lg (\bar{x})=m, \bar{b} \in{ }^{<\omega} A, M \models \varphi(\bar{a}, \bar{b})\right\}$
(2) $S_{\Delta}^{m}(A, M):=\left\{t p_{\Delta}(\bar{a}, A, M): \bar{a} \in{ }^{m} U\right\}$. if $M=(U, R)$ we write $S_{\Delta}^{m}(A, R)$ instead and similarly in 1.
(3) If $p \in S_{\Delta}^{m}(A, M), \overline{a^{\prime}} \in{ }^{m} U$ and $\varphi(\bar{x}, \bar{b}) \in p \Rightarrow M \models \varphi\left(\overline{a^{\prime}}, \bar{b}\right)$, then we say that $\overline{a^{\prime}}$ realizes p. in particular \bar{a} realizes $t_{\Delta}(\bar{a}, A, M)$.
Definition 3.4. Let $\tau=\left\{f_{0}, \ldots, f_{m_{1}}, s_{0}, \ldots, s_{m_{2}}, c_{0}, \ldots, c_{m_{3}}\right\}$ be a vocabulary and Δ a set of formulas in τ.
(1) For all $U \in \mathfrak{U}, A \subseteq U$ and M a model for τ on U, define an equivalence relation $E=E_{A, U}^{\Delta, M}$ (we usually write $E_{A}^{\Delta, M}$ where U is understood) on U by:

$$
E:=\left\{\left(x^{\prime}, x^{\prime \prime}\right) \in{ }^{2} U: t p_{\Delta}\left(x^{\prime}, A, M\right)=t p_{\Delta}\left(x^{\prime \prime}, A, M\right)\right\}
$$

(2) Let $U \in \mathfrak{U}, m \in \omega$ and E an equivalence relation on U. We call $E m$-big, if E has at least m equivalence classes of size at least m. If E is not m-big we say it is m-small.
(3) Let \mathfrak{M} be a model for τ over on \mathfrak{U}, define a function from \mathfrak{U} to $\mathbb{N}, k_{\Delta}=k_{\Delta, \mathfrak{M}}$ as follows: $k_{\Delta}[U]$ is the maximal number k such that there exists $A \subseteq U$, $|A| \leq \lambda_{0}[U]$, and $E_{A}^{\Delta, \mathfrak{M}[U]}$ is k-big.
Lemma 3.5. Let \mathfrak{M} be a simple expansion of \mathfrak{R} for a vocabulary τ, and Δ a finite set of formulas in τ. then: $\left\{Q_{\mathfrak{R}}, Q_{\lambda_{0}}^{\text {mon }}, Q_{\lambda_{1}}^{1-1}\right\} \geq_{\text {int }} Q_{k_{\Delta, \mathfrak{M}}, k_{\Delta, \mathfrak{M}}}^{e q}$.
Proof. For all $U \in \mathfrak{U}$, let $A_{U} \subseteq U$ be the subset the existence of which is promised by 3.4 3. Let s^{\prime} be a 1-place relation symbol. Define a simple vocabulary $\tau^{\prime}:=\tau \cup\left\{s^{\prime}\right\}$, and a formula in τ^{\prime} :

$$
\psi\left(x^{\prime}, x^{\prime \prime}\right):=(\forall \bar{b}) \bigwedge_{\varphi(x, \bar{y}) \in \Delta}\left\{s^{\prime}(\bar{b}) \rightarrow\left[\varphi\left(x^{\prime}, \bar{b}\right) \equiv \varphi\left(x^{\prime \prime}, \bar{b}\right)\right]\right\}
$$

(where $(\forall \bar{b})$ stands for $\forall b_{0} \ldots \forall b_{l g(\bar{b})-1}$, and $s^{\prime}(\bar{b})$ stands for $\left.\bigwedge_{i<l g(\bar{b})-1} s^{\prime}\left(b_{i}\right)\right)$. Let \mathfrak{M}^{\prime} be the simple expansion of \mathfrak{M} for τ^{\prime} defined by $s^{\prime \mathfrak{M}^{\prime}[U]}:=A_{U}$, for all $U \in \mathfrak{U}$. Then for all $U \in \mathfrak{U}$ and $a, b \in U$:

$$
a E_{A_{U}}^{\Delta, \mathfrak{M}[U]} b \Longleftrightarrow \mathfrak{M}^{\prime}[U] \models \psi(a, b)
$$

Define \mathfrak{E} by $\mathfrak{E}[U]=E_{A_{U}, U}^{\Delta, \mathfrak{M}[U]}$. Since \mathfrak{M}^{\prime} is a simple expansion of \mathfrak{R} we have $Q_{\mathfrak{E}} \leq$ int $\left\{Q_{\mathfrak{R}}, Q_{\lambda_{0}}^{\text {mon }}, Q_{\lambda_{1}}^{1-1}\right\}$ (see 1.8) when the interpreting formula is ψ. Now by 1.13 we have $Q_{\mathfrak{E}} \geq_{i n t} Q_{k_{\Delta, \mathfrak{M}}^{e q}, k_{\Delta, \mathfrak{M}}}^{e q}$, so by transitivity of $\leq_{i n t}$ we are done.

Lemma 3.6. Let n be a natural number no larger than $n(\mathfrak{R})$. Let τ be a simple vocabulary, and \mathfrak{M} a simple expansion of \mathfrak{R} for $\tau \cup\{r\}$. Let Δ be a finite set of formulas in $\tau \cup\{r\}$, of the form $\varphi(x, \bar{y})$ such that $\lg (\bar{y}) \leq n$. Let $U \in \mathfrak{U}$ and $k=k_{\Delta, \mathfrak{M}}[U]$. Then there exists $A \subseteq U$ such that:
(1) $|A| \leq n(k+1)$.
(2) If $\varphi(x, \bar{y}) \in \Delta$ and $\bar{a} \in{ }^{l g(\bar{y})} U$ are a formula and parameters, then the formula $\varphi(-, \bar{a})$ divides every equivalence class of $E_{A}^{\Delta, \mathfrak{M}[U]}$ into two parts one of which has no more than $(k+1) \cdot 2^{m^{*}}$ elements, where $m^{*}=|\Delta|(k+$ $1)^{n+1} \cdot n^{n}$.
(3) There exists at least $k+1$ types, $p \in S_{\Delta}^{1}(A, \mathfrak{M}[U])$, realized by at least $k \cdot 2^{m^{*}}$ elements of U each.

Proof. Define a natural number m_{l} by dawnword induction on $l \leq k+1: m_{k+1}=0$, $m_{l}=|\Delta|(n(l+1))^{n}+m_{l+1}$. By induction on $l \leq k+1$ we try to build a set $A_{l} \subseteq U$ such that $\left|A_{l}\right| \leq n * l$, and there exists at least l types $p \in S_{\Delta}^{1}\left(A_{l}, \mathfrak{M}[U]\right)$ realized by at least $(k+1) * 2^{m_{l}}$ elements each. If we succeed then the existence of A_{k+1} is a contradiction to the definition of k. (We assume here that $\left|A_{k+1}\right| \leq \lambda_{0}[U]$, but without loss of generality we can assume that as $\left|A_{k+1}\right|$ is bounded. see also remark 1.16). Let $l_{0}<k+1$ be such that we have built $A_{0}, \ldots, A_{l_{0}}$ but we can not build $A_{l_{0}+1}$. Put $A=A_{l_{0}}$. Clearly A satisfies (1). We prove (2).

Put $M:=\mathfrak{M}[U]$. Let $\left\langle B_{i}: i \leq l_{0}\right\rangle$ be am enumeration of equivalence classes of $E_{A}^{\Delta, M}$ with at least $(k+1) * 2^{m_{l_{0}}}$ elements. (note that there are exactly l_{0} such classes since l_{0} is maximal). Let $\varphi(x, \bar{y}) \in \Delta$ and $\bar{a} \in{ }^{l g(\bar{y})} U$ be some formula and parameters. The relation $E_{A \cup \bar{a}}^{\Delta}$ divides every class B_{i} to at most $2^{|\Delta| *(|A|+n)^{n}}$ parts. Hence by the pigeon hole principle at least one of those parts has at least $\frac{\left|B_{i}\right|}{2^{|\Delta| *(\mid A+n)^{n}}} \geq \frac{\left|B_{i}\right|}{2^{|\Delta| *\left(n\left(l_{0}+1\right)\right)^{n}}} \geq(k+1) * 2^{m_{l_{0}+1}}$ elements. If for some i there are more than one part with more than $(k+1) * 2^{m_{l_{0}+1}}$ elements then define $A_{l_{0}+1}=A \cup \bar{a}$ and we get:
(1) $\left|A_{l_{0}+1}\right| \leq\left|A_{l_{0}}\right|+|\bar{a}| \leq n * l_{0}+n \leq n\left(l_{0}+1\right)$.
(2) There exists at least $l_{0}+1$ types $p \in S_{\Delta}^{1}\left(A_{l_{0}+1}, \mathfrak{M}[U]\right)$ realized by at least $(k+1) \cdot 2^{m_{l_{0}+1}}$ elements each.
This is a contradiction to the maximallity of l_{0}. Now assume towards contradiction that $\varphi(-, \bar{a})$ divides some B_{i} into two parts, both larger than $(k+1) * 2^{m^{*}}$ (note that $m^{*} \geq m_{l_{0}}$ so there is no need to check classes smaller than $\left.(k+1) * 2^{m^{*}}\right)$. Then $E_{A \cup \bar{a}}$ divides each part into at most $2^{|\Delta| *\left(n\left(l_{0}+1\right)\right)^{n}}$ classes and hence each part contains an equivalence class of $E_{A \cup \bar{a}}$ with at least $\frac{(k+1) * 2^{m^{*}}}{2^{|\Delta| *\left(n\left(l_{0}+1\right)\right)^{n}}} \geq \frac{(k+1) * 2^{m_{l}}}{2^{|\Delta| *\left(n\left(l_{0}+1\right)\right)^{n}}}=$ $(k+1) * 2^{m_{l_{0}+1}}$ elements, so B_{i} contains two such classes and this, as we saw, is a contradiction. To prove (3) we note that $l_{0}+1 \leq k+1$, and $m^{*} \geq m_{l_{0}} \geq m_{l_{0}+1}$ hence the existence of $k+1$ classes with $k * 2^{m^{*}}$ elements contradicts the maximality of l_{0}.
Theorem 3.7. Let τ be a simple vocabulary, and Δ a finite set of formulas in $\tau \cup\{r\}$. Then one of the following conditions hold:
(1) There exists a sequence of worlds: $\left\langle U_{i} \in \mathfrak{U}: i \in \omega\right\rangle$, and a sequence of natural numbers: $\left\langle n_{i}: i \in \omega\right\rangle$ such that $n_{i} \longrightarrow \infty$ and there exists a simple vocabulary τ^{\prime}, a formula $\varphi(x, y)$ in $\tau^{\prime} \cup\{r\}$ and a simple expansion \mathfrak{M}^{\prime} of \mathfrak{R} for $\tau^{\prime} \cup\{r\}$, such that for all $i \in \omega:\left\{(x, y) \in{ }^{2} U_{i}: \mathfrak{M}^{\prime}\left[U_{i}\right] \models \varphi(x, y)\right\}$ is an n_{i}-big equivalence relation on U_{i}.
(2) There exists a natural number k^{*} such that for all $U \in \mathfrak{U}$ and M - a simple expansion of $\mathfrak{R}[U]$ for $\tau \cup\{r\}$ on U, there exist $A=A_{U}^{\Delta, M} \subseteq U$ such that $|A| \leq k^{*}, E_{A, U}^{\Delta, M}$ is k^{*}-small, and for every formula $\varphi(x, \bar{y}) \in \Delta$ and parameters $\bar{a} \in{ }^{\lg (\bar{y})} U, \varphi(-, \bar{a})$ divides each equivalence class of $E_{A}^{\Delta, M}$ into two parts one of which has less than k^{*} elements.

Proof. Define \mathbb{M} to be the class of all simple expansions of \mathfrak{R} for $\tau \cup\{r\}$ on \mathfrak{U}. For all $U \in \mathfrak{U}$ define:

$$
k_{\Delta}^{\max }[U]=\max \left\{k_{\Delta, \mathfrak{M}}[U]: \mathfrak{M} \in \mathbb{M}\right\}
$$

Note that the definition of $k_{\Delta}^{\max }[U]$ depends only on $\mathfrak{M}[U]$ and not the over values of \mathfrak{M} (that is for each $\mathfrak{M} \in \mathbb{M}$) and since $|\{\mathfrak{M}[U]: \mathfrak{M} \in \mathbb{M}\}|<\aleph_{0}$ the maximum is obtained. Next we assume that $\sup \left\{k_{\Delta}^{\max }[U]: U \in \mathfrak{U}\right\}=\aleph_{0}$ and show that condition (1) is satisfied. Let $\left\langle U_{i} \in \mathfrak{U}: i \in \omega\right\rangle$ be a sequence of universes such that $k_{\Delta}^{\max }\left[U_{i}\right] \longrightarrow \infty$, and for all $i \in \omega$ define $n_{i}=k_{\Delta}^{\max }\left[U_{i}\right]$. Define a simple vocabulary $\tau^{\prime}=\tau \cup\left\{s^{\prime}\right\}\left(s^{\prime}\right.$ a 1-place relation symbol). We now define \mathfrak{M}. For all $i \in \omega$ note by M_{i} the model for $\tau \cup\{r\}$ on U, for which the maximum in the definition of $k_{\Delta}^{\max }\left[U_{i}\right]$ is obtained. Define $\mathfrak{M}\left[U_{i}\right] \mid \tau \cup\{r\}:=M_{i}$. By 3.43 there exists a subset $A_{i} \subseteq U_{i}$ such that $E_{A_{i}}^{\Delta, M_{i}}$ is a n_{i}-big equivalence relation on U. Let $s^{\prime \mathfrak{M}\left[U_{i}\right]}=A_{i}$. That defines \mathfrak{M} (obviously the definition on universes not among the U_{i} is irrelevant). We define $\varphi(x, y)$ to be the formula interpreting $E_{A_{i}}^{\Delta, M_{i}}$ (see 3.5) namely:

$$
\varphi(x, y):=(\forall \bar{b}) \bigwedge_{\psi(x, \bar{z}) \in \Delta}\left\{s^{\prime}(\bar{b}) \rightarrow[\psi(x, \bar{b}) \equiv \psi(y, \bar{b})]\right\}
$$

it is clear that condition (1) is satisfied.
We now assume that $\left\{k_{\Delta}^{\max }[U]: U \in \mathfrak{U}\right\}$ is bounded and let k by its bound. we show that condition (2) is satisfied. Let $n:=\max \{\lg (\bar{y}): \varphi(x, \bar{y}) \in \Delta\}$. We define $k^{*}=\operatorname{Max}\left\{(k+1) * 2^{|\Delta|(k+1)^{n+1} * n^{n}}, n(k+1)\right\}$. Now let $U \in \mathfrak{U}$, and M a simple expansion of $\mathfrak{R}[U]$ on U for vocabulary $\tau \cup\{r\}$. Let $A \subseteq U$ be the subset the existence of which is promised by the previous lemma. Then all the demands of (2) are clear from the previous claim and the fact $k \geq k_{\Delta}^{\max }[U] \geq k_{\Delta, \mathfrak{M}}[U]$.

4. The Complicated Case of The Dichotomy

In this section we assume that \mathfrak{U} and \mathfrak{R} satisfy condition (1) in 3.7 that is we can uniformly interpret an arbitrarily large equivalence relation. We show that in this case we can interpret bounded number theory in the logic $L\left(Q_{\mathfrak{R}}\right)$. It follows that the set of logicly valid sentences in $L\left(Q_{\mathfrak{R}}\right)$ is not recursive.

The following result is well known:
Lemma 4.1. Let E be an n-big equivalence relation on a universe U. Then we can uniformly (that is using formulas independent of U and E) interpret the model $(\{0,1, \ldots, n-1\} ; 0, S,+, *)$ using a finite number of isomorphic copies of E.

Corollary 4.2. In theorem 3.7 if condition (1) is satisfied then we can uniformly interpret number theory bounded by n_{i} using a finite number of isomorphic copies of $R\left[U_{i}\right]$.

