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1 Introduction

Dobrinen and Simpson [4] introduced the notions of almost everywhere domination and uniform
almost everywhere domination to study recursion theoretic analogues of results in set theory con-
cerning domination in generic extensions of transitive models of ZFC and to study regularity prop-
erties of the Lebesgue measure on 2ω in reverse mathematics. In this article, we examine one of
their conjectures concerning these notions.

Throughout this article, ≤T denotes Turing reducibility and µ denotes the Lebesgue (or “fair
coin”) probability measure on 2ω given by µ({X ∈ 2ω |X(n) = i}) = 1/2. A property holds
almost everywhere or for almost all X ∈ 2ω if it holds on a set of measure 1. For f, g ∈ ωω, f
dominates g if ∃m∀n > m(f(n) > g(n)).

Definition 1.1 (Dobrinen, Simpson). A set A ∈ 2ω is almost everywhere (a.e.) dominating if
for almost all X ∈ 2ω and all functions g ≤T X , there is a function f ≤T A such that f dominates
g. A is uniformly almost everywhere (u.a.e.) dominating if there is a function f ≤T A such
that for almost all X ∈ 2ω and all functions g ≤T X , f dominates g.

There are several trivial but useful observations to make about these definitions. First, although
these properties are stated for sets, they are also properties of Turing degrees. That is, a set
is (u.)a.e. dominating if and only if every other set of the same degree is (u.)a.e. dominating.
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Second, both properties are closed upwards in the Turing degrees. Third, u.a.e. domination implies
a.e. domination. Finally, if A is u.a.e. dominating, then there is a function f ≤T A which dominates
every computable function.

Dobrinen and Simpson [4] introduced these notions to study the following two regularity prop-
erties of µ in reverse mathematics: for each Gδ set Q ⊆ 2ω and each ǫ > 0, there is a closed set
F ⊆ Q such that µ(F ) ≥ µ(Q) − ǫ, and for each Gδ set Q ⊆ 2ω, there is an Fσ set S ⊆ Q such
that µ(Q) = µ(S). ACA0 is strong enough to prove these statements, so as the first step toward
establishing reversals, they proved the following two theorems. (Reverse mathematics plays only a
motivational role here, but the reader who is not familiar with this subject is referred to Simpson
[18].)

Theorem 1.2 (Dobrinen, Simpson). For A ∈ 2ω, the following are equivalent.

1. A is a.e. dominating.

2. For every Π0
2 set Q ⊆ 2ω and ǫ > 0, there is a Π0,A

1 set F ⊆ Q such that µ(F ) ≥ µ(Q)− ǫ.

Theorem 1.3 (Dobrinen, Simpson). For A ∈ 2ω, the following are equivalent.

1. A is u.a.e. dominating.

2. For every Π0
2 set Q ⊆ 2ω, there is a Σ0,A

2 set S ⊆ Q such that µ(Q) = µ(S).

Given these connections, it is reasonable to think that results in computability theory concerning
a.e. domination and u.a.e. domination will have implications for the reverse mathematics content
of the regularity properties stated above. At the time of Dobrinen and Simpson [4], several facts
about u.a.e. domination were already known:

A ≥T 0′ ⇒ A is u.a.e. dominating ⇒ A′ ≥T 0′′.

The first implication follows from a result of Kurtz [10] that 0′ is u.a.e. dominating and the second
implication follows from a result of Martin [13] that A computes a function which dominates every
computable function if and only A′ ≥T 0′′. (A set A for which A′ ≥T 0′′ is called high.) Further-
more, Dobrinen and Simpson [4] presented an unpublished proof by Martin that no computable set
is a.e. dominating.

Several questions arise naturally from these implications. Does every u.a.e. dominating set com-
pute 0′? Is every high degree u.a.e. dominating or at least a.e. dominating? Is every a.e. dominating
degree high? Does a.e. domination imply u.a.e. domination?

Cholak, Greenberg and Miller [2] recently answered the first question in the negative by showing
that there is a c.e. set A <T 0′ which is u.a.e. dominating. They also used their methods to show a
number of results in reverse mathematics concerning the regularity property that for every Gδ set Q
there is an Fσ set S ⊆ Q such that µ(Q) = µ(S). In particular, this property does not imply ACA0

even over WKL0. The fourth question remains open. Concerning the second and third questions,
Dobrinen and Simpson made the following conjecture.

Conjecture 1.4 (Dobrinen, Simpson). A′ ≥T 0′′ ⇔ A is a.e. dominating.

This conjecture is our main focus. The strongest results appear in Section 5 where we show
that if A ≤T 0′ is a.e. dominating, then A is high (giving a partial answer to the ⇐ direction of
Conjecture 1.4) and that for any a.e. dominating set Z, every set which is 1-random relative to Z is
actually 2-random. As a corollary (applying work of Nies [15]), we obtain the stronger property that
every a.e. dominating set A ≤T 0′ satisfies 0′′ ≤tt A

′, where ≤tt denotes truth table reducibility.
(Such sets are called super high.) Because there are ∆0

2 (even Σ0
1) sets which are high but not

super high, this result refutes the ⇒ direction of Conjecture 1.4.
Before arriving at Section 5, we follow a meandering path to explore the connections between

a.e. domination and notions such randomness and genericity. Because relatively little is known
about a.e. domination, we approach this property from different angles and occasionally offer more
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than one proof of our results. Hopefully, others will see additional connections and push this work
towards a more complete understanding of this property.

In Section 2, we give a direct construction of a high computably enumerable (c.e.) set H which
is not a.e. dominating. The construction combines Martin’s technique for showing the computable
sets are not a.e. dominating with a standard technique for constructing high c.e. degrees. Noam
Greenberg and Joe Miller independently obtained a similar (although not c.e.) result using a
different method. In Section 3, we show that if A is 2-random, then A is not a.e. dominating and
hence the measure of all a.e. dominating sets is 0. Furthermore, we show that almost every degree
is bounded by a high degree which is not a.e. dominating. It follows that there are 2ℵ0 many
counterexamples to the ⇒ direction of Conjecture 1.4. In Section 4, we prove that if A is 2-generic
(with respect to Cohen forcing), then A is not a.e. dominating. Furthermore, we show that for any
a.e. dominating A, there is a 2-random R whose degree is c.e. in A.

In Section 6, we approach Conjecture 1.4 from the viewpoint of Turing ideals. Suppose that an
ideal I satisfies ∀X ∈ I ∃Y ∈ I (X <T Y ∧ X ′′ ≤T Y ′). Must I be a Scott set (that is, contain a
path through each infinite subtree of 2<ω contained in I)? In other words, must such an ideal be
the second order part of an ω-model of WKL0? We show that for any computable tree T ⊆ 2<ω

without a computable infinite path, there is a ideal closed under the highness property above that
does not contain a path through T . Hence, this ideal is not a Scott set and does not give an ω-model
of WKL0. Along the same lines, we show that there is an ideal closed under this highness property
that does not contain an a.e. dominating set.

Our notation is standard and mostly follows Soare [19]. Φe denotes the list of partial computable
functionals and we fix a computable bijection 〈x, y〉 between ω2 and ω. For A ⊆ ω, let A[e] =
{x | 〈e, x〉 ∈ A} and for m ∈ ω, let [m,∞) = {n |n ≥ m}. We sometimes equate sets with reals
from the interval [0, 1] by viewing a set B ⊆ ω as the real

∑
n∈B 2−n. For strings σ and τ , we write

σ ⊑ τ to indicate that σ is an initial substring of τ . Similarly, if F1 is a finite set and F2 is a set,
then we write F1 ⊑ F2 if F1 is an initial segment of F2.

