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Abstract. Levin and Schnorr (independently) introduced the monotone complexity,

Km(α), of a binary string α. We use monotone complexity to define the relative complexity

(or relative randomness) of reals. We define a partial ordering ≤Km on 2ω by α ≤Km β

iff there is a constant c such that Km(α n) ≤ Km(β n) + c for all n. The monotone

degree of α is the set of all β such that α ≤Km β and β ≤Km α. We show the monotone

degrees contain an antichain of size 2ℵ0 , a countable dense linear ordering (of degrees of
cardinality 2ℵ0 ), and a minimal pair.
Downey, Hirschfeldt, LaForte, Nies and others have studied a similar structure, the K-

degrees, where K is the prefix-free Kolmogorov complexity. A minimal pair of K-degrees

was constructed by Csima and Montalbán. Of particular interest are the noncomputable

trivial reals, first constructed by Solovay. We define a real to be (Km,K)-trivial if for

some constant c, Km(α n) ≤ K(n) + c for all n. It is not known whether there is a

Km-minimal real, but we show that any such real must be (Km,K)-trivial.

Finally, we consider the monotone degrees of the computably enumerable (c.e.) and

strongly computably enumerable (s.c.e.) reals. We show there is no minimal c.e. monotone

degree and that Solovay reducibility does not imply monotone reducibility on the c.e. reals.

We also show the s.c.e. monotone degrees contain an infinite antichain and a countable

dense linear ordering.

§1. Background and Definitions. Several ways of defining the complexity
of binary strings (i.e. members of 2<ω) have been developed. Informally, the clas-
sical Kolmogorov complexity of a string σ (independently defined by Solomonoff
[24], Kolmogorov [11] and Chaitin [2, 3]) is the length of the shortest program p
that computes σ (using some fixed optimal abstract computer). Although this
definition is beautifully simple and is useful for some purposes, it is not well
suited for extending the definition of complexity to reals (i.e. members of 2ω,
binary sequences). In particular, there does not appear to be a simple definition
of the random (1-random, Martin-Löf random) reals in terms of classical Kol-
mogorov complexity.1 The problem is that the classical Kolmogorov complexity
allows the lengths |p| and |σ| of p and σ to carry “extra” information. Loveland’s
definition [16] of uniform complexity removed the information in the length of σ.
Informally the uniform complexity of σ is the length of the least program p that
computes the nth bit of σ for all n < |σ|. However, uniform complexity does not

This research was initiated during the author’s sabbatical leave from Bloomsburg University,
while visiting the University of California at Berkeley.

1There has been some recent progress in this direction. Work of Miller [17] and Nies, Stephan
and Terwijn [20] provides a natural definition of 2-randomness in terms of classical Kolmogorov
complexity. Recently, Miller and Yu [18] have given a more complicated characterization of
the 1-random reals in terms of classical Kolmogorov complexity.
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deal with the extra information in the length of p and, like classical complexity,
it is not well suited for defining the complexity of a real since it does not appear
to provide a simple definition of the random reals.
Two definitions of the complexity of a string have been given that extend nicely

to definitions of the random reals. Levin [13] defined monotone complexity in a
way that eliminates the use of the length in both p and σ. Schnorr [22] inde-
pendently defined a similar notion called process complexity. Schnorr’s original
definition of process complexity was not equivalent to monotone complexity, but
he later introduced a slight change in the definition of process complexity [23]
that makes the two complexities equivalent in the sense that their difference is
bounded by a constant. The monotone complexity of σ, denoted Km(σ), will be
the primary form of complexity used here, and we will give a formal definition
below. The motivation for this research is that monotone complexity seems to
be the most appropriate one for defining the complexity of a real. Not only does
monotone complexity remove the hidden information in the lengths of both p
and σ, it also characterizes the computable reals as the least complex reals. This
makes sense since each computable real α can be described by a single finite pro-
gram p. In the context of monotone complexity, it also makes sense to describe
a noncomputable real as the limit of a sequence of computable reals.
The most commonly used complexity is prefix-free complexity. In contrast

to monotone complexity, a prefix-free program can only describe a finite string.
Prefix-free complexity deals with the “hidden” information in the length of p
by requiring that the set of programs is prefix-free: no program can extend
another program. This is sometimes described as requiring programs to be self-
delimiting: each program must be able to compute its own length, so the length
does not provide extra information. Although prefix-free complexity gives a nice
definition of the random reals and has some technical advantages over monotone
complexity, it is somewhat unnatural when applied to reals, since it does not
provide a finite way to describe a computable real. We will denote the prefix-
free complexity of σ by K(σ). Prefix-free complexity was defined by Levin [14],
Gács [10] and independently by Chaitin [4]. See the book by Li and Vitányi [15]
for additional background on prefix-free complexity and the other complexities
discussed above.
Each complexity also leads to a complexity of reals via the complexity functions

on initial segments. We will consider two complexity functions to be equivalent
if their difference is bounded. We use the notation f O g or g � f to mean there
is a constant c ∈ ω such that f(n) ≤ g(n) + c for all n ∈ ω. We use the notation
f y g to mean that f O g and g O f .
A monotone machine M is a computably enumerable (c.e.) set of pairs �p,σX

where p,σ ∈ 2<ω and for every �p,σX, �q, τX ∈ M , p ⊆ q implies σ ⊆ τ or
τ ⊆ σ. We define the monotone complexity of a string σ with respect to M
to be Km

M (σ) = min{|p| : �p, τX ∈ M for some τ ⊇ σ}. One can show there
is a universal monotone machine U that can simulate any monotone machine.
It follows that U is optimal: for any other monotone machine M , there is a
constant c such that Km

U (σ) ≤ Km
M (σ) + c for all σ. For any string σ define

Km(σ) = Km
U (σ). In some constructions we will wish to approximate Km by

computable functions. Let Km
s(σ) = min{|p| : �p, τX ∈ Us and σ ⊆ τ}. For any
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program p and n ∈ ω define
Φsp(n) =

i if �p,σX ∈ Us and σ(n) = i
↑ if there is no �p,σX ∈ Us with |σ| > n .

