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Abstract

We show that there is a restriction, or modification of the finite-variable
fragments of First Order Logic in which a weak form of Craig’s Interpolation
Theorem holds but a strong form of this theorem does not hold. Translating
these results into Algebraic Logic we obtain a finitely axiomatizable subvari-
ety of finite dimensional Representable Cylindric Algebras that has the Strong
Amalgamation Property but does not have the Superamalgamation Property.
This settles a conjecture of Pigozzi [12].

AMS Classification: 03C40, 03G15.
Keywords: Craig Interpolation, Strong Amalgamation, Superamalgamation,
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1 Introduction

Formula interpolation in different logics is a classical and rapidly growing re-
search area. In this note we give a modification of finite variable fragments of First
Order Logic in which a weak version of Craig’s Interpolation Theorem holds but a
strong version of this theorem does not hold. To do this we will use classical meth-
ods and results of model theory of First Order Logic.

A traditional approach for investigating interpolation properties of logics is to
”algebraize” the question, that is, after reformulating semantics in an algebraic way,
interpolation, definability and related problems can also be considered as properties
of the (variety of) algebras obtained by the above reformulation. Algebras obtained
by algebraizing semantics are called ”meaning algebras”. As it is well known, the
meaning algebras of first order logics are different classes of representable cylindric
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algebras (RCAn will denote the class of n dimensional representable cylindric alge-
bras; in this paper n will always be a finite number). For more details we refer to
[6] and [7].

It turned out that interpolation properties on the logical side correspond amal-
gamation properties on the algebraic side (see, for example, [12] or Theorem 6.15
of [1] and references therein ). Similarly, Beth Definability Property (on the logical
side) corresponds to surjectiveness of the epimorphisms in the category of meaning
alegabras, see [11] or Theorem 6.11 of [1].

Our results can also be translated into Algebraic Logic. As we will show in
Theorem 5.3, for n ≥ 3, there is a subvariety Un of RCAn that has the Strong
Amalgamation Property (SAP for short) but does not have the Superamalgama-
tion Property (SUPAP for short). This settles a conjecture of Pigozzi in [12] (see
page 313, Remark 2.1.21 therein). This was a long standing open problem in Al-
gebraic Logic. So Theorem 5.3 can be considered as the main result of this note.
We should mention the following earlier related results. Comer [5] proved that if
n ≥ 2 then RCAn does not have the Amalgamation Property and Maksimova [10]
has shown the existence of a BAO-type1 variety that has SAP but doesn’t have
SUPAP . The essential difference between this result and our Theorem 5.3 is that
in our case the variety Un is a subvariety of RCAn, as originally Pigozzi’s question
required. Indeed, as shown in Sections 3 and 4 this has immediate consequences of
interpolation and definability properties for some modifications of First Order Logic
restricted to finitely many variables.

In Section 2 we give some basic definitions about logics in general and then in-
troduce and investigate the model theory of a certain modification of finite variable
fragment of First Order Logic, this fragment will be called Un. In Section 3 we show
that Un satisfies a weak version of Craig’s Interpolation Theorem, but doesn’t satisfy
the strong version of it. In Section 4 we show that Un satisfies Beth’s Theorem on
implicit and explicit definability. Finally, in Section 5 we translate these results into
algebraic form and in Theorem 5.3 we settle Pigozzi’s conjecture: there is a finite
dimensional, finitely axiomatizable subvariety of representable cylindric algebras,
that has SAP but does not have SUPAP .

We conclude this section by summing up our system of notation.
Every ordinal is the set of smaller ordinals and natural numbers are identified

with finite ordinals. Throughout, ω denotes the smallest infinite ordinal. If A and
B are sets, then AB denotes the set of functions whose domain is A and whose range
is a subset of B.

1BAO stands for Boolean Algebra with Operators
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2 A Portion of First Order Logic

In this note by a logic we mean a triplet J = 〈F,K, |=〉 where F is the set
of formulas of J , K is the class of models of J and |= is the satisfaction relation.
Often, formulas have a structure: there are a vocabulary and a set of rules with
which one can build formulas from elements of the vocabulary. Strictly speaking,
in this case we obtain different logics for different vocabularies. Sometimes these
families of logics have been regarded as a pair J = 〈S,K〉 where S is a function
on vocabularies associating the set of formulas F = S(V ) of J and the satisfaction
relation |=S(V ) of J to a given vocabulary V .

Particularly, when one deals with a concrete first order language, one should
specify the names and arities of relation and function symbols to be used. Such a
specification will also be called a vocabulary (for first order languages). Through-
out this paper we will deal with variants, modifications and portions of First Order
Logic. For a given vocabulary V , F = FV will be the set of formulas of First Or-
der Logic restricted to individual variables {v0, ..., vn−1} (n is fixed and finite). In
addition, in this note, the class K of models of a logic will always be a subclass of
ordinary relational structures and the satisfaction relation will be the same as in
ordinary First Order Logic.

If ϕ is a formula of such a logic J then voc(ϕ) denotes the smallest vocabulary
for which ϕ is really a first order formula. If V is a vocabulary then J [V ] denotes
the logic in which the set of formulas consists of formulas of J whose vocabularies
are contained in V , the class of models of J [V ] is the class of V -reducts of models of
J and the satisfaction relation of J [V ] is the same as that of J . Similarly, if V ⊆ W
are vocabularies and A is a model for J with vocabulary W then A|V denotes the
reduct of A in which only elements of V interpreted as basic relations (or functions).
In this note we will deal with vocabularies consisting relation symbols only.

Truth, meaning, and semantical consequence defined the obvious way, that is,
these notions simply inherited from the first order case. Similarly, some concepts,
methods, etc. of First Order Logic (like isomorphism, elementary equivalence, (gen-
erated) submodels of a structure) will be used the obvious way without any addi-
tional explanation.

As we mentioned, throughout the paper n ∈ ω is a fixed natural number. Ln

denotes usual First Order Logic restricted to the first n individual variables.

