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Abstract

In a previous paper with M. Džamonja, class forcings were given
which fixed the complexity (a universality covering number) for certain
types of structures of size λ together with the value of 2λ for every
regular λ. As part of a programme for examining when such global
results can be true in an inner model, we build generics for these class
forcings.1

1 Introduction

The internal consistency programme was introduced in [6]. This programme
aims to determine which consistent statements of set theory are in fact in-
ternally consistent, i.e., true in an inner model, assuming the existence of
large cardinals. One of the main advantages of internal consistency is that
this rules out consistent statements, such as the nonexistence of transitive
set models of ZFC, which can only hold in universes which are incompatible
with V .

There are many consistency results achieved using forcing which are not yet
known to be obtainable via inner models, since internal consistency results
are harder to achieve. To obtain any consistency result, one typically makes

1This research was supported by the Austrian Science Fund (FWF), Grants P 16334-
NO5 and P 16790-NO4.
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use of a generic filter. To obtain consistency results using set-forcing, one
may assume that the starting model is countable and therefore the existence
of a generic is trivial. To achieve internal consistency, one needs an inner
model with all the ordinals of the ambient universe, therefore one cannot
restrict to a countable submodel.

The question then is how to build a generic, if one even exists. The methods
used to do this require new techniques which are mathematically of indepen-
dent interest. Since there are strong connections between work done in large
cardinal theory and in internal consistency (see e.g. [6], [2]), these techniques
can be applied in the context of other questions involving large cardinals (see
e.g. [8]).

For more about this programme, including a discussion of some of the results
that have been obtained within it, we refer the reader to [6].

A number of the early internal consistency result below 0# are discussed in
Chapter 3 of [5]. These result use either reverse Easton or forward Easton
forcing methods. An example of the latter is due to Jensen [1], who showed
that in L[0#] there is a real which is class-generic but not set-generic over L.
All of these early results however only produce models of GCH.

The first example of an internal consistency result where GCH fails appears
in [7]. In that paper, Easton’s theorem ([4]) is examined in the internal
consistency context, and it is shown that any (parameter-free) L-definable
Easton function can be realised as the generalised continuum function κ 7→ 2κ

in an inner model of L[0#]. Such a result cannot be obtained using the forcing
that Easton introduced, the Easton product. Instead, [7] introduces a reverse
Easton iteration of Easton products, and then shows how to obtain a generic
over L for this class-forcing using the Silver indiscernibles. A generic for the
forcing up to and including i, denoted G(≤ i), is constructed by induction
on the Silver indiscernible i; the main task is to choose these to cohere in the
sense that G(≤ j) contains the image of G(≤ i) under the natural embedding
πij : L→ L obtained by “shifting” the class I of indiscernibles onto I \ [i, j).
The technique of “generic modification” is used in order to modify a given
generic G′(≤ j) to a generic G(≤ j) with the desired coherence property.

Our work in the present paper extends that of [7] in two new directions.
First, we show how to construct generics for forcings for which the technique
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of generic modification cannot be used. Instead, we construct our generics
directly so as to cohere. Second, we establish the first internal consistency
result (section 5) that handles a reverse Easton iteration of forcings whose
building blocks are not products, as in [7], but which are themselves iter-
ations. This presents some significant new challenges that we meet using
special dense sets of conditions and elementary submodels.

The context of the present paper is that of embedding complexity. However,
the techniques we introduce here for the construction of generics have the
potential of application to many other contexts. We discuss this point further
in the final section.

In order to explain our results on embedding complexity, we begin with the
basic universality definitions. An embedding (also called weak embedding)
for ordered sets is an injective order-preserving map. A strong embedding is
an embedding which also preserves incomparability. The range of a strong
embedding is an isomorphic copy of the order in the domain. For graphs,
an embedding is an injective function which preserves edges and a strong
embedding is an injective function whose range is an induced subgraph.

Given a set A(λ) of structures each of size λ, a (strong) universal model for
A(λ) is an element of A(λ) which (strongly) embeds all other structures in
A(λ). If there does not exist a universal model for A(λ), then we consider
its complexity, or the smallest size of a subfamily of A(λ) which embeds
the rest. This subfamily of structures is called a universal family. All of
these notions have weak and strong counterparts depending on the type of
embedding used.

In this paper, λ, κ will be regular cardinals such that λ ≥ κ ≥ ℵ0. Let C(λ, κ)
be the set (of representatives under isomorphism) of all posets of size λ which
omit κ-chains. Denote by G(λ, κ) the set of all graphs of size λ which omit
κ-cliques.

In the paper [3], two class forcing results were given. One says that the weak
complexity for C(λ, κ) (or G(λ, κ)) can be 2λ for any “reasonable” value of
2λ and κ, and that all these values can be fixed simultaneously for all regular
λ. Reasonable here means that 2λ is limited only by the usual restrictions on
such values and κ is as above. The other states that the strong complexity
for G(λ, κ) can be any regular cardinal between λ+ and 2λ for reasonable
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values of 2λ and κ, and that these values can all be fixed simultaneously for
all regular λ. These results will be stated in the sections 2 and 3, thus, the
paper can be considered self-contained.