We assume familiarity with prefix-free Kolmogorov complexity, K (also de-
noted H in the literature), and with standard notation and terminology for
complexity and randomness (see [15] and [6]), but we note a few instances of
special notation. We will use V to stand for the universal prefix-free machine
used to define K. We adopt the convention that if n is an integer then K(n)
stands for K(1n). For any α ∈ 2<ω we define an optimal monotone description
of α to be a program p of minimal length such that �p,βX ∈ U for some β ⊇ α.
An optimal prefix-free description of α is a program p of minimal length such
that �p,αX ∈ V . Some of our constructions will involve the first place where two
sequences differ. For α,β ∈ 2<ω ∪ 2ω we define a partial function μ(α,β) = the
least initial segment of α (if any) that is incomparable with β. Finally, if α is a
computable real we will extend the notation and define Km(α) to be the least
integer k such that Km(α n) ≤ k for all n ∈ ω.

§2. Basic Properties of Km and K. This section contains properties of
Km and K that will be used in the following sections. We begin with well known
results that are listed here without proof. (See [15].) The first proposition gives
upper and lower bounds on K(α) in terms of the complexity of the length of α.
(We use “log” to denote the binary logarithm with the convention that log x = 0
for all x < 1.)

Proposition 2.1. For all α ∈ 2<ω,
K(|α|) ≤ K(α) +O(1) ≤ |α|+K(|α|) +O(1).

In particular, if α = 1n then α can be described by a prefix-free encoding of
the binary representation of n, so K(n) O logn+K(logn) O 2 logn.
The second proposition gives an upper bound on Km(α) in terms of the length

of α. Since Km(1
n) is bounded by a constant, the corresponding lower bound is

trivial.

Proposition 2.2. For all α ∈ 2<ω, Km(α) ≤ |α|+O(1).
The next result shows that both K and Km may be used to give simple defi-

nitions of Martin-Löf randomness.

Proposition 2.3. The following are equivalent (i) α is Martin-Löf random
(ii) K(α n) � n (iii) Km(α n) y n.
Note that the characterization of the random reals is, in a sense, simpler using

Km, since a real is random if and only if its monotone complexity is asymptotic
to n. On the other hand, the prefix-free complexity of a random real always
grows larger than n as indicated by the next proposition.

Proposition 2.4. If α is a random real then limn→∞K(α n)− n =∞.
In fact, for most reals, the prefix-free complexity rises infinitely often to the

maximum possible.
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Proposition 2.5. The set of reals α such that for infinitely many n

K(α n) ≥ n+K(n) +O(1)
has uniform measure one.

The next two propositions record the fact that the prefix-free complexity of a
real oscillates, but the monotone complexity does not. The result for Km follows
directly from the definition. Let D be a subset of 2<ω. We will call a function
f : D → ω monotone if α ⊆ β implies f(α) ≤ f(β) for all α and β in D.
Proposition 2.6. Km is a monotone function.

Proposition 2.7. K is not a monotone function.

The next two propositions concern the subadditivity property. Although sub-
additivity does not hold for monotone complexity, Km has a weaker form of
subadditivity (involving K) that will be useful.

Proposition 2.8. K is subadditive, i.e. for all α,β ∈ 2<ω,
K(α β) ≤ K(α) +K(β) +O(1).

Proposition 2.9. Km is not subadditive, but for all α,β ∈ 2<ω,
Km(α β) ≤ K(α) +Km(β) +O(1).

The next two results show that the difference between Km(α) and K(α) is
bounded by a logarithmic function of |α|. (See [26] for a proof of Proposition
2.11.)

Proposition 2.10. For all α ∈ 2<ω, Km(α) ≤ K(α) +O(1).
Proposition 2.11. For any α ∈ 2<ω, real number 6 > 0 and integer k ≥ 1,

K(α) ≤ Km(α) + log |α|+ log log |α|+ · · · (1 + 6) logk |α|+O(1).
We now prove several lemmas that will be of use in later sections. The first

lemma establishes a bound on the prefix-free complexity of μ(α,β) in terms of
the monotone complexities of α and β.

Lemma 2.12. For incomparable α,β ∈ 2<ω,
K(μ(α,β)) ≤ Km(α) +Km(β) + 2 logKm(α) + 2 logKm(β) +O(1).

Proof. We define a prefix-free machine M by �p∗ q∗,σX ∈ M iff there are
p, q,α∗,β∗ ∈ 2<ω such that �p∗, pX, �q∗, qX ∈ V , �p,α∗X, �q,β∗X ∈ U and σ =
μ(α∗,β∗). Note that the domain of M is prefix-free and M is single valued
by the definition of monotone complexity. Let p and q be optimal monotone
descriptions of α and β. Let p∗ and q∗ be optimal prefix-free descriptions of p
and q. Then �p∗ q∗,μ(α,β)X ∈M . Hence K(μ(α,β)) ≤ K(p) +K(q) +O(1) ≤
|p| + 2 log p + |q| + 2 log q + O(1). The lemma follows since |p| = Km(α) and
|q| = Km(β). B
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The next lemma provides a lower bound on the maximum of the monotone
complexities of σ 0 and σ 1 in terms of the prefix-free complexity of their length.
(The factor 1/3 in Lemma 2.13 is not best possible, but is sufficient for our
purposes.)

