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MOTIVES FOR PERFECT PAC FIELDS WITH PRO-CYCLIC

GALOIS GROUP

IMMANUEL HALUPCZOK

Abstract. Denef and Loeser defined a map from the Grothendieck ring of sets
definable in pseudo-finite fields to the Grothendieck ring of Chow motives, thus
enabling to apply any cohomological invariant to these sets. We generalize this
to perfect, pseudo algebraically closed fields with pro-cyclic Galois group.

In addition, we define some maps between different Grothendieck rings
of definable sets which provide additional information, not contained in the
associated motive. In particular we infer that the map of Denef-Loeser is not
injective.
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1. Preliminaries

1.1. Introduction. To understand definable sets of a theory, it is helpful to have
invariants with nice properties. For a fixed pseudo-finite field K, there are two
well-known invariants of definable sets: the dimension (see [3]), and the measure
(see [2]).

In a slightly different setting, Denef and Loeser constructed a much stronger
invariant: they do not fix a pseudo-finite field; instead they consider definable sets
in the theory of all pseudo-finite fields of characteristic zero. To each such set X
they associate an element χc(X) of the Grothendieck ring of Chow motives (see
[4], [5]). In particular, this implies that all the usual cohomological invariants (like
Euler characteristic, Hodge polynomial) are now applicable to arbitrary definable
sets.

The dimension defined in [3] exists for a much larger class of fields and in [8],
Hrushovski asked whether one can also generalize the measure. This question has
been answered in [7]: it is indeed possible to define a measure for any perfect,
pseudo algebraically closed (PAC) field with pro-cyclic Galois group. A natural
question is now: can the work of Denef-Loeser also be generalized to this setting?
More precisely, fix a torsion-free pro-cyclic group Gal and consider the theory of
perfect PAC fields with absolute Galois group Gal . Then to any definable set X
in that theory we would like to associate a virtual motive χc(X). The first goal of
this article is to do this (Theorem 1.1).

One reason this result seems interesting to me is the following: the map χc exists
for pseudo-finite fields (by Denef-Loeser) and for algebraically closed fields (by
quantifier elimination). The case of general pro-cyclic Galois groups is a common
generalization of both and thus a kind of interpolation.

Comparing those maps χc for different Galois groups, one gets the feeling that
they are closely related. Indeed, given an inclusion of Galois groups Gal2 ⊂ Gal1,
we will prove (in Theorem 1.3) the existence of a map θ from the definable sets for
Gal2 to the definable sets for Gal1 which is compatible with the different maps χc.

These maps θ turn out to be interesting in themselves. An open question was
whether the map χc is injective for pseudo-finite fields. We will show (Proposi-
tion 1.4) that it is not, by giving an example of two definable sets with the same
image under χc but with different images under one of those maps θ. This also
means that at least in this case, the maps θ can be used to get information which
one loses by applying χc.

We have one more result. In [5], the map χc is defined by enumerating certain
properties and then existence and uniqueness of such a map is proven. We are able
to weaken the conditions needed for uniqueness in the case of pseudo-finite fields.
Unfortunately however, we do not get any sensible uniqueness conditions for other
pro-cyclic Galois groups.

1.2. The results in detail. Let us fix some notation once and for all.
By a “group homomorphism” we will always mean a continuous group homo-

morphism if there are pro-finite groups involved.
We fix a field of parameters k and a group Gal which will serve as Galois group.

Sometimes, we will require k to be of characteristic zero. Gal will always be a
pro-cyclic group such that there do exist perfect PAC fields having Gal as absolute
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Galois group. This is the case if and only if Gal is torsion-free, or equivalently, if
it is of the form

∏

p∈P Zp, where P is any set of primes.
The theory we will be working in will be the theory of perfect PAC fields with

absolute Galois group Gal which contain k. We will denote this theory by TGal,k.
Models of TGal,k will be denoted by K; the algebraic closure of a field K will be

denoted by K̃. By “definable” we always mean 0-definable. (But k is part of the
language.)

By “variety”, we mean a separated, reduced scheme of finite type. If not stated
otherwise, all our varieties will be over k.1

We will use the notion “definable set” even when there is no model around: by a
“definable set (in TGal,k)”, we mean a formula up to equivalence modulo TGal,k. In
addition, we will permit ourselves to speak about “definable subsets of (arbitrary)
varieties”. For affine embedded varieties, it is clear what this should mean. In
general, any definable decomposition of a variety V into affine embedded ones
yields the same notion of definable subsets of V (cf. “definable sub-assignments” in
[4]).

We will use the usual definitions of the following Grothendieck rings (see e.g.
[4] or [5]): the Grothendieck ring of varieties K0(Vark), the Grothendieck ring of
(Chow) motives K0(Motk) and the Grothendieck ring K0(TGal,k) of the theory
TGal,k. Moreover, we will often need to tensor the Grothendieck ring of motives
with Q; we denote this by K0(Motk)Q := K0(Motk)⊗Z Q.

Now let us state the generalization of the theorem of Denef-Loeser. For the

definition of “Galois cover” and “X(V
G
։ W, {1})”, see Section 2.

Theorem 1.1. Suppose Gal =
∏

p∈P Zp (where P is any set of primes) is a torsion-
free pro-cyclic group and k is a field of characteristic zero. Then there exists a
(canonical) ring homomorphism χc : K0(TGal,k) → K0(Motk)Q extending the usual

homomorphism χc : K0(Vark) → K0(Motk) with the following property: if V
G
։ W

is a Galois cover such that all prime factors of |G| lie in P , then

(∗) χc(X(V
G
։ W, {1})) =

1

|G|
χc(V ) .