In sections 2 and 3, we take the global product forcings given in [3] and
modify them so that they are reverse Easton iterations. In both cases we are
fixing the value of F (λ) = 2λ for all regular λ simultaneously. This could
lead to problems as the values that F takes can skip over cardinals. However,
there is a club class of cardinals λ such that F (θ) < λ for all θ < λ. We will
form our iteration over these closure points. This is important in order to
build generics.

In sections 4 and 5, we build generics for the global iterations given in Sections
2 and 3.

In section 6, we isolate the special properties of our forcings which are re-
quired for our construction. As our forcings lack the homogeneity properties
of Cohen forcing which were heavily used in [7], we instead rely on other
distinctive properties of the forcing in order to directly build the generic. We
also discuss other types of forcings which may meet these criteria.

We will use the convention that for p, q ∈ P , a forcing notion, q ≤ p indicates
that q is stronger than p. For a forcing condition p, we denote by Dom(p)
the non-trivial domain, or support, of p.

2 Iterating high complexity

In the paper [3] a forcing notion was given for any regular uncountable λ
which fixed the complexity of C(λ, κ(λ)) to be maximal (that is, 2λ) and
fixed the value of 2λ > λ+. A globalisation of that result was also given as
an Easton product, which proved the following result:

Theorem 2.1. Assume V = L. To each uncountable regular cardinal λ asso-
ciate a regular cardinal κ(λ) ≤ λ and a cardinal F (λ) such that cf(F (λ)) > λ
and λ < θ implies F (λ) ≤ F (θ). Assume that the functions κ, F are L-
definable. Then there exists an L-definable, ZFC-preserving, cardinal pre-
serving class forcing notion P such that in LP the complexity of C(λ, κ(λ))
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is F (λ) = 2λ for each regular uncountable λ.

Remark 2.2. In the theorem above, the functions κ and F are L-definable
with or without parameters. When building the generic in Section 4, it will
be required that these functions are definable without parameters.

Namely, P was defined as a product forcing notion of P (λ, κ(λ), F (λ)) (de-
fined below) with Easton support. Recall that Easton support means that
the support is bounded at inaccessibles.

The forcing notion P (λ, κ(λ), F (λ)) was defined to be the (< λ)-support
product of F (λ) copies of Q = Q(λ, κ(λ)). We will repeat the definition of
Q below, but first a remark is needed about the terminology.

The definition of Q requires a set of bounded subsets of λ which we call
low sets. These are used to restrict the growth of chains when extending
sequences of posets without creating large antichains in the forcing. This
method was introduced in [9] and also used in [3]. The exact definition is
not required for this paper, but can be found in both of the papers above.

Let the elements of Q be q = (δ,X,A), where

1. δ < λ is an ordinal,

2. X ⊆ δ is a poset (X,≤X) which omits κ(λ)-chains and in which α ≤X β
implies that α ≤ β (as ordinals),

3. the conditions on A are as follows:

(a) A is a family of size < λ of low subsets A of λ such that A ⊆ δ
and |A| < κ(λ),

(b) if A ∈ A is such that sup(A) ≤ x < δ, then A �X x.

The ordering of Q is as follows. If q = (δ,X,A) and q′ = (δ′, X ′,A′) are in
Q, then q′ ≤Q q (i.e. q′ is stronger than q) if and only if δ′ ≥ δ, with X a
subposet of X ′ such that X = X ′ ∩ δ and A = A′ ∩ [δ]<κ(λ).

If a forcing notion has the property that one can build decreasing sequences
of size < λ only controlling what happens at limit stages, we say that the
forcing is weakly λ-closed. More precisely:
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Definition 2.3. A forcing notion P is weakly λ-closed, if and only if there
exists a function w : P<λ → P such that for all limit τ < λ if 〈pα : α < τ〉 is
a descending chain and satisfies the following:

for all limit τ ′ < τ we have pτ ′ ≤ w(〈pα : α < τ ′〉)

then the sequence 〈pα : α < τ〉 has a lower bound.

Note that weakly λ-closed falls in between the notions of λ-closed and λ-
strategically closed. The forcing P (λ, κ(λ), F (λ)) was shown to be weakly
λ-closed and satisfy the λ+-cc.

In order to build a generic for the global result Theorem 2.1, we must first
have an iteration.

Lemma 2.4. We can find a class forcing P such that it satisfies the conditions
of Theorem 2.1 and in addition, P is given as a reverse Easton iteration
〈(Pα, Qα

˜
) : α ∈ Ord〉 where Pα  Qα

˜
is weakly α-closed for each α ∈ Ord.

Proof To form an iteration out of this, we must iterate over the closure
points of F and use a product in between.

Let 〈λβ : β ∈ Ord〉 be the class of closure points of the the F function. That
is, for all ordinals β and for all θ < λβ, a regular cardinal, F (θ) < λβ. Note
that each λβ is a limit cardinal.

Define 〈(Pα, Qα
˜

) : α ∈ Ord〉 as follows. Let Qα be the Easton support prod-
uct of P (β, κ(β), F (β)) for β ∈ [λα, λα+1) a regular, uncountable cardinal.
Let P be the reverse Easton iteration of the Qα

˜
.

As in [3], Qα preserves cofinalities and forces that C(β, κ(β)) has complexity
F (β) for all β ∈ [λα, λα+1).