Lemma 2.13. For any σ ∈ 2<ω,
max{Km(σ 0),Km(σ 1)} ≥ K(|σ|+ 1)/3−O(1).

Proof. Let α = σ i and β = σ (1 − i), where i ∈ {0, 1} is chosen so that
Km(α) ≥ Km(β). By Lemma 2.12 there is a constant c such that K(α) ≤
Km(α) + 2 logKm(α) +Km(β) + 2 logKm(β) + c. Since Km(α) ≥ Km(β) and
log x ≤ x/4 for x ≥ 16, we get K(α) ≤ 3Km(α) + c. Let c1 = c/3. Then
max{Km(α),Km(β)} = Km(α) ≥ K(α)/3− c1 ≥ K(|σ|+ 1)/3−O(1). B
The next lemma shows that when a string α is extended by concatenating

a string β, the monotone complexity of β is bounded above by the monotone
complexity of α β plus the prefix-free complexity of the length of α.

Lemma 2.14. For any α,β ∈ 2<ω, Km(β) ≤ Km(α β) +K(|α|) +O(1).
Proof. We define a monotone machine M by �p q, τX ∈ M iff �p, 1kX ∈ V

for some k and �q,σ τX ∈ U for some σ with |σ| = k. The lemma follows by
taking p to be an optimal prefix-free description of 1|α| and q to be an optimal
monotone description of α β. B
The next lemma considers the case where the α in Lemma 2.14 is fixed. Then

the term involving the length of α can be included in the constant.

Lemma 2.15. For any α ∈ 2<ω, there is a constant c such that for any β ∈
2<ω, Km(β) ≤ Km(α β) + c.

Proof. By Lemma 2.14, Km(β) ≤ Km(α β)+K(|α|)+ cI for some constant
c
I
. Let c = K(|α|) + cI . B
The final lemma of this section considers the situation where a string α is

extended by a computable real β. Then the monotone complexity of α β n is
bounded by the prefix-free complexity of α plus a constant.

Lemma 2.16. For any computable β ∈ 2ω, there is a constant cβ such that for
any α ∈ 2<ω and any n ∈ ω, Km(α (β n)) ≤ K(α) + cβ.
Proof. By Proposition 2.9 there is a constant c such that Km(α (β n)) ≤

K(α) +Km(β n) + c. Since β is computable, there is a constant k such that
Km(β n) ≤ k for all n. Let cβ = c+ k. B

§3. Monotone degrees. In this section we will study degrees of randomness
defined in terms of monotone complexity. Although monotone complexity has
been studied intensively, there does not appear to be much previous work on
the monotone degrees. However, the following definitions as well as an extensive
discussion of the K-degrees and other degree structures relating to randomness
can be found in a forthcoming book by Downey and Hirschfeldt [6].
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We define a partial ordering on reals by α≤Kmβ iff Km(α n) O Km(β n).
We define α≡Km

β iff α≤Km
β and β≤Km

α. We define the monotone degree of
a real α to be the set {β : α≡Km

β}. Note that the bottom monotone degree
0m is the (countable) set of all computable reals and the top monotone degree
1m is the set of all random reals. The top degree has the cardinality of the
continuum since it is well known that there are 2ℵ0 many random reals. We will
show that there are 2ℵ0 many intermediate monotone degrees (strictly between
0m and 1m).

Theorem 3.1. For any real α, if α is neither random nor computable, then
there is a real β such that the monotone degrees of α and β are incomparable.

Proof. Let γ be a random real. We will construct β in stages. Let β0 = ∅.
At an even stage s > 0 let βs+1 = βs 0

k for some k such that Km(βs 0
k) <

Km(α (|βs| + k)) − s. Note that such a k exists since Km(α n) → ∞ and
Km(βs 0

n) is bounded by Lemma 2.16. At odd stages s let βs+1 = βs (γ k)
for some k such that Km(βs (γ k)) > Km(α (|βs|+ k))+ s. To see that such
a k exists, note that since γ is random, βs γ is random by Lemma 2.15. Hence
Km(βs (γ n)) y n. Since α is not random, Km(α (|βs| + n)) ≺ n, and the
existence of k follows. This completes the construction. The theorem follows
since the even stages of the construction ensure Km(α n) WO Km(β n) and
the odd stages ensure Km(β n) WO Km(α n). B
Corollary 3.2. For any countable set of noncomputable, nonrandom reals

A, there is a real β that is incomparable with each α ∈ A.
Proof. Dovetail countably many strategies for making β incomparable with

αi as given in the proof of Theorem 3.1. B
Theorem 3.3. There is an antichain of 2ℵ0 monotone degrees.

Proof. We build a real γα for each α ∈ 2ω and ensure that if α W= β then γα
is incomparable with γβ . At stage 0 let γ∅ = ∅. At stage s > 0 we will define a
binary string, γσ, for each σ ∈ 2s. Let the strings in 2s be labeled σ1,σ2 . . .σ2s .
Stage s involves 2s + 1 many steps. At step 0, let γσi,0 = γσ s−1 for all i. At
step j > 0 choose each γσi,j to be an extension of γσi,j−1 such that for all i W= j,
Km(γσj ,j) > Km(γσi,j) + s. (This can be done by having γσj copy a random
real and, for i W= j, having γσi copy a computable real as in the strategies from
the proof of Theorem 3.1.) To complete stage s, we let γσi = γσi,2s for all i. To
complete the construction, for each α we define γα = s∈ω γα s. Now if α W= β
then there is a t such that for all s ≥ t, α s W= β s. By the construction, for
each s ≥ t there is an n and an m such that Km(γα n) > Km(γβ n) + s and
Km(γβ m) > Km(γα m) + s. Therefore, γα and γβ are incomparable. B
A minimal pair in a degree structure is a pair of distinct nonzero degrees a and

b with the property that the only degree d such that d ≤ a and d ≤ b is the bot-
tom degree 0. Csima and Montalbán [5] have shown that there is a minimal pair
of K-degrees. The next theorem shows that there is a minimal pair of monotone
degrees. To compare these two results, note that the 0 degree for the K-degrees
is the set of K-trivial reals, while the 0 degree for the monotone degrees is the
set of computable reals. The two results (which were obtained independently)
are therefore different, although there are similarities in the method of proof.
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Theorem 3.4 (Minimal Pair). There are noncomputable reals α and β such
that for any real γ, α≥Km