If Gal = Ẑ, then a ring homomorphism with these properties is unique.

As already mentioned, our condition (∗) needed for uniqueness in the pseudo-
finite case is weaker than the one of Denef-Loeser (Theorem 6.4.1 of [5]).

If Gal 6= Ẑ, we can not prove that condition (∗) is strong enough to define
χc uniquely, and we do not have any good replacement for (∗). Nevertheless, we
will sometimes speak of the map χc : K0(TGal,k) → K0(Motk)Q and mean the one
defined in Section 3.2 (after Lemma 3.3).

The map χc does not really depend on the base field k: if we have a second
field k′ containing k, then there are canonical ring homomorphisms K0(TGal,k) →
K0(TGal,k′) and K0(Motk)Q → K0(Motk′)Q, which we will both denote by ⊗kk

′.
The map χc is compatible with these homomorphisms:

Proposition 1.2. In the setting just described we have, for any definable set X of
TGal,k, χc(X ⊗k k

′) = χc(X)⊗k k
′.

1We will try to limit our notation such that readers not so familiar with the language of schemes
can use a more naive definition of varieties. For those readers: our varieties are not supposed to
be irreducible.
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We will not write down the proof of this, as it is exactly the same as in the pseudo-
finite case; see [4], the paragraph before Lemma 3.4.1, or [9], Proposition 8.9.

The next theorem is the one putting the Grothendieck rings of theories corre-
sponding to different Galois groups into relation.

Theorem 1.3. Suppose Gal1 and Gal2 are two torsion-free pro-cyclic groups,
ι : Gal2 →֒ Gal1 is an injective map, and k is any field (not necessarily of char-
acteristic zero). Denote the theories TGali,k by Ti for i = 1, 2. Then the following
defines a ring homomorphism θι : K0(T2) → K0(T1): Suppose K1 is a model of

T1. Then the fixed field K2 := K̃
ι(Gal2)
1 is a model of T2 containing K1. For any

X2 ⊂ An definable in T2, we define θι(X2)(K1) := X2(K2) ∩Kn
1 .

Using this theorem, one can reduce the existence of χc for arbitrary torsion-free

pro-cyclic groups Gal to the case Gal = Ẑ (which has been treated by Denef-

Loeser): apply Theorem 1.3 to ι : Gal →֒ Ẑ, where ι maps Gal to the appropriate

factor
∏

p∈P Zp of Ẑ (such that Ẑ/Gal is torsion-free). Then define χc as the

composition χ̂c ◦ θι, where χ̂c : K0(TẐ,k
) → K0(Motk)Q is the known map in the

pseudo-finite case. Verification of the properties of χc is not very difficult using the
explicit computations done in the proof of Theorem 1.3.

So in principle, we are done with the existence part of Theorem 1.1 (provided we
can prove Theorem 1.3). On the other hand, one has the feeling that it should also
be possible to construct the map χc directly for any group Gal . We will do this in
Section 3.2, but as our construction closely follows the construction in [9], we will
go into details only in places where our generalization requires some modifications.

Another interesting application of Theorem 1.3 is the case Gal1 = Gal2 = Gal ,
but with a non-trivial injection ι : Gal →֒ Gal . One thus gets endomorphisms of the
ring K0(TGal,k), which might reveal a lot of information about its structure. Indeed
using such endomorphisms we will construct a whole family of pairs of definable
sets X1 and X2 such that χc(X1) = χc(X2) but χc(θ(X1)) 6= χc(θ(X2)), thereby
proving:

Proposition 1.4. Let k be a field of characteristic zero and let Gal be a non-trivial
torsion-free pro-cyclic group. Then the map χc : K0(TGal,k) → K0(Motk)Q is not
injective.

The remainder of the article is organized as follows. In Section 2, we state the
main tool to get hold of arbitrary definable sets, namely quantifier elimination to
Galois formulas. Before that, we introduce the necessary notation: Galois cov-
ers, a generalized Artin symbol and Galois stratifications. In Section 3, we prove
Theorem 1.1. Section 4 is devoted to the maps θι: we prove Theorem 1.3 and
Proposition 1.4, and moreover, we check that the maps χc of Theorem 1.1 for dif-
ferent Galois groups are compatible with suitable maps θι (Proposition 4.1). Finally
Section 5 lists some open problems.

2. Galois stratifications and quantifier elimination

A standard technique to get hold of definable sets of perfect PAC fields with
not-too-large Galois group is the quantifier elimination to Galois formulas. In this
section, we define the necessary objects and then, in Section 2.4, state this quantifier
elimination result in the version of Fried-Jarden [6].



MOTIVES FOR PERFECT PAC FIELDS WITH PRO-CYCLIC GALOIS GROUP 5

2.1. Galois covers.

Definition 2.1. (1) A Galois cover consists of two integral and normal vari-
eties V and W (over some fixed field k) and a finite étale map f : V → W
such that for G := AutW (V )opp, we have canonically W ∼= V/G (where G

acts from the right on V ). We denote a Galois cover by f : V
G
։ W and

call G the group of that cover. The action of G on V will be denoted by
v.g (for v ∈ V , g ∈ G).