Definition 2.1 Let A be a non-empty set, let k ∈ ω and let s̄ ∈ kA. Then

ker(s̄) = {〈i, j〉 ∈ 2k : si = sj}.

If U0 ⊆ A and z̄ ∈ kA then s̄ ∼A,U0,k z̄ means that
(i) ker(s̄) = ker(z̄) and
(ii) (∀i ∈ k)[si ∈ U0 ⇔ zi ∈ U0].

Sometimes we will simply write ∼k or ∼ in place of ∼A,U0,k.
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Definition 2.2 A relational structure A = 〈A,U0, Ri〉i∈V is defined to be an U-
structure (for the vocabulary V = V [A]), if

• U0 ⊆ A,
• |U0| ≥ n, |A− U0| ≥ n and
• for any i ∈ V , if Ri is k-ary, s̄ ∈ Ri, s̄ ∼k z̄ then z̄ ∈ Ri.

A is the universe of A and U0 will be called the core of A.

In Sections 2, 3 and 4 U -structures have been treated as special first order re-
lational structures, that is, every relation has a finite arity, these arities may be
different for different relations.

Let A be an U -structure with core U0. It is easy to see that a permutation of
the universe of A mapping U0 onto itself is an automorphism of A.

It should be emphasized, that the core of an U -structure A is not a basic relation
of A, that is, the core relation a priori doesn’t have a name in the vocabulary of
A. Sometimes the core may be defined somehow, in some other U -structures the
core cannot be defined by first order formulas. The core relation provides some
extra structure for U -structures which will be used extensively below. The core of
an U -structure A will be denoted by UA

0 or simply by U0 when A is clear from the
context.

Throughout this paper by a ”definable relation” we mean a relation which is
definable by a formula of Ln[V ] without parameters (if the vocabulary V is clear
from the context, we omit it).

If A is any set then A∗n = {s ∈ nA : (∀i 6= j ∈ n)si 6= sj}. Clearly, this relation
is definable from the identity relation. In order to keep notation simpler, we will
identify this relation by one of it’s defining formulas and sometimes we will write
”A∗n” in the middle of another formula.

Definition 2.3 An U-structure A is defined to be a strong U-structure if the fol-
lowing holds. If V is any sub-vocabulary of the vocabulary of A such that

• UA
0 is not Ln-definable in A|V and

• R is an Ln-definable m-ary relation of A|V (for some m ≤ n) such that
R ⊆ A∗m and i, j ∈ m, i 6= j then
A |= R ⇔ (∃viR ∧ ∃vjR) ∧A

∗m (more precisely, letting v̄ = 〈v0, ..., vn−1〉 we require
A |= (∀v̄)[R(v̄) ⇔ ∃viR(v̄) ∧ ∃vjR(v̄) ∧ A

∗m(v̄)]).

Un will denote the logic in which the set of formulas is the same as in Ln and
the class of models of Un is the class of strong U -structures. We will say that a
relation (in an arbitrary structure) is Un-definable iff it is definable by a formula of
Un. Similarly, two relational structures are called Un-elementarily equivalent iff they
satisfy the same formulas of Un.

In the previous definitions ”U” stand for ”unary-generated”, this choice of nam-
ing will be explained in Section 5 below. According to the previous definition, the
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notion of strong U -structures depends on n, therefore strictly speaking, instead of
”strong U -structure” we should write ”strong U -structure for some n”. For simplic-
ity we don’t indicate n; it will always be clear from the context.

We call the attention that in Un function symbols are not part of the vocabulary,
that is, all the vocabularies contain relation symbols only.

It is easy to see that strong U -structures exist. We will show this in Theorem
2.6 below.

Lemma 2.4 Suppose A is an U-structure with universe A and core U0.
(1) If R is a definable unary relation of A then R ∈ {∅, A, U0, A − U0}. Thus,

at most four definable unary relations exist in an U-structure.
(2) Let A′ = 〈A,U0〉 be the structure whose universe is the same as that of A

and whose unique basic relation is U0. If R is a Un-definable relation of A then R
is definable in A′ as well.

(3) If R is a definable relation in A, s̄ ∈ R and z̄ ∼ s̄ then z̄ ∈ R.

Proof. First observe the following. If f is any permutation of A preserving U0 (i.e.
mapping it onto itself) then for any k ∈ ω and s̄ ∈ kA we have s̄ ∼k f(s̄). Therefore
by Definition 2.2 f is an automorphism of A. Now suppose a ∈ U0 ∩R and b ∈ U0.
Then there is an automorphism f of A mapping a onto b. Since R is definable, f
preserves R, thus b ∈ R. It follows, that if R ∩ U0 6= ∅ then U0 ⊆ R. Similarly, if
R ∩ (A− U0) 6= ∅ then A− U0 ⊆ R, whence (1) follows.

Now we turn to prove (2). Suppose that the arity of R is k. Since in Un there
are only n individual variables, it follows that k ≤ n.

For any equivalence relation e ⊆ 2k let De = {s ∈ kA : ker(s) = e}. For any
f : k/e→ 2 let At(f) = {s ∈ De : (∀i ∈ k)si ∈ U0 ⇔ f(i/e) = 0}. Clearly, every De

is definable in A′ (in fact, these relations are definable from the identity (equality)
relation with a quantifier-free formula of Un which doesn’t contain any other basic
relation symbol). Similarly, every At(f) is definable in A′. Since kA is the disjoint
union of the De’s, it is enough to show that for all e the relation R∩De is definable
in A′. Let e be fixed. If R ∩ De = ∅ then it is definable in A′, so we may assume
R ∩De 6= ∅.