We must only check that at closure points λβ, the complexity has not been
affected by the forcing below λβ. Since λβ is always a limit cardinal, we
must check that the complexity of C(λ, κ(λ)) is F (λ) in MPλ if λ = λβ is
inaccessible or λ = λ+

β and λβ is singular.

When λβ is inaccessible, we will have two cases, depending on whether or
not it is Mahlo. If λβ is a Mahlo cardinal, then the forcing has the λβ-cc and
the result follows as in [3].
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So assume that λβ is not Mahlo. We will use the elementary submodels
argument as in [3] to check that we have the correct complexity. In this case,
we only have the λ+

β -cc. We must ensure that the forcing below λβ does not
introduce inconvenient embeddings which would lower the complexity at λβ.
To that end, we can anticipate a generic for the forcing below λβ and run the
complexity argument based on the information in the anticipated generic.
As we have the λ+

β -cc, we can anticipate a maximal antichain in λβ steps and
we use elementary submodels to ensure that this happens in order type λβ.

If λβ is singular, then the forcing at λβ is trivial. However, we must check the
complexity at λ+

β . Here we have the λ++
β -cc. The argument then proceeds as

in the non-Mahlo inaccessible case, replacing λβ with λ+
β . 2

3 Iterating low complexity

We will also make an iteration out of the globalisation of the low complexity
result in [9]. As before, we have already proved in [3] that the forcing below
exists as a product.

Theorem 3.1. Assume V = L. Let λ, κ(λ), F be as in Theorem 2.1 and let
ν(λ) ∈ [λ+, F (λ)) be L-definable. Then there exists an L-definable, ZFC-
preserving, cardinal preserving class forcing notion P such that in LP the
strong complexity of G(λ, κ(λ)) is ν(λ) and F (λ) = 2λ for each regular
uncountable λ.

Remark 3.2. In the theorem above, the functions κ, ν and F are L-definable
with or without parameters. When building the generic in Section 4, it will
be required that these functions are definable without parameters.

The general construction of this global iteration is as before, except at each
regular cardinal λ, the forcing is an iteration of length ν(λ) which produces
a member of a universal family at every successor stage. When necessary
in order to distinguish the local iteration at a particular λ and the global
iteration, the local iteration will have a superscript l.

Here, the global forcing P will be defined as an iterated forcing notion with
Easton support. At each regular stage λ of this global iteration, we force with
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P (λ, F (λ), κ(λ), ν(λ)) = 〈P l
α, Q

l
α

˜
: 0 ≤ α < ν(λ)〉 which is a (< λ)-support

iteration of length ν(λ). At singular stages, the forcing will be trivial. For a
particular regular λ, we describe the forcing P (λ, F (λ), κ(λ), ν(λ)) below.

The first step of the iteration, Ql
0, is used to add F (λ)-many Cohen subsets

to λ, using the standard λ+-cc and λ-closed forcing.

In each step α ≥ 1 of the iteration, we will add a graph of size λ which omits
κ(λ)-cliques that strongly embeds every member of G(λ, κ(λ)) in MP lα . We
will modify the conditions for Ql

α slightly from the version in [9] in order to
make the construction of the generic easier.

Namely, let Ql
α = (Q,≤) for some ordinal α such that 1 ≤ α < ν(λ).

Fix some “canonical” enumeration {Zγ : γ < F (λ)} of all graphs of size λ
which omit κ(λ)-cliques which exist at this stage. Let q ∈ Q if and only if
q = (δ,X,A,Z,Φ) with the following properties:

1. δ < λ is an ordinal,

2. X ⊆ δ is a graph which omits κ(λ)-cliques,

3. A ⊆ [δ]<κ(λ) is a family of low subsets of δ such that |A| < λ,

4. Z ⊆ F (λ) such that |Z| < λ,

5. Φ : Z × δ → δ is a function such that if γ ∈ Z, then the mapping
x 7→ Φ(γ, x) is a strong embedding from Zγ � δ into X,

6. if A ∈ A is such that sup(A) ≤ x < δ, then A × {x} * X (i.e. there
exists an element of A which is not connected to x in X),

7. if A ∈ A and γ ∈ Z, then A * Φ”({Zγ} × δ) := {Φ(Zγ, β) : β < δ}.

If q = (δ,X,A,Z,Φ) and q′ = (δ′, X ′,A′,Z ′,Φ′) are in Q, then q′ ≤Q q (i.e.
q′ is stronger than q) if δ′ ≥ δ, with X = X ′ ∩ δ as graphs, A = A′ ∩ [δ]<κ(λ)

and Z ⊆ Z ′. Additionally, the following requirements must be met:

(a) if (Zγ, x) ∈ Dom(Φ) then Φ′(Zγ, x) = Φ(Zγ, x),

(b) if γ ∈ Z and δ ≤ x < δ′ then Φ′(Zγ, x) ≥ δ,
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(c) if γ 6= γ′ ∈ Z and δ ≤ x, y < δ′, then Φ′(Zγ, x) 6= Φ′(Zγ′ , y).

The intuition for the definition of conditionhood is as follows. The graph
X generically becomes a model which is universal for graphs in G(λ, κ(λ))
which exist at that stage of the iteration. The set A prevents large cliques
from forming in X via condition 6. The graphs indexed by Z are the “ground
model” graphs which exist at that stage of the iteration whose restriction to
δ embed into X. The functions Φ are the appropriate partial embeddings.