Proof. Straight from 4.1

5. The Simple Case of The Dichotomy

In this section we will interpret Q_{\Re} when \mathfrak{R} is "simple" that is when condition (1) in theorem 3.7 is not satisfied. We will show that in this case there exists a simple model on \mathfrak{U} in which it is possible to interpret \mathfrak{R} by a first order formula. In fact we prove $Q_{\mathfrak{R}} \leq_{\text {int }}\left\{Q_{\lambda_{0}}^{\text {mon }}, Q_{\lambda_{1}}^{1-1}\right\}$ so we get a full understanding of $Q_{\mathfrak{R}}$.

5.1. Formalizing The Assumptions And The Main Theorem.

Assumption 5.1. In this section we assume that \mathfrak{U} and \mathfrak{R} do not satisfy condition (1) in theorem 3.7 (Note that this condition is independent of Δ). Hence from that theorem we get the following:
(1) For every simple vocabulary τ, and Δ a finite set of formulas in $\tau \cup\{r\}$, there exists a number $k_{1}^{*}=k_{1}^{*}(\Delta)$ and a function that assigns to every $U \in \mathfrak{U}$ and M - a simple expansion of $\mathfrak{R}[U]$ for $\tau \cup\{r\}$ on U, a set $A=A_{U}^{\Delta, M} \subseteq U$ such that condition (2) in theorem 3.7 is satisfied, that is:
$\left(^{*}\right)|A| \leq k_{1}^{*}, E_{A}^{\Delta, M}$ is k_{1}^{*}-small, and for every formula $\varphi(x, \bar{y}) \in \Delta$ and parameters $\bar{a} \in{ }^{\lg (\bar{y})} U, \varphi(-, \bar{a})$ divides each equivalence class of $E_{A}^{\Delta, M}$ into two parts one of which has at most k_{1}^{*} elements.
(2) For every simple vocabulary τ, and every formula $\varphi(x, y)$ in $\tau \cup\{r\}$, there exists a natural number $k_{2}^{*}=k_{2}^{*}(\varphi)$ such that:
${ }^{(* *)}$ If \mathfrak{M} is a simple expansion of \mathfrak{R} for $\tau \cup\{r\}$ and $U \in \mathfrak{U}$, then the interpretation of $\varphi(x, y)$ in $\mathfrak{M}[U]$ (that is $\left\{(x, y) \in{ }^{2} U: \mathfrak{M}[U] \models\right.$ $\varphi(x, y)\})$ is NOT a k_{2}^{*}-big equivalence relation.

Remark 5.2. We can increase $k_{1}^{*}(\Delta)$, meaning if $m \geq k_{1}^{*}(\Delta)$ than m satisfies $(*)$ (for the same function $A_{U}^{\Delta, M}$). Hence:
(1) If we are given a function $\Delta \mapsto m(\Delta)$ then without loss of generality (by changing the definition of k_{1}^{*}) we may assume: $k_{1}^{*}(\Delta) \geq m(\Delta)$ for all Δ.
(2) If $\Delta \subseteq \Delta^{\prime}$ then without loss of generality (by redefining k_{1}^{*} by induction on $|\Delta|)$ we may assume $k_{1}^{*}\left(\Delta^{\prime}\right) \geq k_{1}^{*}(\Delta)$.
We now formalize the main theorem of this section.
Theorem 5.3. There exists a simple vocabulary τ, and a first order formula $\varphi\left(x_{0}, \ldots, x_{n(\mathfrak{R})-1}\right)$ in τ, and there exists \mathfrak{M} a simple expansion of \mathfrak{R} for $\tau \cup\{r\}$ on \mathfrak{U} such that for all $U \in \mathfrak{U}$:

$$
\mathfrak{M}[U] \models(\forall \bar{x})[r(\bar{x}) \equiv \varphi(\bar{x})]
$$

Corollary 5.4. $Q_{\mathfrak{R}} \leq_{\text {int }}\left\{Q_{\lambda_{1}}^{1-1}, Q_{\lambda_{0}}^{m o n}\right\}$.
Proof. Straight from the theorem when the interpreting formula is φ.
In the rest of the paper we will prove theorem 5.3
5.2. Proof of The Main Theorem in The 2-place Case. We prove theorem 5.3 under the assumption $n(\Re)=2 . \Delta$ will be a finite set of formulas with at most 2 free variables in the vocabulary $\{r\}$. In other words $\tau=\emptyset$. Hence the set $A_{U}^{\Delta, M}$ (see 5.1) and the relation $E_{A}^{\Delta, M}$ (see 3.4) are independent of M, and depend on Δ alone so they will by noted by A_{U}^{Δ} and E_{A}^{Δ}.
Definition 5.5. Let Δ be as above and $U \in \mathfrak{U}$. Let $k^{*}=k_{1}^{*}(\Delta)$ and $A=A_{U}^{\Delta}$ be the ones we get from 5.11. We define:
(1) For all $\varphi(x, y) \in \Delta$ and $y_{0} \in U$:

Minority $_{\Delta}\left(y_{0}, \varphi\right):=\left\{x_{0} \in U:\left|\left\{x \in U: x E_{A}^{\Delta} x_{0} \wedge \varphi\left(x, y_{0}\right) \equiv \varphi\left(x_{0}, y_{0}\right)\right\}\right| \leq k^{*}\right\}$
(2) $S=S^{\Delta}$ is the 2-place relation on U given by:

$$
x_{0} S y_{0} \Leftrightarrow x_{0} \in \bigcup_{\varphi(x, y) \in \Delta} \text { Minority }_{\Delta}\left(y_{0}, \varphi\right)
$$

Lemma 5.6. Let Δ be as above. We use the notations of the previous definition and also note $k_{2}^{*}=k_{2}^{*}(\psi)\left(\right.$ see 5.1 2) where $\psi\left(x^{\prime}, x^{\prime \prime}\right):=(\forall \bar{b}) \bigwedge_{\varphi(x, \bar{y}) \in \Delta}\{s(\bar{b}) \rightarrow$ $\left.\left[\varphi\left(x^{\prime}, \bar{b}\right) \equiv \varphi\left(x^{\prime \prime}, \bar{b}\right)\right]\right\}$. Then:
(1) $\left|\left\{x:\left|x / E_{A}^{\Delta}\right| \leq 2 \cdot k^{*}\right\}\right| \leq k^{*} \cdot 2^{|\Delta| k^{*}+1}$, and we write $l^{*}=k^{*} \cdot 2^{|\Delta| k^{*}+1}$.
(2) For all $y \in U:|\{x: x S y\}| \leq|\Delta| \cdot\left(k^{*}\right)^{2}+l^{*}$.
(3) $\left|\left\{x:|\{y: x S y\}|>2^{|\Delta|\left(k^{*}+k_{2}^{*}\right)} \cdot k_{2}^{*}+l^{*}\right\}\right| \leq|\Delta| \cdot\left(k_{2}^{*} \cdot k^{*}\right)^{2} \cdot 2^{|\Delta|\left(k^{*}+k_{2}^{*}\right)}+l^{*}$.

Proof. (1): The number of types $p \in S_{\Delta}^{1}(A, \mathfrak{R}[U])$ is no larger than $2^{|\Delta||A|}$ since for every formula in Δ there are at most two free variables. We also have $|A| \leq k^{*}$. So the number of equivalence classes of E_{A}^{Δ} is no larger than $2^{|\Delta| k^{*}}$ and (1) follows directly.
(2): Let $x, y \in U$. Assume $\left|x / E_{A}^{\Delta}\right|>2 \cdot k^{*}$. For all $\varphi \in \Delta$ we have $x / E_{A}^{\Delta} \cap$ Minority $_{\Delta}(y, \varphi) \leq k^{*}$. Hence $\left|\left\{x^{\prime}: x E_{A}^{\Delta} x^{\prime} \wedge x^{\prime} S^{\Delta} y\right\}\right| \leq|\Delta| \cdot k^{*}$. The number of equivalence classes of E_{A}^{Δ} which are larger than $2 \cdot k^{*}$ is also no larger than k^{*}. Hence we get: $\left|\left\{x:\left|x / E_{A}^{\Delta}\right|>2 \cdot k^{*} \wedge x S^{\Delta} y\right\}\right| \leq|\Delta| \cdot\left(k^{*}\right)^{2}$. To this we add at most l^{*} elements from "small classes" (see (1)) and (2) follows.
(3): We write $m=|\Delta| \cdot\left(k_{2}^{*} \cdot k^{*}\right)^{2} \cdot 2^{|\Delta|\left(k^{*}+k_{2}^{*}\right)}$. First we disregard all the elements of $\left\{x:\left|x / E_{A}\right| \leq 2 \cdot k^{*}\right\}$ and using (1) we decrease the bounds by l^{*}. So seeking a contradiction we assume that there are different $\left\{x_{0}, \ldots, x_{m}\right\}$ so that for each $i \leq m$ there exists different $\left\{y_{0}^{i}, \ldots, y_{2^{|\Delta|\left(k^{*}+k_{2}^{*}\right)} ._{2}^{*}}^{i}\right\}$ with $x_{i} S y_{j}^{i}$. Using (2) (with the bounds in (2) also decreased by l^{*}) there exists a subset of $\left\{x_{0}, \ldots, x_{m}\right\}$ with at least k_{2}^{*} elements such that the elements of $Y_{x_{i}}:=\left\{y_{j}^{i}: x_{i} S y_{j}^{i}\right\}$ are pairwise disjoint (see figure). Without loss of generality we assume that this set is $\left\{x_{0}, \ldots, x_{k_{2}^{*}}\right\}$. For every x_{i} the sets of $Y_{x_{i}}$ satisfy at most $2^{|\Delta|\left(k^{*}+k_{2}^{*}\right)}$ different types $p \in S_{\Delta}^{1}\left(A \cup\left\{x_{i}\right.\right.$: $\left.\left.i \leq k_{2}^{*}\right\}, \mathfrak{R}[U]\right)$. Hence there are more than k_{2}^{*} of them that satisfy the same type (again we assume those are the first elements). In conclusion we get $\left\{x_{i}\right\}_{i=0}^{k_{2}^{*}}$ and $\left\{y_{j}^{i}\right\}_{i, j=0, \ldots, k_{2}^{*}}$ without repetitions such that the type $\operatorname{tp}_{\Delta}\left(y_{j}^{i}, A \cup\left\{x_{i}: i \leq k_{2}^{*}\right\}, \mathfrak{R}[U]\right)$ is independent of j, and $x_{i_{1}} S y_{j}^{i_{2}} \Leftrightarrow i_{1}=i_{2}$ holds for all $i_{1}, i_{2}, j \leq k_{2}^{*}$. So ψ with s taken to represent $A \cup\left\{x_{i}: i \leq k_{2}^{*}\right\}$ interprets a k_{2}^{*}-big equivalence relation on U. This is a contradiction to the definition of k_{2}^{*}.

Lemma 5.7. There exist a simple vocabulary τ, and a finite set of formulas Φ in τ, and a simple model \mathfrak{M} for τ on \mathfrak{U}, such that for all $U \in \mathfrak{U}$ and $x, x^{\prime}, y, y^{\prime} \in U$ if $t p_{\Phi}((x, y), \emptyset, \mathfrak{M}[U])=t p_{\Phi}\left(\left(x^{\prime}, y^{\prime}\right), \emptyset, \mathfrak{M}[U]\right)$ then $(U, \mathfrak{R}[U]) \models r(x, y) \equiv r\left(x^{\prime}, y^{\prime}\right)$.
Proof. We simultanios define τ and its interpretation $\mathfrak{M}[U]$ for some $U \in \mathfrak{U}$. Φ will be the set of atomic formulas in τ with terms of the form $x, f(x), c, f(c)$ (function composition is not allowed). for gravity we write: $M:=\mathfrak{M}[U]$ and $R:=\mathfrak{R}[U]$. Let $\Delta:=\{r(x, y)\}$. Using the notations of 5.6 we define:

$$
A^{*}=A \cup\left\{x:\left|x / E_{A}^{\Delta}\right| \leq 2 \cdot k^{*}\right\} \cup\left\{x:\left|\left\{y: x S^{\Delta} y\right\}\right|>2^{|\Delta|\left(k^{*}+k_{2}^{*}\right)} \cdot k_{2}^{*}+l^{*}\right\}
$$

by $5.6\left|A^{*}\right|$ is uniformly bounded (that is the bound is independent of U). τ will contain: private constants for all the elements of $A^{*}\left(\left\{c_{x}: x \in A^{*}\right\}, c_{x}^{M}:=x\right)$, and 1-place relation symbols for the equivalence classes of $E_{A^{*}}^{\Delta}\left(\left\{s_{x / E_{A^{*}}}^{\Delta}: x \in U\right\}\right.$, $\left.s_{x / E_{A^{*}}}^{M}:=x / E_{A^{*}}^{\Delta}\right)$. Note that the number of such classes is also uniformly bounded. Now We look at $S^{\Delta} \mid U \backslash A^{*}$ this is a digraph with (uniformly) bounded degree, that is for all $x \in U \backslash A^{*},\left|\left\{y \notin A^{*}: x S^{\Delta} y\right\}\right|$ is bounded by $2^{|\Delta|\left(k^{*}+k_{2}^{*}\right)} \cdot k_{2}^{*}+l^{*}$ and for all $y \in U \backslash A^{*},\left|\left\{x \notin A^{*}: x S^{\Delta} y\right\}\right|$ is bounded by $|\Delta| *\left(k^{*}\right)^{2}+l^{*}$ (see 5.6). Hence we can divide $S^{\Delta} \mid U \backslash A^{*}$ into $\left\langle S_{m}: m<m^{*}\right\rangle$ with: $\bigcup_{m<m^{*}} S_{m}=S^{\Delta} \mid U \backslash A^{*}$ and for all $m<m^{*}, S_{m}$ is a digraph with degree 1, that is a one to one partial function on $U \backslash A^{*}$. Note that m^{*} is uniformly bounded, in fact it is bounded by the sum of the two bounds mentioned above. We add to τ, 1-place function symbols $\left\{f_{m}: m<m^{*}\right\}$ and define $f_{m}^{M}:=S_{m}$.

Let $\left\langle B_{i}: i<i^{*}\right\rangle$ be an enumeration of $\left\{x / E_{A}^{\Delta} \backslash A^{*}:\left|x / E_{A}^{\Delta}\right|>2 \cdot k^{*}\right\}$. Note that $i^{*} \leq k^{*}$. For all $y \in U$ and $i<i^{*}$ there is a truth value t_{i}^{y} that is the value the formula $r(-, y)$ gets for the majority of the elements of B_{i}. Since we deal with "big" classes (that is with more than $2 \cdot k^{*}$ elements) we get: for all $y \in U$, $i<i^{*}$ and $x \in B_{i}, R(x, y)=t_{i}^{y} \Leftrightarrow \neg x S^{\Delta} y$. We divide each B_{i} into $2^{i^{*}}$ parts according to the truth values, $t_{i}^{y}: i<i^{*}$. This means that for each part, the value of the vector $\left\langle t_{i}^{y}: i\left\langle i^{*}\right\rangle\right.$ is independent of y. For all $i<i^{*}$, we note these parts by $\left\langle B_{j}^{i}: j<2^{i^{*}}\right\rangle$. We add to τ, 1-place relations $\left\{s_{i, j}: i<i^{*}, j<2^{i^{*}}\right\}$ and define $s_{i, j}^{\mathfrak{M}[U]}:=B_{j}^{i}$. This completes the definition of τ and \mathfrak{M}.