(2) We say that a Galois cover f ′ : V ′ G′

։ W is a refinement of f : V
G
։ W , if

there is a finite étale map g : V ′ ։ V such that f ′ = f ◦ g.
(3) If W ′′ is a locally closed subset of W and V ′′ is a connected component of

f−1(W ′′), then we call V ′′ G′′

։ W ′′ the restriction of V
G
։ W to W ′′, where

G′′ := AutW ′′ (V ′′)opp.

Remark 2.2. (1) If f ′ : V ′ G′

։ W is a refinement of f : V
G
։ W , then we have

a canonical surjection π : G′ ։ G.

(2) If V ′′ G′′

։ W ′′ is a restriction of V
G
։ W , then we have a canonical injection

G′′ →֒ G. Different choices of the connected component of f−1(W ′′) yield
isomorphic restricted Galois covers.

2.2. Artin symbols and colorings. Using a Galois cover V
G
։ W , we would

like to decompose W into subsets according to the Artin symbol of the elements.
However, the usual definition of Artin symbol needs a canonical generator of the
Galois group Gal (usually the Frobenius of a finite field); the Artin symbol is then
the image of the generator under a certain map ρ : Gal → G (which is unique only
up to conjugation by G). If one does not have such a canonical generator, then one
still can consider the image of ρ. This is what one uses as Artin symbol in our case
(see [6]).

Definition 2.3 (and Lemma). Suppose f : V
G
։ W is a Galois cover over k and

K is a field containing k.

(1) Suppose v ∈ V (K̃) such that f(v) ∈ W (K). Then there is a unique group

homomorphism ρ : Gal(K̃/K) → G satisfying σ(v) = v.ρ(σ) for any σ ∈
Gal(K̃/K). The decomposition group Dec(v) := im ρ ⊂ G of v is the image
of that homomorphism.

(2) For w ∈ W (K), let the Artin Symbol Ar(w) of w be the set {Dec(v) | v ∈
V (K̃), f(v) = w} of decomposition groups of all preimages of w.

Ar(w) consists exactly of one conjugacy class of subgroups of G, and these sub-

groups are isomorphic to a quotient of the absolute Galois group Gal(K̃/K) of the
field.

If K is a model of our theory T , then the quotients of Gal(K̃/K) = Gal are just
the cyclic groups Q such that all prime factors of |Q| lie in P (where P is the set
of primes such that Gal =

∏

p∈P Zp). We introduce some notation for this:

Definition 2.4. Given a finite group G, we will call those subgroups of G which
are isomorphic to a quotient of Gal the permitted subgroups. We denote the set
of all permitted subgroups of G by Psub(G). If Q is a finite cyclic group, then we
denote by Ppart(Q) the “permitted part of Q”, i.e. the biggest permitted subgroup
of Q.
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The interest of Ppart(Q) is the following. We will sometimes identify Gal =
∏

p∈P Zp with the corresponding factor of Ẑ and consider homomorphisms ρ : Ẑ →

G. Then the image of Gal in G is just ρ(Gal) = Ppart(im ρ).

Given a Galois cover V
G
։ W , we now define subsets of W using the Artin

symbol:

Definition 2.5. (1) A coloring of a Galois cover V
G
։ W is a subset C of the

permitted subgroups of G which is closed under conjugation. A Galois cover
together with a coloring is called a colored Galois cover.

(2) Given a colored Galois cover (V
G
։ W,C) and a model K |= T , we define

the set X(V
G
։ W,C)(K) := {w ∈ W (K) | Ar(w) ⊂ C}.

Note that X(V
G
։ W,C) is definable, i.e. there is a formula φ such that for any

model K |= T we have φ(K) = X(V
G
։ W,C)(K).

Remark 2.6. (1) If (V
G
։ W,C) is a colored Galois cover and V ′ G′

։ W is
a refinement with canonical map π : G′ ։ G, then we can also refine the

coloring: by setting C′ := {Q ∈ Psub(G′) | π(Q) ∈ C}, we get X(V ′ G′

։

W,C′) = X(V
G
։ W,C).

(2) Similarly if V ′′ G′′

։ W ′′ is a restriction of f : V
G
։ W : in that case, set

C′′ := {Q ∈ C | Q ⊂ G′′}. Then we get X(V ′′ G′′

։ W ′′, C′′) = X(V
G
։

W,C) ∩W ′′.

2.3. Galois stratifications.

Definition 2.7. A Galois stratification A of a variety W is a finite family (fi : Vi
Gi
։

Wi, Ci)i∈I of colored Galois covers where the Wi form a partition of W into locally
closed sub-varieties. We shall say that A defines the following subset A(K) ⊂
W (K), where K |= T is a model:

A(K) :=
⋃

i∈I

X(Vi
Gi
։ Wi, Ci)(K)

The data of a Galois stratification denoted by A will always be denoted by Vi,
Wi, Gi, Ci, and analogously with primes for A′, A′′, etc. This will not always be
explicitely mentioned.

Definition 2.8. Suppose A and A′ are two Galois stratifications. We say that A′

is a refinement of A, if:

• Each Wi is a union
⋃

j∈Ji
W ′

j for some Ji ⊂ I ′.

• For each i ∈ I and each j ∈ Ji, the Galois cover V ′
j

G′

j

։ W ′
j is a refinement

of the restriction of the Galois cover Vi
Gi
։ Wi to the set W ′

j .

• C′
j is constructed out of Ci as described in Remark 2.6, such that X(V ′

j

G′

j

։

W ′
j , C

′
j) = X(Vi

Gi
։ Wi, Ci) ∩W ′

j .