The modification that we made to the conditions was to take the actual
graphs of size λ out of the condition and replace them by their indices. This
changes the effective size of the conditions to be < λ.

Forming the global iteration for the forcing P works exactly as in Section
2. Namely, let 〈λβ : β ∈ Ord〉 be the class of closure points of the the F
function as before. Define P = 〈(Pα, Qα

˜
) : α ∈ Ord〉 as follows. Let Qα be

the Easton support product of P (β, κ(β), F (β), ν(β)) for β ∈ [λα, λα+1) a
regular, uncountable cardinal. Let P be the reverse Easton iteration of the
Qα
˜

. Using similar techniques as in the case of high complexity, P forces the
complexity of G(λ, κ(λ)) to be ν(λ) for all regular λ.

4 Generic for high complexity

In this section, we will build a generic for the forcing P such that in MP the
complexity of C(λ, κ(λ)) is F (λ) = 2λ for all regular λ. Namely, this is the
forcing P as defined in Lemma 2.4 above.

Let I = {iα : α ∈ Ord} be the Silver indiscernibles for L in increasing order.
We will make use of the following facts:

1. For all formulas ϕ, it is the case that L � ϕ(α,~i) ⇔ ϕ(α,~j) whenever
α < min(~i ∪~j) where ~i,~j ∈ I<ω.

2. If t is a Skolem term in L and t(j1, ..., jk, jk+1, ..., jn) < jk+1 where
j1 < ... < jk < jk+1 < ... < jn, then this term has the same value as
t(j1, ..., jk, j

′
k+1, ..., j

′
n) where j′i > jk for i > k.
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Since the second fact indicates that the parameters above jk are irrelevant
(when t takes values below jk+1), we often write t(j1, ..., jk, ~∞). When we
say that ~j < α for some vector j, we mean that all elements of ~j are less than
α.

There are ℵ0 many Skolem terms, so we will enumerate them as {tn : n < ω}.

Theorem 4.1 (0#). Let P∞ = 〈P (α) : α ∈ Ord〉 be the iteration with Easton
support definable in L without parameters as in Lemma 2.4 above. Also
assume that the functions κ and F (defined in Theorem 2.1) are L-definable
without parameters. Then there exists a G such that G is P∞-generic over
L.

Proof First note that it suffices to meet all set maximal antichains since
there are no cofinal antichains in P∞. We will define G(≤ i) generic for
P (≤ i) by induction on i ∈ I. Since the function F is definable without
parameters, the indiscernibles are closure points of F .

The following properties of P were proved in the previous paper.

Lemma 4.2. 1. P (> λ) is weakly λ+-closed for all regular λ.

2. P (< λ) has the λ-cc for Mahlo (and hence, indiscernible) λ.

Finding a generic for P (≤ i0) is trivial since P(P (≤ i0))
L is countable.

If α is a limit ordinal then we want G(≤ iα) to be the “direct limit” of
G(≤ iβ) for β < α. In order to achieve the compatibility needed to make
this generic, we will use the shift map below.

Let β < β′. We will define πiβ ,iβ′ as follows:

πiβ ,iβ′ (iγ) =

{
iγ γ < β

iβ′+(γ−β) γ ≥ β.

Shifting one indiscernible up to another extends uniquely to an elementary
embedding from L into L. We will abuse notation and denote this extension
in the same way.
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Let G(≤ iβ) → G(≤ iβ′) denote that G(≤ iβ) embeds into G(≤ iβ′) in the
sense that πiβ ,iβ′ [G(≤ iβ)] ⊆ G(≤ iβ′). Using the shift map we want to find
G(≤ iβ′) such that G(≤ iβ)→ G(≤ iβ′) and G(iβ′) is generic for P (iβ′).

Lemma 4.3. If G(≤ iβ)→ G(≤ iβ′) for all β < β′ < α for α limit, then the
direct limit G(≤ iα) =

⋃
β<α πiβ ,iα [G(≤ iβ)] is generic for P (≤ iα).

Proof Let ∆ = t(~i, iα, ~∞) be a maximal antichain in P (≤ iα). Then ∆̄ =
t(~i, iβ, ~∞) is a maximal antichain in P (≤ iβ). If p ∈ G(≤ iβ) ∩ ∆̄ and
G(≤ iβ)→ G(≤ iα) then πiβ ,iα(p) ∈ ∆ ∩G(≤ iα). 2

The successor case, iα+1 is the interesting one. We wish to find G(≤ iα+1)
assuming that we have already built G(≤ iα). We first note that P (< iα+1) =
P (≤ iα)∗P (iα, iα+1) where P (iα, iα+1) is the forcing in the interval (iα, iα+1).
By the induction hypothesis, we have G(≤ iα) which is P (≤ iα)-generic. We
can split our task up into finding G(iα, iα+1), generic for P (iα, iα+1) and then
finding G(iα+1) which is P (iα+1)-generic.

We start by building G(iα, iα+1). First note that by Lemma 4.2(2), every
antichain in P (iα, iα+1) has size < iα+1. We will show how to group all open
dense subsets of P (iα, iα+1) in Liα+1 [G(≤ iα)] into ℵ0 many families each of
size iα. Then we can use the weak i+α -closure of P (iα, iα+1) to handle maximal
antichains in each family.