We now prove that \mathfrak{M} is as desired. Let $a, a^{\prime}, b, b^{\prime} \in U$ and assume $t_{\Phi}((a, b), \emptyset, \mathfrak{M}[U])=$ $t p_{\Phi}\left(\left(a^{\prime}, b^{\prime}\right), \emptyset, \mathfrak{M}[U]\right)$. If $a \in A^{*}$ then $a=a^{\prime}$ (due to the formula $x=c_{x}$), and the truth value of $R(a, b)$ is determined by $b / E_{A^{*}}^{\Delta}$. Moreover $b / E_{A^{*}}^{\Delta}=b^{\prime} / E_{A^{*}}^{\Delta}$ (due to the formula $\left.s_{b / E_{A^{*}}}(y)\right)$, so we get $R(a, b)=R\left(a^{\prime}, b^{\prime}\right)$ as desired. Symmetricly we deal with the cases $b, b^{\prime} a^{\prime} \in A^{*}$. So we can assume $a, a^{\prime}, b, b^{\prime} \notin A^{*}$. By the definition of the functions S_{m} we have:
$a S^{\Delta} b \Longleftrightarrow\left(\exists m<m^{*}\right) a S_{m} b$
$a^{\prime} S^{\Delta} b^{\prime} \Longleftrightarrow\left(\exists m<m^{*}\right) a^{\prime} S_{m} b^{\prime}$
But due to the formulas of the form $f_{m}(x)=y$, the right hand side of both equations is equivalent, so we have $a S^{\Delta} b \Leftrightarrow a^{\prime} S^{\Delta} b^{\prime}$. Assume $a \in B_{j_{1}}^{i_{1}}, b \in B_{j_{2}}^{i_{2}}$. Due to the formula $s_{i, j}(x)$ we get $a^{\prime} \in B_{j_{1}}^{i_{1}}, b^{\prime} \in B_{j_{2}}^{i_{2}}$. By the construction of the B_{i}^{j} we get:
$R(a, b)=t_{i_{1}}^{b} \Longleftrightarrow \neg a S^{\Delta} b$
$R\left(a^{\prime}, b^{\prime}\right)=t_{i_{1}}^{b^{\prime}} \Longleftrightarrow \neg a^{\prime} S^{\Delta} b^{\prime}$
But $b, b^{\prime} \in B_{j_{2}}^{i_{2}}$ so $t_{i_{1}}^{b}=t_{i_{1}}^{b^{\prime}}$, and as we have seen $a S \Delta b \Leftrightarrow a^{\prime} S^{\Delta} b^{\prime}$. Hence $R(a, b)=R\left(a^{\prime}, b^{\prime}\right)$ as desired.

Corollary 5.8. Theorem 5.3 is true for the case $n(\mathfrak{R})=2$.
Proof. Let τ, Φ and \mathfrak{M} be as in the previous claim. Note that by the definition of Φ all the formulas in Φ have at most 2 free variables. Define $C=\{\underline{t} \mid \underline{t}: \Phi \rightarrow\{\mathbb{T}, \mathbb{F}\}\}$ (each member of C represents a type in $S_{\Phi}^{2}(\emptyset, \mathfrak{M}[U])$). For all $D \subseteq C$ define:

$$
\chi_{D}(x, y):=\bigvee_{\underline{t} \in D}\left[\bigwedge_{\psi(x, y) \in \Phi} \psi(x, y)^{\underline{t}(\psi)}\right]
$$

where $\psi^{\mathbb{T}}=\psi, \psi^{\mathbb{F}}=\neg \psi$ and $\chi_{\emptyset}(x, y):=x \neq x$. (The formula $\chi_{D}(x, y)$ means (x, y) satisfies one of the types in $D)$. For all $U \in \mathfrak{U}$ define $D_{U} \subseteq C$ by:

$$
\left\{\underline{t} \in C \mid(\exists x, y \in U)\left[(U, \mathfrak{R}[U]) \models r(x, y) \wedge\left((U, \mathfrak{M}[U]) \models \bigwedge_{\psi(x, y) \in \Phi} \psi(x, y)^{\underline{t}(\psi)}\right)\right]\right\}
$$

This means D_{U} is the collection of types $\operatorname{tp}_{\Phi}((x, y), \emptyset, \mathfrak{M}[U])$ such that $(U, \mathfrak{R}[U]) \models$ $r(x, y)$. Using the previous claim it is easy to verify that for all $U \in \mathfrak{U}$ and $x, y \in U$ we have:

$$
(U, \mathfrak{R}[U]) \models r(x, y) \Longleftrightarrow(U, \mathfrak{M}[U]) \models \chi_{D_{U}}(x, y)
$$

We now add to τ constants: $\left\{c_{\text {true }}\right\} \cup\left\{c_{D}: D \subseteq C\right)$. For each $U \in \mathfrak{U}$, $c_{\text {true }}$ is interpreted in $\mathfrak{M}[U]$ by some element of U. The rest of the constants are interpreted so that for all $D \subseteq C:\left(c_{D}^{\mathfrak{M}[U]}=c_{\text {true }}^{\mathfrak{M}[U]}\right) \Leftrightarrow\left(D=D_{U}\right)$ holds. (assuming U has more than one element there is no problem to do that). Now the desired formula in theorem 5.3 is:

$$
\varphi(x, y):=\bigwedge_{D \subseteq C}\left[\left(c_{D}=c_{\text {true }}\right) \rightarrow \chi_{D}(x, y)\right]
$$

6. Proof of The Main Theorem in The General Case

We prove theorem 5.3 when $n(\mathfrak{R})>2$. from here on we assume:
Assumption 6.1. τ is a simple vocabulary. Δ is a finite set of formulas in $\tau \cup\{r\}$, such that $\varphi(\bar{x}) \in \Delta \longrightarrow \lg (\bar{x}) \leq n(\mathfrak{R})$.

First we generalize definition 5.5
Definition 6.2. Let τ, Δ be as above. Let $U \in \mathfrak{U}$ and M be a simple expansion of $\mathfrak{R}[U]$ on U for $\tau \cup\{r\}$. Let $n<n(\mathfrak{R})$. We note $k^{*}=k_{1}^{*}(\Delta)$ and $A=A_{U}^{\Delta, M}$ the existence of which follows from 5.11 and define:
(1) For all $\varphi(x, \bar{y}) \in \Delta$ with $\lg (\bar{y})=n$ and $\bar{b} \in{ }^{n} U$:

Minority $_{\Delta, M}(\bar{b}, \varphi):=\left\{x \in U:\left|\left\{x^{\prime} \in U: x E_{A}^{\Delta, M} x^{\prime} \wedge \varphi(x, \bar{b}) \equiv \varphi\left(x^{\prime}, \bar{b}\right)\right\}\right| \leq k^{*}\right\}$
(2) Define a relation $S_{\Delta, M}^{n} \subseteq U \times{ }^{n} U$:

$$
a S_{\Delta, M}^{n} \bar{b} \Leftrightarrow a \in \bigcup\left\{\text { Minority }_{\Delta, M}(\bar{b}, \varphi): \varphi(x, \bar{y}) \in \Delta, l g(\bar{y})=n\right\}
$$

Remark 6.3. For $i \in\{1,2\}$ assume τ_{i}, Δ_{i} satisfy 6.1 and \mathfrak{M}_{i} is a simple expansion of \mathfrak{R} on \mathfrak{U} for $\tau_{i} \cup\{r\}$. Furthermore assume $\tau_{1} \subseteq \tau_{2}, \Delta_{1} \subseteq \Delta_{2}$ and $\mathfrak{M}_{1}=\mathfrak{M}_{2} \mid \tau_{1}$. By 5.22 we may assume $k_{1}^{*}\left(\Delta_{2}\right) \geq k_{1}^{*}\left(\Delta_{1}\right)$, hence for all $U \in \mathfrak{U}$ we can assume without loss of generality (we can add elements to $A_{U}^{\Delta^{\prime}, \mathfrak{M}^{\prime}[U]}$ if needed) that $a S_{\Delta_{2}, \mathfrak{M}_{2}[U]}^{n} \bar{b} \Longrightarrow$ $a S_{\Delta_{1}, \mathfrak{M}_{1}[U]}^{n} \bar{b}$.
Lemma 6.4. Using the notations of the previous definition:
(1) $\left|\left\{x:\left|x / E_{A}^{\Delta, M}\right| \leq 2 \cdot k^{*}\right\}\right| \leq k^{*} \cdot 2^{|\Delta|\binom{k^{*}}{n(\mathfrak{\Re})}+1}$.
(2) For all $\bar{b} \in{ }^{n} U:\left|\left\{x \in U: x S_{\Delta, M}^{n} \bar{b}\right\}\right| \leq|\Delta| \cdot\left(k^{*}\right)^{2}+k^{*} \cdot 2^{|\Delta|\binom{k^{*}}{n(\mathfrak{R})}+1}$.
(3) We write: $l^{*}=l^{*}(\Delta):=|\Delta| \cdot\left(k^{*}\right)^{2}+k^{*} \cdot 2^{|\Delta|\binom{k_{(\mathfrak{q})}^{*}}{n}+1}$.

Proof. Similar to the proof of 5.6 only in (1) we have at most $\binom{k^{*}}{n(\Re)}$ different choices of parameters for each formula.

Lemma 6.5. Symmetry Lemma (with Parameters):

Assume τ, Δ satisfy 6.1, and Let \mathfrak{M} be a simple expansion of \mathfrak{R} for $\tau \cup\{r\}$. Let $n<n(\mathfrak{R})$. Then there exists a simple vocabulary $\tau^{\prime} \supseteq \tau$, and \mathfrak{M}^{\prime} a simple expansion of \mathfrak{M} for $\tau^{\prime} \cup\{r\}$, and for $i \in\{1,2\}$ there exists $\Delta_{i}=\Delta_{i}(\Delta)$ such that $\tau^{\prime}, \Delta_{i}$ also satisfy 6.1 and for all $U \in \mathfrak{U}, a, b \in U$ and $\bar{c} \in{ }^{n-1} U$:

$$
a S_{\Delta, \mathfrak{M}[U]}^{n} b \bar{c} \Longrightarrow\left(a S_{\Delta_{1}, \mathfrak{M}^{\prime}[U]}^{n-1} \bar{c}\right) \vee\left(b S_{\Delta_{2}, \mathfrak{M}^{\prime}[U]}^{n} a \bar{c}\right)
$$

Proof. First we define a few constants we will use later:
$m^{*}:=k_{2}^{*}(\phi)$ (see assumption 5.1). where ϕ is the following formula in $\tau \cup$ $\left\{s, c_{1}, \ldots, c_{n-1}\right\} \cup\{r\}:$
$\phi=\phi\left(y, y^{\prime}\right):=(\forall x) \bigwedge_{\psi\left(x, y, z_{1}, \ldots, z_{n-1}\right) \in \Delta}\left\{s(x) \rightarrow\left[\psi\left(x, y, c_{1}, \ldots, c_{n-1}\right) \equiv \psi\left(x, y^{\prime}, c_{1}, \ldots, c_{n-1}\right)\right]\right\}$
(s is a 1-place relation symbol and c_{1}, \ldots, c_{n-1} are constants not in τ). We also define: $m_{1}=m_{1}(\Delta):=\left(m^{*}\right)^{2} \cdot 2^{|\Delta| m^{*}} \cdot l^{*}(\Delta)$ and $m_{2}=m_{2}(\Delta):=m^{*} \cdot 2^{|\Delta| m^{*}}$, where $l^{*}(\Delta)$ was defined in the previous lemma.
let $\mathfrak{M}^{\prime}, \tau^{\prime}$ and $\psi\left(x, x^{\prime}\right)$ be the vocabulary, model and formula which interpret $E_{A}^{\Delta, M}$ (see the proof of (3.5). We define in τ^{\prime} a formula that will interpret $x S_{\Delta, \mathfrak{M}[U]}^{n} y \bar{z}$ in $\mathfrak{M}^{\prime}[U]$ (where $\lg (\bar{z})=n-1$):

$$
\chi(x, y, \bar{z}):=\bigvee_{\varphi(u, v, \bar{w}) \in \Delta, l g(\bar{w})=n-1}\left(\exists \leq k_{1}^{*}(\Delta) x^{\prime}\right)\left[\psi\left(x, x^{\prime}\right) \wedge\left(\varphi(x, y, \bar{z}) \equiv \varphi\left(x^{\prime}, y, \bar{z}\right)\right)\right]
$$

We therefor get:
$\left(^{*}\right)$ for all $U \in \mathfrak{U}, a, b \in U$ and $\bar{c} \in{ }^{n-1} U: \mathfrak{M}^{\prime}[U] \models \chi(a, b, \bar{c}) \Longleftrightarrow a S_{\Delta, \mathfrak{M}[U]}^{n} b \bar{c}$
Define:

$$
\begin{gathered}
\chi^{\prime}(x, \bar{z}):=\left(\exists^{>m_{2}} y\right) \chi(x, y, \bar{z}) \\
\Delta_{1}:=\Delta \cup\left\{\chi^{\prime}(x, \bar{z})\right\} \\
\Delta_{2}:=\Delta \cup\{\chi(x, y, \bar{z})\}
\end{gathered}
$$

Note that by 5.21 we may assume that $k_{1}^{*}(\Delta) \geq \max \left\{m_{1}(\Delta), m_{2}(\Delta)\right\}$, and by 5.22 we may assume $k_{1}^{*}\left(\Delta_{i}\right) \geq k_{1}^{*}(\Delta) \geq m_{i}(\Delta)$ for $i \in\{1,2\}$. We now assume towards contradiction that there exists $U \in \mathfrak{U}, a, b \in U$ and $\bar{c} \in{ }^{n-1} U$ such that:
(1) $a S_{\Delta, \mathfrak{M}[U]}^{n} b \bar{c}$.
(2) $\neg\left(a S_{\Delta_{1}, \mathfrak{M}^{\prime}[U]}^{n-1} \bar{c}\right)$.
(3) $\neg\left(b S_{\Delta_{2}, \mathfrak{M}^{\prime}[U]}^{n} a \bar{c}\right)$.

From (3) and $k_{1}^{*}\left(\Delta_{2}\right) \geq m_{2}$ we can find $\left\{b_{0}, \ldots, b_{m_{2}}\right\}$ without repetitions such that for all $i \leq m_{2}$: $\mathfrak{M}^{\prime}[U] \models \chi(a, b, \bar{c}) \equiv \chi\left(a, b_{i}, \bar{c}\right)$. from (1) and (*) we get that for all $i \leq m_{2}: \mathfrak{M}^{\prime}[U] \models \chi\left(a, b_{i}, \bar{c}\right)$. Hence $\mathfrak{M}^{\prime}[U] \models \chi^{\prime}(a, \bar{c})$. from (2) and $k_{1}^{*}\left(\Delta_{1}\right) \geq m_{1}$ we can find $\left\{a_{0}, \ldots, a_{m_{1}}\right\}$ without repetitions such that for all $i \leq m_{1}: \mathfrak{M}[U] \models$ $\chi^{\prime}(a, \bar{c}) \equiv \chi^{\prime}\left(a_{i}, \bar{c}\right)$. We have seen that $\mathfrak{M}^{\prime}[U] \models \chi^{\prime}(a, \bar{c})$ so by the definition of
$\chi^{\prime}(x, \bar{z})$ we have for all $i \leq m_{1}$, there exists $\left\{b_{0}^{i}, \ldots, b_{m_{2}}^{i}\right\}$ without repetitions such that $i \leq m_{1} \wedge j \leq m_{2} \Rightarrow a_{i} S_{\Delta, \mathfrak{M}[U]}^{n} b_{j}^{i} \bar{c}$. By the definition of $l^{*}(\Delta)$ and a repeated use of the pigeon hole principle we can find a subset of $\left\{a_{0}, \ldots, a_{m_{1}}\right\},\left\{a_{i_{0}}, \ldots, a_{i_{m^{*}}}\right\}$ such that the sets $\left\{\left\{b_{0}^{i_{l}}, \ldots, b_{m_{2}}^{i_{l}}\right\}: l \leq m^{*}\right\}$ are pairwise disjoint. without loss of generality we assume $i_{l}=l$ for all $l \leq m^{*}$. Using the pigeon hole principle again we can find for all $i \leq m^{*}$ subset of $\left\{b_{0}^{i}, \ldots, b_{m_{2}}^{i}\right\}$ with $m^{*}+1$ elements (and again we assume this subset is $\left.\left\{b_{0}^{i}, \ldots, b_{m^{*}}^{i}\right\}\right)$ such that for all $\varphi(x, y, \bar{z}) \in \Delta$ and $j_{1}, j_{2} \leq m^{*}$ we have $\varphi\left(a_{i}, b_{j_{1}}^{i}, \bar{c}\right) \Leftrightarrow \varphi\left(a_{i}, b_{j_{2}}^{i}, \bar{c}\right)$. In conclusion we got: $\left\{a_{0}, \ldots, a_{m^{*}}\right\}$ without repetitions and for each $i \leq m^{*}:\left\{b_{0}^{i}, \ldots, b_{m^{*}}^{i}\right\}$ without repetitions such that $a_{i_{1}} S_{\Delta}^{n} b_{j}^{i_{2}} \bar{c} \Leftrightarrow i_{1}=i_{2}$. Moreover the elements of $\left\{b_{0}^{i}, \ldots, b_{m^{*}}^{i}\right\}$ satisfy the same formulas of the form $\varphi\left(a_{i}, y, \bar{c}\right) \in \Delta\left(\bar{c}\right.$ and a_{i} are parameters). Now the formula $\phi\left(y, y^{\prime}\right)$ (where s is taken to mean $\left\{a_{0}, \ldots, a_{m^{*}}\right\}$ and the constants c_{i} are taken to mean the elements c_{i}) interprets a $m^{*}+1$-big equivalence relation on $\left\{y_{j}^{i}: i, j \leq\right.$ $\left.m^{*}\right\}$. This is a contradiction to the definition of m^{*}.