By the third condition, A and A′ define the same set.
One reason for Galois stratifications being handy to use is the following general

lemma:
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Lemma 2.9. If A and A′ are two Galois stratifications, then there exist refinements
Ã and Ã′ of A resp. A′ which differ only in the colorings.

2.4. Quantifier elimination to Galois stratifications. We now state the ver-
sion of quantifier elimination which we will use. It is given in [6], Proposition 30.5.2.
Applied to our situation, that proposition reads:

Lemma 2.10. Suppose Gal is a torsion-free pro-cyclic group and k is any field.
Then each definable set X of TGal,k is already definable by a Galois stratification
A (over k), i.e. for any K |= TGal,k, we have X(K) = A(K).

Note that Proposition 30.5.2 of [6] requires that K is what Fried-Jarden call a
“prefect Frobenius field”; this is indeed the case for any model of TGal,k.

3. Proof of Theorem 1.1

In this section we prove Theorem 1.1 without using Theorem 1.3: we construct
the map χc : K0(TGal,k) → K0(Motk)Q, check its properties, and prove uniqueness

in the case Gal = Ẑ. For the whole section, we fix a torsion-free pro-cyclic group
Gal and a field k of characteristic zero. We also fix the theory T := TGal,k we will
be working in.

3.1. Some preliminary lemmas. We will need the following basic property of
the generalized Artin symbol.

Lemma 3.1. Suppose we have the following commutative diagram of varieties over
k, where the maps f1 : V → W1 and f2 : V → W2 are Galois covers with groups G1

and G2, respectively. We have naturally G1 ⊂ G2.

V

W1 W2

f1
f2

φ

Suppose additionally that C1 is a conjugacy class of subgroups of G1 and C2 := CG2

1

is the induced conjugacy class of subgroups of G2. Then for any field K ⊃ k,
the image under φ of X1(K) := {w1 ∈ W1(K) | Ar(w1) = C1} is X2(K) :=
{w2 ∈ W2(K) | Ar(w2) = C2}. Moreover, the size of the fibers of the induced map

X1(K) → X2(K) is |G2|·|C1|
|C2|·|G1|

.

The following lemma can be seen as a qualitative version of Chebotarev’s den-
sity theorem, where the finite fields have been replaced by models of our theory.
However, the proof is much easier than the one of the usual density theorem.

Lemma 3.2. Suppose (V
G
։ W,C) is a colored Galois cover with C 6= ∅.

(1) There exists a model K |= T such that X(V
G
։ W,C)(K) contains an

element which is generic over k.

(2) If K |= T is a model such that W is irreducible over K and X(V
G
։

W,C)(K) is not empty, then X(V
G
։ W,C)(K) is already dense in W (K).

Part (1) follows from Theorem 23.1.1 of [6]; part (2) follows from Proposi-
tion 24.1.4 of [6]. For details, see Corollary 2.9 and Lemma 2.10 of [9]: the proofs
there (which are for pseudo-finite fields) directly generalize to models of T .
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3.2. Existence of χc. The proof of the existence of the map χc of Theorem 1.1
consists of three parts:

(1) Define a virtual motive associated to a colored Galois cover.
(2) Generalize this definition to Galois stratifications and verify that the vir-

tual motive defined in this way only depends on the set defined by the
stratification.

Using the quantifier elimination result Lemma 2.10, we thus get a map
χc from the definable sets to the virtual motives.

(3) Check that this map χc has all the required properties: that it is invariant
under definable bijections and compatible with disjoint union and products
(so it defines a ring homomorphism K0(TGal,k) → K0(Motk)Q) and that it
satisfies condition (∗) of Theorem 1.1.

(1) To associate a virtual motive to a colored Galois cover (V
G
։ W,C), one first

associates a central function αC : G → Q to the coloring, and then one uses a result
from [1] to turn this into a virtual motive.

More precisely, let C(G,Q) be the Q-vector space of Q-central functions, i.e. the
space of functions α : G → Q such that α(g) = α(g′) whenever g, g′ ∈ G generate
conjugate subgroups of G. The following result essentially follows from Theorem 6.1
of [1]; see [4] or [9] for more details.

Lemma 3.3. There exists a (unique) map χc which associates to each finite group
G, each G-variety V and each Q-central function α ∈ C(G,Q) a virtual motive
χc(G # V, α) ∈ K0(Motk)Q and which has the following properties:

(1) For any fixed G and α, the induced map from the Grothendieck ring of
G-varieties to K0(Motk)Q is a group homomorphism.

(2) For any fixed G and V , the induced map C(G,Q) → K0(Motk)Q is Q-linear.
(3) If αreg is the character of the regular representation of G, then χc(G #

V, αreg) = χc(V ).
(4) Suppose G is a group acting on a variety V , H is a normal subgroup,

π : G ։ G/H is the projection, and α ∈ C(G/H,Q) is a Q-central function.
Then

χc(G/H # V/H, α) = χc(G # V, α ◦ π) .

(5) Suppose G is a group acting on a variety V , H ⊂ G is any subgroup, and
α ∈ C(H,Q) is a Q-central function. Then

χc(G # V, IndGH α) = χc(H # V, α) .

(Several other properties are omitted. See e.g. [4], Theorem 3.1.1 and Proposi-
tion 3.1.2 or [9], Section 7.)