Lemma 4.4. Let D be the collection of all open dense sets in P (iα, iα+1)
which belong to Liα+1 [G(≤ iα)]. Then D =

⋃
n<ωDn such that each Dn ∈

Liα+1 [G(≤ iα)] and |Dn| = iα.

Proof For every x ∈ Liα+1 [G(≤ iα)], there exists an n such that x = tn(~j,~k)

for ~j < iα and ~k ≥ iα+1. As we are only considering subsets of iα+1, we
know that ~k is irrelevant to the value of tn. We will arrange all elements of
Liα+1 [G(≤ iα)] according to the enumeration of the Skolem terms for which
they take values.

Let Dn be the set of all open dense subsets t
L[G(≤iα)]
n (~β, ~∞) of P (iα, iα+1) such

that ~β ≤ iα is a finite set of ordinals, t
L[G(≤iα)]
n (~β, ~∞) ∈ Liα+1 [G(≤ iα)] and

~∞ is a finite set of fixed indiscernibles of the appropriate length. L cannot
see indiscernibles, so we take all ordinal vectors instead which will include
the indiscernibles.
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So, for each n, Dn ∈ L[G(≤ iα)]. Now |Dn|L[G(iα)] = iα and there are only
countably many of them. 2

Thus, the sequence of the Dn’s is not in L[G(≤ iα)], but the individual pieces
are. We can also show that the shift of a Dn will also be in L[G(≤ iα)].

Claim 4.5. 1. If X ∈ L and |X| ≤ iβ′ then Ran(πiβ ,iβ′ ) ∩X ∈ L.

2. If X ∈ L and |X| ≤ iβ′ then πiβ ,iβ′ � X ∈ L.

Proof The proof of (1) breaks down into two cases. In the first case, we
have X ∈ Ran(πiβ ,iβ′ ). Let s : X → iβ′ be a bijection which is in L such that

s ∈ Ran(πiβ ,iβ′ ). Therefore, Ran(πiβ ,iβ′ ) ∩X = s−1[Ran(πiβ ,iβ′ ) ∩ iβ′ ]. Since

the critical point of πiβ ,iβ′ is iβ, this is equal to s−1[iβ], which is in L.

If X 6∈ Ran(πiβ ,iβ′ ) we can show that there exists Y ∈ L with Y ∈ Ran(πiβ ,iβ′ )
and X ⊆ Y .

First note that Ran(πiβ ,iβ′ ) = {t(~α, iβ′ , ~k) : ~α < iβ, ~k > iβ′}. Also there is

some Skolem term t such that X = t(~γ, iβ, iβ′ ,~l) for some ~γ < iβ and ~l > iβ′ .
Let

Y =
⋃
{t(~α, δ, iβ′ ,~j) : δ ∈ (max(~α), iβ′), δ ∈ Ord,

|t(~α, δ, iβ′ ,~j)| = iβ′}

One can see that Y ∈ L as all parameters are either ordinals or fixed. It is
also the case that Y ⊇ Ran(πiβ ,iβ′ ) ∩X. Thus,

Ran(πiβ ,iβ′ ) ∩X = (Ran(πiβ ,iβ′ ) ∩ Y ) ∩X ∈ L.

To prove (2), let f : iβ′ → X be a bijection in L. For all x ∈ X, we have

πiβ ,iβ′ (x) = πiβ ,iβ′ (f(f−1(x)))

= πiβ ,iβ′ (f)πiβ ,iβ′ (f
−1(x))

= πiβ ,iβ′ (f)(f−1(x)).
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The conclusion is clear as f and f−1(x) are in L. 2

We will build G(iα, iα+1) by induction on n in the enumeration of the Skolem
terms. By the weak i+α -closure of P (iα, iα+1) we can find p0 ∈ P (iα, iα+1)
such that p0 meets every dense set in D0. This can be done since there can
only be iα many of them. Assume that we have found 〈pm : m < n〉 such that
pm is compatible with all pm′ where m′ < m and meets all dense sets in Dm.
Use the weak closure again to find pn such that pn is compatible with all pm
where m < n and meets all dense sets in Dn. Let G(iα, iα+1) = {pn : n < ω}.

Now we must find G(iα+1), a generic for P (iα+1). We do this by first shifting
the conditions in G(iα) up to iα+1.

We will show that if we shift the conditions in the generic up to iα+1, they
remain conditions in Piα+1 . So we need to see that each poset that we build
generically at iα omits κ(iα+1)-chains. Because the forcing is L-definable
without parameters, κ(iα) is either iα or some θ < i0, the least indiscernible.
In both cases, we have κ(iα) ≤ κ(iα+1). Consider πiα,iα+1 [G(iα)]. This is a
set of posets of size iα which omit chains of size πiα,iα+1(κ(iα)) = κ(iα+1).

Let πiα,iα+1 [G(iα)] = {pβ : β < F (iα)}. Since we are taking the pointwise
image of the generic at iα and the conditions have size < iα, this remains the
case in the image. Our goal is to extend this image to a generic for P (iα+1).