We now prove a number of lemmas we need for the proof of the main theorem. First we show that we can code a delta system of n-tuples by singletons:

Lemma 6.6. Let n be a natural number. Then there exists a simple vocabulary τ, and a formula $\theta(x, \bar{y})$ in τ with $\lg (\bar{y})=n$ such that: for all $U \in \mathfrak{U}$ and delta system $\left\langle\overline{a^{i}} \in{ }^{n} U: i<i^{*}\right\rangle\left(i^{*}\right.$ some natural number), we have a simple model M for τ on U and a sequence $\left\langle b_{i} \in U: i<i^{*}\right\rangle$ such that:

$$
\left.\left(\forall \bar{a} \in{ }^{n} U\right)(\forall b \in U)[M \models \theta(b, \bar{a})] \text { iff }\left(\exists i<i^{*}\right)\left(b=b_{i} \wedge \bar{a}=\overline{a^{i}}\right)\right]
$$

Proof. Define $\tau=\left\{c_{0}^{*}, \ldots, c_{n}^{*}, c_{1}, \ldots, c_{n}, s_{0}, s_{1}, f_{1}, \ldots, f_{n}\right\}$. For each $n \geq t \geq 0$ define the formulas:

$$
\begin{gathered}
\theta_{t}(x, \bar{y}):=y_{0}=c_{0} \wedge \ldots \wedge y_{t}=c_{t} \wedge y_{t+1}=x \wedge y_{t+2}=f_{t+2}(x) \wedge \ldots \wedge y_{n}=f_{n}(x) \\
\theta(x, \bar{y}):=s_{1}(x) \wedge \bigwedge_{n \geq t \geq 0}\left[s_{0}\left(c_{t}^{*}\right) \rightarrow \theta_{t}(x, \bar{y})\right]
\end{gathered}
$$

Now let $U \in \mathfrak{U}$ and assume $\left\langle\overline{a^{i}} \in{ }^{n} U: i<i^{*}\right\rangle$ is a delta system, this means we have some $n \geq t^{*} \geq 0$, such that: $\left|\left\{a_{t}^{i}: i<i^{*}\right\}\right|=1$ for all $1 \leq t \leq t^{*}$, and $\left|\left\{a_{t}^{i}: i<i^{*}\right\}\right|=i^{*}$ for all $n \geq t>t^{*}$. We can now define M :
$c_{0}^{*^{M}} \ldots c_{n}^{*^{M}}$ are some distinct elements of U (we assume $|U|>n$).
$c_{t}^{M}=a_{t}^{1}$ (for $1 \leq t \leq t^{*}$ and assuming $t^{*}>0$ over-wise the definition of c_{t}^{M} is insignificant).
$s_{0}^{M}:=\left\{c_{t^{*}}^{*^{M}}\right\}$.
$s_{1}^{M}:=\left\{a_{t^{*}+1}^{i}: i<i^{*}\right\}$ (assuming $t^{*}<n$ over-wise define s_{1}^{M} to be some singleton).
$f_{t}^{M}:=\left\{\left(a_{t^{*}+1}^{i}, a_{t}^{i}\right): i<i^{*}\right\}$ (for $t^{*}+1<t \leq n$ and assuming $t^{*}+1<n$ over-wise the definition of f_{t}^{M} is insignificant).
Note that f_{t}^{M} are one to one functions in the relevant cases. In conclusion we define $\left\langle b_{i}=a_{t^{*}+1}^{i}: i<i^{*}\right\rangle$ (again we assume $t^{*}<n$ over-wise we define $\left\langle b_{i} \in U: i<i^{*}\right\rangle$ to be some constant sequence). So by our definitions we get $M \models \theta_{t^{*}}\left(b_{i}, \overline{a^{i}}\right)$ for all $i<i^{*}$. Moreover if $M \models \theta_{t^{*}}(b, \bar{a})$ then there exists $i<i^{*}$ such that $b=b_{i}$ and $\bar{a}=\overline{a^{i}}$. Hence θ, M and $\left\langle b_{i}: i<i^{*}\right\rangle$ are as needed.

We now show that it is impossible to interpret large order relation on \mathfrak{U}.

Lemma 6.7. Let τ_{0} be a simple vocabulary, and $\varphi(\bar{x}, \bar{y})$ a formula in $\tau_{0} \cup\{r\}$ (not assuming $\lg (\bar{x})=\lg (\bar{y}))$. Then there exists a natural number $k^{*}=k_{3}^{*}=k_{3}^{*}(\varphi)$ such that for every \mathfrak{M} a simple expansion of \mathfrak{R} for $\tau_{0} \cup\{r\}$, and for all $U \in \mathfrak{U}$, it is impossible to find sequences $\left\langle\overline{a_{i}} \in{ }^{l g(\bar{x})} U: i<k^{*}\right\rangle$ and $\left\langle\overline{b_{j}} \in{ }^{\lg (\bar{y})} U: j<k^{*}\right\rangle$ such that:

$$
\left(\forall i, j<k^{*}\right)\left[\mathfrak{M}[U] \models \varphi\left(\overline{a_{i}}, \overline{b_{j}}\right) \Longleftrightarrow i \leq j\right]
$$

Proof. Let $\varphi(\bar{x}, \bar{y})$ and τ_{0} be as described. For $i \in\{1,2\}$ let τ_{i}, θ_{i} be the vocabulary and formula used to code delta systems for $n=l g(\bar{x})$ and $n=l g(\bar{y})$ respectively (i.e. those from the previous lemma). Add to τ_{0} new 1-place relation symbol and function symbol, s^{*}, f^{*}. In the vocabulary $\tau=\tau_{0} \cup \tau_{1} \cup \tau_{2} \cup\left\{s^{*}, f^{*}\right\} \cup\{r\}$ (without loss of generality the unions are disjoint) define the formula:

$$
\begin{array}{r}
\phi\left(v, v^{\prime}\right):=(\neg \exists u) s^{*}(u) \wedge\left(\forall \bar{x}, \overline{x^{\prime}}, \bar{y}, \overline{y^{\prime}}\right)\left\{\left[\theta _ { 1 } (u , \overline { x }) \wedge \left(\theta_{1}\left(f^{*}(u), \overline{x^{\prime}}\right)\right.\right.\right. \\
\left.\left.\wedge \theta_{2}(v, \bar{y}) \wedge \theta_{2}\left(v^{\prime}, \overline{y^{\prime}}\right)\right] \rightarrow\left[\varphi(\bar{x}, \bar{y}) \equiv \varphi\left(\bar{x}, \overline{y^{\prime}}\right) \wedge \varphi\left(\overline{x^{\prime}}, \bar{y}\right) \equiv \neg \varphi\left(\overline{x^{\prime}}, \overline{y^{\prime}}\right)\right]\right\}
\end{array}
$$

which will interpret a large equivalence relation. For all $m, n \in \omega$ Let $\operatorname{Delta}(n, m)$ note the minimal number d such that every sequence of $d n$-tuples has a subsequence of length m which is a delta system. We can now define $k_{3}^{*}(\varphi)$:

$$
k^{*}=k_{3}^{*}(\varphi):=\operatorname{Delta}\left(\lg (\bar{x}), \operatorname{Delta}\left(\lg (\bar{y}),\left(k_{2}^{*}(\phi)\right)^{2}\right)\right)
$$

Seeking contradiction we assume that there exist \mathfrak{M}_{0} a model for τ_{0} on \mathfrak{U}, $U \in \mathfrak{U}$ and sequences as in the lemma. By the definition of k^{*} there exist subsequences of length $\left(k_{2}^{*}(\phi)\right)^{2}$, which are delta systems. Note $k_{2}:=k_{2}^{*}(\phi)$. without loss of generality we assume these subsequences are: $\left\langle\overline{a_{i}} \in^{l g(\bar{x})} U: i<\left(k_{2}\right)^{2}\right\rangle$ and $\left\langle\overline{b_{j}} \in{ }^{l g(\bar{y})} U: j<\left(k_{2}\right)^{2}\right\rangle$. Let $M_{1}, M_{2},\left\langle a_{i} \in U: i<\left(k_{2}\right)^{2}\right\rangle$ and $\left\langle b_{j} \in U: j<\left(k_{2}\right)^{2}\right\rangle$ be the models and sequences used to code $\left\langle\overline{a_{i}}: i<\left(k_{2}\right)^{2}\right\rangle$ and $\left\langle\overline{b_{j}}: j<\left(k_{2}\right)^{2}\right\rangle$ (see 6.61) We define M a model for τ on U :

For each $i \in\{0,1,2\}: M \mid \tau_{i}:=M_{i}$.
$s^{*^{M}}:=\left\{a_{j \cdot k_{2}}: j \in\left\{0,1,2, \ldots, k_{2}-1\right\}\right\}$.
$f^{*^{M}}:=\left\{\left(a_{j \cdot k_{2}}, a_{\left((j+1) \bmod \left(k_{2}\right)\right) \cdot k_{2}}\right): j \in\left\{0,1,2, \ldots, k_{2}-1\right\}\right\}$.
Note that if π is the permutation of $\left\{\overline{a_{i \cdot k}} \in{ }^{l g(\bar{x})} U: j<k_{2}\right\}$ defined by $\pi\left(\overline{a_{j \cdot k_{2}}}\right)=$ $a_{\left((j+1) \bmod \left(k_{2}\right)\right) \cdot k_{2}}$, then the formula:
$\phi^{\prime}\left(\bar{y}, \overline{y^{\prime}}\right):=\left(\neg \exists \bar{x} \in\left\{\overline{a_{j \cdot k_{2}}} \in: j<k_{2}\right\}\right)\left[\varphi(\bar{x}, \bar{y}) \equiv \varphi\left(\bar{x}, \overline{y^{\prime}}\right) \wedge \varphi(\pi(\bar{x}), \bar{y}) \wedge \neg \varphi\left(\pi(\bar{x}), \overline{y^{\prime}}\right)\right]$
interprets in M a k_{2}-big equivalence relation on $\left\{\overline{b_{j}}: j<\left(k_{2}\right)^{2}\right\}$ namely the relation $\left\{\left(\overline{b_{i}}, \overline{b_{j}}\right): i, j \in\left(k_{2}\right)^{2}, \exists l \in\left\{0, \ldots, k_{2}-1\right\}\right.$ s.t. $\left.i, j \in\left[l, l+1, \ldots, l+k_{2}\right)\right\}$. Hence by the properties of θ_{1} and θ_{2}, the formula $\phi\left(v, v^{\prime}\right)$ interprets a k_{2}-big equivalence relation on $\left\{b_{j}: j<\left(k_{2}\right)^{2}\right\}$ which is a contradiction.
we need one more lemma before we can prove the main theorem.
Lemma 6.8. Let τ be a simple vocabulary and $\varphi(x, y, \bar{z})$ a formula in $\tau \cup r$. Then there exist a natural number $k^{*}=k_{4}^{*}=k_{4}^{*}(\varphi)$ such that for every \mathfrak{M} a simple expansion of \mathfrak{R} for $\tau \cup\{r\}$ on \mathfrak{U} and for all $U \in \mathfrak{U}$, it is impossible to find: $\overline{c^{l}} \in{ }^{\lg (\bar{z})} U$ for each $l<k^{*}$ and sequences $\left\langle a_{i}^{l} \in U: i<k^{*}\right\rangle$ and $\left\langle b_{j}^{l} \in U: j<k^{*}\right\rangle$ such that:
(α) For all $l, i, j<k^{*}, \mathfrak{M}[U] \models \varphi\left(a_{i}^{l}, b_{j}^{l}, \overline{c^{l}}\right)$ iff $i=j$.
(β) For all $l_{1}<l<k^{*}$, the truth value of $\varphi\left(a_{i}^{l_{1}}, b_{j}^{l_{1}}, \overline{c^{l}}\right)$ in $\mathfrak{M}[U]$ is independent of $i, j<k^{*}$.

Proof. Note $\lg (\bar{z})=n$. Let τ^{\prime} and $\theta(x, \bar{y})$ be the vocabulary and formula we get by applying lemma 6.6 to n. Define a simple vocabulary $\tau^{*}:=\tau \cup \tau^{\prime} \cup\left\{s_{1}, s_{2}, f\right\}$, and formulas in τ^{*} :

$$
\begin{gathered}
\psi_{1}(x, y):=s_{1}(x) \wedge s_{2}(y) \wedge(\forall \bar{z})[\theta(y, \bar{z}) \rightarrow \varphi(x, f(x), \bar{z})] \\
\psi_{2}\left(x, x^{\prime}\right):=s_{1}(x) \wedge s_{1}\left(x^{\prime}\right) \wedge(\forall y \forall \bar{z})\left(s_{2}(y) \wedge \theta(y, \bar{z})\right) \rightarrow\left[\left(\varphi\left(x,(f(x), \bar{z}) \equiv \varphi\left(x^{\prime}, f\left(x^{\prime}\right), \bar{z}\right)\right]\right.\right.
\end{gathered}
$$

Put $k^{*}:=\operatorname{Max}\left\{k_{3}^{*}\left(\psi_{1}\right), k_{2}^{*}\left(\psi_{2}\right)\right\}+1$. Let $U \in \mathfrak{U}$ and M some simple expansion of $\mathfrak{R}[U]$ for $\tau \cup\{r\}$. seeking contradiction assume that for all $l<k^{*}$ there exist $\overline{c^{l}} \in{ }^{l g(\bar{z})} U$ and sequences $\left\langle a_{i}^{l} \in U: i<k^{*}\right\rangle$ and $\left\langle b_{j}^{l} \in U: j<k^{*}\right\rangle$ satisfying (α) and (β). By increasing k^{*} to $\operatorname{Delta}\left(n, k^{*}\right)$ we may assume that $\left\langle\overline{c^{l}}: l<k^{*}\right\rangle$ is a delta system. Hence the truth value of the sentences $a_{i_{1}}^{l_{1}}=a_{i_{2}}^{l_{2}}$ and $\varphi\left(a_{i}^{l_{1}}, b_{j}^{l_{1}}, \overline{c^{l}}\right)$ depends only on the order type of the indexes (again by increasing k^{*} and using Ramsey theorem). Moreover without loss of generality we may assume that: $a_{i_{1}}^{l_{1}}=a_{i_{2}}^{l_{2}} \Rightarrow$ $\left(l_{1}=l_{2}\right) \wedge\left(i_{1}=i_{2}\right)$. This is true because we can increase k^{*} to $\left(k^{*}\right)^{2}+1$ and choose the sub sequence $\left\langle a_{i}^{l}: k^{*} \cdot l \leq i<k^{*} \cdot(l+1), i \neq l\right\rangle\left(\right.$ as $\left.\left\langle a_{i}^{l}: i<k^{*}\right\rangle\right)$. Now if $a_{i_{1}}^{l_{1}}=a_{i_{2}}^{l_{2}}$ then by our assumption we have $a_{i_{1}+1}^{l_{1}}=a_{i_{2}}^{l_{2}}$ or $a_{i_{1-1}}^{l_{1}}=a_{i_{2}}^{l_{2}}$, hence we get $a_{i_{1}+1}^{l_{1}}=a_{i_{1}}^{l_{1}}$ or $a_{i_{1}-1}^{l_{1}}=a_{i_{1}}^{l_{1}}$ contradicting (α). Using the same argument we may assume that $b_{i_{1}}^{l_{1}}=b_{i_{2}}^{l_{2}} \Rightarrow\left(l_{1}=l_{2}\right) \wedge\left(i_{1}=i_{2}\right)$. Now using (β) exactly one of the following conditions hold: ever $l_{1}<l<k^{*} \Rightarrow M \models \varphi\left(a_{i}^{l_{1}}, b_{j}^{l_{1}}, \overline{c^{l}}\right)$ or $l_{1}<l<k^{*} \Rightarrow M \models \neg \varphi\left(a_{i}^{l_{1}}, b_{j}^{l_{1}}, \overline{c^{l}}\right)$. We will deal with the first case (the second can be dealt with similarly). We have three cases:
(1) There exist $i^{*} \neq j^{*}<k^{*}$ such that for all $l<l_{1}<k^{*}$ we have: $M \models$ $\neg \varphi\left(a_{i^{*}}^{l_{1}}, b_{j^{*}}^{l_{1}}, \overline{c^{l}}\right)$.
(2) There exists π a permutation of $\left\{0, \ldots k^{*}-1\right\}$ without fixed points so that for all $l<l_{1}<k^{*}$ and for all $j<k^{*}$ we have: $M \models \varphi\left(a_{j}^{l_{1}}, b_{\pi(j)}^{l_{1}}, \overline{c^{l}}\right)$.
(3) Never (1) nor (2) hold.