Suppose s̄ ∈ R ∩De ∩ At(f) for some f : k/e → 2. We claim that in this case
At(f) ⊆ R ∩De. To check this suppose z̄ ∈ At(f). Let g be the partial function on
A mapping each si onto zi. Since ker(z̄) = e = ker(s̄), g is a well defined partial
function and moreover g is injective. In addition, for every i ∈ k, si ∈ U0 ⇔ zi ∈ U0.
Therefore there is a permutation h of A extending g and preserving U0. As observed
at the beginning of the proof of (1), h is an automorphism of A. Since R ∩ De is
definable in A, it follows that h preserves R ∩De and thus z̄ = f(s̄) ∈ R ∩ De, as
desired.

Now let S = {At(f) : At(f)∩R∩De 6= ∅, f ∈ k/e2} and let P = ∪S. Clearly, P
is definable in A′. We claim, that P = R ∩De. By the previous paragraph we have
P ⊆ R ∩De. On the other hand, if s̄ ∈ R ∩De, then for the function f : k/e → 2,
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f(i/e) = 0 ⇔ si ∈ U0 we have s̄ ∈ At(f), therefore every element of R ∩ De is
contained in an element of S and thus R ∩De ⊆ P .

For (3) observe that for any At(f), if s̄ ∼ z̄ and s̄ ∈ At(f) then z̄ ∈ At(f). Now
by the previous proof of (2), if s̄ ∈ R then s̄ ∈ At(f) ⊆ R for some f and therefore
z̄ ∈ At(f) whence z̄ ∈ R.

Below we will associate Cylindric Set Algebras with relational structures in the
usual way. For completeness we recall here the details.

suppose A is a relational structure. It’s n-dimensional Cylindric Set Algebra
will be denoted by Csn(A). Roughly speaking, the elements of Csn(A) are the
Ln-definable relations of A. To be more precise, elements of Csn(A) are n-ary rela-
tions. If ϕ(v0, ..., vm−1) is a formula of Ln in the vocabulary of A with free variables
as indicated then ϕ defines an m-ary relation in A. The corresponding element of
Csn(A) is the n-ary relation [ϕ] = {s̄ ∈ nA : A |= ϕ[s̄]}. The n-dimensional Cylin-
dric Set Algebra Csn(A) of A is the following algebra B = 〈X ;∩,−, Ci, Di,j〉i,j∈n.
Here X = {[ϕ] : ϕ is a formula of Ln} is the set of elements of B. The operations ∩
and − are set-theoretic intersection and complementation (w.r.t. nA), respectively.
Then for any formulas ϕ, ψ of Ln one has

[ϕ] ∩ [ψ] = [ϕ ∧ ψ] and
−[ϕ] = [¬ϕ].

In addition, Ci is a unary operation and Di,j is a 0-ary operation for every i, j ∈ n.
These operations correspond to the semantics of existential quantifier and the equal-
ity symbol of First Order Logic. In more detail, if [ϕ] ∈ X is an element of B then

Ci([ϕ]) = [∃viϕ] and
Di,j = {s ∈ nA : si = sj}.

Let V be the vocabulary of A. Clearly, {[Ri] : i ∈ V } is a set of generators of
Csn(A).

Lemma 2.5 The class of (strong) U-structures is closed under ultraproducts.

Proof. Let 〈Ai : i ∈ I〉 be a system of U -structures and let F be an ultrafilter on I.
Then Πi∈IAi/F is an U -structure (with core Πi∈IU

Ai

0 /F) because the requirements
of Definition 2.2 can be expressed by first order formulas in the expanded vocabulary
in which there is an extra symbol for the core relation.

Now let 〈Ai : i ∈ I〉 be a system of strong U -structures, let F be an ultrafilter
on I and let A = Πi∈IAi/F . Let V = {R0, ..., Rh} be a finite sub-vocabulary of the
common vocabulary of the previous system of structures.

Let J = {i ∈ I : UAi

0 is definable in Ai|V }. We will show that J ∈ F implies
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that the core Πi∈IU
Ai

0 /F of A is definable in A|V . So suppose J ∈ F . For each
i ∈ J fix a Un[V ]-formula ϕi defining U

Ai

0 in Ai|V . Observe, that there is a finite
number N0 such that for all k ≤ n, for all A and for all U0 the equivalence rela-
tion ∼A,U0,k has at most N0 equivalence classes. Hence, by Lemma 2.4 (3) there
is a finite number N1 such that |Csn(Ai|V )| ≤ N1 for all i ∈ I. For any i ∈ I
let Cs+n (Ai|V ) = 〈Csn(Ai|V ), [Ri]〉i∈V , that is, Cs+n (Ai|V ) is Csn(Ai|V ) expanded
with the relations corresponding to the interpretations of elements of V . The set
{[Ri] : i ∈ V } generates Csn(Ai|V ) therefore for each i ∈ I there is a finite set
Ti of cylindric terms such that for every a ∈ Csn(Ai|V ) there is a t ∈ Ti with
a = t([R0], ..., [Rh]). We may assume that Cs+n (Ai|V ) ∼= Cs+n (Aj|V ) implies Ti = Tj
for all i, j ∈ I. Since V is finite and |Csn(Ai|V )| ≤ N1 for all i ∈ I there exist a
finite set T of cylindric terms and K ⊆ J such that K ∈ F and for every i, j ∈ K
we have Cs+n (Ai|V ) ∼= Cs+n (Aj|V ) and T = Ti. Hence there are a t ∈ T and L ⊆ K
such that L ∈ F and for every i ∈ L we have [ϕi] = t([R0], ..., [Rh]). Let ϕ be the
formula corresponding to t([R0], ..., [Rh]). Then clearly, ϕ defines the core of A.

Next we show that A is a strong U -structure. Suppose W is (an arbitrary, not
necessarily finite) sub-vocabulary of the vocabulary of A such that the core of A
is not definable in A|W and R is an Ln-definable relation of A|W . Then there is a
finite sub-vocabulary V ⊆ W such that R is definable in A|V and still, the core of
A is not definable in A|V . Applying the result of the previous paragraph to this V ,
it follows that J 6∈ F . Finally observe that the required property of R (described in
Definition 2.3) can be expressed by a formula of Ln[V ] and this formula is true in
A since for every i ∈ I Ai is a strong U -structure.