2 Computably enumerable example

In this section, we give a direct construction of a high c.e. set which is not a.e. dominating. In
Section 5, we give an alternate proof of Theorem 2.1 using index sets.

Theorem 2.1. There is a high c.e. set which is not a.e. dominating.

To prove this theorem, we build a c.e. set H such that ∅′′ ≤T H ′ and H is not a.e. dominating.
By negating the property of a.e. domination, it suffices to prove there is a set T ⊆ 2ω of positive
measure such that ∀X ∈ T ∃g ≤T X ∀f ≤T H (g is not dominated by f).

Fix any rational number δ such that 0 < δ < 1. We build a partial computable functional Φ such
that µ({X |Φ(X) is not total}) ≤ δ and we let T = {X |Φ(X) is total}. Therefore, µ(T ) ≥ 1− δ as
required. Furthermore, we ensure that for every e ∈ ω and for every X ∈ T , if Φe(H) is total, then
Φ(X) is not dominated by Φe(H). These properties suffice to prove the theorem.

There are two types of requirements: Re requirements which guarantee that H is high and Me

requirements which define the functional Φ and the set T . Our construction takes place on a tree of
strategies which is described below. If α is an Re or Me strategy, then we let A[α] and H [α] denote
A[e] and H [e], 〈α, x〉 denote 〈e, x〉 and Φα denote Φe.

To make H high, we use the following standard trick. Let Tot denote the index set of total
computable functions and let A be a c.e. set such that for all e, if e ∈ Tot, then A[e] = ω and if
e 6∈ Tot, then A[e] is a finite initial segment of ω. To make H high, it suffices to build H ⊆ A such
that if A[e] is infinite then A[e] −H [e] is finite. It follows that if e ∈ Tot, then H [e] is cofinite (and
hence limx H(〈e, x〉) = 1) and if e 6∈ Tot, then H [e] is finite (and hence limxH(〈e, x〉) = 0). Because
Tot = limx H(〈e, x〉), the Limit Lemma gives ∅′′ ≡T Tot ≤T H ′.

Let Re denote the requirement that H [e] ⊆ A[e] and A[e] infinite implies A[e] −H [e] is finite. An
Re strategy α operates under a finite restraint and maintains a parameter oα which is larger than
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this restraint and which is only changed when some higher priority strategy raises its restraint and
initializes α. α acts as follows.

1. When α first acts or has been initialized, define oα to be large and set n = oα.

2. Wait for n to enter A[α].

3. When n enters A[α], put n into H [α], increase the value of n by 1 and return to Step 2.

Clearly this strategy makes H [α] ⊆ A[α]. If α is on the true path, then the higher priority strategies
initialize α only finitely often. Therefore, the parameter oα reaches a limit and every number in
A[α] larger that the final value of oα enters H [α].

An Re strategy α has infinitely many possible outcomes: the numbers in ω (which denote the
current value of oα) and Fin. These outcomes are ordered by n <L Fin for every n ∈ ω and n <L m
if n > m. (That is, Fin is the rightmost outcome and the numerical outcomes increase in value
as they move to the left.) The strategy takes outcome oα each time it acts in Step 3 and it takes
outcome Fin otherwise. If A[α] is finite, then the strategy is eventually stuck in Step 2 forever and
cofinitely often takes the Fin outcome. On the other hand, as long as α is initialized only finitely
often, if A[α] is infinite, then there is a final value of oα for which α takes outcome oα infinitely
often.

The second type of requirement concerns building the partial computable functional Φ and
the set T . Globally, we need to make sure that µ(T ) ≥ 1 − δ, and locally we let Me denote the
requirement that if Φe(H) is total, then Φ(X) is not dominated by Φe(H) for any X ∈ T . To avoid
domination, it is enough to make sure that for each e and each X ∈ T , there is at least one value
x such that Φ(X ;x) > Φe(H ;x). (See Lemma 2.7 for a proof that this condition is sufficient.) The
action for a single Me strategy α proceeds as follows.

1. Pick a small value ǫα = 1/2pα for some large pα. (We discuss below how to choose this
number, but in particular ǫα < δ.)

2. Divide 2ω into 2pα many disjoint clopen sets Uα
1 , . . . , U

α
2pα each of size ǫα.

3. Cycle through the Uα
i sets beginning with i = 1.

(a) Pick a large value xα
i and define Φ(X ;xα

i ) = 0 for all X 6∈ Uα
i .

(b) Wait for Φα(H ;xα
i ) to converge.

(c) If Φα(H ;xα
i ) converges, then define Φ(X ;xα

i ) > Φα(H ;xα
i ) for all X ∈ Uα

i , increase i
by 1 and return to Step 3(a). To preserve the computation Φα(H ;xα

i ), restrain H from
changing below the use of this computation.

4. If i eventually runs through Step 3 for all the numbers 1, . . . , 2pα then stop the action for α
and declare it satisfied.

Consider what such a strategy does in isolation. If Φα(H) is total, then it runs through the
cycle in Step 3 for each i between 1 and 2p and defines Φ such that ∀X ∃x (Φ(X ;x) > Φα(H ;x)).
This action wins Me. If Φα(H) is not total, then there may be an i between 1 and 2pα for which
Φ(H ;xα

i ) does not halt. In this case, α gets stuck in Step 3(b) during the ith cycle. Consequently,
Φ(X ;xα

i ) does not converge for any X ∈ Uα
i and so Φ(X) is not total for any X ∈ Uα

i . However,
because α does not progress past Step 3(b) of the ith cycle, the sets X ∈ Uα

i are the only sets on
which α causes Φ to be partial. Therefore, Me is won trivially (since Φα(H) is not total) and α
contributes a set of measure ǫα on which Φ is not total. In each of the two cases described here, α
imposes only finitely much restraint since it has only finitely many cycles to run through.

The action of α when Φα(H) is not total tells us how to pick the values of ǫ during the construc-
tion. Each strategy which acts for an Me requirement potentially contributes a set of measure ǫ on
which Φ is not total. Therefore, we have to choose the values of ǫ as we go through the construction
so that the sum of these values (over all e) is less than δ.
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The outcomes for an Me strategy α are the numbers in ω (indicating the current restraint
imposed by α). These outcomes are ordered by n <L m if n > m. (That is, the numerical values
of the outcomes increase as they move left.)

We define the tree of strategies by induction. The empty string λ is assigned to R0. If α is
assigned to Re, then α ∗ Fin and α ∗ n (for n ∈ ω) are assigned to Me. If α is assigned to Me, then
α ∗ n (for n ∈ ω) is assigned to Re+1. In both cases, the outcomes are ordered as described above.

How do the strategies interact? Suppose α is an M strategy and β is an R strategy. If α is to
the left of β, then β is initialized whenever α acts. In particular, when β nexts acts, it picks a new
value for oβ which is larger than the restraint (if any) imposed by α. If α is an M strategy such
that α ∗m ⊑ β, then β is not eligible to act until α has imposed restraint up to m. Therefore, oβ
is chosen > m and β respects α’s restraint. On the other hand, if β ∗ Fin ⊑ α, then each time β
puts a number into H [β], α is initialized. If β ∗ Fin is on the true path, then eventually β always
takes outcome β ∗ Fin. Therefore, β causes only finitely much injury to α.