As stated above τ^{\prime} and $\theta(x, \bar{y})$ are the vocabulary and formula we get by applying lemma 6.6 to n. Let M^{\prime} and $\left\langle c^{l} \in U: l<k^{*}\right\rangle$ be the model and sequence we get by applying that lemma (in U) to $\left\langle\overline{c^{l}}: l<k^{*}\right\rangle$. For each of the cases (1)-(3) we define M^{*} a simple expansion of M for $\tau^{*} \cup\{r\}$ and get a contradiction. In each case $M^{*} \mid \tau^{\prime}:=M^{\prime}$. The interpretation of s_{1}, s_{2} and f will be given for each case separately:

Case (1): Define $s_{1}^{M^{*}}:=\left\{c^{l}: l<k^{*}\right\}, s_{2}^{M^{*}}:=\left\{a_{i^{*}}^{l}: l<k^{*}\right\}$ and $f^{M^{*}}:=$ $\left\{\left(a_{i^{*}}^{l}, b_{j^{*}}^{l}: l<k^{*}\right\}\right.$. Then we have $l>l_{1} \Leftrightarrow M^{*} \models \varphi\left(a_{i^{*}}^{l_{1}}, f\left(a_{i^{*}}^{l_{1}}\right), \overline{c^{l}}\right)$ and hence the formula $\psi_{1}\left(x, x^{\prime}\right)$ interprets in M^{*} an order relation (in the sense of 6.7) on $\left\{c^{l}: l<k^{*}\right\} \times\left\{a_{i^{*}}^{l}: l<k^{*}\right\}$. This is a contradiction as k^{*} is larger than $k_{3}^{*}\left(\psi_{1}\right)$.

Case (2) Define $s_{1}^{M^{*}}:=\left\{c^{l}: l<k^{*}\right\}, s_{2}^{M^{*}}:=\left\{a_{i}^{l}: i, l<k^{*}\right\}$ and $f^{M^{*}}:=$ $\left\{\left(a_{i}^{l}, b_{\pi(i)}^{l}: i, l<k^{*}\right\}\right.$. Then we have $l \neq l_{1} \Leftrightarrow M^{*} \models \varphi\left(a_{i}^{l_{1}}, f\left(a_{i}^{l_{1}}\right), \overline{c^{l}}\right)$ and hence the formula $\psi_{2}\left(x, x^{\prime}\right)$ interprets in M^{*} the relation $\left\{\left(a_{i_{1}}^{l_{1}}, a_{i_{2}}^{l_{2}}\right): l_{1}=l_{2} \wedge i_{1}, i_{2}<k^{*}\right\}$ which is k^{*}-big. This is a contradiction as k^{*} is larger than $k_{2}^{*}\left(\psi_{2}\right)$.

Case (3): In this case we assume that (in advance) we chose $\left(k^{*}+2\right) \cdot k^{*}$ instead of k^{*}. (So in cases (1) and (2) it is enough to find subsets of size k^{*} with the desired properties). Look at $\left\langle c^{(l+2) \cdot k^{*}}: l<k^{*}\right\rangle$, and the sequences $\left\langle a_{j \cdot k^{*}}^{(l+2) \cdot k^{*}}: j<k^{*}\right\rangle$ and
$\left\langle b_{j \cdot k^{*}}^{(l+2) \cdot k^{*}}: j<k^{*}\right\rangle$ for $l<k^{*}$. Since (1) does not hold for these sequences we get (choosing $i^{*}=0$ and $j^{*}=1$) that there exist $l^{*}<l_{1}^{*}$ such that $\varphi\left(a_{0}^{\left(l_{1}^{*}+2\right) \cdot k^{*}}, b_{k^{*}}^{\left(l_{1}^{*}+2\right) \cdot k^{*}}, c^{\left(l^{*}+2\right) \cdot k^{*}}\right)$. In the same way (choosing $i^{*}=1$ and $j^{*}=0$) we get that there exist $l^{* *}<l_{1}^{* *}$ such that $\varphi\left(a_{k^{*}}^{\left(l_{1}^{* *}+2\right) \cdot k^{*}}, b_{0}^{\left(l_{1}^{* *}+2\right) \cdot k^{*}}, c^{l^{* *}}\right)$. Now look at $\left\langle c^{2 k^{*}+l}: l<k^{*}\right\rangle$ and the sequences $\left\langle a_{j}^{2 k^{*}+l}: j<k^{*}\right\rangle$ and $\left\langle b_{j}^{2 k^{*}+l}: j<k^{*}\right\rangle$ for $l<k^{*}$. Let π be a permutation of $\left\{0, \ldots, k^{*}-1\right\}$ without a fixed point. We show that these sequences along with π, satisfy the demands of case (2). Let $j<k^{*}$ and $l<l_{1}<k^{*}$. If $j<\pi(j)$ then $j<\pi(j)<2 k^{*}+l<2 k^{*}+l_{1}$ and $0<k^{*}<\left(l^{*}+2\right) \cdot k^{*}<\left(l_{1}^{*}+2\right) \cdot k^{*}$. Since the truth value of φ depends only on the order type of the indexes we get $\varphi\left(a_{j}^{2 k^{*}+l_{1}}, b_{\pi(j)}^{2 k^{*}+l_{1}}, c^{2 k^{*}+l}\right)\left(\right.$ as $\left.\varphi\left(a_{0}^{\left(l_{1}^{*}+2\right) \cdot k^{*}}, b_{k^{*}}^{\left(l_{1}^{*}+2\right) \cdot k^{*}}, c^{\left(l^{*}+2\right) \cdot k^{*}}\right)\right)$. If $\pi(j)<j$ we get the same result, only now we use the 4-tuple $0<k^{*}<\left(l^{* *}+2\right) \cdot k^{*}<\left(l_{1}^{* *}+2\right) \cdot k^{*}$. In both cases we have $\varphi\left(a_{j}^{2 k^{*}+l_{1}}, b_{\pi(j)}^{2 k^{*}+l_{1}}, c^{2 k^{*}+l}\right)$ as needed in (2). So case (3) can not hold.

We are now ready to prove theorem 5.3 in the general case. We prove:
Theorem 6.9. Let \mathfrak{R} be as in 1.44 that satisfies 5.1. Then there exist a simple vocabulary $\sigma, \varphi(\bar{x})$ a formula in σ with $\lg (\bar{x})=n(\mathfrak{R})$, and \mathfrak{N} a simple model for σ on \mathfrak{U}. Such that for all $U \in \mathfrak{U}$ and $\bar{a} \in{ }^{n(\Re)} U$:

$$
\mathfrak{N}[U] \models \varphi(\bar{a}) \Longleftrightarrow(U, \mathfrak{R}[U]) \models r(\bar{a})
$$

Proof. We prove the theorem by induction on $n(\mathfrak{R})$. The cases $n(\Re)=0$ and $n(\mathfrak{R})=1$ are trivial. the case $n(\mathfrak{R})=2$ was proved in 5.8

Before we turn to the proof of the induction step we pay attention to the following fact. Let \mathfrak{R}^{\prime} be as in 1.4. We say that " \mathfrak{R}^{\prime} " is definable from \mathfrak{R} by a simple expansion" if there exist a simple vocabulary τ, a simple expansion \mathfrak{M} of \mathfrak{R} for $\tau \cup\{r\}$ and a formula $\varphi\left(x_{0}, \ldots, x_{n\left(\Re^{\prime}\right)-1}\right)$ in $\tau \cup\{r\}$ such that for all $U \in \mathfrak{U}$ and $\bar{a} \in{ }^{n\left(\mathfrak{R}^{\prime}\right)} U$ we have $\mathfrak{R}^{\prime}[U](\bar{a})$ iff $\mathfrak{M}[U] \models \varphi(\bar{a})$. Note that if \mathfrak{R}^{\prime} is definable from \mathfrak{R} by a simple expansion then \mathfrak{R}^{\prime} also satisfies assumption 5.1 (or else \mathfrak{R} does not satisfy the assumption for we can define a big equivalence relation from \mathfrak{R} using φ and the model \mathfrak{M}). If \mathfrak{R}^{\prime} is definable from \mathfrak{R} by a simple expansion and $n\left(\mathfrak{R}^{\prime}\right)<n(\mathfrak{R})$ then by the induction hypothesis there exist: σ_{0} a simple vocabulary, $\varphi_{0}(\bar{x})$ a formula in σ_{0} with $g(\bar{x})=n\left(\mathfrak{R}^{\prime}\right)$, and \mathfrak{N}_{0} a simple model for σ_{0} on \mathfrak{U}. Such that for all $U \in \mathfrak{U}$ and $\bar{a} \in{ }^{n\left(\mathfrak{R}^{\prime}\right)} U$:

$$
\mathfrak{N}_{0}[U] \models \varphi_{0}(\bar{a}) \Longleftrightarrow \mathfrak{R}^{\prime}[U](\bar{a})
$$

in that case we will say that \mathfrak{R}^{\prime} satisfies the induction hypothesis and that σ_{0}, φ_{0} and \mathfrak{N}_{0} interprets it.

We now assume $n(\Re)=n+1>2$. We prove this case in two stages. In the first stage we show that we can interpret the relation $x S_{\Delta, \mathfrak{M}}^{n} \bar{y}$, so we prove:

Lemma 6.10. Let Δ, τ satisfy assumption 6.1, and let \mathfrak{M} be a simple expansion of \mathfrak{R} for $\tau \cup\{r\}$ on \mathfrak{U}. Then there exist:

- A simple vocabulary $\sigma_{0}\left(r \notin \sigma_{0}\right)$.
- $\varphi_{0}(x, \bar{y})$ a formula in $\sigma_{0}(\lg (\bar{y})=n)$.
- \mathfrak{N}_{0} a simple model for σ_{0} on \mathfrak{U}.

Such that for all $U \in \mathfrak{U}, a \in U$ and $\bar{b} \in{ }^{n} U$ we have: $\mathfrak{N}_{0}[U] \models \varphi_{0}(a, \bar{b}) \Longleftrightarrow$ $a S_{\Delta, \mathfrak{M}[U]}^{n} \bar{b}$.

Proof. (of lemma 6.10). Let $\mathfrak{M}^{*}, \tau^{*}, \psi\left(x, x^{\prime}\right)$ and $\chi(x, y, \bar{z})$ (where $\lg (\bar{z})=n-1$) be the vocabulary, model and formulas interpreting $E_{A}^{\Delta, \mathfrak{M}[U]}$ and $S_{\Delta, \mathfrak{M}[U]}^{n}$ that were defined in the proof of the symmetry lemma (noted there by $\mathfrak{M}^{\prime}, \tau^{\prime}$). We also define a formula that will interpret an order relation in \mathfrak{M}^{*} :

$$
\phi=\phi(\bar{x}, \bar{y}):=\left[\chi\left(x_{0}, x_{1}, \bar{y}\right) \equiv \chi\left(x_{2}, x_{3}, \bar{y}\right)\right]
$$

where $\lg (\bar{x})=4$ and $\lg (\bar{y})=n-1$. In the vocabulary τ^{*} we define a set of formulas: $\Delta^{*}:=\Delta \cup\{\chi, \phi\}$. For gravity we write $M:=\mathfrak{M}[U], M^{*}:=\mathfrak{M}^{*}[U], N_{0}:=\mathfrak{N}_{0}[U]$ and similarly for other models, where $U \in \mathfrak{U}$ is understood from the context. Next we define some constants that we will use in the proof:
(1) $m_{1}:=m_{1}(\Delta):=\operatorname{Max}\left\{k_{3}^{*}(\phi), k_{4}^{*}(\chi)\right\}+1$ for the formulas χ, ϕ defined above (see 6.7 and 6.8).
(2) $m_{2}:=m_{2}(\Delta):=\left(m_{1}\right)^{2}+m_{1}$.
(3) For all $U \in \mathfrak{U}$ choose by induction on $m_{2} \geq l, A_{l}=A_{l}^{U} \subseteq U$ such that:
(a) $A_{0}=\emptyset$.
(b) $A_{l} \subseteq A_{l+1}$ for all $l<m_{2}$.
(c) For all $l<m_{2}, r \leq n+2 \cdot m_{1}$ and a type $p \in S_{\Delta^{*}}^{r}\left(A_{l}, \mathfrak{M}^{*}[U]\right)$: if p is realized in $\mathfrak{M}^{*}[U]$ then it is realized already in A_{l+1}.
(d) For all $l<m_{2},\left|A_{l+1}\right|$ is minimal under the properties (a)-(c).
(4) We write $A^{*}=A^{*^{U}}=A_{m_{2}}^{U}$.
(5) Note that under these conditions there exists a bound on $\left|A^{*}\right|$ depending only on $\left|\Delta^{*}\right|, m_{1}, m_{2}$ and n, so in fact the bound depends only on n and $|\Delta|$ and we can calculate it in the beginning of the proof. We note this bound by m_{3}. We do not calculate the value of m_{3} but note that it increases super-exponentially as a function of $|\Delta|$.
(6) $m_{4}:=m_{4}(\Delta):=l^{*}\left(\Delta_{1}(\Delta)\right)+l^{*}\left(\Delta_{2}(\Delta)\right) \cdot m_{1}$. (see 5.6 and 6.5).
(7) $m_{5}:=m_{5}(\Delta)=2 \cdot m_{4}+m_{3}+n+2$.