Using this, one defines

χc(V
G
։ W,C) := χc(G # V, αC) ,

where αC still has to be defined.
In the case of pseudo-finite fields, one defines αC to be 1 on the set {g ∈ G |

〈g〉 ∈ C} and 0 elsewhere. Just copying this definition does not work when the

Galois group is not Ẑ. The reason is that the meaning of “Q ∈ C” is different when

the Galois group of the field is not Ẑ. For example, “{1} ∈ C” means “just a little
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part of W” when Gal = Ẑ, whereas when Gal is trivial, it means “the whole of
W”.

To get a working definition for αC in the non-Ẑ-case, one has to recall that the
Artin symbol is the image of a certain map ρ : Gal → G. Then one views Gal as a

subgroup of Ẑ and considers extensions of ρ to Ẑ, as described in the remark after
Definition 2.4. In this way one naturally gets the following definition, which will
turn out to work:

αC(g) :=

{

1 if Ppart(〈g〉) ∈ C

0 otherwise .

(2) We generalize the map χc from colored Galois covers to Galois stratifications
in the obvious way:

χc(A) :=
∑

i∈I

χc(Vi
Gi
։ Wi, Ci) .

Now suppose that two Galois stratifications A and A′ define the same set.
To check that the associated motives χc(A) and χc(A′) are the same, we use
Lemma 2.9. It is enough to show that (a) refining a stratification does not change
the motive and that (b) if two colorings of a Galois cover define the same set, then
these colorings are equal. Refinement of stratifications decomposes into two parts:
(a1) refining the underlying sets Wi and (a2) refining the Galois covers.

(a1) is straight forward.

(a2) We have to show that χc(V
G
։ W,C) = χc(V

′ G′

։ W,C′) where (V
G
։ W,C)

is a colored Galois cover and (V ′ G′

։ W,C′) is a refinement. By Lemma 3.3 (4), it
is enough to check that αC′ = αC ◦ π, where π : G′ ։ G is the canonical map. But
indeed we have, for any g′ ∈ G′:

αC′(g′) = 1 ⇐⇒ Ppart(〈g′〉) ∈ C′ ⇐⇒ π(Ppart(〈g′〉)) ∈ C

⇐⇒ Ppart(〈π(g′)〉) ∈ C ⇐⇒ αC(π(g
′)) = 1 .

(b) follows from Lemma 3.2. Suppose that C1 and C2 are two different colorings

of the Galois cover V
G
։ W . Then there exists a conjugacy class C ⊂ C1 r C2

(or vice versa), and the lemma yields a model K such that X(V
G
։ W,C1)(K) )

X(V
G
։ W,C2)(K).

(3) Checking that χc is compatible with disjoint unions and with products is
straight forward. (For the products, one uses a product property of the map χc of
Lemma 3.3; cf. Lemma 8.7 of [9]).

We have to check condition (∗) of Theorem 1.1, i.e.

(∗) χc(X(V
G
։ W, {1})) =

1

|G|
χc(V ) ,

where all prime factors of |G| lie in P . By Lemma 3.3, (3), it is enough to show
that α{1} = 1

|G|αreg, where αreg is the character of the regular representation of G.

But indeed: α{1}(g) = 1 if Ppart(〈g〉) = {1} and α{1}(g) = 0 otherwise. As all
prime factors of |G| lie in P , we have Ppart(〈g〉) = 〈g〉, so α{1}(g) = 1 only if g = 1.

The last property to prove is invariance under definable bijections. We do this by
first reducing the problem several times, until we are in the situation of Lemma 3.1.
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• A definable bijection φ : X → X ′ also yields bijections to the graph of φ,
so we may suppose that the map X → X ′ is the restriction of a projection
(which we also denote by φ).

• We may suppose X = X(V
G
։ W,C) by treating each component of X

separately. (Replace X ′ by the image of that component.)

• Next we may supposeX ′ = X(V ′ G′

։ W ′, C′) by treating each component of
X ′ separately. One easily checks that the new preimageX is still defined by
a single Galois cover. (Note that for this, the order of this and the previous
step is important.)

• Using the density statements of Lemma 3.2 and Noetherian induction, we
may suppose that the map φ : W → W ′ is finite and étale. By refining the
Galois covers, we may suppose V = V ′.

We now have the following diagram:

V

W W ′

G
G′

φ
By decomposing once more and using Lemma 3.3, we may suppose that C consists
of a single conjugacy class of subgroups of G and C′ = CG′

is the induced class in

G′. Moreover, we get |C|
|G| =

|C′|
|G′| , as by assumption φ induces a bijection X(V

G
։

W,C)(K) → X(V
G′

։ W ′, C′)(K). (Choose K using Lemma 3.2 such that X(V
G′

։

W ′, C′)(K) is not empty.)

We want to show χc(V
G
։ W,C) = χc(V

G′

։ W ′, C′). By Lemma 3.3 (5), it is

enough to show that αC′ = IndG
′

G αC .
Set

Ĉ := {〈g〉 ⊂ G | αC(g) = 1} = {〈g〉 ⊂ G | Ppart(〈g〉) ∈ C} and

Ĉ′ := {〈g′〉 ⊂ G′ | αC′(g′) = 1} = {〈g′〉 ⊂ G | Ppart(〈g′〉) ∈ C′} .

We want to understand the relation between Ĉ and Ĉ′. For this, consider the map
η : Ĉ′ → C′, Q 7→ Ppart(Q). It maps Ĉ to C. We claim that Ĉ is exactly the

preimage of C under η. For this, we have to verify that for any group Q ∈ Ĉ′ with
Ppart(Q) ∈ C, we already have Q ⊂ G. Indeed: Q is abelian, so it is contained in
NG′(Ppart(Q)), and NG′(Ppart(Q)) is contained in G.