The one nontrivial interaction is when β ∗ m ⊑ α. In this case, α is only eligible to act if β
sets oβ to be m, and α guesses that β will eventually put every number greater than oβ = m into
H [β]. Therefore, when α sees a convergent computation Φα(H ;xα

i ) with use u, it only believes the
computation if every number 〈β, x〉 ≤ u with oβ = m ≤ x is in H . Because α believes that β will
place every such x into H [β], α believes that any computation missing such a number will eventually
be destroyed by the enumeration of x into H [β]. Therefore, the general construction contains this
minor modification for an M strategy β.

We now present the formal construction. At stage 0, let H0 = ∅. At stage s > 0, we let
strategies act beginning with the R0 strategy λ until we reach a strategy of length s. Once we
reach a strategy of length s, end the stage and initialize all strategies of lower priority than the
last strategy eligible to act. Initializing an R strategy α means canceling oα and nα. Initializing an
M strategy α means canceling rα (the current restraint imposed by α), ǫα and pα, canceling the
partition Uα

i and canceling all witnesses xα
i . Any parameters not canceled by initialization retain

their values at the next stage. Once the initialization is done, we define Φ(X ; y) = 0 for all sets X
and all numbers y ≤ s which are not currently witnesses of the form xα

i for some M strategy α.
(Formally, we choose a large value k and let Φ(σ, y) = 0 for all strings σ of length k.)

When an R strategy α is eligible to act, it acts as follows. If s is the first stage at which α is
eligible to act or if α has been initialized since it was last eligible to act, define oα to be large and

set nα = oα. Check if nα ∈ A
[α]
s . (We begin at this step if nα is already defined.) If not, then let

α ∗ Fin be the next strategy eligible to act. If so, then enumerate nα into H [α], increase nα by 1
and let α ∗ oα be the next strategy eligible to act.

When an M strategy α is eligible to act, it acts as follows. If s is the first stage at which α is
eligible to act or if α has been initialized since it was last eligible to act then we need to define rα,
ǫα and pα. Set rα = 0. (The parameter rα denotes α’s current level of restraint.) Let q be the
sum of all ǫγ parameters defined by all M strategies γ that have been eligible to act at any time
during the construction so far. In the verification below, we prove that q < δ. Define pα to be a
large number so that ǫα = 1/2pα satisfies q + ǫα < δ. Partition 2ω into 2pα many disjoint clopen
sets Uα

1 , . . . , U
α
2pα each of size ǫα.

Begin the cycles for α with this choice of pα. (If pα was already defined, we start the action
of α wherever it left off in this cycle procedure.) Run cycles beginning with i = 1 and proceeding
through i = 2pα . The ith cycle acts as follows. Pick a large value for the witness xα

i when the
cycle begins and define Φ(X ;xα

i ) = 0 for all X 6∈ Uα
i . Let β0, . . . , βk−1 denote the R strategies

such that βj ∗ mj ⊑ α for some mj ∈ ω. Check if Φα,s(Hs;x
α
i ) converges. If not, let α ∗ rα be

the next strategy eligible to act. If it does converge, then let u be the use of the computation. For

each 0 ≤ j ≤ k − 1, check if for every number 〈βj , y〉 ≤ u with mj ≤ y, we have y ∈ H
[βj ]
s . If not,

then let α ∗ rα be eligible to act (and α remains in the ith cycle when it is next eligible to act). If
so, then define Φ(X ;xα

i ) > Φα(Hs;x
α
i ) for all X ∈ Uα

i . Redefine rα to be the maximum of its old
value and u, increase i by 1 (so that α will begin the (i + 1)st cycle when it is next eligible to act)
and let α ∗ rα be eligible to act. If iα reaches the value 2pα +1, then α performs no further actions
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(unless it is initialized) and takes outcome α ∗ rα at all future stages.
This completes the description of the formal construction. A strategy α is on the true path if α

is the leftmost strategy of length |α| which is eligible to act infinitely often. A stage at which α is
eligible to act is called an α stage.

Lemma 2.2. H ⊆ A.

Proof. Numbers are enumerated into H only after they have entered A.

Lemma 2.3. If α is an R strategy on the true path, then oα reaches a limit ôα. Furthermore, if
α ∗ ôα is on the true path, then A[α] = ω and A[α] −H [α] is finite, while if α ∗ Fin is on the true
path, then A[α] is finite.

Proof. Let s be the first α stage such that no strategy to the left of α is eligible to act after stage s
and hence α is never initialized after stage s. Because values of oα are canceled only by initialization,
α defines the final value for oα at stage s.

Once oα has reached its limit ôα, there are only two possible outcomes for α to take at any future
α stage: ôα and Fin. Because ôα is greater than the restraint imposed on α by any M strategy of
higher priority, α is free to place any number bigger than ôα which enters A[α] into H [α]. Recall
that A[α] is either ω or a finite initial segment of ω, that α places nα into H [α] and increments nα

(beginning at ôα) whenever it sees nα enter A[α], and that α only takes outcome α ∗ ôα when it
puts the current value of nα into H [α].

Assume that α∗ôα is eligible to act infinitely often. This situation implies the interval I = [ôα,∞)
is contained in A[α] and hence A[α] = ω. Furthermore, each element of I is placed into H [α] and
hence A[α]−H [α] is finite. On the other hand, assume that α∗Fin is on the true path. In this case,
there must be a value of nα for which α never sees nα enter A[α] and hence A[α] is a finite initial
segment of ω.

It follows from the previous two lemmas that each requirement Re is met by the construction,
so H has high degree.

Lemma 2.4. Let α be an M strategy that is eligible to act at stage s. Let qαs be the sum of all
ǫγ parameters for all M strategies γ that have been eligible to act at any point in the construction
before α is eligible to act at stage s. Then qαs < δ.

Proof. This lemma follows by induction on s, and for each s by a subinduction on the strategies
which are eligible to act at stage s. If α defines ǫα at stage s, then by induction qαs < δ, so α can
define ǫα such that that qαs + ǫα < δ.

Let T = {X |Φ(X) is total} and let qs = qαs where α is the last M strategy eligible to act at
stage s. By Lemma 2.4, qs < δ and hence lims qs ≤ δ. In other words, the sum of all parameters ǫα
chosen by M strategies during the construction is ≤ δ.

Lemma 2.5. µ(T ) ≥ 1− δ.

Proof. At the end of each stage s, if x ≤ s and x is not equal to the current value of an xα
i

parameter for some M strategy α, then we define Φ(X ;x) = 0 for all X . Fix a number y and
calculate µ({X |Φ(X ; y) ↑}). If Φ(X ; y) ↑, then for each stage s ≥ y, y must be equal to the current
value of some xα

i parameter. Because new values for these parameters are always chosen large (and
are never reused), there must be a fixed M strategy α and a fixed cycle number i such that y = xα

i

at all stages s ≥ y. (In particular, α is never initialized after stage y.) When α chose xα
i = y, it

defined Φ(Y ; y) = 0 for all Y 6∈ Uα
i . Therefore, if Φ(X ; y) ↑, then X ∈ Uα

i . Because µ(Uα
i ) = ǫα,

we have that either Φ(X ; y) converges for all X or µ({X |Φ(X ; y) ↑}) = ǫα. Summing over all y, we
see that µ({X |Φ(X) not total }) is bounded by the sum of all values of ǫβ chosen over the course
of the construction by all M strategies β. As noted above, this sum is ≤ δ.
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Lemma 2.6. If α is an M strategy on the true path such that Φα(H) is total, then

∀X ∃x (Φ(X ;x) > Φα(H ;x)).