Note by $\mathfrak{S}=\mathfrak{S}_{\Delta, \mathfrak{M}}^{n}$ the $n+1$-place relation on \mathfrak{U} defined by $\mathfrak{S}[U]:=\{(x, y, \bar{z}) \in$ $\left.{ }^{n+1} U: x S_{\Delta, \mathfrak{M}[U]}^{n} y \bar{z}\right\}$. (We keep using the existing notation and write $x \mathfrak{S}[U] y \bar{z}$ instead of $\mathfrak{S}[U](x, y, \bar{z})$, or sometimes write $x S_{\Delta, \mathfrak{M}[U]}^{n} y \bar{z}$ as before). Our aim is to interpret the relation \mathfrak{S} by a formula in a simple model on \mathfrak{U}. First note the following fact: Assume there exists a number i^{*} such that for all $U \in \mathfrak{U}$: ${ }^{n+1} U=\bigcup_{i<i^{*}} B_{i}^{U}$. Assume farther that for all $i<i^{*}$ the relation \mathfrak{S}_{i} defined by $\mathfrak{S}_{i}[U]:=\mathfrak{S}[U] \cap B_{i}^{U}$ is interpreted by the formula φ_{i} and the simple model \mathfrak{N}_{i} for the vocabulary σ_{i}. Then the formula $\bigvee_{i<i^{*}} \varphi_{i}(x, y, \bar{z})$ in the vocabulary $\bigcup_{i<i^{*}} \sigma_{i}$ and the model \mathfrak{N} defined by $\left(\forall i<i^{*}\right) \mathfrak{N} \mid \sigma_{i}=\mathfrak{N}_{i}$ will interpret \mathfrak{S} as needed. We return to the proof of the lemma. Let $\left\langle p_{i}: i<i^{*}\right\rangle$ be an enumeration of all the Δ^{*} types of two variables over a set of at most m_{3} parameters. Formally this means each p_{i} is a subset of $\Phi:=\left\{\varphi\left(x, y, u_{j_{1}}, \ldots, u_{j_{k}}\right) \in \Delta^{*}: k<\right.$ $\left.m_{3}, j_{1}, \ldots, j_{k} \in\left\{0, \ldots, m_{3}-1\right\}\right\}$. For all $U \in \mathfrak{U}$ fix $\left\langle a_{0}, \ldots, a_{l}\right\rangle$ some enumeration of $A^{*^{U}}$ (of course $l<m_{3}$) and we then write $t_{\Delta^{*}}\left((a, b), A^{*}, \mathfrak{M}^{*}[U]\right)=p_{i}$ iff $\mathfrak{M}^{*}[U] \models \varphi\left(a, b, a_{j_{1}}, \ldots, a_{j_{k}}\right) \Leftrightarrow \varphi\left(x, y, u_{j_{1}}, \ldots, u_{j_{k}}\right) \in p_{i}$. Note that i^{*} is uniformly bounded by $2^{\left|\Delta^{*}\right| \cdot\binom{m_{3}}{n}}$. For all $i<i^{*}$ and $U \in \mathfrak{U}$ the 2-place relation on \mathfrak{U} defined for all $U \in \mathfrak{U}$ by $\left\{(x, y) \in{ }^{2} U: \operatorname{tp}_{\Delta^{*}}\left((x, y), A^{*^{U}}, \mathfrak{M}^{*}[U]\right)=p_{i}\right\}$ satisfies the induction hypothesis. Hence there exist a simple vocabulary σ^{i} a formula $\varphi^{i}(x, y)$ and \mathfrak{N}^{i} a simple model for σ^{i} on \mathfrak{U} such that for all $U \in \mathfrak{U}$ and $a, b \in U$:

$$
\mathfrak{N}^{i} \models \varphi^{i}(a, b) \Longleftrightarrow t p_{\Delta^{*}}\left((x, y), A^{*^{U}}, M^{*}[U]\right)=p_{i}
$$

Without loss of generality we may assume that σ^{i} has only function symbols. We use a theorem of Gaifman about models with a distance function (see 5]). We get that $\varphi^{i}(x, y)$ is logically equivalent to some local formula. This means for all $U \in \mathfrak{U}$ the truth value of $\varphi^{i}(x, y)$ in $\mathfrak{N}^{i}[U]$ depends only on the type of (x, y) on the set of formulas $\Phi^{i}:=\bigcup_{j \in\{1,2,3\}} \Phi_{j}^{i}$ where:

$$
\begin{aligned}
& \Phi_{1}^{i}:=\left\{f_{i}^{\varepsilon(1)} \circ f_{2}^{\varepsilon(2)} \circ \ldots f_{t}^{\varepsilon(t)}(x)=y: f_{1}, \ldots, f_{t} \in \sigma^{i}, \varepsilon \in^{t}\{1,-1\}, t \leq s\right\} \\
& \Phi_{2}^{i}:=\left\{f_{i}^{\varepsilon(1)} \circ f_{2}^{\varepsilon(2)} \circ \ldots f_{t}^{\varepsilon(t)}(x)=x: f_{1}, \ldots, f_{t} \in \sigma^{i}, \varepsilon \in^{t}\{1,-1\}, t \leq s\right\} \\
& \Phi_{3}^{i}:=\left\{f_{i}^{\varepsilon(1)} \circ f_{2}^{\varepsilon(2)} \circ \ldots f_{t}^{\varepsilon(t)}(y)=y: f_{1}, \ldots, f_{t} \in \sigma^{i}, \varepsilon \in^{t}\{1,-1\}, t \leq s\right\}
\end{aligned}
$$

and $s=s(i)$ is a natural number that depends only on φ^{i}. Define for each $j \in$ $\{1,2,3\}: \Phi_{j}:=\bigcup_{i<i^{*}} \Phi_{j}^{i}$ and $\Phi=\Phi_{1} \cup \Phi_{2} \cup \Phi_{3}$. Also define $\sigma^{*}:=\bigcup_{i<i^{*}} \sigma^{i}$ (w.l.o.g. the union is disjoint) and \mathfrak{N}^{*} is defined by $\left(\forall i<i^{*}\right) \mathfrak{N}^{*} \mid \sigma^{i}:=\mathfrak{N}^{i}$. Using Gaifman theorem for all $U \in \mathfrak{U}$ and $a, b, a^{\prime}, b^{\prime} \in U$ we have (\bigotimes) :
$t p_{\Phi}\left((a, b), \emptyset, N^{*}\right)=t p_{\Phi}\left(\left(a^{\prime}, b^{\prime}\right), \emptyset, N^{*}\right) \Rightarrow t p_{\Delta^{*}}\left((a, b), A^{*}, M^{*}\right)=t p_{\Delta^{*}}\left(\left(a^{\prime}, b^{\prime}\right), A^{*}, M^{*}\right)$
Note that $|\Phi|$ is uniformly bounded. Moreover the bound depends only on $|\Delta|$ and n. We treat each Φ type separately this means: Let q be a type without parameters in Φ (that is simply $q \subseteq \Phi$). As we saw the number of such types is bounded by $2^{|\Phi|}$. As we saw in the beginning of the proof we are done if we interpret the relation \mathfrak{S}_{q} defined by: $\mathfrak{S}[U] \cap\left\{(x, y, \bar{z}) \in{ }^{n+1} U: t p_{\Phi}\left((x, y), \emptyset, \mathfrak{N}_{1}[U]\right)=q\right\}$. Clearly the relation $\left\{(x, y, \bar{z}) \in{ }^{n+1} U: \operatorname{tp} p_{\Phi}\left((x, y), \emptyset, \mathfrak{N}_{1}[U]\right)=q\right\}$ is definable from \mathfrak{N}^{*} by the formula $\varphi_{q}(x, y, \bar{z}):=\bigwedge_{\phi \in q} \phi \wedge \bigwedge_{\phi \in \Phi \backslash q} \neg \phi$. Now one of the following holds:
(1) There exist $\theta(x, y) \in \Phi_{1}$ such that $\theta \in q$. Then for all $U \in \mathfrak{U}$ and $a, b \in U$ we have:

$$
\left[t p_{\Phi}\left((a, b), \emptyset, \mathfrak{N}^{*}[U]\right)=q\right] \Longrightarrow \mathfrak{N}^{*} \models \theta(a, b)
$$

(2) For all $\theta(x, y) \in \Phi_{1}, \theta \notin q$. Then for all $U \in \mathfrak{U}$ we have:

$$
\left\{(x, y) \in{ }^{2} U: \operatorname{tp} p_{\Phi}\left((x, y), \emptyset, \mathfrak{N}^{*}[U]\right)=q\right\}=\left\{(x, y) \in A_{q} \times B_{q}: \mathfrak{N}^{*}[U] \models \bigwedge_{\theta(x, y) \in \Phi_{1}} \neg \theta(x, y)\right\}
$$

Where we define:

$$
\begin{aligned}
& A_{q}:=\left\{x \in U: \operatorname{tp}_{\Phi_{2}}\left(x, \emptyset, \mathfrak{N}^{*}[U]\right)=q \cap \Phi_{2}\right\} \\
& B_{q}:=\left\{y \in U: \operatorname{tp}_{\Phi_{3}}\left(y, \emptyset, \mathfrak{N}^{*}[U]\right)=q \cap \Phi_{3}\right\}
\end{aligned}
$$

Assume condition (1) is satisfied. Note that for all $U \in \mathfrak{U}, \theta(x, y)$ defines in $\mathfrak{N}^{*}[U]$ a (graph of a) 1-1 function, note this function by f^{U}. The relation defined by $\left\{(x, \bar{z}) \in{ }^{n} U: x S_{\Delta, \mathfrak{M}[U]}^{n} f^{U}(x) \bar{z}\right\}$ is a n-place relation definable form \mathfrak{R} by a simple expansion (using the formula $(\forall t) \theta(x, t) \rightarrow \chi(x, t, \bar{z})$). Hence there exist a formula $\varphi_{1}(x, \bar{z})$, a vocabulary σ_{1} and a model \mathfrak{N}_{1} interpreting it. Now the formula $\theta(x, y) \wedge$ $\varphi_{1}(x, \bar{z}) \wedge \varphi_{q}(x, y, \bar{z})$ and the model for $\sigma_{1} \cup \sigma^{*}$ which is the union of \mathfrak{N}^{*} and \mathfrak{N}_{1} interprets \mathfrak{S}_{q} as desired.

We now assume that condition (2) is satisfied. Let $U \in \mathfrak{U}$ and $\bar{c} \in{ }^{n-1} U$. We ask a question:
$\diamond_{q, \bar{c}}^{U}$ Does there exist for all $B \subseteq U$ with $|B| \leq m_{5}$ and $B \supseteq A^{*}$, elements $a, b \in U \backslash B$ such that $a S_{\Delta, \mathfrak{M}[U[}^{n} b, \bar{c}$ and $t p_{\Phi}\left((a, b), \emptyset, \mathfrak{M}^{*}[U]\right)=q$.
Assume that there exist $U \in \mathfrak{U}$ and $\bar{c} \in{ }^{n-1} U$ such that the answer to $\diamond_{q, \bar{c}}^{U}$ is YES. Choose by induction on $j \leq m_{4}$ a pair $\left(a_{j}, b_{j}\right) \in{ }^{2} U$ such that:

- $a_{j} S_{\Delta, M}^{n} b_{j} \bar{c}$.
- $t p_{\Phi}\left(\left(a_{j}, b_{j}\right), \emptyset, N^{*}\right)=q$.
- $a_{j}, b_{j} \notin A^{*} \cup\left\{a_{k}: k<j\right\} \cup\left\{b_{k}: k<j\right\} \cup\left\{c_{0}, \ldots, c_{n-2}\right\}$.

This is possible by the definition of m_{5} and $\diamond_{i, \bar{c}}^{U}$. From the sequence $\left\langle a_{0}, \ldots, a_{m_{4}}\right\rangle$ we omit all the elements satisfying $a_{i} S_{\Delta_{1}(\Delta), \mathfrak{M}^{\prime}[U]}^{n-1} \bar{c}$ where Δ_{1} and \mathfrak{M}^{\prime} are taken from the symmetry lemma (see 6.5). We omitted at most $l^{*}\left(\Delta_{1}\right)$ elements. Now note that for all $j_{1}, j_{2}: a_{j_{1}} S_{\Delta, M}^{n} b_{j_{2}} \bar{c} \Rightarrow b_{j_{2}} S_{\Delta_{2}(\Delta), \mathfrak{M}^{\prime}[U]}^{n} a_{j_{1}} \bar{c}$. Hence for all a_{j} (after the change) we have $\left|\left\{b_{j}: a_{i} S_{\Delta, M}^{n} b_{j} \bar{c}\right\}\right| \leq l^{*}\left(\Delta_{2}\right)$. Hence we can decrease the size of the sequences by a factor of $l^{*}\left(\Delta_{2}\right)$ and get $a_{i} S_{\Delta, M}^{n+1} b_{j} \bar{c} \Leftrightarrow i=j$. Since the bound on $|\Phi|$ depends only on $n,|\Delta|$ we may assume w.l.o.g (by increasing m_{1} and using Ramsey theorem) that the Φ-type in N^{*} without parameters of ($a_{j_{1}}, b_{j_{2}}$) depends only on the order type of $\left(j_{1}, j_{2}\right)$. Hence we have sequences $\left\langle a_{0}, \ldots, a_{m_{1}}\right\rangle$ and $\left\langle b_{0}, \ldots, b_{m_{1}}\right\rangle$ such that:
$\left.{ }^{*}\right)$ For all $j_{1}, j_{2} \leq m_{1}: a_{j_{1}} S_{\Delta, M}^{n} b_{j_{2}} \bar{c} \Longleftrightarrow j_{1}=j_{2}$.
$\left.{ }^{* *}\right)$ For all $j_{1}, j_{2}, j_{3}, j_{4} \leq m_{1}$:

$$
\begin{aligned}
& \operatorname{tp}_{\{x<y, x=y\}}\left(\left(j_{1}, j_{2}\right), \emptyset,(\mathbb{N},<)\right)=\operatorname{tp}_{\{x<y, x=y\}}\left(\left(j_{3}, j_{4}\right), \emptyset,(\mathbb{N},<)\right) \Longrightarrow \\
& t p_{\Phi}\left(\left(a_{j_{1}}, b_{j_{2}}\right), \emptyset, N^{*}\right)=t p_{\Phi}\left(\left(a_{j_{3}}, b_{j_{4}}\right), \emptyset, N^{*}\right) .
\end{aligned}
$$