Now using that C consists of a single conjugacy class and that η commutes with

conjugation, we arrive at two conclusions: Ĉ′ = ĈG′

and |Ĉ′|
|C′| = fiber size of η =

|Ĉ|
|C| .

Using this, we can finally compute IndG
′

G αC . For any g′ ∈ G′, we have

IndG
′

G αC(g
′) =

1

|G|
#{h ∈ G′ | 〈hg′h−1〉 ∈ Ĉ} .

This is zero if 〈g′〉 /∈ ĈG′

= Ĉ′. Otherwise:

· · · =
1

|G|
· |Ĉ| · |NG′(〈g′〉)| =

|Ĉ|

|G|
·
|G′|

|Ĉ′|
= 1 .

(In the last equality, we combine |C|
|G| =

|C′|
|G′| and

|Ĉ′|
|C′| =

|Ĉ|
|C| .)
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3.3. The uniqueness statement. We now prove the uniqueness of the map χc in
the case of pseudo-finite fields. For this, we only need following properties of χc: it
extends the usual map χc : K0(Vark) → K0(Motk), it is invariant under definable

bijections, it is compatible with disjoint unions, and for any Galois cover V
G
։ W ,

the equality

(∗) χc(X(V
G
։ W, {1})) =

1

|G|
χc(V )

holds.
In particular, we will not need that χc is compatible with products.

Proof of uniqueness in Theorem 1.1. By Lemma 2.10 (quantifier elimination to Ga-
lois formulas) and compatibility with disjoint unions, it is enough to prove unique-

ness for definable sets of the form X(V
G
։ W,C), where (V

G
։ W,C) is a colored

Galois cover and C = QG consists of a single conjugacy class of cyclic subgroups of
G.

We proceed by induction on |G| and |Q|. (We will suppose that the statement
is true for G of the same size and Q smaller and vice versa.)

Suppose first that Q is not normal in G. Let G′ := NG(Q) be its normalizer

and W ′ := V/G′. Note that C′ := QG′

= {Q}. By induction, we know χc(X(V
G′

։

W ′, C′)). We have |G′|
|C′| =

|G|
|C| , so Lemma 3.1 implies that the map W ′ → W induces

a bijection X(V
G′

։ W ′, C′) → X(V
G
։ W,C). So by assumption χc(X(V

G
։

W,C)) = χc(X(V
G′

։ W ′, C′)).
Now suppose Q is normal in G (and in particular C = {Q}). Let G′ := G/Q

and V ′ := V/Q. We know χc(X(V ′ G′

։ W, {1})) by (∗), and we have X(V ′ G′

։

W, {1}) = X(V
G
։ W,C1), where C1 = {Q1 ∈ Psub(G) | Q1 ⊂ Q} consists of all

(cyclic) subgroups of G contained in Q. But for any strict subgroup Q1 ( Q, we

know χc(X(V
G
։ W,QG

1 )) by induction. So χc(X(V
G
։ W,Q)) is the only (up to

now) unknown term in the equation

χc(X(V
G
։ W,C1)) =

∑

C2⊂C1

C2 one conjugacy class

χc(X(V
G
։ W,C2)) .

�

4. Maps between Grothendieck rings

In this section we first prove the existence of the map θι between the different
Grothendieck rings K0(TGal,k) (Theorem 1.3) and then apply this to get Propo-
sition 1.4. Finally we check a compatibility between the maps θι and the maps
χc.

4.1. Existence of the maps θι. Recall the statement of the theorem. We have
a field k and an inclusion of torsion-free pro-cyclic groups ι : Gal2 →֒ Gal1. For
simplicity, we will now identify Gal2 with ι(Gal2) ⊂ Gal1. Denote by Ti := TGali,k

the theory of perfect PAC fields with Galois group Gal i and which contain k.
The map θ := θι : K0(T2) → K0(T1) was defined as follows. Any model K1 of

T1 yields a model K2 := K̃Gal2
1 of T2. For any X2 ⊂ An definable in T2, we defined

θ(X2)(K1) = X2(K2) ∩Kn
1 .
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What we have to check is:

(1) X2(K2) ∩Kn
1 is definable (uniformly for all K1).

(2) If there is a definable bijection X2 → X ′
2 in T2, then there is also a definable

bijection θ(X2) → θ(X ′
2) in T1.

(3) θ is a ring homomorphism, i.e. compatible with disjoint unions and prod-
ucts.

The third statement is clear by definition.
(1) Any definable set X2 of T2 can be written as disjoint union of sets of the

form X(f : V
G
։ W,C2), where C2 is a conjugacy class of permitted subgroups of

G, so it is enough to prove that θ maps such sets to definable ones. We claim:

θ(X(V
G
։ W,C2)) = X(V

G
։ W,C1), where C1 is defined as follows: Let M be the

set of homomorphisms ρ1 : Gal1 → G such that ρ1(Gal2) ∈ C2. Then C1 is the set
of images of these homomorphisms M . In a formula:

C1 = {im ρ1 | ρ1 : Gal1 → G, ρ1(Gal2) ∈ C2} .