Theorem 2.6 (1) There exists a strong U-structure.
(2) There exists a structure A = 〈A,U0, P, Q〉 which is a strong U-structure with

core U0 such that P and Q are unary relations and P = Q = U0.

Proof. Since (2) implies (1), it is enough to prove (2). Let A be any countably
infinite set, let U0 ⊆ A be such that |U0| = |A−U0| = ℵ0 and finally let P = Q = U0.
We have to show that A = 〈A,U0, P, Q〉 is a strong U -structure. Since U0 is infinite
and the basic relations of A are unary, A satisfies Definition 2.2 for every n ∈ ω.
Thus, A is an U -structure (for any n ∈ ω).

Now suppose V is a sub-vocabulary of the vocabulary of A such that U0 is not
Un-definable in A|V . It follows that V contains the equality symbol only. Suppose R
is an m-ary relation Un-definable in A|V such that R ⊆ A∗m. If R = ∅ then Defini-
tion 2.3 holds for R. Now suppose s̄ ∈ R and z̄ ∈ A∗m. Then there is a permutation
f of A mapping s̄ onto z̄. Since permutations preserve the identity relation and
R is definable in A|V , it follows that f preserves R and therefore z̄ ∈ R. Since
z̄ ∈ A∗m was arbitrary, R = A∗m. Clearly, this relation satisfies the requirements of
Definition 2.3. So A is a strong U -structure, as desired.

7



Theorem 2.7 Suppose A is a strong U-structure. If ā, b̄ ∈ A satisfy the same
Un-formulas in A then there is an automorphism of A mapping ā onto b̄.

Proof. Let U0 be the core of A. First suppose that U0 can be defined in A by a
Un-formula. In this case (since ā and b̄ satisfy the same Un-formulas in A) we have
ā ∼ b̄. Then there is a permutation f of A preserving U0 and mapping ā onto b̄.
Then f is an automorphism of A′ = 〈A,U0〉 hence it also preserves all the relations
definable in A′. Hence by Lemma 2.4 (2) f preserves every definable relation of A
as well, particularly, f is an automorphism of A. (There is another way to prove
that f is an automorphism of A: since f preserves U0, for every tuple s̄ ∈ A we have
s̄ ∼ f(s̄) hence by Lemma 2.4 (3) it also follows that f is an automorphism of A.)

Now suppose U0 is not Un-definable in A. We claim that every relation R de-
finable in A is definable using the identity relation only. This will be proved by
induction on the arity of R. If R is unary then by Lemma 2.4 (1) R is either the
empty set or R = A; in both cases R is Un-definable from the identity relation.
Now suppose that k < n, R is k + 1-ary, and that the claim is true for any re-
lation with arity at most k. Again, for any equivalence relation e ⊆ 2(k + 1) let
De = {s ∈ k+1A : ker(s) = e}. Clearly, De is Un-definable from the identity relation
for any e and R = ∪e(R ∩ De). Therefore it is enough to show that R ∩ De is
Un-definable from the identity relation. Let m ⊆ k + 1 be a set of representatives
for e and for any s ∈ A∗m let s′ ∈ k+1A be the sequence for which ker(s′) = e and
s = s′|m. Let Q = {s ∈ A∗m : s′ ∈ R ∩ De}. Then Q is Un-definable and R ∩ De

is definable from Q and from the identity relation. If Q is at most unary then we
are done because of the basic step of the induction. Otherwise there are distinct
i, j ∈ m and since A is a strong U -structure, we have A |= Q⇔ ∃viQ∧∃vjQ∧A∗m.
But the first two relations in the right hand side are at most k-ary, therefore by the
induction hypothesis they are Un-definable from the identity relation. Hence Q and
therefore R ∩De is Un-definable in the same way, as well.

So suppose U0 is not Un-definable in A and ā and b̄ satisfy the same Un-formulas
in A. Then ker(ā) = ker(b̄) and hence there is a permutation f of A mapping ā
onto b̄. Therefore f preserves the identity relation of A and thus, by the previous
paragraph, f preserves all the definable relations of A. So f is the required auto-
morphism of A.

Suppose B is a substructure of A. If k̄, k̄′ are tuples of A with the same length

such that kj = k′j for every j 6= i then we will write k
i
∼= k′. Recall that by the Tarski-

Vaught test B is an elementary substructure of A if for any first order formula ϕ
and tuple k̄ ∈ B we have A |= ∃viϕ[k̄] if and only if there is another tuple k̄′ ∈ B

such that A |= ϕ[k̄′] and k̄
i
∼= k̄′. It is also easy to check that B is a Un-elementary

substructure of A if the previous condition holds for every Un-formula ϕ.
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Theorem 2.8 (1) Let A be a U-structure with core U0 and suppose V ⊆ A is such
that |V ∩ U0|, |V − U0| ≥ n. Let B be the substructure of A generated by V . Then
B is an U-structure (with core U0 ∩ V ) which is a Un-elementary substructure of A.
A is a strong U-structure if and only if so is B.

(2) Suppose A and B are Un-elementarily equivalent U-structures with cores
U0, V0, respectively. Then any bijection f : A → B mapping U0 onto V0 is an
isomorphism between A and B.

Proof. To prove (1) we have to verify (the above recalled version of) the Tarski-
Vaught test. To do this suppose k̄ ∈ V and ϕ is a Un-formula such that A |= ∃viϕ[k̄].

Let k̄′ ∈ A be a tuple for which k̄
i
∼= k̄′ and A |= ϕ[k̄′]. By the condition on V ,

there is another tuple h̄ ∈ V such that h̄ ∼ k̄′ and h̄
i
∼= k̄′. Therefore it follows from

Lemma 2.4 (3) that A |= ϕ[h̄]. This shows that B is a Un-elementary substructure
of A. We claim that B is an U -structure with core U0 ∩ V . To check this suppose
R is an m-ary basic relation of B, s̄ ∼ z̄ ∈ mV and s̄ ∈ RB. Then s̄ ∈ RA and since
A is an U -structure, z̄ ∈ RA hence z̄ ∈ RB, as desired.