Proof. Assume α is on the true path and Φα(H) is total. Let β0, . . . , βk−1 be the R strategies such
that βj ∗ mj ⊑ α for some mj ∈ ω. Because each βj ∗mj is on the true path, if ôβj

denotes the
final value of the parameter oβj

, then ôβj
= mj. By the proof of Lemma 2.3, the interval [mj ,∞)

is contained in H [βj] for each 0 ≤ j ≤ k − 1.
Let s be the first α stage after which α is never initialized. At stage s, α defines the parameters

pα and ǫα, sets rα = 0 and defines the partition Uα
i . After these definitions, α begins its first cycle

for defining Φ. It chooses xα
1 and defines Φ(X, xα

1 ) = 0 for all X 6∈ Uα
1 . At each α stage t ≥ s, α

checks whether Φα,t(Ht;x
α
1 ) converges and if so whether each number 〈βj , y〉 below the use with

mj ≤ y is in Ht. Because Φα(H) is total and each interval [mj ,∞) ⊆ H [βj], α must eventually see
a convergent computation which meets this criterion. When α sees an appropriate computation at
stage t ≥ s, it defines Φ(X ;xα

1 ) > Φα,t(Ht;x
α
1 ) and redefines its restraint rα to be greater than the

use of Φα,t(Ht;x
α
1 ).

Since t ≥ s, no strategy to the left of α is ever eligible to act after t, so none of these strategies
can place a number into H which will destroy the Φα,t(Ht;x

α
1 ) computation. The βj strategies have

already placed all the numbers below the use into H [βj] so they will not destroy this computation.
Any R strategy β with β ∗ Fin ⊑ α never places any more elements into H since if it did, the
path would move to the left of α contradicting the fact that t ≥ s. Finally, all strategies of lower
priority that α respect α’s new restraint. Therefore, Φα(H ;xα

1 ) = Φα,t(Ht;x
α
1 ) and we have met

the condition of this lemma for all X ∈ Uα
1 .

We repeat the same argument for α’s remaining cycles to see that for each Uα
i , there is a witness

xα
i such that Φ(X ;xα

i ) > Φα(H ;xα
i ) for all X ∈ Uα

i . Since the U
α
i partition 2ω, we have established

the lemma.

Lemma 2.7. Each requirement Me is met.

Proof. Assume that some requirement Me is not met. Me is not met means that Φe(H) is total
and that for some set X ∈ T , Φ(X) is dominated by Φe(H). Fix n such that for all x > n,
Φ(X ;x) < Φe(H ;x). Let e′ be an index for a partial computable functional such that for all sets Z
and all numbers x, if x < n, then Φe′(Z;x) = Φ(X ;x) + 1 and if n ≤ x, then Φe′(Z;x) = Φe(Z;x).
(Since X ∈ T , the computations Φ(X ;x) for x < n are defined, so we are just fixing the same finite
initial segment of Φe′(Z) for every Z.) Let α′ be the Me′ strategy on the true path. We have that
Φα′(H) is total and for all x, Φ(X ;x) < Φα′(H ;x). These facts directly contradict Lemma 2.6.

3 Random examples

In this section, we show that almost every degree is not a.e. dominating and that almost every
degree is bounded by a high degree that is not a.e. dominating. In contrast with the c.e. set H of
the last section, all of the examples here satisfy some degree of randomness and hence have DNR
(diagonally nonrecursive) degree.

Definition 3.1. A Martin-Löf test relative to a set A is a sequence 〈Un : n ∈ ω〉 of Σ0,A
1 classes

which is uniform in A such that µ(Un) ≤ 2−n for each n. R is n-A-random (n-random relative
to A) if for each Martin-Löf test relative to A(n−1) (the n − 1st jump of A), we have R 6∈

⋂
n Un.

If A is computable we say that R is n-random. R is weakly n-A-random if for each Σ0,A
n class

C of measure 1, we have R ∈ C.

Notice two consequences of these definitions: if R is n-A-random then R is weakly n-A-random
and if R is n-A-random for some A then R is n-random. For more information about randomness
(including various equivalent definitions), see Kautz [8], Kurtz [10] or the online manuscript of
Downey and Hirschfeldt [5]. One of the fundamental results about randomness that we will use
repeatedly is the following.
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Theorem 3.2 (Martin-Löf [14]). For any A and n ≥ 1, the measure of the class of all n-A-random
sets is 1.

We now state the main result of this section which we will prove at the end of this section.

Theorem 3.3. Each 4-random degree is bounded by a high 2-random degree that is not almost
everywhere dominating.

Corollary 3.4. Almost every degree is bounded by a high degree which is not a.e. dominating.

Towards this theorem, as we would like to find degrees that are not almost everywhere domi-
nating, we need examples of functions that are hard to dominate but are nevertheless computable
by a sufficiently (to be specified later) random oracle. That is, suppose we fix functions fR ≤T R
for each sufficiently random set R. By Theorem 3.2, the measure of such R is 1. Let A be any
a.e. dominating set and let S be a class of sets of measure 1 such that every function computable
from an element of S is dominated by some function computable from A. Because S has measure
1 and the collection of sufficiently random R has measure 1, some such R must be in S. Therefore,
the a.e. dominating set A must compute a function g which dominates some fR function. If we can
make the fR functions hard to dominate, we can use them to construct examples of sets which are
not a.e. dominating. We begin with the following theorem. (Kurtz [10] proved that the class of
sets R such that there is a set B <T R for which R is c.e. in B has measure 1 and Kautz [8] later
strengthen this result to Theorem 3.5.)

Theorem 3.5 (Kautz [8]). If R is 2-random, then there is a set B such that B <T R and R is
c.e. in B.

We will combine this theorem with the following simple observation. Let R be any set and
suppose that R is c.e. in B. For any fixed index e such that R = WB

e , we can define the computation
function c for R relative to this index e by

c(x) = µs(WB
e,s ↾ x = WB

e ↾ x = R ↾ x).

Typically, we will abuse notation by suppressing the index e and referring to c as “the” computation
function for R as a c.e. set in B.

Lemma 3.6. If R is c.e. in B and f dominates the computation function for R as a c.e. set in B,
then f ⊕B ≥T R.

Proof. Assume that e is the index relative to which the computation function is defined. Because
f dominates the computation function, for sufficiently large x we have R ↾ x = WB

e ↾ x = WB
e,f(x) ↾

x.

For any 2-random set R, fix BR and fR such that BR <T R, R is c.e. in BR and fR is the
computation function for R as a set c.e. in BR. Since fR ≤T BR ⊕ R and BR <T R, we have
fR ≤T R. Therefore, any a.e. dominating set A must be able to compute a function g which
dominates some fR. Hence, for some 2-random R, we must have A ⊕ BR ≥T R. In other words,
any a.e. dominating set must join some predecessor of some 2-random R above R. Stillwell [20]
showed that sufficiently random sets do not have this property.