The idea is to break up the product at iα into ω-many pieces each of size iα,
call them Mα

n for n < ω. The Mα
n ’s will be increasing, that is, Mα

n ⊆ Mα
n+1.

The sequence of pieces is not in L[G(≤ iα)], but each piece is. For each n we
will form the image of the generic G(iα) restricted to Mα

n and then extend
this to form a generic for the corresponding piece of the forcing P (iα+1).

For each α ∈ Ord and n < ω let Mα
n be the Σ1 Hull(iα ∪ {iα, iα+1, ..., iα+n}).

These are Σ1-elementary submodels of L and are iα-closed.

For n = 1, let {p : p ∈ Mα
1 ∩ G(iα)} =: A1. Then πiα,iα+1 [A1] is a set of

conditions of P (iα+1) and there are only iα-many of them.

Let p∗1 =
⋃
πiα,iα+1 [A1]. To see that this is a condition, we must show that

for each component in the support, no κα+1 sequences have been added. One
may write p∗1 =

⋃
{πiα,iα+1(〈p(β) : β ∈ Dom(p)〉) : p ∈ A1} which means that

p∗1(β) =
⋃
{πiα,iα+1(p)(β) : p ∈ A1} for each β ∈ Dom(p∗1). We need to see
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that Xp∗1(β) omits κ(iα+1)-chains. This has been proved by [3, Lemma 3.9],
where it was shown that the generic poset

⋃
{X : (δ,X,A) ∈ GQ generic

for Q(iα, κ(iα))} (using the notation for the forcing from Section 2) has no
κ(iα)-chain.

The filtration {Mα
n : n < ω} can be shifted up to a filtration of P (iα+1),

namely Mα+1
n = πiα,iα+1(M

α
n ). Note that each of the Mα+1

n has size iα+1, but
there are still only ω-many of them. Thus, if iα is a limit indiscernible, Mα

1

is the direct limit of πiβ ,iα(Mβ
1 ) for β < α.

Since Mα+1
1 is i+α+1-closed and p∗1 is a lower bound for πiα,iα+1 [A1], we have

p∗1 ∈Mα+1
1 . We may extend below p∗1 to form a generic for Mα+1

1 by breaking
up the dense sets that we must meet into ω-many blocks as before. We call
this restricted generic G1(iα+1).

The case n = 2 is essentially the general case. Again form A2 := {pβ ∈
G(iα) ∩Mα

2 : β < iα}. Extend below πiα,iα+1 [A2] to form p∗2 ∈ Mα+1
2 . Here

we need to check that p∗2 is compatible with G1(iα+1).

One can decompose p∗2 = p∗2 � Mα+1
1 ∪ p∗2 � (Mα+1

2 − Mα+1
1 ). Note that

p∗2 � Mα+1
1 ∈ Mα+1

1 by the iα+1-closure of Mα+1
1 . If there were a compatibil-

ity issue with p∗2 � Mα+1
1 = p∗1 ≥ G1(iα+1), then this would have already been

a problem in Mα+1
1 which would contradict the genericity of G1(iα+1). How-

ever, p∗2 � (Mα+1
2 −Mα+1

1 ) is irrelevant to G1(iα+1), that is, the conditions of
G1(iα+1) are not defined in this domain.

Now, as p∗2 is compatible with G1(iα+1), we may extend below p∗2 to form a
generic G2(iα+1) for Mα+1

2 such that G1(iα+1) ⊆ G2(iα+1).

Continue this process for all n < ω. Let G(iα+1) =
⋃
n<ω G

n(iα+1). We would
like to show that G(iα+1) is generic for P (iα+1). Recall that P (iα+1) has the
i+α+1-cc so any antichain has size at most iα+1. Any maximal antichain must
be contained in Mα+1

n for some n < ω, since each Mα+1
n is iα+1-closed and

thus intersects Gn(iα+1). 2
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5 Generic for low complexity

Here, the underlying forcing for each regular cardinal is an iteration and we
have globally iterated products of these iterations. Forming a generic for
this global iteration will be similar to the construction for the high com-
plexity case, but more complicated. In this case, we can find a filtration
{M i

n : n < ω} for the local forcing at i, but the restriction of the local forcing
at i to these M i

n is not simply a regular subforcing.

Theorem 5.1 (0#). Assume that P∞ = 〈P (α) : α ∈ Ord〉 is the iteration
with Easton support definable in L without parameters as in Section 3 above.
Then there exists G which is P∞-generic over L.

Proof As before, we will define G(≤ i) generic for P (≤ i) by induction on
i ∈ I. Let i < j be adjacent indiscernibles in I. The only difference in the
proof from the previous one will be the case of building a generic for G(j)
assuming that we have built G(< j). Again, we will build G(j) such that
πi,j[G(i)] ⊆ G(j). (Note that, as before, we abuse the notation πi,j to mean
the canonical extension of the indiscernible shift to the model L[G(< i)].)

Define {M i
n : n < ω} and {M j

n : n < ω}, filtrations at i and j respectively, in
a canonical way as before such that πi,j(M

i
n) = M j

n for each n. That is, let
M i

n be the Σ1 Hull of i together with the next n indiscernibles. Recall that
each M i

n is in L[G(≤ i)], but the sequence 〈M i
n : n < ω〉 is not.