Now suppose A is a strong U -structure. First observe that if W is a sub-
vocabulary of the vocabulary of A then by elementarity, if the core of A is Un-
definable in A|W then the core of B is also Un-definable in B|W . In addition, if
the core of A|W is not definable then by Lemma 2.4 (1) the only unary relations
definable in A|W are the empty set and the whole universe of A; thus, the same
is true for B|W and therefore in this case the core of B|W is also not Un-definable.
Now suppose W is such a sub-vocabulary that the core of B is not Un-definable in
B|W and RB is an m-ary Un-definable relation in B|W such that RB ⊆ V ∗m and
i, j ∈ m, i 6= j. Then by elementarity RA ⊆ A∗m because this property of R can be
described by a Un-formula. As observed, the core of A cannot be defined in A|W .
Therefore, since A is a strong U -structure, A |= R⇔ ∃viR∧∃vjR∧A∗m. Again by
elementarity the same formula is valid in B, hence B is indeed a strong U -structure.
A similar argument shows that if A is not a strong U -structure then B is also not a
strong U -structure.

To show (2) let f : A→ B be any bijection mapping U0 onto V0. Then clearly, f
is an isomorphism between 〈A,U0〉 and 〈B, V0〉. Therefore f preserves any relation
which can be defined by a Un-formula from U0. By Lemma 2.4 (2) every definable
(particularly every basic) relation of A can be defined from U0, thus f preserves
them.

The following is an adaptation of Corollary 6.1.17 of [4].

Theorem 2.9 (Separation Theorem.)
Suppose K0 and K1 are disjoint classes of strong U-structures with same vocabu-
laries such that both K0 and K1 are closed under ultraproducts and Un-elementary
equivalence. Then there is a Un-formula ϕ with K0 |= ϕ and K1 |= ¬ϕ.
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Proof. Recall that by Lemma 2.5 any ultraproduct of strong U -structures is a
strong U -structure.

Let Σ be the set of Un-formulas valid in K0. Suppose, seeking a contradiction,
that there is no ϕ satisfying the requirements of the theorem. It follows that every
finite subset of Σ also has a model in K1. Since K1 is closed under ultraproducts,
there is a strong U -structure A1 ∈ K1 such that A1 |= Σ. In addition, if Ψ is a finite
set of Un-formulas valid in A1 then Ψ has a model in K0 (otherwise K0 |= ¬(

∧
Ψ)

and hence ¬(
∧
Ψ) ∈ Σ would follow, therefore we would have A1 |= ¬(

∧
Ψ)). Since

K0 is closed under ultraproducts there is an A0 ∈ K0 which is Un-elementarily equi-
valent with A1.

Summing up, A0 ∈ K0,A1 ∈ K1 and A0 and A1 are Un-elementarily equivalent.
This is impossible because K0 and K1 are disjoint classes and both are closed under
Un-elementary equivalence.

3 Interpolation

We start this section by recalling the weak and strong forms of Craig’s Inter-
polation Theorem. Suppose L is a logic (in the sense of the beginning of Section 2)
and ϕ is a formula of L. Then |= ϕ means that for any model A for L, ϕ is valid in
A. If ψ is another formula of L then, as expected, ϕ |= ψ means that ψ is valid in
every model in which ϕ is valid.

Definition 3.1 A logic L has the Strong Craig Interpolation Property if for any
pair of formulas ϕ, ψ of L the following holds. If |= ϕ ⇒ ψ then there is a formula
ϑ such that |= (ϕ ⇒ ϑ) ∧ (ϑ ⇒ ψ) and the relation symbols occurring in ϑ occur
both in ϕ and in ψ.

A logic L has the Weak Craig Interpolation Property if for any pair of formulas
ϕ and ψ of L the following holds. If ϕ |= ψ then there is a formula ϑ such that
ϕ |= ϑ and ϑ |= ψ and the relation symbols occurring in ϑ occur both in ϕ and in ψ.

Lemma 3.2 Suppose ϕ is a Un-formula and V ⊆ voc(ϕ) is a vocabulary. Then the
class K of V -reducts of Un-models of ϕ is closed under Un-elementary equivalence.

Proof. Suppose A0 ∈ K and A1 is Un- elementarily equivalent with A0. Let U0

and U1 be the cores of A0 and A1, respectively. Let A+
0 be an expansion of A0

which is a model of ϕ. Let C and C0 ⊆ C be sets such that |C0| ≥ |U0|, |U1| and
|C−C0| ≥ |A0−U0|, |A1−U1|. According to these cardinal conditions we may (and
will) assume U0, U1 ⊆ C0 and A0 − U0, A1 − U1 ⊆ C − C0.

We will define three U -structures on C as follows. The core of these structures
will be C0. For any k-ary basic relation RA+

0 of A+
0 let

RC = {s ∈ kC : (∃z ∈ RA+

0 )s ∼ z}
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and for any k-ary basic relation SA1 of A1 let

SA1 = {s ∈ kC : (∃z ∈ SA1)s ∼ z}.

Finally let

C+
0 = 〈C,C0, R

C〉R∈voc(A+

0
), C1 = 〈C,C0, S

C〉S∈voc(A1) and

let C0 be the V -reduct of C+
0 .