Lemma 3.7 (Stillwell [20]). For any X,Y ,G, if X 6≤T Y and G is weakly 2-X ⊕ Y -random, we
have X 6≤T Y ⊕G.

From Lemma 3.7 and the comments above, it follows that if G is 2-random relative to every
2-random set R, then G is not a.e. dominating. Unfortunately, there is no such set G. (Suppose
there is such a G. Let R = G and notice that R is 2 random, but G cannot be 2-random relative
to R = G.) However, van Lambalgen [11] showed that a set X can be random relative to every set
that is random relative to X , and this turns out to be enough to prove Theorem 3.9.
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Theorem 3.8 (van Lambalgen [11]). Let n ≥ 1. If A is n-random relative to B, and B is n-random,
then B is n-random relative to A and A⊕B is n-random.

Theorem 3.9. If G is 2-random, then G is not a.e. dominating.

Proof. Suppose G is a.e. dominating. There is a set S of measure 1 such that for all partial
computable functionals Φ and all X ∈ S, if Φ(X) is total then Φ(X) is dominated by a function
recursive in G. Because the collection of all sets which are 2-random relative to G has measure 1
(by Theorem 3.2) and because S has measure 1, S must contain some X that is 2-random relative
to G. In particular, X is 2-random, so by Theorem 3.5, there is a set B such that B <T X and
X is c.e. in B. Let Φ be such that Φ(X) is the computation function for X as a set c.e. in B. As
X is in S, G computes a function dominating Φ(X). By Lemma 3.6, G ⊕ B ≥T X . By Lemma
3.7, G is not weakly 2-X ⊕ B-random. However, X ⊕ B ≡T X since B <T X , so G is not weakly
2-X-random and hence G is not 2-X-random.

X is 2-random relative to G and that G is not 2-random relative to X . Suppose for a contradic-
tion that G is 2-random. By Theorem 3.8, G is 2-random and X is 2-random relative to G implies
that G is 2-random relative to X , giving the desired contradiction.

Corollary 3.10. Almost every set is not a.e. dominating.

Proof. This corollary follows from Theorems 3.2 and 3.9.

Given Theorem 3.9, we can ask whether a 2-random set can be high. Kautz [8] showed that
3-random sets cannot be high, in fact R(n) ≡T R⊕ 0(n) holds for each n+ 1-random set R, n ≥ 1.
Also, the argument of Theorem 3.9 does not generalize to all 1-random degrees, as 0′ is a 1-random
degree which is a.e. dominating. Nevertheless we get a positive answer.

Definition 3.11. A Turing machine U is called prefix-free if for all finite strings σ, U(σ) ↓ implies
that U(τ) ↑ for all proper extensions τ of σ. For any universal prefix-free Turing machine U , the
halting probability of U is

ΩU =
∑

U(σ)↓

2−|σ|.

This notion relativizes to any oracle X and the following lemma lists three properties of ΩX
U

which will be useful for us later. The first two properties are due to Chaitin [1] and the third is due
to Kurtz [10]. (For more information about Ω numbers see [1] and [6].) A real R is called c.e. in A
if the set of rational numbers q < R is c.e. in A.

Lemma 3.12. The following properties hold for any universal prefix-free Turing machine U and
any set X.

1. ΩX
U is a c.e. in X real.

2. ΩX
U is 1-random relative to X.

3. ΩX
U ⊕X ≡T X ′.

Theorem 3.13. There is a high 2-random set below 0′′.

Proof. Fix a universal prefix-free Turing machine U . For any set A, let R = ΩA
U . By Lemma 3.12,

R is 1-random relative to A and satisfies A′ ≡T R ⊕ A. Now let A = 0′. Then R is 2-random and
0′′ ≡T R⊕ 0′ ≤T R′.

Proof of Theorem 3.3. Let R1 be 4-random. Let R0 be a 2-random set with 0′′ ≤T R′
0 (which exists

by Theorem 3.13) and let R = R0 ⊕ R1. We claim that R is the set we are looking for. Clearly
R ≥T R1. As R ≥T R0, R is high. Since R0 ≤T 0′′, R1 is 2-random relative to R0, so by Theorem
3.8, R is 2-random and hence by Theorem 3.9, R is not a.e. dominating.
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4 Generic examples

In this section, we show that every 2-generic degree is not a.e. dominating.

Definition 4.1. Let V be any universal Turing machine, and let g be a computable function. The
time-bounded Kolmogorov complexity with time bound g is the function Cg given by

Cg(x) = min{|p| : V (p) = x in g(|x|) steps }.

(If there is no such p, then Cg(x) = ∞.) Z is Kolmogorov random with time bound g if there
is a constant b such that

(∃∞n)[Cg(Z ↾ n) ≥ n− b].

(We count ∞ > n for all n ∈ ω, so the relation Cg(Z ↾ n) ≥ n− b is computable in Z.)

Theorem 4.2 (Nies, Stephan and Terwijn [16]). For each computable function g with g(n) ≥
n2 +O(1) and each set Z, the following are equivalent.

1. Z is 2-random.

2. Z is Kolmogorov random with time bound g.

Definition 4.3. Let A and B be sets. We say that A is hyperimmune-free relative to B,
denoted by A is HIF(B), if for each function f ≤T A there is a function g ≤T B such that f is
dominated by g.

The next proposition is a variation on Proposition 2.15 in [16].

Proposition 4.4. Let A be a set. If there is a 2-random set Z such that Z is HIF(A), then there

is a nonempty Π0,A
1 class consisting entirely of 2-random sets.

Proof. By Theorem 4.2, Z is Kolmogorov random with some time bound g and constant b. Let

f(m) = fZ
g,b(m) = µn(∃p0, . . . , pm ≤ n)(∀i ≤ m)[Cg(Z ↾ pi) ≥ pi − b].

Note that f ≤T Z is a total function. Hence there exists h ≤T A such that h dominates f . In fact,
we can assume that h majorizes f . (That is, h(n) ≥ f(n) for all n.) Consider the A-recursive tree

T = {σ : (∀m)[|σ| ≥ h(m) → (∃p0, . . . , pm ≤ |σ|)(∀i ≤ m)[Cg(σ ↾ pi) ≥ pi − b]]}.

Since h majorizes f , Z is a path on T and so the set of paths of T is nonempty. Moreover, each
path is time-bounded Kolmogorov random and hence 2-random by Theorem 4.2. Therefore, the set
of paths through T is our desired Π0,A

1 class.

Theorem 4.5 (Jockusch and Soare [7], relativized). Let A be any set. Each nonempty Π0,A
1 class

P has a member R whose degree is c.e. in A.

Proof. The Π0,A
1 class P can be represented as the set of infinite paths through an A-computable

tree TP ⊆ 2<ω. Let R be the leftmost infinite path in TP and we show that the degree of R is
c.e. in A. Consider the set N of all finite binary strings which are either on R or to the left of R
in 2<ω. Because R is the leftmost path in TP , N is c.e. in A, and clearly we have that N ≤T R.
To see that R ≤T N , notice that σ ∈ N is an initial segment of R if and only if it is the rightmost
node of length |σ| in N .