As before, we would like to define the restriction of a condition to one of
these models. Before we can do that, we will see that we can extend any
condition such that all of its components have ground model names.

For each p ∈ P (i), we can write p = 〈p(α) : α ∈ Dom(p)〉. We say that p
is self-determined if it has the property that for every α in the support of p,
p � α forces p(α) = (δ,X,A,Z,Φ) as well as all Zγ � δ, for γ ∈ Z to equal a
name in the ground model L[G(< i)].

It is dense for conditions in P (i) to be self-determined since p(α) and Zγ � δ
for γ mentioned in p(α) all have size < i and therefore, we may extend any
condition to be self-determined using the weak i-closure. Therefore, we will
concentrate on conditions which have this property.
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Let P ∗(i) denote the set of conditions in P (i) which are self-determined. We
will define the restriction of p ∈ P ∗(i) to the model M i

n which we will denote
as p � M i

n. For p ∈ P ∗(i) let p � M i
n = {p(α) � M i

n : α ∈ Dom(p)∩M i
n} where

p(α) � M i
n is the obvious restriction of p(α) to the ordinals of M i

n. Note that
this restriction is an element of M i

n as M i
n is i-closed. We must see that this

is still a condition and that extensions of it inside M i
n are compatible with p.

Claim 5.2. For all self-determined p ∈ P (i), all n < ω and α ∈ Dom(p) � M i
n,

we have that

• (p � α) � M i
n is a condition and

• if q ∈ M i
n is such that q extends (p � α) � M i

n, then p � α and q are
compatible.

Proof Let 〈αk : k < ordertype(Dom(p) ∩ M i
n)〉 be the enumeration of

Dom(p) ∩ M i
n in increasing order. We will prove the claim by induction

on k, first at successor stages and then at limit k.

Assume that p is self-determined, that (p � αk) � M i
n is a condition and if

q ∈ M i
n is such that q extends (p � αk) � M i

n, then q is compatible with
p � αk. We will first show that (p � αk+1) � M i

n is a condition.

The only reason that (p � αk+1) � M i
n could fail to be a condition is if it

fails to force p(αk) � M i
n to be a condition. So extend (p � αk) � M i

n to a
condition q which forces p(αk) � M i

n to not be a condition. We may assume
that q belongs to M i

n. However, by the induction hypothesis, q is compatible
with p � αk which forces p(αk) to be a condition, contradiction.

To show the second part of the claim for αk+1, suppose that (p � αk+1) � M i
n is

extended to a condition q ∈M i
n. We will show that there exists a condition r

which extends both q and p � αk+1. Let Dom(r) = Dom(p � αk+1)∪Dom(q).
First we will consider α ∈ Dom(p � αk+1) ∩ Dom(q). Since Dom(p � αk+1)∩
Dom(q) = Dom((p � αk+1) � M i

n), we know that δq(α) ≥ δp(α) We can take
r(α) = q(α) ∪ p(α) where

1. Ar(α) = Aq(α) ∪ Ap(α),

2. Zr(α) = Zq(α) ∪ Zp(α),
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3. δr(α) is a large enough ordinal < i such that ordinals in [δq(α), δr(α)) can
be written as the disjoint union of |Zr(α)|-many copies of [δp(α), δr(α)),

4. Φr(α) extends Φq(α)

⋃
Φp(α) � (Dom(Φp(α)) − M i

n) such that for all
γ ∈ Zq(α), Φr(α) maps Zγ � [δq(α), δr(α)) into one of the copies of
[δp(α), δr(α)) above δq(α) and for all γ ∈ Zp(α), Φr(α) maps Zγ � [δp(α), δr(α))
into one of the copies of [δp(α), δr(α)) above δq(α),

5. Xr(α) = Xq(α) ∪ [δq(α), δr(α)). The extra relations on Xr(α) connect the
images of Zγ � δp(α) with those of Zγ � [δp(α), δr(α)) in the same way as
Zγ for all γ ∈ Zp(α), and likewise for γ ∈ Zq(α).

If α ∈ Dom(r)\Dom(p � αk+1), then let r(α) = q(α) and if α ∈Dom(r)\Dom(q),
then let r(α) = p(α).

Since the components inside and outside the model M i
n are disjoint and

Xq � δp = Xp, the unions will cause no conflict. The rest of the argument
that this is a condition follows from [9, proof of Theorem 4, Claims 2 and 3].

If k is a limit ordinal, then assume for all l < k, we have (p � αl) � M i
n is

a condition and if q ∈ M i
n is such that q extends (p � αl) � M i

n, then q is
compatible with p � αl. To see that (p � αk) � M i

n is a condition, we only need
to note that the restriction operations are canonical, that is, for l < m < k
we have ((p � αm) � M i

n) � αl = (p � αl) � M i
n.

Finally, we need to show that if q extends (p � αk) � M i
n, then q is compatible

with p � αk. We may construct r extending (p � αk) � M i
n and q as before

letting Dom(r) =
⋃
l<k Dom(p � αl) ∪Dom(q). 2

Claim 5.3. If p ∈ P ∗(i) and q ∈M i
n such that q extends p � M i

n, then p and
q are compatible.