γ and β≥Km
γ implies γ is computable.

Proof. We will construct α and β in stages. Let c1 be the constant in Lemma
2.13. Let ρ = 0ω and let c2 = cρ as defined in Lemma 2.16. At each stage, αs
and βs will be finite initial segments of α and β. Let α0 = β0 = ∅. At each even
stage s > 0, let α∗s−1 be an extension of αs−1 such that Km(α

∗
s−1) > Km(αs−1).

Call σ ∈ 2<ω terminal if there are is no proper extension τ ⊃ σ such that
Km(τ) = Km(σ). Choose n large enough so that the following three conditions
hold: (1) there is no terminal σ with |σ| ≥ n and Km(σ) < K(α

∗
s−1) + c2 + s,

(2) n ≥ |α∗s−1| and (3) for all m ≥ n, K(m) ≥ 3(K(α∗s−1) + c1 + c2 + s). Let
βs = βs−1 0n−|βs−1| and let αs = α∗s−1 0

n−|α∗s−1|. At an odd stage s, do the
same as at an even s but with the roles of α and β reversed.
End of the construction
We now show that α and β form a minimal pair. Suppose γ≤Kmα and γ≤Kmβ.

We will call s a change stage if Km(γ ns+1) > Km(γ ns).
Case 1: Suppose there are infinitely many change stages. There are either

infinitely many even change stages or infinitely many odd ones. Assume there
are infinitely many even ones. For each even change stage s, let x be such that
ns < x ≤ ns+1 and Km(γ x − 1) < Km(γ x). Since x > ns, if γ x − 1 is
terminal, thenKm(γ x) ≥ K(α∗s−1)+c2+s by condition (1). On the other hand,
if γ x− 1 is not terminal, then Km(γ x) = max{Km((γ x− 1) 0),Km((γ
x − 1) 1)}. By Lemma 2.13, Km(γ x) ≥ K(x)/3 − c1. By condition (3),
K(m) ≥ 3(K(α∗s−1) + c1 + c2 + s). Thus Km(γ x) ≥ K(α∗s−1) + c2 + s holds
whether γ x− 1 is terminal or not. Now by Lemma 2.16 we have Km(α x) =

Km(α
∗
s−1 0

x−|α∗s−1|) ≤ K(α∗s−1) + c2. Substitution into the previous inequality
yields Km(γ x) ≥ Km(α x) + s. Since this inequality holds for infinitely
many even change stages s, we have that γ W≤Kmα. A similar argument shows

that if there are infinitely many odd change stages then γ W≤Kmβ. Thus Case 1
cannot occur.
Case 2: There are finitely many change stages. Let s∗ be the largest change

stage. Then Km(γ) = Km(γ ns∗) ∈ ω. So γ is computable. B
The existence of a minimal pair prompts one to ask whether there is a min-

imal (nonzero) degree. As discussed in the next section, it is known that there
is no minimal K-degree in the computably enumerable reals and we will also
show that there is no minimal monotone degree in the computably enumerable
reals. However, in the full structures of the K-degrees and the monotone degrees
the question is open. The next theorem and corollary shows that if a minimal
monotone degree exists, it would have to be (Km,K)-trivial as defined below.
The definition is modeled after the definition of the K-trivial reals: α is K-trivial
if K(α n) O K(n).
Definition 3.5. A real α is (Km,K)-trivial if Km(α n) O K(n).
The first example of an K-trivial real was constructed by Solvay [25]. The K-

trivial reals have many interesting properties and have been studied by (among
others) Downey, Hirschfeldt, Nies and Stephan [9]. In particular Hirschfeldt and
Nies [19] have shown a real α is K-trivial if and only if it is low for random



8 WILLIAM C. CALHOUN

(i.e. the set of reals that are random relative to α is exactly the set of random
reals). Related forms of “triviality” have been studied by Kummer [12] and by
Becher, Figueira, Nies and Picchi [1]. It is obvious that every K-trivial real is
(Km,K)-trivial. It is not known whether there are (Km,K)-trivial reals that
are not K-trivial. The following theorem shows that reals that are not (Km,K)-
trivial are “far” from the bottom monotone degree, in the sense that there are
continuum-many reals below them.

Theorem 3.6. If a real α is not (Km,K)-trivial then the set {β : β<Kmα}
has cardinality 2ℵ0 .