Now w.l.o.g we may assume that $m_{1} \geq\left|\Phi_{1}\right|$ (otherwise replace m_{1} by $\max \left\{m_{1},\left|\Phi_{1}\right|\right\}$ in the definition of m_{4}). Hence there exists $0<j^{*} \leq m_{1}$ such that: $N^{*} \models$ $\neg \bigwedge_{\theta(x, y) \in \Phi_{1}} \theta\left(a_{0}, b_{j^{*}}\right)$ (remember each $\theta(x, y)$ is a function). In addition by our definition $t p_{\Phi}\left(\left(a_{0}, b_{0}\right), \emptyset, N^{*}\right)=q$, hence by condition (2) $a_{0} \in A_{q}$. In addition we have $b_{j^{*}} \in B_{q}$ as $t p_{\Phi}\left(\left(a_{j^{*}}, b_{j^{*}}\right), \emptyset, N^{*}\right)=q$, and hence $t p_{\Phi}\left(\left(a_{0}, b_{j^{*}}\right), \emptyset, N^{*}\right)=q$ (see condition (2)). In the same way we get that there exists $0 \leq j^{* *}<m_{1}$ such that $t p_{\Phi}\left(\left(a_{j^{* *}}, b_{m_{2}}\right), \emptyset, N^{*}\right)=q$. So by $(* *)$ we have $i, j<m_{1} \Rightarrow t p_{\Phi}\left(\left(a_{i}, b_{j}\right) . \emptyset, N^{*}\right)=q$ and by (\otimes) we get:
$\left(^{* * *}\right)$ For all $j_{1}, j_{2}, j_{3}, j_{4} \leq m_{1}: \operatorname{tp}_{\Delta^{*}}\left(\left(a_{j_{1}}, b_{j_{2}}\right), A^{*}, M^{*}\right)=t p_{\Delta^{*}}\left(\left(a_{j_{3}}, b_{j_{4}}\right), A^{*}, M^{*}\right)$.
We now prove:
\odot There exists $m^{*}<m_{2}-m_{1}=\left(m_{1}\right)^{2}$ such that if $\left(a^{\prime}, b^{\prime}\right)$ and $\left(a^{\prime \prime}, b^{\prime \prime}\right)$ are pairs from $A_{m^{*}+m_{1}}$ that satisfy the same Δ^{*}-type over $A_{m^{*}}$ in M^{*}, then $a^{\prime} S_{\Delta, M}^{n} b^{\prime} \bar{c} \equiv a^{\prime \prime} S_{\Delta, M}^{n} b^{\prime \prime} \bar{c}$.
Assume that \triangle does not hold. Then for all $m<m_{2}-m_{1}$ let $\left(a_{m}^{\prime}, b_{m}^{\prime}\right)$ and $\left(a_{m}^{\prime \prime}, b_{m}^{\prime \prime}\right)$ be pairs from $A_{m+m_{1}}$ realizing the same Δ^{*}-type over $A_{m^{*}}$ in M^{*}, and $\neg\left(a^{\prime} S_{\Delta, M}^{n} b^{\prime} \bar{c} \equiv a^{\prime \prime} S_{\Delta, M}^{n} b^{\prime \prime} \bar{c}\right)$. Choose $\overline{c^{m}} \in{ }^{n} A_{m+1}$ realizing $t_{\Delta^{*}}\left(\overline{c^{m}}, A_{m}, M^{*}\right)$ (this is possible, see the definition of $\left.A_{m+1}\right)$. Now look at the formula $\phi(\bar{x}, \bar{y}) \in \Delta^{*}$. If $l_{1}<l_{2}<m_{2}-m_{1}$ then $\left(a_{l_{2}}^{\prime}, b_{l_{2}}^{\prime}\right)$ and $\left(a_{l_{2}}^{\prime \prime}, b_{l_{2}}^{\prime \prime}\right)$ realizes the same Δ^{*}-type over $A_{l_{2}}$ in M^{*}. Since $\overline{c^{l_{1}}} \subseteq A_{l_{2}}\left(\right.$ as $\left.l_{1}<l_{2}\right)$ and since $\chi(x, y, \bar{z}) \in \Delta^{*}$ interprets the relation $S_{\Delta, M}^{n}$ in M^{*}, we get that $a_{l_{2}}^{\prime} S_{\Delta, M}^{n+1} b_{l_{2}}^{\prime} \overline{c^{l_{1}}} \equiv a_{l_{2}}^{\prime \prime} S_{\Delta, M}^{n+1} b_{l_{2}}^{\prime \prime} c^{{l_{1}}_{1}}$ hence $M^{*} \models$ $\phi\left(\left(a_{l_{2}}^{\prime}, b_{l_{2}}^{\prime}, a_{l_{2}}^{\prime \prime}, b_{l_{2}}^{\prime \prime}\right), \overline{c_{1}}\right)$. On the other hand if $m_{1}+l_{2} \leq l_{1}<m_{2}$ then by the choice of $\left(a_{l_{2}}^{\prime}, b_{l_{2}}^{\prime}\right)$ and ($\left.a_{l_{2}}^{\prime \prime}, b_{l_{2}}^{\prime \prime}\right)$ as a counter example we have $\neg\left(a_{l_{2}}^{\prime} S_{\Delta, M}^{n} b_{l_{2}}^{\prime} \bar{c} \equiv a_{l_{2}}^{\prime \prime} S_{\Delta, M}^{n} b_{l_{2}}^{\prime \prime} \bar{c}\right)$. But $a_{l_{2}}^{\prime}, b_{l_{2}}^{\prime}, a_{l_{2}}^{\prime \prime}, b_{l_{2}}^{\prime \prime} \in A_{l_{2}+m_{1}} \subseteq A_{l_{1}}$ and $\overline{c^{l_{1}}}$ realizes the same Δ^{*}-type over $A_{l_{1}}$ as \bar{c}, so by the definition of ϕ and M^{*} we have $M^{*} \models \neg \phi\left(\left(a_{l_{2}}^{\prime}, b_{l_{2}}^{\prime}, a_{l_{2}}^{\prime \prime}, b_{l_{2}}^{\prime \prime}\right), \overline{c^{l_{1}}}\right)$. Hence if we define $\left\langle\overline{d_{l}}=\left(a_{l \cdot m_{1}}^{\prime}, b_{l \cdot m_{1}}^{\prime}, a_{l \cdot m_{1}}^{\prime \prime}, b_{l \cdot m_{1}}^{\prime \prime}\right): l<m_{1}\right\rangle$ and $\left\langle\overline{e_{l}}=\overline{c^{l \cdot m_{1}}}: l<m_{1}\right\rangle$, then $\phi(\bar{x}, \bar{y})$ defines an order relation in the sense of 6.7 on them, in contradiction to $m_{1}>k_{3}^{*}(\phi)$. This completes the proof of \odot.

Now let m^{*} be the one from Ω. For all $l<m_{1}$ we choose from $A_{m^{*}+l+1}$ the sequence $\overline{c^{l}} \wedge\left\langle a_{j}^{l}, b_{j}^{l}: j<m_{1}\right\rangle$ that realizes the same Δ^{*}-type over $A_{m^{*}+l}$ in M^{*} as $\bar{c} 乞\left\langle a_{j}, b_{j}: j<m_{1}\right\rangle$. We will show that these sequences satisfy the demands of lemma 6.8 for the formula $\chi(x, y, \bar{z})$. This will lead to a contradiction as $m_{1}>$ $k_{4}^{*}(\chi)$. (α) follows directly from $(*)$ and the equality of types. For (β) let $l_{1}<$ $l<m_{1}$ and $j_{1}, \ldots, j_{4}<m_{1}$. Then $\left(a_{j_{1}}^{l_{1}}, b_{j_{2}}^{l_{1}}\right)$ and $\left(a_{j_{3}}^{l_{1}}, b_{j_{4}}^{l_{1}}\right)$ are pairs from $A_{m^{*}+l_{1}}$ and from $(* * *)$ and the equality of types we get that these pairs realize the same Δ^{*}-types over $A_{m^{*}+l_{1}}$ and in particular over $A_{m^{*}}$. So by \triangle we have ${ }_{j_{1}}^{l_{1}} S_{\Delta, M}^{n} b_{j_{2}}^{l_{1}} \bar{c} \equiv$ $a_{j_{3}}^{l_{1}} S_{\Delta, M}^{n} b_{j_{4}}^{l_{1}} \bar{c}$. In conclusion as \bar{c} and $\overline{c^{l_{2}}}$ realizes the same Δ^{*}-type over $A_{m^{*}+l_{1}}$ and by the interpretation of the formula ϕ in M^{*} we get $a_{j_{1}}^{l_{1}} S_{\Delta, M}^{n} b_{j_{2}}^{l_{1}} \overline{c^{l}} \equiv a_{j_{3}}^{l_{1}} S_{\Delta, M}^{n} b_{j_{4}}^{l_{1}} \overline{c^{l}}$ as in (β).

We are left with the case where for all $U \in \mathfrak{U}$ and $\bar{c} \in{ }^{n-1} U$ the answer to $\diamond_{q, \bar{c}}^{U}$ is NO. In this case: For all $U \in \mathfrak{U}$ and $\bar{c} \in{ }^{n-1} U$ there exist $B=B_{\bar{c}} \subseteq$ U with size $\leq m_{5}$ such that there are no $u, v \notin B$ satisfying $u S_{\Delta, \mathfrak{M}[U]}^{n} v \bar{z}$ and $t p_{\Phi}\left((u, v), \emptyset, \mathfrak{N}^{*}[U]\right)=q$. Define \mathfrak{T} a n-place relation on \mathfrak{U} as follows. For all $U \in \mathfrak{U}, a \in U$ and $\bar{c} \in{ }^{n-1} U: \mathfrak{T}[U](a, \bar{c})$ iff there exists $B \subseteq U$ of size $\leq m_{5}$ such that:

- There are no $u, v \notin B$ with: $u S_{\Delta, \mathfrak{M}[U]}^{n} v \bar{z}$ and $t p_{\Phi}\left((u, v), \emptyset, \mathfrak{N}^{*}[U]\right)=q$.
- B is minimal under the previous demand.
- $a \in B$.

It is clear that \mathfrak{T} is definable from \mathfrak{R} in a simple expansion, and hence satisfies the induction hypothesis. Let $\sigma^{* *}, \varphi^{* *}(x, \bar{z})$ and $\mathfrak{N}^{* *}$ be the formula, vocabulary and model that interprets \mathfrak{T}. We define $m_{6}:=m_{5} \cdot \operatorname{Delta}\left(m_{5}, 3\right)$ and show that for all $U \in \mathfrak{U}$ and $\bar{c} \in{ }^{n-1} U:$

$$
\left|\left\{x \in U: \mathfrak{N}^{* *}[U] \models \varphi^{* *}(x, \bar{c})\right\}\right| \leq m_{6}
$$

Assume towards contradiction that U and \bar{c} does not satisfy that claim. Then by the definition of $\varphi^{* *}$ we have a sequence $\left\langle B_{l} \subseteq U: l<m_{7}\right\rangle$ such that:
(1) For all $l<m_{7}, m_{5} \geq\left|B_{l}\right|$.
(2) For all $l<m_{7}$, there are no $u, v \notin B_{l}$ s.t. $u S_{\Delta, \mathfrak{M}[U]}^{n} v \bar{c}$ and $t p_{\Phi}\left((u, v), \emptyset, \mathfrak{N}^{*}[U]\right)=$ q.
(3) For all $l<m_{7}, B_{l}$ is minimal under (1) and (2).
(4) For all $l<m_{7}, B_{l} \nsubseteq \bigcup_{m<l} B_{m}$.
(5) $\bigcup_{l<m_{7}} B_{l}=\left\{x: \mathfrak{N}^{* *}[U] \models \varphi^{* *}(x, \bar{c})\right\}$.

To get this sequence we start with a sequence of all the sets satisfying claims (1)(3) in some order, and omits those that do not satisfy claim (4). claim (5) follows straight from the definition of $\varphi^{* *}$. Now, by (1) and the assumption we get:

$$
m_{6}<\left|\left\{x: m^{* *} \models \varphi_{i}^{*}(x, \bar{c})\right\}\right|=\left|\cup_{l<m_{7}} B_{l}\right| \leq m_{7} \cdot \max \left\{\left|B_{l}\right|: l<m_{7}\right\} \leq m_{7} \cdot m_{5}
$$

so we have $m_{7} \geq m_{6} / m_{5}$. By the definition of m_{6} and Ramsey theorem we have $B^{*} \subseteq U$ and $l_{1}<l_{2}<l_{3} \leq m_{7}$ such that $i \neq j \Rightarrow B_{l_{i}} \cap B_{l_{j}}=B^{*}$. We prove that B^{*} satisfies (1) and (2). Since $B^{*} \varsubsetneqq B_{l_{3}}$ this will be a contradiction to the minimallity of $B_{l_{3}}$. Obviously B^{*} satisfies (1), to show (2) take some $a, b \notin B^{*}$ then by $i \neq j \Rightarrow B_{l_{i}} \cap B_{l_{j}}=B^{*}$ we have $j \in(1,2,3\}$ such that $a, b \notin B_{l_{j}}$ and since $B_{l_{j}}$ satisfies (2) we get $\neg a S_{\Delta, M}^{n, i} b \bar{c}$ or $t p_{\Phi}\left((u, v), \emptyset, \mathfrak{N}^{*}[U]\right) \neq q$ as needed.

We use Gaifman theorem again on the formula $\varphi^{* *}(x, \bar{z})$ (w.l.o.g $\sigma^{* *}$ have only function symbols). We get that for all $U \in \mathfrak{U}$ the truth value of $\varphi^{* *}(x, \bar{z})$ in $\mathfrak{M}^{* *}[U]$
depends only in the type without parameters of (x, \bar{z}) in $\mathfrak{M}^{* *}[U]$ for the set of formulas $\Psi:=\bigcup_{j \in\{1,2,3\}} \Psi_{j}$ where:

$$
\begin{aligned}
\Psi_{1}:= & \left\{f_{i}^{\varepsilon(1)} \circ f_{2}^{\varepsilon(2)} \circ \ldots f_{t}^{\varepsilon(t)}(x)=z_{i}: f_{1}, \ldots, f_{t} \in \sigma^{* *}, \varepsilon \in{ }^{t}\{1,-1\}, t \leq s, i<n-1\right\} \\
& \Psi_{2}:=\left\{f_{i}^{\varepsilon(1)} \circ f_{2}^{\varepsilon(2)} \circ \ldots f_{t}^{\varepsilon(t)}(x)=x: f_{1}, \ldots, f_{t} \in \sigma^{* *}, \varepsilon \in{ }^{t}\{1,-1\}, t \leq s\right\} \\
\Psi_{3}:= & \left\{f_{i}^{\varepsilon(1)} \circ f_{2}^{\varepsilon(2)} \circ \ldots f_{t}^{\varepsilon(t)}\left(z_{i}\right)=z_{j}: f_{1}, \ldots, f_{t} \in \sigma^{* *}, \varepsilon \in{ }^{t}\{1,-1\}, t \leq s, i, j<n-1\right\}
\end{aligned}
$$

and s is a natural number that depends only on $\varphi^{* *}$. Note that $|\Psi|$ is uniformly bounded. Again we separate into cases according to the Ψ-types. Let q_{1}, q_{2} be Ψ-types without parameters (formally $q_{1}, q_{2} \subseteq \Psi$). The number of such types is bounded by $2^{|\Psi|}$ so as we saw it is enough to interpret the relation $\mathfrak{S}_{q, q_{1}, q_{2}}$ defined by:
$\mathfrak{S}_{q}[U] \cap\left\{(x, y, \bar{z}) \in{ }^{n+1} U: t p_{\Psi}\left((x, \bar{z}), \emptyset, \mathfrak{N}^{* *}[U]\right)=q_{1} \wedge t p_{\Psi}\left((y, \bar{z}), \emptyset, \mathfrak{N}^{* *}[U]\right)=q_{2}\right\}$
The relation $\left\{(x, y, \bar{z}) \in{ }^{n+1} U: \operatorname{tp}_{\Psi}\left((x, \bar{z}), \emptyset, N^{* *}\right)=q_{1} \wedge t p_{\Psi}\left((x, y), \emptyset, N^{* *}\right)=q_{2}\right\}$ is definable in $\mathfrak{N}^{* *}$ by a formula noted $\varphi_{q_{1}, q_{2}}(x, y, \bar{z})$. Now, for $l \in\{1,2\}$ one of the following hold:
(1) There exists $\theta\left(x, z_{i}\right) \in \Psi_{1}$ such that $\theta \in q_{l}$. Then for all $U \in \mathfrak{U}, a \in U$ and $\bar{c} \in{ }^{n-1} U$ we have:

$$
\left[t p_{\Psi}\left((a, \bar{c}), \emptyset, \mathfrak{N}^{* *}[U]\right)=q_{l}\right] \Longrightarrow \mathfrak{N}^{* *}[U] \models \theta\left(a, c_{i}\right)
$$

(2) For all $\theta\left(x, z_{i}\right) \in \Phi_{1}, \theta \notin q_{l}$. Then for all $U \in \mathfrak{U}$ we have:

$$
\left\{(x, \bar{z}) \in{ }^{n} U: \operatorname{tp} p_{\Psi}\left((x, \bar{z}), \emptyset, \mathfrak{N}^{* *}[U]\right)=q_{l}\right\}=\left\{(x, \bar{z}) \in A_{q_{l}}^{\prime} \times B_{q_{l}}^{\prime}: \mathfrak{N}^{* *}[U] \models \bigwedge_{\theta\left(x, z_{i}\right) \in \Psi_{1}} \neg \theta\left(x, z_{i}\right)\right\}
$$

where we define:

$$
\begin{gathered}
A_{q_{l}}^{\prime}:=\left\{x \in U: \operatorname{tp}_{\Psi_{2}}\left(x, \emptyset, \mathfrak{N}^{* *}[U]\right)=q_{l} \cap \Psi_{2}\right\} \\
B_{q_{l}}^{\prime}:=\left\{\bar{z} \in{ }^{n-1} U: \operatorname{tp}_{\Psi_{3}}\left(\bar{z}, \emptyset, \mathfrak{N}^{* *}[U]\right)=q_{l} \cap \Phi_{3}\right\}
\end{gathered}
$$

Assume that there exists $l \in\{1,2\}$ such that (1) holds. Then, as we have seen, $\theta\left(x, z_{i}\right)$ defines in each $\mathfrak{N}^{* *}[U]$ (a graph of) a one to one function. Note that function by f^{u}. the relation defined by:

$$
\left(\left(x, y, z_{0}, \ldots, \widehat{z}_{i}, \ldots, z_{n-2}\right) \in{ }^{n} U: x S_{\Delta, \mathfrak{M}[U]}^{n} y, z_{0}, \ldots, z_{i-1}, f^{U}(x), z_{i+1}, \ldots, z_{n-2}\right)
$$

satisfies the induction hypothesis. Let $\varphi^{1}\left(x, y, z_{0}, \ldots, \hat{z}_{j}, \ldots, j_{n-2}\right)$ be the formula in vocabulary σ^{1} that interprets this relation in the simple model \mathfrak{N}^{1}. In the same way we interpret the relation defined by:

$$
\left(\left(x, y, z_{0}, \ldots, \widehat{z_{i}}, \ldots, z_{n-2}\right) \in{ }^{n} U: x S_{\Delta, \mathfrak{M}[U]}^{n} y, z_{0}, \ldots, z_{i-1}, f^{U}(y), z_{i+1}, \ldots, z_{n-2}\right)
$$

using the formula $\varphi^{2}\left(x, y, z_{0}, \ldots, \hat{z}_{j}, \ldots, z_{n-2}\right)$ in the vocabulary σ^{2} and the simple model \mathfrak{N}^{2}. Now the formula $\varphi_{q}(x, y, \bar{z}) \wedge \varphi_{q_{1}, q_{2}}(x, y, \bar{z}) \wedge \varphi^{l}\left(x, y, z_{0}, \ldots, \hat{z}_{j}, \ldots, j_{n-2}\right)$ in the vocabulary $\sigma^{*} \cup \sigma^{* *} \cup \sigma^{l}$ and the union of models: $\mathfrak{N}^{* *}, \mathfrak{N}^{*}, \mathfrak{N}^{l}$, interprets the relation $\mathfrak{S}_{q, q_{1}, q_{2}}$ as needed.