By Theorem 2.8 (1) A0 and A1 are Un-elementary substructures of C0 and C1, re-
spectively. Therefore, since A0 and A1 are strong U -structures, by Theorem 2.8
(1) C0 and C1 are strong U -structures and moreover C0 and C1 are Un-elementarily
equivalent. Similarly, C+

0 is a model of ϕ (and is a strong U -structure). Let f be
the identity function on C. By Theorem 2.8 (2) f is an isomorphism between C0
and C1. Let C

+
1 be the expansion of C1 for which f remains an isomorphism between

C+
0 and C+

1 (that is, for every R ∈ voc(C+
0 )− voc(C0) interpret R

C+

1 as RC+

1 = RC+

0 ).
Clearly, C+

1 |= ϕ and C+
1 is a strong U -structure. Let A+

1 be the substructure of
C+
1 generated by A1. Then by Theorem 2.8 (1) A+

1 is a Un-elementary substructure
of C+

1 and therefore A+
1 |= ϕ (and clearly, A+

1 is a strong U -structure by the last
sentence of the statement of Theorem 2.8 (1)). In addition A1 is the V -reduct of
A+

1 and therefore A1 ∈ K.

Theorem 3.3 The logic Un has the Weak Craig Interpolation Property.

Proof. Suppose ϕ and ψ are Un-formulas such that ϕ |= ψ. Let V be the vo-
cabulary consisting of the relation symbols occurring both in ϕ and in ψ. Let K0

be the class of V -reducts of models of ϕ and let K1 be the class of V -reducts of
models of ¬ψ. Clearly, K0 and K1 are closed under ultraproducts and by Lemma
3.2 K0 and K1 are closed under Un-elementary equivalence. Since ϕ |= ψ, it fol-
lows that K0 and K1 are disjoint. Therefore by the Separation Theorem 2.9 there
is a Un-formula ϑ (in the common vocabulary V of K0 and K1) such that K0 |= ϑ
andK1 |= ¬ϑ. But then ϕ |= ϑ and ϑ |= ψ, thus ϑ is the required weak interpolant.

Theorem 3.4 If n ≥ 3 then the logic Un doesn’t have the Strong Craig Interpolation
Property.

Proof. Let P and Q be two distinct unary relation symbols. Throughout this
proof we will use the vocabulary consisting the equality symbol, P and Q. Let
ϕ(x, y) = P (x) ⇔ ¬P (y) and let ψ(x, y, z) = (Q(x) ⇔ Q(z)) ∨ (Q(y) ⇔ Q(z)).

First we show that in the class of strong U -structures

11



(∗) |= ϕ⇒ ψ.

To do this assume A |= ϕ[a, b] where A is a strong U -structure with core U0 and
a, b ∈ A. Since P is a unary definable relation of A, it follows from Lemma 2.4
(1) that P ∈ {∅, A, U0, A − U0}. According to our assumption A |= ϕ[a, b], either
P = U0 or P = A− U0. In both cases it follows that exactly one of {a, b} is in U0.
Similarly, since Q is a unary definable relation in A, by Lemma 2.4 (1) it follows
that Q ∈ {∅, A, U0, A − U0}. In the first two cases A |= ψ[a, b, c], for any c ∈ A.
Now suppose Q is either U0 or A−U0. Then exactly one of {a, b} is in Q. Therefore
for any c ∈ A we have A |= ψ[a, b, c]. Thus, (∗) is true.

Now suppose, seeking a contradiction, that Un has the Strong Craig Interpola-
tion Property. Then there exists a formula ϑ in which the only relation symbol may
be the equality-symbol such that |= (ϕ⇒ ϑ) ∧ (ϑ⇒ ψ). Now let A = 〈A,U0, P, Q〉
be the strong U -structure described in Theorem 2.6 (2). Let a ∈ U0, b ∈ A − U0,
a′, b′ ∈ U0, a

′ 6= b′, c ∈ A − U0 − {b}. Then A |= ϕ[a, b, c] therefore A |= ϑ[a, b, c].
Observe that there is a permutation f of A with f(a) = a′, f(b) = b′, f(c) = c.
Since the only relation symbol that may occur in ϑ is the equality, it follows that
A |= ϑ[f(a), f(b), f(c)] and thus A |= ϑ[a′, b′, c]. Therefore, since ϑ is a strong in-
terpolant, A |= ψ[a′, b′, c] would follow, but this contradicts to the choice of a′, b′, c.

Let Uω be the logic
• whose formulas are that of usual First Order Logic with ω many individual

variables (but again, the vocabularies contain relation symbols only) and
• whose models are the strong U -structures.

Then Uω does not have the Strong Craig Interpolation Property because the proofs
of Lemma 2.4 (1) and Theorem 3.4 can be repeated in this case, as well.

On the other hand Uω still has the Weak Craig Interpolation Property. To check
this, suppose ϕ and ψ are formulas of Uω such that ϕ |= ψ. Then there exists an
n ∈ ω for which ϕ and ψ are formulas of Un. It is easy to see that ”ϕ |= ψ in the
sense of Uω” holds if and only if ”ϕ |= ψ in the sense of Un” Hence by Theorem 3.3
the required interpolant exists in Un and consequently in Uω as well.

Thus, Uω is an example for a logic with infinitely many individual variables that
has the Weak Craig Interpolation Property but does not have the Strong Craig
Interpolation Property.

4 Definability

The goal of this section is to prove that Un has the Beth Definability Property.
For completeness we start by recalling the relevant definitions.
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Definition 4.1 Let L be a logic, let L ⊆ L+ be vocabularies for L and suppose R
is the unique relation symbol of L+ not occurring in L. Suppose T+ is a theory in
L[L+].
• We say that T+ implicitly defines R over L if the following holds. If A,B |= T+

and the L-reducts of A and B are the same (that is, the identity function on A is
an isomorphism between them) then A and B are the same.
• We say that R can be explicitly defined in T+ over L if there is a formula of L[L]
which is equivalent with R in every model of T+.
• We say that L has the Beth Definability Property if for any L, L+, T+ whenever
T+ implicitly defines R over L then R can be explicitly defined in T+ over L.

Now we prove a Svenonius-type definability theorem for Un. The construction is
essentially the same as Theorem 10.5.1 and Corollary 10.5.2 of [8].

Theorem 4.2 Suppose L ⊆ L+ are vocabularies for Un, R is the unique relation
symbol of L+ not occurring in L and T+ is a complete theory in L+. Then the
following are equivalent.