Proof. Assume α is not (Km,K)-trivial. We define a set A = {a0, a1, . . . }
such that if B ⊆ A and β = χB then α>Kmβ. We will construct A in stages. For
each s ≥ 0, let As = {a0, a1, . . . as−1} and for all C ⊆ As let σC = χC as−1+1.
We define as to be the least integer a > as−1 such that the following inequality
holds for all C ⊆ As:

Km(σC 0ω),Km(σC 0a−as−1−1 1 0ω) ≤ Km(α a+ 1)− s.(1)

To see that such an a exists, first note that by Lemma 2.16 there is a constant
k1 such that Km(σ 0ω) ≤ K(σ) + k1 for all σ ∈ 2<ω. Note also that for each
C ⊆ As, σC 0a−as−1−1 1 is determined by its length, a + 1. Hence there is a
constant kC such that K(σC 0a−as−1−1 1) ≤ K(a + 1) + kC for all a > as−1.
Letting k = k1 +max{kC : C ⊆ As} we obtain

Km(σC 0ω),Km(σC 0a−as−1−1 1 0ω) ≤ K(a+ 1) + k.(2)

Since α is not (Km,K)-trivial, there is an a such thatKm(α a+1) > K(a+1)+
k + s. Combining with inequality (2) we see that such an a satisfies inequality
(1). This complete the construction of A.
It remains to show that A has the desired property. Let B ⊆ A and β = χB.

We now show β<Kmα by showing Km(β n) ≺ Km(α n).
Case 1: n > a0. Let s be largest such that as < n. Let C = As ∩ B and

σC = χC as−1 + 1. If as ∈ B, then β n ⊆ σC 0as−as−1+1 1 0ω. If as W∈ B,
then β n ⊆ σC 0ω. Either way, the definition of as implies Km(β n) ≤
Km(α as + 1)− s ≤ Km(α n)− s.
Case 2: n ≤ a0. Then β n ⊆ 0ω. Let d = Km(0ω). Then for all n ≤ a0 we

have Km(β n) ≤ Km(α n) + d.
The two cases show β≤Kmα. Since Km(β n) ≤ Km(α n)− s for unbound-

edly large values of s in Case 1, β<Kmα. B
Corollary 3.7. If a real α is Km-minimal, then α is (Km,K)-trivial.

Proof. Suppose α is Km-minimal but not (Km,K)-trivial. By the previous
theorem, {β : β<Km

α} has cardinality 2ℵ0 . But since α is Km-minimal this set
is the countable set of computable reals, giving a contradiction. B
We now introduce an operation, ⊗, that produces a real α ⊗ f from a real

α and a strictly increasing function f . The graph of the complexity function
of α ⊗ f is obtained by “horizontally stretching” the graph of the complexity
function of α.
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Definition 3.8. Given any real α and a strictly increasing function f : ω →
ω, let α⊗ f be the real defined by

(α⊗ f)(n) = α(f−1(n)) if n ∈ range(f)
0 otherwise

For any string τ ∈ 2<ω we define τ ⊗ f as above except that τ ⊗ f is a string
with length f(|τ |).
Theorem 3.9. If α is any real and f : ω → ω is a strictly increasing com-

putable function, then Km(α⊗f n) y Km(α f−1[n]) where f−1[n] = max{k :
f(k) ≤ n}.
Proof. First we construct a monotone machineM1 to show Km(α⊗f n) O

Km(α f−1[n]). We enumerate the axiom �p,σX ∈ M1 iff σ = (τ ⊗ f) 0k for
some τ ∈ 2<ω and k ∈ ω, where �p, τX ∈ U and k < f(|τ | + 1) − f(|τ |). Now
we show that M1 is a monotone machine. Suppose �p,σ1X, �q,σ2X ∈ M1 and p
and q are comparable. Then for some τ1, τ2 ∈ 2<ω and some k1, k2 ∈ ω, we have
�p1, τ1X, �p2, τ2X ∈ U , k1 < f(|τ1|+1)−f(|τ1|) and k2 < f(|τ2|+1)−f(|τ2|). Since
U is a monotone machine, τ1 and τ2 are comparable. Without loss of generality,
assume τ1 ⊆ τ2. Then σ1,σ2 ⊆ (τ2 ⊗ f) 0ω, so σ1 and σ2 are comparable and
M1 is monotone. Now if σ = α ⊗ f n then �p,σX ∈ M1 where p is an optimal
monotone description of α f−1[n]. It follows that Km(σ) O |p| = Km(α
f−1[n]).
Now we construct a monotone machine M2 to show Km(α⊗ f n) � Km(α

f−1[n]). We enumerate the axiom �p,σX ∈M2 iff �p,σ ⊗ fX ∈ U . Note that if p
and q are comparable and �p,σ1X, �q,σ2X ∈M2 then we have �p,σ1 ⊗ fX, �q,σ2 ⊗
fX ∈ U . Since U is monotone, σ1 ⊗ f and σ2 ⊗ f are comparable. Without
loss of generality, assume σ1 ⊗ f ⊆ σ2 ⊗ f . It clearly follows from the definition
of ⊗ that σ1 ⊆ σ2, and so M2 is monotone. Now let σ = α f−1[n]. Then
σ ⊗ f = (α ⊗ f) f(f−1[n]) ⊆ (α ⊗ f) n. Letting p be an optimal monotone
description of σ⊗ f , we obtain Km(σ) O |p| = Km(σ⊗ f) ≤ Km(α⊗ f n). B
The following corollary shows that for any fixed strictly increasing, computable

function f , the operation α ⊗ f induces a well-defined mapping on the Km-
degrees.

Corollary 3.10. For any reals α and β and a strictly increasing, computable
function f , if Km(α n) y Km(β n) then Km(α⊗ f n) y Km(β ⊗ f n).

Proof. By Theorem 3.9, Km(α ⊗ f n) y Km(α f−1[n]) y Km(β
f−1[n]) y Km(β ⊗ f n). B
We now use Theorem 3.9 to show that there are infinitely many monotone

degrees of cardinality 2ℵ0 .

Corollary 3.11. There is an order-preserving embedding from the rationals
to the monotone degrees such that each degree in the image of the embedding has
cardinality 2ℵ0 .