Assume then that for each $l \in\{1,2\}$ (2) holds. Seeking a contradiction we assume that there exists $U \in \mathfrak{U}$ such that:

- $\mathfrak{S}_{q, q_{1}, q_{2}}[U] \neq \emptyset$.
- For all $l \in\{1,2\},\left|A_{q_{l}}^{\prime}\right|>m_{6}+\left|\Psi_{1}\right|$.

So we have $a, b \in U$ and $\bar{c} \in{ }^{n-1} U$ such that $\mathfrak{S}_{q, q_{1}, q_{2}}[U](a, b, \bar{c})$. Recall that we are assuming $\neg \diamond_{q, \bar{c}}^{U}$, Hence we have $\mathfrak{N}^{* *} \models \varphi^{* *}(a, \bar{c}) \vee \varphi^{* *}(b, \bar{c})$, because we can choose some minimal $B_{\bar{c}}$ (there is one because of $\neg \diamond_{q, \bar{c}}^{U}$) and then $a, b \notin B_{\bar{c}}$ is contradicting the definition of $B_{\bar{c}}$. w.l.o.g we assume that $\mathfrak{N}^{* *} \models \varphi^{* *}(a, \bar{c})$. Now q_{1} satisfies (2) so $\bar{c} \in B_{q_{1}}^{\prime}$ as $t p_{\Psi}\left((a, \bar{c}), \emptyset, N^{* *}\right)=q_{1}$. Note that $\mid\left\{a^{\prime} \in A_{q_{1}}^{\prime}: \mathfrak{N}^{* *}[U] \not \vDash\right.$ $\left.\bigwedge_{\theta\left(x, z_{i}\right) \in \Psi_{1}} \neg \theta\left(a, c_{i}\right)\right\}\left|\leq\left|\Psi_{1}\right|\right.$ (again each $\theta\left(x, z_{i}\right)$ is a function) and hence $A_{q_{1}}^{\prime}$ has more than m_{6} (distinct) elements $\left\{a_{0}, \ldots a_{m_{6}}\right\}$ satisfying $t p_{\Psi}\left(\left(a_{i}, \bar{c}\right), \emptyset, \mathfrak{N}^{* *}[U]\right)=q_{1}$. But we also have $t p_{\Psi}\left((a, \bar{c}), \emptyset, \mathfrak{N}^{* *}[U]\right)=q_{1}$ and $\mathfrak{N}^{* *} \models \varphi^{* *}(a, \bar{c})$, so for all $0 \leq i \leq$ $m_{6}, \mathfrak{N}^{* *} \models \varphi^{* *}\left(a_{i}, \bar{c}\right)$ which is a contradiction.

Finally we assume that there is no $U \in \mathfrak{U}$ satisfying the two demands above. We then divide \mathfrak{U} into three parts $\mathfrak{U}_{i}: i \in\{1,2,3\}$ such that:

- $\mathfrak{S}_{q, q_{1}, q_{2}}[U]=\emptyset \Longleftrightarrow U \in \mathfrak{U}_{1}$.
- $\left|A_{q_{1}}^{\prime U}\right|<m_{6}+\left|\Psi_{1}\right| \Longleftrightarrow U \in \mathfrak{U}_{2}$.
- $\left|A_{q_{2}}^{\prime U}\right|<m_{6}+\left|\Psi_{1}\right| \Longleftrightarrow U \in \mathfrak{U}_{2}$.

By our assumption $\cup_{i \in\{1,2,3\}} \mathfrak{U}_{i}=\mathfrak{U}$. Now for each $i \in\{1,2,3\}$ it is easy to interpret $\mathfrak{S}_{q, q_{1}, q_{2}}$ restricted to \mathfrak{U}_{i} (using the formula $(\exists x) x \neq x$, or by adding a bounded number of constants to the vocabulary interpreted as the elements of $A_{q_{1}}^{\prime U}$ or $A_{q_{2}}^{\prime U}$ and using the induction hypothesis). Assume then that for each $i \in\{1,2,3\}$ the formula $\varphi_{i}^{* * *}(x, y, \bar{z})$ in the vocabulary $\sigma_{i}^{* * *}$ interprets in the model $\mathfrak{N}_{i}^{* * *}$, the relation $\mathfrak{S}_{q, q_{1}, q_{2}}$ restricted to \mathfrak{U}_{i}. We now define $\sigma^{* * *}=\cup_{i \in\{1,2,3\}} \sigma_{i}^{* * *} \cup\left\{s_{1}, s_{2}, s_{3}\right\}$ (w.l.o.g the union is disjoint), and a model $\mathfrak{N}^{* * *}$ for $\sigma^{* * *}$, such that for each $i \in$ $\{1,2,3\}:\left(\mathfrak{N}^{* * *} \mid \mathfrak{U}_{i}\right) \mid \sigma_{i}^{* * *}:=\mathfrak{N}_{i}^{* * *}$, and for all $U \in \mathfrak{U}, s_{i}^{\mathfrak{N}^{* * *}[U]} \neq \emptyset$ iff $U \in \mathfrak{U}_{i}$. (if $i \neq j$ the definition of $\left(\mathfrak{N}^{* * *} \mid \mathfrak{U}_{i}\right) \mid \sigma_{j}^{* * *}$ is insignificant). Now the formula:

$$
\varphi^{* * *}(x, y, \bar{z}):=\bigvee_{i \in\{1,2,3\}}\left(\exists u s_{i}(u)\right) \longrightarrow \varphi_{i}^{* * *}(x, y, \bar{z})
$$

interprets $\mathfrak{S}_{q, q_{1}, q_{2}}$ in the model $\mathfrak{N}^{* * *}$ as required. This completes the proof of lemma 6.10

In the second stage of proving theorem 6.9 we interpret \mathfrak{R} itself. We prove the following:

Lemma 6.11. There exist a simple vocabulary σ, and a finite set Φ of formulas in σ, and a simple model \mathfrak{N} for σ on \mathfrak{U}. Such that for all $U \in \mathfrak{U}$ and $\bar{x}, \overline{x^{\prime}} \in{ }^{n(\mathfrak{R})} U$ if $t p_{\Phi}(\bar{x}, \emptyset, \mathfrak{N}[U])=t p_{\Phi}\left(\bar{x}^{\prime}, \emptyset, \mathfrak{N}[U]\right)$ then $(U, \mathfrak{R}[U]) \models r(\bar{x}) \equiv r\left(\bar{x}^{\prime}\right)$.
Proof. Define: $\Delta:=\left\{r\left(x_{0}, \ldots, x_{n(\mathfrak{R})-1}\right)\right\}$, and we note the first variable by x and the last n variables by \bar{y} (so $\Delta:=\{r(x, \bar{y})\}$).

We define σ and Φ simultanios and also we define $\mathfrak{N}[U]$ for some $U \in \mathfrak{U}$. Let $a, a^{\prime} \in U$ and $\bar{b}, \overline{b^{\prime}} \in{ }^{n} U$, and assume that $t p_{\Phi}(a \bar{b}, \emptyset, \mathfrak{N}[U])=t p_{\Phi}\left(a^{\prime} \overline{b^{\prime}}, \emptyset, \mathfrak{N}[U]\right)$, where σ, Φ and \mathfrak{N} will be defined.

Let $\sigma_{0}, \varphi_{0}(x, \bar{y})$ and \mathfrak{M}_{0} be those who interpret $x S_{\Delta, \mathfrak{M}[U]}^{n} \bar{y}$, i.e. those we get from applying the previous lemma to Δ (where $\tau=\emptyset$ and $\mathfrak{M}=\mathfrak{R}$). For gravity we write $M=\mathfrak{M}[U], \mathfrak{N}[U]=N, \mathfrak{N}_{0}[U]=N_{0}$ and $R=\mathfrak{R}[U]$. We add σ_{0} to σ, φ_{0} to Φ and demand $N \mid \sigma_{0}=N_{0}$. Now we have:

$$
a S_{\Delta, M}^{n} \bar{b} \equiv a^{\prime} S_{\Delta, M}^{n} \overline{b^{\prime}}
$$

We write $E=E_{A_{U}^{\Delta, M}}^{\Delta, M}$ and define $A^{*}=A_{U}^{\Delta, M} \cup\left\{x:|x / E| \leq 2 \cdot k_{1}^{*}(\Delta)\right\}$. for all $\alpha \in A^{*}$ we add to σ a constant c_{α} and put $c_{\alpha}^{N}:=\alpha$. In addition for each equivalence
class x / E we add to σ a 1-place relation symbol $s_{x / E}$ and put $s_{x / E}^{N}:=x / E$. Note that both $\left|A^{*}\right|$ and the number of equivalence classes is uniformly bounded. We add to Φ formulas of the form $x=c$ and $y_{i}=c$ for each constant $c \in \sigma$, and formulas of the form $s(x)$ and $s\left(y_{i}\right)$ for each relation symbol $s \in \sigma$. Now for each constant $c \in \sigma$ the relation class on $\mathfrak{U}, \mathfrak{R}_{c}$ defined by $\mathfrak{R}_{c}\left[U^{\prime}\right]:=\mathfrak{R}\left[U^{\prime}\right]\left(c^{\mathfrak{N}\left[U^{\prime}\right]}, \bar{y}\right)$ satisfies the induction hypothesis. That is it is a class of n-place relation not satisfying condition (1) in theorem 3.7 Hence we can add to σ and Φ the dictionaries and formulas we get from applying the induction hypothesis to each \mathfrak{R}_{c}, and expand \mathfrak{N} accordingly. Assume $a \in A^{*}$, then (due to the formula $x=c_{a}$) we have $a=a^{\prime}$. Because of the formulas we added to Φ for the relation $\Re_{c_{a}}$ we have:

$$
\mathfrak{R}_{c_{a}}[U](\bar{b}) \equiv \mathfrak{R}_{c_{a}}[U]\left(\overline{b^{\prime}}\right)
$$

This implies $R\left(c_{a}^{N}, \bar{b}\right) \equiv R\left(c_{a^{\prime}}^{N}, \overline{b^{\prime}}\right)$. But since $c_{a}^{N}=a=a^{\prime}=c_{a^{\prime}}^{N}$ we get $R(a, \bar{b}) \equiv$ $R\left(a^{\prime}, \overline{b^{\prime}}\right)$, as claimed. This proves the cases $a \in A^{*}$ and $a^{\prime} \in A^{*}$.

Now for each x / E (where $x \notin A^{*}$) and $\bar{y} \in{ }^{n} U$ we define $t_{\bar{y}}^{x / E} \in\{\mathbb{T}, \mathbb{F}\}$ to be the truth value the formula $r(-, \bar{y})$ gets for the majority of elements in x / E. This means: $t_{\bar{y}}^{x / E}=\mathbb{T}$ iff $\left|\left\{x^{\prime}: x E x^{\prime} \wedge R\left(x^{\prime}, \bar{y}\right)\right\}\right|>k_{1}^{*}(\Delta)$. Note that this is true as $x \notin A^{*}$ and so $|x / E|>2 \cdot k_{1}^{*}(\Delta)$. We get:

$$
\neg a S_{\Delta, M}^{n} \bar{b} \Rightarrow\left[R(a, \bar{b}) \equiv\left(t_{\bar{b}}^{a / E}=\mathbb{T}\right)\right]
$$

and since Δ has only one formula we get:

$$
a S_{\Delta, M}^{n} \bar{b} \Rightarrow\left[R(a, \bar{b}) \equiv\left(t_{\bar{b}}^{a / E}=\mathbb{F}\right)\right]
$$

For each x / E we have a class of relations $\mathfrak{R}_{x / E}$ on \mathfrak{U} defined by $\mathfrak{R}_{x / E}\left[U^{\prime}\right]:=\{\bar{y} \in$ $\left.{ }^{n} U^{\prime}: t_{\bar{y}}^{x / E}=\mathbb{T}\right\}$, which satisfies the induction hypothesis. Hence we can add to σ and Φ the dictionaries and formulas we get form applying the induction hypothesis to each $\mathfrak{R}_{x / E}$ and expand \mathfrak{N} accordingly. We get for all $x \notin A^{*}$:

$$
\mathfrak{R}_{x / E}[U](\bar{b}) \equiv \Re_{x / E}[U]\left(\overline{b^{\prime}}\right)
$$

Since $a / E=a^{\prime} / E$ (due to the formula $s_{a / E}(x)$), we have $t_{\bar{b}}^{a / E}=t_{\overline{b^{\prime}}}^{a / E}$. Assume $\neg a S_{\Delta^{\prime}, M^{\prime}}^{n} \bar{b}$ (as we saw $a S_{\Delta^{\prime}, M^{\prime}}^{n} \bar{b} \equiv a^{\prime} S_{\Delta^{\prime}, M^{\prime}}^{n} \overline{b^{\prime}}$) the we have:

$$
R(a, \bar{b}) \Leftrightarrow\left(t_{\bar{b}}^{a / E}=\mathbb{T}\right) \Leftrightarrow\left(t_{\overline{b^{\prime}}}^{a / E}=\mathbb{T}\right) \Leftrightarrow\left(t_{\overline{b^{\prime}}}^{a^{\prime}} E=\mathbb{T}\right) \Leftrightarrow R\left(a^{\prime}, \overline{b^{\prime}}\right)
$$

as claimed. If $a S_{\Delta^{\prime}, M^{\prime}}^{n} \bar{b}$ then again we get:

$$
R(a, \bar{b}) \Leftrightarrow\left(t_{\bar{b}}^{a / E}=\mathbb{F}\right) \Leftrightarrow\left(t_{\overline{b^{\prime}}}^{a / E}=\mathbb{F}\right) \Leftrightarrow\left(t_{\overline{b^{\prime}}}^{a^{\prime} / E}=\mathbb{F}\right) \Leftrightarrow R\left(a^{\prime}, \overline{b^{\prime}}\right)
$$

This completes the proof of lemma 6.11
From the lemma it is easy to prove that \mathfrak{R} is interpretable by a formula in a simple model. The proof is identical to the 2-place case (see the proof of 5.8). This completes the proof of theorem 6.9

References

[1] Saharon Shelah, On quantification with a finite universe, Journal of Symbolic Logic, vol. 65 (2000), pp. 1055-1075.
[2] Saharon Shelah, There are just four second-order quantifiers, Israel Journal of Mathematics, vol. 15 (1973) pp. 282-300.
[3] John T. Baldwin, Definable second order quantifiers, Model theoretic logics (J. Barwise and S.Feferman, editors), Perspectives in Mathematical Logic, Springer-Verlag, New York, Berlin, Heidelberg, and Tokyo, 1985, pp. 446-478.
[4] Saharon Shelah, Classifying of generalized quantifiers. Around classification theory of models, Lecture Notes in Mathematics, no. 1182, Springer-Verlag, Berlin, 1986, pp. 1-46.
[5] Haim Gaifman On local and nonlocal properties. J.Stern (ed.), Logic Colloquium '81, pp. 105-135. North Holland, 1982.

[^0]: ${ }^{1}$ This research was supported by The Israel Science Foundation. Publication 801.