(1) R can be explicitly defined in T+ over L.
(2) If A |= T+ and f is an automorphism of A|L then f preserves RA as well.

Proof. Clearly, (2) follows from (1). To prove the converse implication suppose (2)
holds and suppose, seeking a contradiction, that R cannot be explicitly defined in
T+ over L. Suppose that R is k-ary for some k ≤ n. Expand L+ by two k-tuples c̄, d̄
which are new constant symbols and let Γ = {ϕ(c̄) ⇔ ϕ(d̄) : ϕ is a Un[L]-formula
}. Consider the following first order theory Σ (since in Un constant symbols are not
part of the language, strictly speaking the following Σ is not a theory in Un).

Σ = T+ ∪ Γ ∪ {R(c̄),¬R(d̄)}.

We claim that every finite subset Σ0 of Σ has a model whose L+-reduct is a strong
U -structure. To show this suppose, seeking a contradiction, that Σ0 is a finite subset
of Σ which doesn’t have such a model. Let Γ′ = Σ0 ∩ Γ = {ϕi(c̄) ⇔ ϕi(d̄) : i < m}.
Observe that

(∗) if A |= T+ is a strong U -structure, ā, b̄ ∈ A, 〈A, ā, b̄〉 |= Γ′ and A |= R(b̄)
then A |= R(ā)

because otherwise 〈A, b̄, ā〉 would be a model of Σ0 whose L+-reduct is a strong
U -structure. Let Φ = {ϕi(v̄) : i < m}. Suppose A |= T+ and ā ∈ A. Then the
Φ-type of ā in A is defined as follows:

Φ− tpA(ā) = {ϕi(v̄) : A |= ϕi(ā), i < m} ∪ {¬ϕj(v̄) : A 6|= ϕj(ā), i < m}.
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Let ̺ =
∨
{
∧
ψ : there are a strong U -structure A |= T+ and ā ∈ RA such that

ψ = Φ− tpA(ā)}. Clearly, ̺ is a formula of Un[L]. We claim that ̺ defines explicitly
R in T+ over L. To verify this suppose A |= T+. If ā ∈ RA then

∧
(Φ− tpA(ā)) is a

disjunctive component of ̺ therefore A |= ̺(ā). Thus, the relation defined by ̺ in A
contains RA. Conversely, suppose A |= ̺(b̄). Then there is a disjunctive component
∧
ψ of ̺ such that A |=

∧
ψ(b̄) and there are another strong U -structure A′ |= T+

and ā′ ∈ RA′

such that
∧
ψ =

∧
(Φ− tpA

′

(ā′)). Thus, A′ |= ∃v̄(R(v̄)∧
∧
ψ(v̄)). This

last formula is a Un-formula, and since T+ is complete, A |= ∃v̄(R(v̄) ∧
∧
ψ(v̄)).

Thus, there is ā ∈ RA such that
∧
(Φ − tpA(ā)) =

∧
ψ =

∧
(Φ − tpA(b̄)). Therefore

by (∗) it follows that A |= R(b̄).
We proved that ̺ explicitly defines R in T+ over L. This is impossible because

we assumed that R cannot be explicitly defined. Hence every finite subset of Σ has
a model whose L+-reduct is a strong U -structure.

Let 〈A, ā, b̄〉 be an ultraproduct of the above models of finite subsets of Σ for
which 〈A, ā, b̄〉 |= Σ. By Lemma 2.5 the L+-reduct of it (which is A) is a strong
U -structure. Since Γ ⊆ Σ, it follows that ā and b̄ satisfies the same Un[L]-formulas.
Therefore by Theorem 2.7 there is an automorphism of the L-reduct of A mapping
ā onto b̄. This automorphism doesn’t preserve RA, contradicting to (2). This proves
that R can be explicitly defined in T+ over L.

Theorem 4.3 The logic Un has the Beth Definability Property.

Proof. Let L, L+, R and T+ be as in Definition 4.1 and assume T+ implicitly defines
R over L. We have to show that R can be explicitly defined in T+ over L.

First suppose that T+ is a complete theory. Suppose A is a model of T+ and
f is an automorphism of A|L. We claim that f preserves RA as well. To see this,
define another structure B as follows. The universe of B is A. For any subset X of
(a direct power of) A the f -image of X will be denoted by f [X ]. For every P ∈ L
let P B = f [PA], let RB = f [RA] and let U ′ = f [U ] where U is the core of A.
Since f is an automorphism of A|L, it follows that A|L = B|L. In addition, f is an
isomorphism between 〈A, U〉 and 〈B, U ′〉. Therefore B is a strong U -structure with
core U ′ and B |= T+. Since T+ implicitly defines R over L, it follows that RA = RB,
that is, f preserves RA. Since A and f were chosen arbitrarily, it follows that every
automorphism of the L-reduct of a model of T+ also preserves the interpretation of
R. Therefore by Theorem 4.2 R can be explicitly defined in T+ over L.

Now let T+ be an arbitrary (not necessarily complete) theory which implicitly
defines R over L. We claim that there is a finite set Φ = {ϕ0, ..., ϕm−1} of Un[L]-
formulas such that if A |= T+ then

(∗) A |=
∨

i<m(∀v0...∀vn−1(R⇔ ϕi)).

For if not, then for any finite set Φ of Un[L]-formulas it would exist a model of
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T+ in which R would be different from all the relations defined by the members
of Φ. Forming an ultraproduct of these models it would exist a strong U -structure
A |= T+ in which RA would not be definable in A|L. But then T

′ = {ϕ : A |= ϕ, ϕ
is a Un[L

+]-formula } would be a complete theory and since T+ ⊆ T ′, T ′ also im-
plicitly defines R over L. Therefore by the second paragraph of this proof R would
be explicitly definable in T ′ and particularly, there would be a Un[L]-formula which
would define RA in A; a contradiction. Therefore (∗) is established.