Alternately, we can view the elements of the Π0,A
1 class P as reals, in which case the proof of

Theorem 4.5 says that R is a c.e. in A real contained in P . (The set N represents the rational
numbers q < R.) This perspective will be useful later when we want to view such a real as ΩA

U for
some universal prefix-free Turing machine U .
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Proposition 4.6. Let A be a set. If there is a 2-random set Z such that Z is HIF(A), then there
is a 2-random R whose degree is c.e. in A.

Proof. By Proposition 4.4, there is a nonempty Π0,A
1 class P consisting of 2-random sets. By

Theorem 4.5, there is a path R in P whose degree is c.e. in A.

As above, if we view the elements of P as reals, then Proposition 4.6 says that R is a c.e. in A
real which is 2-random.

Theorem 4.7. If A is a.e. dominating then there is a 2-random R whose degree is c.e. in A.

Proof. Suppose A is a.e. dominating. Let C denote the class of all sets Z such that every f ≤T Z
is dominated by some g ≤T A and let D denote the class of all 2-random sets. By definition, every
Z ∈ C is HIF(A) and because A is a.e. dominating, the measure of C is 1. Furthermore, since D has
measure 1 (by Theorem 3.2), the intersection C ∩ D is nonempty. Therefore, there is a 2-random
Z which is HIF(A) and we can apply Proposition 4.6.

In fact, Theorem 4.7 also follows from Theorem 5.5 below by considering ΩA. Such a proof
avoids the notion of time bounded Kolmogorov complexity. However, this approach does not give
the stronger result of Proposition 4.6.

Definition 4.8. Let A and B be sets. We say that A is diagonally nonrecursive in B, denoted
by DNR(B), if there is a function f ≤T A such that for all e, f(e) 6= Φe(B; e).

Notice that no set A can compute a function which is DNR(A) and that under this definition
the DNR(A) degrees are closed upwards trivially. (This definition is not the only way to relativize
the property of diagonally nonrecursiveness.) The following lemma is a relativized version of the
result of Kučera [9] that every 1-random R is DNR(∅).

Lemma 4.9. For any A and any 1-A-random R, R is DNR(A).

Proof. Define a partition of ω by I0 = {0}, I1 = {1, 2}, I3 = {3, 4, 5}, . . ., so that |In| = n + 1.
Let f ≤T R be defined by f(n) = R ↾ In. (That is, f(n) is the canonical index for the finite set
R ↾ In.) Let Uk = {X | ∃s∃e ≥ k (X ↾ Ie = Φe,s(A; e))}. Because |Ie| = e + 1, the measure of all
sets X for which X ↾ Ie = Φe(A; e) is at most 2−(e+1). Therefore, µ(Uk) ≤

∑
e≥k 2

−(e+1) = 2−k.
So the Uk classes form a Martin-Löf test relative to A. Since R is 1-A-random, there is a k such
that R 6∈ Uk. Hence there are only finitely many e for which f(e) = Φe(A; e), and so R computes a
DNR(A) function.

Corollary 4.10. Every 2-random R is DNR(0′).

Proof. If R is 2-random, then R is 1-0′-random. By Lemma 4.9, R is DNR(0′).

We will apply these results to Cohen generic sets. The forcing partial order for Cohen generics
is 2<ω ordered by τ ≤ σ (or τ is an extension of σ) if σ ⊑ τ .

Definition 4.11. A set G is called n-A-generic for forcing with a partial order P if for each Σ0,A
n

set D ⊆ P , A either meets D or A meets the set of conditions in P having no extension in D. A
subset D ⊂ P is called dense if every p ∈ P is extended by some d ∈ D. G is weakly n-A-generic
if for each Σ0,A

n dense set D ⊆ P , G meets D.

Lemma 4.12. If G is 2-generic, then G′ is not DNR(0′).

Proof. For a contradiction, assume that G′ is DNR(0′). Each 2-generic is 1-generic and hence
G′ ≡T G⊕ 0′ (see for example [12]). So we can fix an index i such that Φi(G⊕ 0′) is total and for
all e, Φi(G⊕ 0′; e) 6= Φe(0

′; e). Consider the Σ0
2 set S = {σ ∈ 2<ω | ∃e, τ, s (σ ⊑ τ ∧Φi,s(τ ⊕ 0′; e) ↓=

Φe,s(0
′; e) ↓)}. (Whenever we deal with computations such as Φi,s(τ ⊕ 0′; e) ↓ in which the oracle

has a finite component, we assume that the computation does not query any number in a finite
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component of the oracle which is larger than the length of that component.) Because G is 2-generic
and by choice of i, there must be an initial segment ρ of G such that no extension of ρ is an element
of S. However, since Φi(G ⊕ 0′) is total, we know that for every e, there is some σ ⊒ ρ such that
Φi(σ⊕ 0′; e) converges. Notice that 0′ can find such a σ by searching. Furthermore, since any such
σ is not in S, we know that Φi(σ ⊕ 0′; e) is not equal to Φe(0

′; e). Therefore, 0′ can compute a
function that is DNR(0′) giving the desired contradiction.

Theorem 4.13. If G is 2-generic then G is not a.e. dominating.

Proof. Suppose that G is 2-generic and a.e. dominating. Because G is a.e. dominating, Theorem
4.7 implies that there is a 2-random R whose degree is c.e. in G. Therefore, R ≤T G′. On the other
hand, by Corollary 4.10, R is DNR(0′). Because the DNR(0′) degrees are closed upwards, G′ is
DNR(0′) which contradicts Lemma 4.12.

5 Degrees below 0′

In this section, we give two proofs that that every a.e. dominating set below 0′ is high. The first
proof builds on Theorem 4.7 while the second proof uses the notion of being “low for random”
to establish the stronger result that every a.e. dominating set is super-high. We begin with the
following lemma which states that any real which satisfies the first two properties of ΩX

U in Lemma
3.12 is actually an Ω number for some prefix-free universal machine relative to X .

Lemma 5.1 (Downey, Hirschfeldt, Miller and Nies [6]). For any set A and real R, the following
are equivalent:

1. R is a c.e. real relative to A and 1-random relative to A;

2. R = ΩA
U for some universal prefix-free Turing machine U .

Lemma 5.2. If A is a.e. dominating and A ≤T 0′ then there exist universal prefix-free machines
U , V with ΩA

U = Ω0′

V .

Proof. By Theorem 4.7 there exists a real R that is 2-random (that is, 1-random in 0′) and is c.e.
in A. Since A ≤T 0′, R is also 1-random in A and c.e. in 0′. Hence by Lemma 5.1, there exist U ,
V such that R = ΩA

U = Ω0′

V .

Theorem 5.3. If A is a.e. dominating and A ≤ 0′, then A′ ≡T 0′′.

Proof. By Lemma 5.2 and Property 3 of Lemma 3.12, A′ ≥T ΩA
U ⊕ 0′ = Ω0′

V ⊕ 0′ ≡T 0′′.

This implication can be strengthened using the following theorem from Kautz [8]. (This theorem
is a relativized form of a result first proved by Kučera [9].) For any string σ and set A, let σ ∗ A
denote the set whose characteristic function is χ(n) = σ(n) for n < |σ| and χ(n) = A(n − |σ|) if
n ≥ |σ|.

Theorem 5.4 (Kautz [8]). Let Z be a set and let C be a Π0,Z
1 class of positive measure. For every

1-Z-random R, there is a string σ and a set A ∈ C such that R = σ ∗A.