Proof. It suffices to show that there is an order-preserving embedding from
the intervalQ∩(0, 1) to the monotone degrees such that each degree in the image
has cardinality 2ℵ0 . For any rational number r ∈ (0, 1) let fr(n) = un/rJ. Let α
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be a random real. Then by Theorem 3.9, Km(α ⊗ fr n) y Km(α f−1r [n]) y
f−1r [n] since α is random. Now f−1r [n] = max{k : uk/rJ ≤ n} y rn. The map
from r to α ⊗ fr induces the required embedding since r < s implies rn ≺ sn.
Finally, note that if α and β are random reals and α W= β then α⊗ fr y β ⊗ fr
and α⊗ fr W= β ⊗ fr. Since there are 2ℵ0 random reals, this implies each degree
in the image of the embedding has cardinality 2ℵ0 . B

§4. Computably enumerable monotone degrees. A real α is said to
be a computably enumerable real (or c.e. real) if it is the sum of a computably
enumerable set of rationals. (In this context, we identify a binary string or
sequence α with the real number with binary representation 0.α. Then α + β
is interpreted as addition mod 1, cα is the usual multiplication by a real c, and
α ≤ β is the usual ordering of real numbers.) Solovay [25] defined a reducibility
relation on the c.e. reals called domination or Solvay reducibility. We write β≤Sα
if there is a constant c and a partial computable function φ : Q→ Q such that
for each rational q < α we have φ(q) ↓< β and β − φ(q) ≤ c(α − q). Solovay
showed that if α and β are c.e. reals and α≤Sβ then α≤Kβ. Downey, Hirschfeldt
and Nies [8] showed that the c.e. reals are dense under Solovay reducibility and
they state that their density proof can be adapted to show the K-degrees of c.e.
reals are dense. Downey, Hirschfeldt and LaForte [7] defined another ordering,
rH-reducibility, and noted that the same method of proof can be adapted to
show the c.e. reals are dense under rH-reducibility. Downey and Hirschfeldt
[6] generalized these results to show that the c.e. reals are dense under any
Σ03 measure of relative randomness such that the bottom degree includes the
computable reals, the top degree includes Chaitin’s Ω, and + induces the least
upper bound operation.
Returning to the monotone degrees, we define a computably enumerable (c.e.)

monotone degree to be one that contains a c.e. real. Clearly, ≤Km is Σ03, the
bottom c.e. monotone degree is the set of computable reals and the top c.e.
monotone degree contains Chaitin’s Ω. However, it is not known whether the
monotone degree of α+β is the least upper bound for the monotone degrees of α
and β in the c.e. monotone degrees (or even whether the least upper bound always
exists). Furthermore, the following theorem shows that Solovay reducibility of
c.e. reals does not imply monotone reducibility.

Theorem 4.1. There are c.e. reals α and β such that β≤Sα but β W≤Km
α.

Proof. We will construct α so that α < 2−1 and define β = 2α. Then
for any rational q < α, β − 2q = 2(α − q). Hence α≤Sβ. We use a finite
injury priority argument to construct α. At each stage s, we will have a finite
string αs approximating α. To insure α < 2

−1 we set α0 = 0 (a one-bit string)
and issue the (strongest priority) restraint α ⊇ α0. For k ∈ ω we attempt to
satisfy requirement Rk: for some n, Km(α n + 1) ≥ Km(α n) + k. Before
continuing with the construction, we note that the existence of an α satisfying
the requirements proves the theorem. This follows since Km(β n) y Km(α
n+ 1) WO Km(α n).
We now describe stage s of the construction of α. For each k we have a number

nk,s, where nk,0 = 0 for all k. We will say that requirement Rk is currently
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satisfied at stage s if Km
s(αs nk,s + 1) ≥ Km

s(αs nk,s) + k. Let k be least
such that Rk is not currently satisfied. We act for Rk, observing the restraints
imposed by Rj for j < k and reinitializing Rj for j > k. Let σ be the longest
initial segment of αs that is restrained by some Rj with j < k. Let γ = 1∞.
Let u be least such that σ 1u 0 ≥ αs and Km

s(σ 1u 0) ≥ Ks(σ) + cγ + k,
where cγ is the constant in Lemma 2.16. To see that such a u exists, note
that for large enough u, Km(σ 1u 0) ≥ Km(σ 1∞) ≥ Km(σ 1u+1). Thus
by Lemma 2.13 there is a constant c1 such that Km(σ 1u 0) ≥ K(r)/3 − c1,
where r = |σ 1u 0|. Since K(r) → ∞ as u → ∞, we can choose u large
enough so Km(σ 1u 0) ≥ Ks(σ) + cγ + k. Finally, note that Km

s(σ 1u 0) ≥
Km(σ 1u 0). Having established that a u exists with the desired property, set
αs+1 = σ 1u 0, nk,s+1 = r − 1, and issue the restraint α ⊇ αs+1.
We now verify that each requirement is satisfied. We first note that it suffices

to show that all requirements act finitely often. To see this, consider the last
stage s at which any requirement Rj with j ≤ k acts. Let nk = nk,s+1. Then for
all t > s we have nk,t = nk and Rk is currently satisfied at t. For large enough
t, we have Km

t(αt nk+1) = Km(α nk+1) and Km
t(αt nk) = Km(α nk).