Proof By Claim 5.2, we know that p � M i
n is a condition. Construct r ex-

tending p and q exactly as in Claim 5.2, letting Dom(r) = Dom(p)∪Dom(q).
2

Let G∗(i) = G(i) ∩ P ∗(i). We have sufficiently prepared the conditions in
G∗(i) � M i

0 in order to shift them up to P (j). Let A0 = {πi,j(p � M i
0) : p ∈

G∗(i) ∩M i
0}.
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Since each condition p has size < i, this is also true of each condition in
A0. We know that |A0| ≤ i since |M i

0| = i. We may take the union of the
conditions in A0, call this p0

0. By [9, proof of Theorem 4, Claim 5], this is a
condition in P (j). Using the weak j-closure of P (j), we may extend p0

0 to
p1

0 ∈ P (j) ∩M j
0 hitting < j-many dense sets in M j

0 .

We want to continue this at each M j
n for n < ω. We will do this by con-

structing the master condition at M j
n and for each m ≤ n we will extend the

conditions built before to hit even more (but less than j many) dense sets
in M j

m. Since in L[0#] we have cf(j) = ω, at the end of the construction for
each m we will have a condition which hits all dense sets in M j

m.

After step n we formed pn−mm for m ≤ n as above. Extend each pn−mm to

p
(n−m)+1
m , hitting < j-many dense sets in M j

m. Form p0
n+1 as the union of

conditions in An+1 = {πi,j(p � M i
n+1) : p ∈ G∗(i)∩M i

n+1}. We know that p0
n+1

is compatible with p
(n−m)+1
m by Claim 5.3. Extend p0

n+1 to p1
n+1 ≤ p

(n−m)+1
m

for all m ≤ n such that p1
n+1 hits < j-many dense sets in M j

n+1.

The generic G(j) will then be {p ∈ P (j) : p ≥ pmn : for some m,n < ω}.

2

6 Conclusion

As remarked in the introduction, in the inductive process of building generics
for reverse Easton class forcings, it is often not possible to simply modify any
generic to cohere with what was built before. The results in sections 4 and 5
give techniques for finding generics for reverse Easton iterations even when
this modification is not possible.

To continue with the programme of deciding when such forcings can have
generics, the question remains: what intrinsic properties of the given forcings
are used to allow these techniques to work? Below we isolate the main
attributes of a global forcing which are sufficient to use the techniques of
sections 4 and 5.

Theorem 6.1. If P∞ = 〈P (α) : α ∈ Ord〉 is a class forcing with Easton

18



support which is L-definable without parameters and the following properties
hold, then there exist a generic for P∞ over L.

1. For all α ∈ Ord we have P (α) has the α-weak closure.

2. For i ∈ I let G(i) be generic for P (i) and let 〈M i
n : n < ω〉 be

the sequence of elementary submodels of L[G(< i)] defined by M i
n =

Σ1Hull(i ∪ ~∞n) where ~∞n are the first n indiscernibles greater than i.
(Each Mn

i is i-closed and has size i.) For an indiscernible j > i, let
〈M j

n : n < ω〉 be the corresponding sequence of elementary submodels
of L[G(< j)]. Note that πi,j(M

i
n) = M j

n.

For any P∞-genericG there are sequences 〈Dα : α ∈ Ord〉, 〈�α: α ∈ Ord〉,
〈mcα : α ∈ Ord〉 where Dα, �α and mcα are definable in L[G(< α)] uni-
formly (and independently of G) such that for each i ∈ I:

(a) Di is dense in P (i).

(b) For p ∈ Di and M an i-closed elementary submodel of L[G(< i)]
of size i, p �i M is a condition in P (i) such that for all q extending
p �i M , if q ∈M then q is compatible with p.

(c) For i < j, i, j ∈ I and for each n < ω, mc(πi,j[G(i) ∩M i
n]) is a

lower bound for the conditions in πi,j[G(i) ∩M i
n]; moreover, for

any n0 < n, mc(πi,j[G(i) ∩M i
n]) � M j

n0
= mc(πi,j[G(i) ∩M i

n0
]).

Note that in the proofs in sections 4 and 5, property (1) was used to build
generics between indiscernibles and property (2) was used to construct a
generic at a successor indiscernible stage which coheres with the generics at
previous indiscernible stages.

If we restrict our attention to a natural class of product forcings, we can get
a result which is more easily verifiable.

Definition 6.2. A product forcing P (α) is internally small iff the support
of P has size < α and each component of the product is a forcing which has
size α.

Note that we do not say that P (α) is simply “small” as this would imply
that the length of the product is also restricted. We do not require this.

19



Theorem 6.3. If P∞ = 〈P (α) : α ∈ Ord〉 is a class forcing with Easton
support which is L-definable without parameters and the following properties
hold, then there exist a generic for P∞ over L.

1. P (α) is a internally small product forcing.

2. For all α ∈ Ord we have P (α) has α-closure.

Note that here we require full α-closure whereas the product forcing notion
introduced in section 2 only has weak closure. In general weak closure is not
enough to shift up conditions in the generic restricted to a model from an
indiscernible i to a greater indiscernible j and get a master condition as in
2(c) of Theorem 6.1. In particular, the lower bounds for the sequences in the
generic which satisfy a weak closure operation may not be in the generic. In
section 4, we do get such a master condition, but this requires a proof which
is particular to our case.
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