Theorem 5.5. If Z is a.e. dominating then each 1-Z-random is 2-random.

Proof. Let P = U0′
1 = 2ω−U0′

1 where U0′

n , n ∈ ω, is a universal Martin-Löf test relative to 0′. Note
that P is a Π0

2 class of positive measure consisting entirely of 2-random reals. Suppose Z is a.e.

dominating. By Theorem 1.2, P has a Π0,Z
1 subclass C of positive measure.

Let R be 1-Z-random. By Theorem 5.4, there is a string σ and an A ∈ C such that R = σ ∗A.
A is 2-random because it is in C and we claim that R is 2-random. For a contradiction, suppose
that R is not 2-random. Fix a 0′ Martin-Löf test Vn, n ∈ ω, such that R ∈

⋂
n Vn. Let V̂n =

{τ |σ ∗ τ ∈ Vn+|σ|}. Because 2−|σ|µ(V̂n) ≤ µ(Vn+|σ|), we have µ(V̂n) ≤ 2|σ|2−(n+|σ|) and hence

µ(V̂n) ≤ 2−n. Therefore, V̂n is also a 0′ Martin-Löf test and A ∈
⋂

n V̂n contradicting the fact that
A is 2-random.
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Because 2-random is the same as 1-0′-random, we can restate Theorem 5.5 by saying that if Z is
a.e. dominating, then every 1-Z-random set is 1-0′-random. This characterization fits the following
definition from Nies [15].

Definition 5.6. Low-for-random reducibility ≤LR is defined by A ≤LR B iff every 1-B-random
set is 1-A-random.

We can now restate Theorem 5.5 as 0′ ≤LR Z for every a.e. dominating Z. Notice that if
A ≤T B, then A ≤LR B because every Martin-Löf test relative to A is also a Martin-Löf test
relative to B. Nies [15] also proved the following property of LR reducibility. (See Theorem 8.1
and the remarks before Proposition 8.3 in Nies [15].) In this statement, ≤tt denotes truth table
reducibility.

Theorem 5.7 (Nies [15]). A⊕B ≤LR B ⇒ A′ ≤tt B
′.

Definition 5.8. If A′ ≥tt 0
′′ then we say that A is super-high.

Corollary 5.9. If Z ≤T 0′ is a.e. dominating then Z ′ ≡tt 0
′′ and hence Z is super-high.

Proof. Let Z ≤T 0′ be a.e. dominating. Since Z ≤T 0′, we have Z ′ ≤tt 0
′′ (in fact even Z ′ ≤1 0′′,

see for example [19]). On the other hand, since Z is a.e. dominating, 0′ ≤LR Z by Theorem 5.5.
Combining this reduction with 0′ ⊕Z ≤T 0′ gives 0′ ⊕Z ≤LR Z. By Theorem 5.7, 0′′ ≤tt Z

′, so we
conclude 0′′ ≡tt Z

′.

Using Corollary 5.9, we can give an alternate proof for Theorem 2.1 using index sets. Let
HT = {x | 0′′ ≤T W ′

x} be the index set for high c.e. sets and Htt = {x | 0′′ ≤tt W
′
x} be the index set

for super-high c.e. sets. A proof of the following theorem can be found in Soare [19].

Theorem 5.10 (Schwarz [17]). HT is Σ0
5 complete.

Lemma 5.11. Htt is a Σ0
4 set.

Proof. Let σn, n ∈ ω be a list of the well-formed formulas of sentential logic with sentential letters
An, n ≥ 1. Let B be a set and let v be a truth assignment such that v(An) = T (true) iff
n ∈ B. Let v be the extension of v to all well-formed formulas. Write B |= σn if v(σn) = T .
Then A ≤tt B iff there is a computable function f such that for all x, x ∈ A iff B |= σf(x). Hence
0′′ ≤tt W

′
x ⇔ (∃e)(∀x)R(e, x) where

R(e, x) ⇔ Φe(x) ↓ & [x ∈ 0′′ ⇐⇒ W ′
x |= σΦe(x)].

So Htt is Σ
0
2 in 0′′, or in other words it is Σ0

4.

Corollary 5.12. There exists a high, not super-high c.e. set.

Proof. By Theorem 5.10, HT is not a Σ0
4 set, so Htt 6= HT . As clearly Htt ⊆ HT , we conclude that

Htt ( HT . Let x ∈ HT −Htt; then Wx is high but not super-high.

Corollary 5.13. There is a high c.e. set which is not a.e. dominating.

Proof. Immediate from Corollaries 5.9 and 5.12.

6 High-above ideals

Definition 6.1. An ideal is a set I ⊆ 2ω such that if X ∈ I and Y ≤T X , then Y ∈ I and if
X,Y ∈ I, then X ⊕ Y ∈ I. An ideal I is called a high-above ideal if

(∀A ∈ I)(∃B ∈ I)(A <T B andA′′ ≤T B′).
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A trivial example of a high-above ideal is {A | (∃n)(A ≤T 0(n))}. In this section, we construct
two more examples of high-above ideals. In Proposition 6.8, we use Mathias forcing to show that
for any infinite computable tree T ⊆ 2<ω with no computable path, there is a high-above ideal
which does not contain a path through T . Such an ideal is not the second order part of an ω-model
of WKL0. (To see a very different application of Mathias forcing in recursion theory, the reader is
referred to Cholak, Jockusch and Slaman [3].) In Proposition 6.9, we use the fact that 2-random sets
are not a.e. dominating to construct a high-above ideal which does not contain an a.e. dominating
set.

We begin with a relativized version of Martin’s characterization of high degrees in terms of
dominating functions. The proof in Chapter XI of Soare [19] relativizes to give the following
theorem.

Theorem 6.2 (Martin [13], relativized). For any sets A, B, we have (A ⊕B)′ ≥T B′′ iff there is
a single function computable in A⊕B which dominates all functions computable in B.

Definition 6.3. Let H be any set. An H-computable Mathias condition is a pair P = (F,C)
where F is a finite subset of ω and C is an infinite H-computable set with max(F ) < min(C). We
say that P1 extends P2 if F2 ⊑ F1 ⊆ F2 ∪ C2 and C1 ⊆ C2. We say that a set G extends a
condition P if F ⊑ G and G ⊆ F ∪ C.

We view H-computable Mathias conditions as pairs (e, i) where e is a canonical index for the
finite set F and i is an index such that C = WH

i . Using this notation, the set of H-computable
Mathias conditions is ΣH

3 . Furthermore, if (F1, C1) and (F2, C2) are conditions, then the statement
that (F1, C1) extends (F2, C2) is Π

H
2 . Therefore, when discussingH-computable Mathias forcing, we

will not discuss objects which are less that 3-generic, since merely describing the forcing conditions
and their relationships requires statements which are ΣH

3 .

Lemma 6.4. Let T be an infinite computable subtree of 2<ω and let A be a set such that A does
not compute any path through T . If G is 3-A-generic for A-computable Mathias forcing, then G⊕A
does not compute a path through T .

Proof. We begin by defining what it means for a Mathias condition (F,C) to force various state-
ments. We say (F,C) 
 Φe(G⊕A;n) ↓ if ∃s(Φe,s(F ⊕A;n) ↓) and

(F,C) 
 Φe(G⊕A;n) ↑⇔ ∀ finite F̂ ∀s (F ⊑ F̂ ⊆ F ∪ C → Φe,s(F̂ ⊕A;n) ↑).