Hence, Rk is satisfied. Now to see that all requirements act finitely often, suppose
the opposite and let k be least such that Rk acts infinitely often. Let s be the
least stage such that no requirement Rj with j < k acts after s. Then the string
σ of the previous paragraph is fixed for all stages t > s at which Rk acts. Let
s∗ > s be large enough so that Kt(σ) = K(σ) for all t > s∗. We note that the
value of u chosen increases each time Rk acts. Indeed, suppose Rk acts at t1
with u = u1 and Rk acts at t2 with u = u2 for some stages t2 > t1 > s∗. Then
u2 > u1 since σ 1u2 0 > αt1+1 = σ 1u1 0. Using an argument similar to the
one in the previous paragraph, it now follows that at some stage t > s∗ the value
chosen for u will be large enough so that Km(σ 1u 0) ≥ K(σ) + cγ + k. Then
Rk will not act after stage t, contradicting the assumption that Rk acts infinitely
often. B
Theorem 4.1 shows Solovay reducibility does not imply monotone reducibility

for c.e. reals. The next lemma shows that a version of the permitting method
(from computability theory) can be used in the contruction of two c.e. reals to
ensure one is monotone reducible to the other.

Lemma 4.2. Suppose α and β are c.e. reals and αs and βs are nondecreasing
computable sequences of computable reals converging to α and β respectively. If
there is a computable function f such that limx→∞ f(x) = ∞ and for every
n, s, t ∈ ω, αs n = αt n implies βf(s) n = βf(t) n, then α≥Kmβ.

Proof. The result follows easily if α or β is computable, so we may assume
that α and β are irrational. We need to show that Km(β n) O Km(α n). To
do so, we define a monotone machine M . If �p,σX ∈ U and σ ⊆ αs for some s,
enumerate �p,βf(s) |σ|X ∈ M . To see that M is monotone, suppose p and q
are comparable, �p,σX, �q, τX ∈ U and there are stages s and t such that σ ⊆ αs
and τ ⊆ αt. Since U is monotone, σ and τ are comparable. Without loss of
generality, assume σ ⊆ τ . Let n = |σ|. Then αs n = σ = τ n = αt n.
Thus βf(s) n = βf(t) n ⊆ βf(t) |τ |. It follows that M is monotone. Now,
for any n, let σ = α n. Let p be a minimal monotone description of σ. Since
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α is irrational, there is a stage sn such that for all s ≥ sn we have αs n = σ.
Thus �p,βf(sn) nX ∈ M . By the hypothesis and definition of sn, we have that
βf(s) n = βf(sn) n for all s ≥ sn. Since β is irrational and f(s) → ∞, this
implies β n = βf(sn) n. Hence Km

M (β n) ≤ |p|. The lemma follows. B
Since it does not appear to be possible to apply Downey and Hirschfeldt’s

density theorem to the c.e. monotone degrees, we use Lemma 4.2 to give a direct
proof that the computably enumerable monotone degrees are downward dense.
(The author wishes to thank T. Slaman for suggesting the use of permitting in
the proof of this theorem.) The proof of the theorem is a modification of the
Sacks density theorem for the computably enumerable Turing degrees [21].

Theorem 4.3. For any c.e. real α>Km
0 there is a c.e. real β such that

0<Km
β<Km

α.

Proof. The proof is a finite injury priority argument. Let αs be a nonde-
creasing computable sequence of computable reals converging to α. We will build
a nondecreasing computable sequence of computable reals βs converging to the
c.e. real β. We must satisfy three requirements: (i) β≤Km

α, (ii) 0 W≥Km β, (iii)

β W≥Km α.

We will use permitting to ensure (i). That is, we will build the sequence βs so
that for any n and any t > s, αs n = αt n implies βs n = βt n. It follows
from Lemma 4.2 that β≤Km

α.
Requirement (ii) is equivalent to the assertion that β is not computable. We

may break the requirement into infinitely many subrequirements. For each e we
ensure that the eth partial computable function φe does not compute β. To do
so, we will use the Sacks coding strategy. We define an increasing computable
sequence of coding locations nk. (We assume that all stronger strategies have
finished acting. More precisely, if any stronger strategy acts, this strategy starts
over, abandoning any coding locations it had chosen.) Coding locations are
chosen so that nk > k, nk−1 and so that nk is not restrained by any stronger
strategy. Once a coding location nk is chosen we ensure that at any subsequent
stage s, αs(k) = βs(nk) (unless nk is abandoned). We may assume that at every
stage s there are infinitely many n such that βs(n) = 0 and infinitely many n such
that βs(n) = 1, allowing us to chose a new coding location satisfying the above
constraints. We will then be able to preserve the relationship αt(k) = βt(nk)
at any subsequent stage t, since if the current approximation to α(k) changes
at t then our current approximation to β(nk) is permitted to change at t. We
will only choose a new coding location at a stage at which the initial segment
of β (correctly) computed by φe is longer than at any previous stage. Note that
the final outcome of this strategy is to chose and preserve a finite set of coding
locations. Otherwise, the length of the initial segment of βs computed by φ must
be unbounded, and it follows that φ computes β and thus β is computable. Since
there are is a computable infinite sequence of coding locations in β, it follows
that β computes α. But then α is computable, contradicting the hypothesis that
α>Km

0.
We may break requirement (iii) into infinitely many subrequirements. For each

c ∈ ω we will ensure that there is a witness w ∈ ω such that Km(β w) + c <
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Km(α w). To ensure this, we restrain β n for increasing values of n. (Note,
we are unable to restrain coding locations chosen by stronger priority strategies,
but we may assume the strategy keeps starting over until we reach a stage at
which none of the values at such coding locations will ever change again.) We
continue increasing the constraint on β until we get a w and a stage s such that

Km
s(βs w) + c < Km

s(αs w).(3)

We now wait. If at some later stage t we have Km
t(βt n) + c ≥ Km

t(αt n)
for all n ≤ w then resume increasing the restraint on β until we find that (3)
holds again (for a larger witness w at a later stage s). If the restraint on β grows
infinitely often, β is computable, and for all n, Km(β n) + c ≥ Km(α n),
which implies β≥Kmα. But then α is computable, contradicting the hypothesis
that α>Km

0. Therefore, the final outcome of this strategy is a finite restraint
and (3) is permanently satisfied for some witness w (i.e. for a cofinal set of stages
s).