Now for each A |= T+ let ν(A) be the smallest i ∈ m for which A |= R ⇔ ϕi and
let Ki = {A|L : A |= T+, ν(A) = i}. Clearly, the classes Ki are pairwise disjoint and
closed under ultraproducts. In fact they are closed under Un-elementary equivalence
because of the following. Suppose A ∈ Ki and A and B are Un-elementarily equiv-
alent. Let U0, V0 be the cores of A and B, respectively. Let C0 ⊆ C be two sets such
that |C0| ≥ |U0|, |V0| and |C − C0| ≥ |A− U0|, |B − V0|. Then we may assume that
U0, V0 ⊆ C0, A−U0, B−V0 ⊆ C−C0. We will define two U -structures on C as follows.
If R is any m-ary relation symbol in L then let RC0 = {s ∈ mC : (∃z ∈ RA)s ∼ z}
and let RC1 = {s ∈ mC : (∃z ∈ RB)s ∼ z}. Then by Theorem 2.8 (1) A and
B are Un-elementary substructures of C0 and C1, respectively. Therefore C0 and C1
are strong U -structures and Un-elementarily equivalent with each other. Hence by
Theorem 2.8 (2) the identity function on C is an isomorphism between C0 and C1.
Since A ∈ Ki, i is the smallest number for which R and ϕi are equivalent in A. Let
RC0 be the relation defined by ϕi in C0. Since A is a Un-elementary substructure of
C0, it follows that

(i) 〈C0, R
C0〉 |= T+.

Since T+ implicitly defines R, this is the only way to extend C0 to a model of
T+. In particular,

(ii) for every j < i we have C0 6|= RC0 ⇔ ϕj .

Since the identity function of C is an isomorphism between C0 and C1, the above
(i) and (ii) are true for C1 as well. Let RB = RC0 ∩ mB. Then by Theorem 2.8
(1) 〈B, RB〉 |= T+ and i is a smallest number for which ϕi defines R

B in B. Thus,
B ∈ Ki, as desired.

Now by Theorem 2.9 for every i ∈ m there is a Un[L]-formula ̺i such that
Ki |= ̺i and ∪j∈m−{i}Ki |= ¬̺i. Finally let ψ =

∨
i∈m(̺i ∧ ϕi). It is easy to check

that ψ is equivalent with R in every model of T+, thus R can be explicitly defined
in T+ over L, as desired.
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5 Cylindric Algebraic Consequences

By translating the results of the previous sections to Algebraic Logic, in this
section we prove that for finite n ≥ 3, there is a (finitely axiomatizable) subvariety
of RCAn that has the Strong Amalgamation Property but doesn’t have the Supera-
malgamation Property (the definitions of these properties can be found for example
in [1] before Definition 6.14). As we mentioned this settles a problem of Pigozzi in
[12].

We assume that the reader is familiar with the theory of cylindric algebras. Some
basic facts on this topic have been recalled before Lemma 2.5. For more details we
refer to [6] and [7].

If K is a class of algebras then SK and PK denote the classes of (isomorphic
copies of) subalgebras of members of K and (isomorphic copies of) direct products
of members of K, respectively. Similarly, UpK denotes the class of (isomorphic
copies of) ultraproducts of members of K. For other algebraic notions and notation
we refer to [3].

Definition 5.1 USn and Un are defined to be the following subclasses of RCAn:

USn = {Csn(A) : A is a strong U-structure }.
Un = SPUSn.

Theorem 5.2 Un is a finitely axiomatizable variety.

Proof. Lemma 2.4 (3) implies that there is a natural number N1 such that for
all strong U -structure A we have |Csn(A)| ≤ N1 (we already observed this in
the proof of Lemma 2.5). Therefore USn is finite and hence UpUSn = USn. So
Un = SPUSn ⊆ SPUpUSn = SPUSn = Un. Hence Un is the quasi-variety gen-
erated by USn. The cylindric term c0...cn−1(x) is a switching-function in SUSn

therefore the quasi-variety and the variety generated by USn coincide. Thus Un is
the variety generated by USn.

Finally observe that Un is congruence-distributive since it has a Boolean reduct.
Thus, Un is a finitely generated congruence-distributive variety and hence by Baker’s
Theorem it is finitely axiomatizable (see [2] or [3]).

Now we return to the choice of naming our logic Un and the classes USn and
Un. By Lemma 2.4 (2) every member of USn is a subalgebra of the n-dimensional
Cylindric Set Algebra generated by one UNARY relation: by the core of the corre-
sponding structure. So ”U” stands for ”unary”.

Now we are ready to prove the main theorem of the paper.

Theorem 5.3 (1) Un has the Strong Amalgamation Property.
(2) Un doesn’t have the Superamalgamation Property, if n ∈ ω, n ≥ 3.
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Proof. (1) By theorem 4.3 Un has the Beth Definability Property and therefore by
[11] the epimorphisms of Un are surjective (see also [1], Theorem 6.11). By Theorem
3.3 Un has the Weak Craig Interpolation Property and by Theorem 5.2 Un is a vari-
ety. Thus, by Theorem 6.15(i) of [1] (see also the beginning of Section 7 therein) Un

has the Amalgamation Property. Since Un is a variety, it follows from Propositions
1.9 and 1.11 of [9] (see also Proposition 6.3 therein) that Un indeed has the Strong
Amalgamation Property.

(2) By Theorem 3.4 Un doesn’t have the Strong Craig Interpolation Property
and therefore by Theorem 6.15 (ii) of [1] Un doesn’t have the Superamalgamation
Property.

Acknowledgement. Thanks are due to Alice Leonhardt for the beautiful typing
of an early and preliminary version of this notes.
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Alfréd Rényi Institute of Mathematics
Hungarian Academy of Sciences
Budapest Pf. 127
H-1364 Hungary
sagi@renyi.hu

Department of Mathematics
Hebrew University
91904 Jerusalem, Israel
shelah@math.huji.ac.il

18