The offset statement is equivalent to saying that no extension of (F,C) forces Φe(G⊕A;n) ↓. Given
a condition (F,C), this statement is ΠA

1 and the statement that says (F,C) forces Φe(G⊕A;n) ↑ for
some n is ΣA

2 . Therefore, the set Se of all conditions (F,C) for which ∃n[(F,C) 
 Φe(G⊕ A;n) ↑]
is ΣA

3 .
Assume that G is 3-A-generic for A-computable Mathias forcing and that Φe(G ⊕ A) is total.

Because the set Se of conditions defined above is ΣA
3 , there must be a condition (F,C) such that G

extends (F,C) and (F,C) has no extension in Se. We say that such a condition forces Φe(G ⊕ A)
to be total.

There are two important features of conditions (F,C) which force Φe(G⊕A) to be total. First,
for every n and every (F ′, C′) extending (F,C), there is a condition (F ′′, C′′) extending (F ′, C′)
which forces Φe(G ⊕ A;n) to converge. Second, we can take the condition (F ′′, C′′) to be a finite
modification of (F ′, C′). That is, we can add a finite number of elements of C′ to F ′ to get F ′′ and
subtract a finite number of elements from C′ to get C′′. In particular, if (F,C) forces Φe(G⊕A) to
be total, then there is a set Ĝ ≤T A for which Φe(Ĝ⊕A) is total. We construct Ĝ by starting with
(F0, C0) = (F,C) and choosing conditions (Fn, Cn) such that (Fn+1, Cn+1) is a finite modification
of (Fn, Cn) which extends (Fn, Cn) and which forces Φe(G ⊕A;n) to converge. These choices can
be made using only the oracle A since A can compute C and A allows us to search for convergent
computations of the form Φe(F̂ ⊕ A;n) for finite extensions F̂ of Fn. The set Ĝ = ∪nFn clearly
satisfies Φe(Ĝ⊕A) is total.
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Next, we consider conditions which force Φe(G⊕A) to not compute a path in T . Let [T ] denote
the set of paths in T . We say (F,C) 
 Φe(G⊕A) 6∈ [T ] ⇔

∃n ((F,C) 
 Φe(G⊕A;n) ↑) ∨ ∃n (Φe(F ⊕A) ↾ n ↓ ∧Φe(F ⊕A) ↾ n 6∈ T )).

That is, (F,C) forces Φe(G⊕A) 6∈ [T ] if (F,C) either forces that Φe(G⊕A) is not total or it forces
that some initial segment of Φe(G⊕A) converges to a string not in T . As above, we want to say that
(F,C) 
 Φe(G⊕A) ∈ [T ] if there is no extension of (F,C) which forces Φe(G⊕A) 6∈ [T ]. If (F,C)
already forces Φe(G⊕A) to be total, then we can write this condition as (F,C) 
 Φe(G⊕A) ∈ [T ] ⇔

∀ finite F̂ ∀n (F ⊑ F̂ ⊆ F ∪C → (Φe,s(F̂ ⊕ A) ↾ n ↓→ Φe(F̂ ⊕A) ↾ n ∈ T )).

Because the set of conditions (F,C) which force Φe(G ⊕ A) 6∈ [T ] is a ΣA
3 set, we know that for

any 3-A-generic G, there is a condition (F,C) such that G extends (F,C) and either (F,C) forces
Φe(G⊕A) 6∈ [T ] or (F,C) has no extension that forces Φe(G⊕A) 6∈ [T ]. In other words, Φe(G⊕A)
is either forced into or out of [T ].

For a contradiction, suppose that Φe(G⊕A) is a path in [T ]. There is a condition (F,C) which
is extended by G and which forces Φe(G ⊕ A) to be total and Φe(G ⊕ A) ∈ [T ]. Because (F,C)
forces Φe(G⊕A) is total, there is a set Ĝ ≤T A such that Ĝ extends (F,C) and Φe(Ĝ⊕A) is total.
Furthermore, because (F,C) forces Φe(G ⊕ A) ∈ [T ], each initial segment Φe(Ĝ ⊕ A) ↾ n must be
an element of T . Therefore, Φe(Ĝ ⊕ A) ∈ [T ]. However, Ĝ ⊕ A ≤T A, so we have a contradiction
to the fact that A does not compute a path in T .

Definition 6.5. For any set X , the principal function pX is defined by pX(n) = the (n + 1)st

element of X .

Lemma 6.6. Let G be weakly 3-A-generic for forcing with A-computable Mathias conditions. The
principal function pG of G dominates all functions recursive in A.

Proof. Let e be any index for which Φe(A) is total. For any condition (F,C), we can A computably
thin out C to C′ ⊆ C such that pF∪C′ dominates Φe(A). Furthermore, (F,C′) will be an extension
of (F,C). Therefore, the set of conditions (F̂ , Ĉ) for which p

F̂∪Ĉ
dominates Φe(A) is dense and is

also a ΣA
3 set. Therefore, G must meet each such set of conditions.

Corollary 6.7. If G is weakly 3-A-generic for forcing with A-computable Mathias conditions, then
A′′ ≤T (G⊕A)′.

Proof. This corollary follows immediately from Lemmas 6.2 and 6.6.

Proposition 6.8. For any infinite computable tree T ⊆ 2<ω with no computable paths, there is a
high-above ideal I such that no element of I can compute a path through T .

Proof. We define a sequence of sets I0 <T I1 <T · · · such that In does not compute a path through
T and I ′′n ≤T I ′n+1. I = {X | ∃n(X ≤T In)} has the required properties.

Let I0 = ∅ and notice that I0 does not compute a path through T . Assume that In has been
defined and does not compute a path through T . Let În be a 3-In-generic with respect to computable
In Mathias forcing and let In+1 = In ⊕ În. By Lemma 6.4, In+1 does not compute a path through
T and by Corollary 6.7, I ′′n ≤T I ′n+1.

Proposition 6.9. There is a high-above ideal that includes no a.e. dominating set.

Proof. We define a chain Q0 ≤T Q1 ≤T · · · and let I = {X | (∃n)(A ≤T Qn)}. To ensure Qn ≤T

Qn+1 we define first a sequence R0, R1, . . . and let Q0 = R0, Qn+1 = Rn+1 ⊕Qn.
Let R0 = Ω0′ , with respect to an arbitrary universal prefix-free machine. Let Rn+1 = ΩQ′

n .
Note that R0 is 2-random and each Rn+1 is 2-random relative to Qn. Hence by van Lambalgen’s
Theorem, each Rn and Qn is 2-random. Furthermore, Kautz [8] proved that 2-randoms are GL1,
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so we have that Q′
n ≡T Qn ⊕ 0′ for all n. Using this fact and Property 3 of Lemma 3.12, it follows

that
Q′

n+1 ≡T Qn+1 ⊕ 0′ = Rn+1 ⊕Qn ⊕ 0′ ≡T Rn+1 ⊕Q′
n ≡T Q′′

n.

Since each Qn is 2-random (and hence not a.e. dominating by Theorem 3.9), the ideal generated
by the Qn’s contains no a.e. dominating set.
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