We have to check: For any model K1 of T1 and any element w ∈ W (K1), we have

w ∈ X(V
G
։ W,C1)(K1) if and only if w ∈ X(V

G
։ W,C2)(K2), where K2 = K̃Gal2

1

as above.
Choose an element v ∈ V (K̃1) with f(v) = w. We get a homomorphism

ρ1 : Gal1 → G defined by σ(v) = v.ρ1(σ) for any σ ∈ Gal1. Of course the re-
striction ρ2 := ρ1|Gal2 satisfies the same property. By definition, we have w ∈

X(V
G
։ W,C1)(K1) if and only if im ρ1 ∈ C1 and w ∈ X(V

G
։ W,C2)(K2) if and

only if im ρ2 = ρ1(Gal2) ∈ C2. So we have to check that for any ρ1 : Gal1 → G we
have im ρ1 ∈ C1 if and only if ρ1(Gal2) ∈ C2.

“⇐” is clear by the definition of C1.
“⇒”: Suppose Q1 := im ρ1 ∈ C1. By the definition of C1, there is a homomor-

phism ρ′1 ∈ M with im ρ′1 = Q1. As Gal1 is pro-cyclic, homomorphisms Gal1 → Q1

are determined by the image of a generator, so we can write ρ1 = α ◦ ρ′1 for some
automorphism α ∈ Aut(Q1). As Q1 is cyclic, all its subgroups are characteristic
subgroups, so ρ1(Gal2) = α(ρ′1(Gal2)) = ρ′1(Gal2) ∈ C2. This implies ρ1 ∈ C1.

(2) Suppose X2 ⊂ An and X ′
2 ⊂ An′

are two definable sets in T2 and f : X2 → X ′
2

is a definable bijection. We have to show that there is a T1-definable bijection
θ(X2) → θ(X ′

2). Indeed, we will check that θ(f) is such a bijection. In other words
we have to verify the following statement:

Let K1 be any model of T1 and K2 = K̃Gal2
1 . Then for any x ∈ X2(K2) and

x′ := f(x) ∈ X ′
2(K2), we have x ∈ Kn

1 if and only if x′ ∈ Kn′

1 .
Suppose x /∈ Kn

1 . Then there exists a σ ∈ Gal(K2/K1) moving x. But
σ(X2(K2)) = X2(K2), so σ(x) ∈ X2. As f is injective on X2(K2), this implies

σ(f(x)) = f(σ(x)) 6= f(x), so f(x) /∈ Kn′

1 .
The other direction works analogously. �

4.2. χc is not injective. As an example application of the maps θι, we will now
prove Proposition 1.4. To this end, we will construct a pair of definable sets X1 and
X2 such that χc(X1) = χc(X2) but χc(θι(X1)) 6= χc(θι(X2)) for a suitable map
ι : Gal →֒ Gal . (In fact, we will construct a whole bunch of such pairs.)

Proof of Proposition 1.4. Recall that Gal is a non-trivial subgroup of Ẑ, i.e. Gal =
∏

p∈P Zp, where P is a non-empty set of primes.
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For n ∈ N≥1, consider the group homomorphism ι : Gal →֒ Gal , σ 7→ σn. Apply-
ing Theorem 1.3 to this map gives an endomorphism θn of K0(TẐ,k

), which can be

explicitly computed on sets defined by Galois covers as follows. Let (V
G
։ W,C2)

be a colored Galois cover. The computation in the proof of Theorem 1.3 shows

that θn(X(V
G
։ W,C2)) = X(V

G
։ W,C1), where C1 = {Q ∈ Psub(G) | Qn ∈ C2}

consists of those permitted subgroups of G whose subgroups of n-th powers lie in
C2.

Note that θn is interesting only if n has prime factors which lie in P ; otherwise,
n and |Q| are coprime for any permitted subgroup Q ⊂ G, which implies Q = Qn,
C1 = C2, and θn = id.

Now let V
G
։ W be any non-trivial Galois cover such that all prime factors of |G|

lie in P , and define X := X(V
G
։ W, {id}). By condition (∗) of Theorem 1.1, we

have χc(X) = 1
|G|χc(V ), so χc(X×G) = χc(V ). (Here G is interpreted as a discrete

set.) However, we will see that for n = |G|, we have χc(θn(X ×G)) 6= χc(θn(V )).
As θn is the identity on K0(Vark), we have θn(V ) = [V ]. On the other hand, the

subgroup of n-th powers of any cyclic subgroup of G is trivial, so θn(X) = [X(V
G
։

W,Psub(G))] = [W ] and θn(X × G) = [W × G]. But V and W × G are two
varieties with a different number of irreducible components of maximal dimension,
so χc(θn(X ×G)) 6= χc(θn(V )). �

4.3. Compatibility of χc and θι. We prove the following compatibility statement:

Proposition 4.1. Suppose k is a field of characteristic zero and Gal2 ⊂ Gal1 are
two torsion-free pro-cyclic groups such that Gal1 /Gal2 is torsion-free, too. We use
the following notation: Ti := TGali,k (for i = 1, 2) are the corresponding theories,
χi
c : K0(Ti) → K0(Motk)Q are the maps of Theorem 1.1, and θ : K0(T2) → K0(T1)

is the map provided by Theorem 1.3 applied to the inclusion Gal2 ⊂ Gal1. Then
we have:

χ2
c = χ1

c ◦ θ .

Proof. For i = 1, 2 let Pi be the set of primes such that Gal i =
∏

p∈Pi
Zp. We

have P2 ⊂ P1, and Gal2 is just the factor of Gal1 corresponding to P2. We will
write Psubi resp. Pparti for the permitted subgroups and the permitted part to
distinguish between the two Galois groups.