B

§5. Strongly c.e. monotone degrees. A real is said to be strongly com-
putably enumerable (strongly c.e.) if it is the characteristic function of a com-
putably enumerable set. A monotone degree is said to be strongly c.e. if it
contains a strongly c.e. real. The following lemma and corollary provide bounds
on the complexity of a strongly c.e. real.

Lemma 5.1. If α is strongly c.e. then K(α n) O logn+ 2 log logn.
Proof. We give an upper bound for K(α n) by constructing a prefix-free

machine M . Fix an index e such that α = χWe . Let �q 01 p,σX be in M if
q is the binary representation of |p|, q is the string in which each bit of q is
repeated twice, p is the binary representation of a number k, and σ ⊆ τ , where
τ is the characteristic function of We,s and s is the stage at which k enters We.
Note that M is prefix free since the position of the first 01 uniquely determines
q, and q determines the length of the string. Note also that if k is the last
number to enter We n then there will be a �q 01 p,σX in M with p the binary
representation of k and hence σ = α n. The result follows since |p| ≤ log(k)+1
and |q| ≤ 2(log log k + 1). B
Corollary 5.2. If α is strongly c.e. then Km(α n) O logn+ 2 log logn.
Proof. Obvious, since Km(α n) O K(α n). B
The term 2 log logn in the previous two results is sufficiently small for our

purposes, but can be replaced by log log n+ log log logn+ · · ·+ (1+ 6) logk n for
any real number 6 > 0 and integer k ≥ 2.
Definition 5.3. We will use the notation f(n) ≈ g(n) to mean there is a

constant c such that |f(n)− g(n)| ≤ c log logn for all n ∈ ω, n ≥ 4.
Lemma 5.4. There is a strongly c.e. real α such that Km(α n) ≈ logn.
Proof. Let p0, p1, . . . be an enumeration of 2

<ω such that i < 2|pi|+1 for all
i ∈ ω. Let α(n) = 1 if �pn,σX ∈ U for some σ where σ(n) ↓= 0. Otherwise,
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let α(n) = 0. Clearly, α is strongly c.e.. By definition of α, Km(α n) ≥
min{|pi| : i ≥ n} ≥ log(n) − 1. On the other hand, by Lemma 5.2 we have
Km(α n) O log(n) + 2 log log(n). B
Theorem 5.5. There are incomparable strongly c.e. monotone degrees.

Proof. We construct α and β by stages in a recursive construction. At each
stage s, αs and βs are computable reals and for each n the values of αs(n)
and βs(n) are nondecreasing in s. (That is a value can change from 0 to 1
at some stage, but not from 1 to 0.) We then let α(n) = lims→∞ αs(n) and
β(n) = lims→∞ βs(n) for all n. Note that there is a computable function h such
that for any σ ∈ 2<ω

(∀n ∈ ω)[h(|σ|) > Km(σ 1n)].

We ensure that α and β are incomparable by satisfying the following require-
ments.
Requirement Rj for j even: For some n, Km(α n) > Km(β n) + j.
Requirement Rj for j odd: For some n, Km(β n) > Km(α n) + j.
Requirement Rj will be satisfied on an interval [mj,mj+1), where m0 = 0 and

mj+1 = mj + 2
h(mj)+j − 1 for all j.

Strategy for Rj for j even: For all n ∈ [mj ,mj+1) we set βs(n) = 1. Let
l = mj+1 −mj and let p0, p1, . . . , pl−1 be the set of strings of length less than
h(mj) + j. For all i ∈ [0, l) let ni = mj + i and set

αs(ni) =
0 if Φspi(ni) = 1 or Φ

s
pi(ni) ↑

1 if Φspi(ni) = 0
.

Strategy for Rj for j odd: The same as for j even, but reverse the roles of
α and β.
End of the Construction.
We will now see that Rj is satisfied for j even. (The same argument works for

j odd by symmetry.) Using the notation from the construction, let n = mj+1.
We will show that Km(α n) > Km(β n)+ j. Suppose not. By definition of h,
we have Km(β n) = Km((β mj) 1

l) < h(mj). Thus Km(α n) < h(mj)+ j.
So there is some p with |p| < h(mj) + j such that Φp n = α n. But p = pi
for some i ∈ [0, l). Therefore, Φp(ni) W= α(ni), giving us a contradiction. B
Corollary 5.6. There is a countably infinite antichain of strongly computably

enumerable monotone degrees.

Proof. Dovetail the strategies of the previous proof for ω-many reals αi. B
Theorem 5.7. There is an order-preserving embedding of the rationals into

the strongly c.e. monotone degrees.

Proof. By Lemma 5.4 let α be a strongly c.e. real such that Km(α n) ≈
log(n). For each rational r, with 0 < r < 1 define a function fr by fr(n) =
(un1/rJ). Note that since 1/r > 1, fr is strictly increasing. Let βr = α ⊗ fr.
Then by Theorem 3.9, Km(βr n) y Km(α f−1[n]) ≈ log(f−1[n]) y lognr =
r logn. Thus Km(βr n) ≈ r logn. It follows that if s and r are rational and
0 < s < r < 1 then βs ≺ βr. Thus we have an embedding of the rationals
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in the interval (0,1) (or equivalently, of all the rationals) into the strongly c.e.
monotone degrees.

B
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