We only have to verify the statement for sets of the form X(V
G
։ W,C2), where

(V
G
։ W,C2) is a colored Galois cover for T2. By the proof of Theorem 1.3, we

have θ(X(V
G
։ W,C2)) = X(V

G
։ W,C1), where C1 consists of the images of those

maps ρ : Gal1 → G which satisfy ρ(Gal2) ∈ C2. As Gal2 is a direct factor of Gal1,
we get C1 = {Q ∈ Psub1(G) | Ppart2(Q) ∈ C2}.

Now recall the definition of χi
c: χ

i
c(X(V

G
։ W,Ci)) = χc(G # V, αCi

), where

αCi
(g) :=

{

1 if Pparti(〈g〉) ∈ Ci

0 otherwise.

But Ppart1(〈g〉) ∈ C1 if and only if Ppart2(Ppart1(〈g〉)) = Ppart2(〈g〉) ∈ C2, so
αC1

= αC2
, and the claim is proven. �
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5. Open problems

5.1. Uniqueness of χc. In the case of pseudo-finite fields, the conditions given
in Theorem 1.1 are enough to render χc unique. One would like to have a similar
uniqueness statement in the other cases. Unfortunately, the condition

(∗) χc(X(V
G
։ W, {1})) =

1

|G|
χc(V )

is false in general if |G| has prime factors not in P (where Gal =
∏

p∈P Zp). For

algebraically closed fields for example, we have χc(X(V
G
։ W, {1})) = χc(W ),

which is not equal to 1
|G|χc(V ) unless G is trivial.

The first question is: is the weak version of (∗) (when one requires all prime
factors of |G| to lie in P ) enough to get uniqueness? And if not: is there some other
nice condition rendering χc unique? One fact suggesting that the weak condition
might already be strong enough is that this is true indeed for algebraically closed
fields.

5.2. From motives to measure. The parallels between the definitions of the
virtual motive associated to a definable set and the measure of such a set ([2], [7])
suggest that one should be able to extract the measure from the motive. More
precisely, fix a perfect PAC field K of characteristic zero with pro-cyclic Galois
group Gal . Note that there are two theories around now: TGal,K , the theory of
pseudo-finite fields containingK (which is not complete) and Th(K), the (complete)
theory of K itself.

Denote by dim: K0(Th(K)) → N the dimension of [3] (which needs not coincide
with the usual dimension for varieties: only components “visible over K” are con-
sidered) and by µ : K0(Th(K)) → Q the measure of [7]. The question is whether a
dotted map in the following diagram exists making the diagram commutative.

K0(TK) K0(Th(K))

K0(MotK)Q N×Q

χc (dim, µ)

If K is algebraically closed, then this is obviously true: In this case µ(V ) is just
the number of irreducible components of maximal dimension of V , and both this
and the dimension of V (which is the usual one in this case) can be seen in the
corresponding motive.

If K is pseudo-finite, this is true, too: Let X be a definable set of TGal,K . Then
it makes sense to speak about X(F ) for finite fields F of almost all characteristics.
Lemma 3.3.2 of [4] states that for almost all characteristics, the number of points
|X(F )| is encoded in the motive. (Not very surprisingly, it is the trace of the
Frobenius automorphism on the motive.) The dimension and the measure of X in
K can be computed from these cardinalities.

The way one extracts the dimension and the measure from the motive seems
quite different in the two above cases. This suggests that one might get interesting
new insights by generalizing this to arbitrary pro-cyclic Galois groups.

5.3. Larger Galois groups for the maps θι. The quantifier elimination result
of [6] does not only work for fields with pro-cyclic Galois groups, but for some
larger Galois groups as well. (The Galois group has to satisfy what Fried-Jarden
call the “embedding property”.) It seems plausible that Theorem 1.3 should be



MOTIVES FOR PERFECT PAC FIELDS WITH PRO-CYCLIC GALOIS GROUP 15

generalizable to this context as well. However the proof will need some modifica-

tions. Indeed for Gal1 = Ẑ ∗ Ẑ = 〈a, b〉 and Gal2 = 〈a〉 ⊂ Gal1, one can construct a

T2-definable set X = X(V
G
։ W,C) such that θ(X) is not definable using the same

Galois cover V
G
։ W .

5.4. Larger Galois groups for the maps χc. Another natural question is whether
the map χc can also be defined for fields with larger Galois group. However, in [7]
we already showed that the measure of [2] does not extend to this generality. In-

deed, no measure exists for example if the Galois group is Ẑ ∗ Ẑ. This suggests
that it is neither possible to associate motives to definable sets of such theories.
Probably, T

Ẑ∗Ẑ,k contains too many definable bijections so that the corresponding

Grothendieck ring gets too small. One might even hope to show that K0(TẐ∗Ẑ,k) is

trivial.

5.5. What exactly do we know about K0(TGal,k)? We showed that the maps
χc do not yield the full information about the definable sets and we showed how
additional information can be obtained using the maps θι. The question is now: how
much information do we get using all maps θι? More precisely, suppose X1 and X2

are two definable sets in TGal,k, and suppose that for any injective endomorphism
ι : Gal →֒ Gal we have χc(θι(X1)) = χc(θι(X2)). What does this tell us about X1

and X2 (as elements of K0(TGal,k))?
The best we could hope would be [X1] = [X2], but this is wrong in the case

Gal = {1}: There are no non-trivial maps θι, and the map χc : K0(TGal,k) →
K0(Motk) is known to be non-injective for algebraically closed fields.

So what one could really hope for would be that “apart from this”, the maps
χc ◦ θι yield all additive information about the definable sets of TGal,k. The first
open problem here is to give a precise meaning to this statement.
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