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UNARY PRIMITIVE RECURSIVE FUNCTIONS

DANIEL E. SEVERIN

Abstract. In this article, we study some new characterizations of primitive recursive

functions based on restricted forms of primitive recursion, improving the pioneering work

of R. M. Robinson and M. D. Gladstone. We reduce certain recursion schemes (mixed/pure

iteration without parameters) and we characterize one-argument primitive recursive func-

tions as the closure under substitution and iteration of certain optimal sets.

§1. Introduction. Prim, i.e. the set of primitive recursive functions, is the
closure under substitution and primitive recursion of zero, successor and projec-
tion functions. For a detailed definition, the reader is referred to any standard
work, for instance chapter 1 of [8]. A suitable subset is Prim(N,N), i.e. the set of
unary primitive recursive functions. It will be one of the objects of our research.
Recursion schemes have been studied intensively during the twentieth cen-

tury. In particular, R. M. Robinson[15, 16] and his wife J. Robinson[13, 14]
proved that it is sufficient to consider one-argument functions because functions
of several arguments can be reduced to them using pairing strategies. Later on,
Gladstone[6, 7] and Georgieva[3] made improvements to the recursion schemes.
At the same time as the study of recursive functions, several classifications were
carried out over Prim(N,N). The first one was Grzegorczyk hierarchy[9]. Since
then, other hierarchies have appeared (cf. [12, 1, 4, 2, 11]). Finally, some alge-
braic properties of Prim(N,N) were verified in [17]. Similar topics are covered in
[5, 10].
The present paper improves the work of Robinson[15] and Gladstone[7].
The paper is organized as follows: In §2 we will give a useful symbolic notation

for writing functions. In §3 we will show previous results, and the facts to be
proved here. In §4 we will analyze a possible reduction in one of the recursion
schemes. More precisely, mixed iteration without parameters with a fixed is as
expressive as mixed iteration without parameters with a variable (the meaning
of these schemes and a can be found in §3). In §5 we will do the same thing
with pure iteration without parameters. And, in §6 we will characterize unary
primitive recursive functions as the closure of the set including x 7−→ 1 and x 7−→
x − ⌊√x⌋2 with respect to substitution, iteration and the following operator:
f 7−→ f + I, where I is the identity function on natural numbers.
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§2. Notation. To denote arbitrary functions we shall use letters in uppercase
such as F , G and H . To denote natural variables we shall use x, y, z . . . , whereas
a, b, . . . are used to denote constants. Throughout the paper, the following
functions will be used:

• Basic functions:

I(x) = x (identity)

n(x) = n (constants)

S(x) = x+ 1 (successor)

P (x) = x−· 1 (predecessor)

Ink (x1, x2, . . . , xn) = xk, for 1≤k≤n (projections)

• Arithmetic functions:

D(x) = 2x (double)

Sq(x) = x2 (square)

Hf(x) = ⌊x/2⌋ (half)

Pw(x) = 2x (power of two)

Rt(x) = ⌊
√
x⌋ (integer square root)

• Cantor pairing functions:

A(x) = ⌊(x2 + x)/2⌋ (x-th triangular number)

V (x) =

⌊⌊
√
8x+ 1⌋ − 1

2

⌋

(inverse of A)

J(x, y) = A(x+ y) + x (pairing function)

K(x) = x−A(V (x)) (first inverse)

L(x) = A(V (x) + 1)− x− 1 (second inverse)

• Binary functions:

x−· y =

{

x− y if x ≥ y

0 otherwise
(arithmetic difference)

|x− y| =
{

x− y if x ≥ y

y − x otherwise
(distance)
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• Other functions:1

O(x) =

{

1 if x = 0

0 otherwise
(power of zero, cosignum)

Sgn(x) =

{

0 if x = 0

1 otherwise
(signum)

N(x) = x mod 2 (characteristic of odd numbers)

E(x) = x− ⌊
√
x⌋2 (excess over a square)

Q(x) =

{

1 if x is a square

0 otherwise
(characteristic of square numbers)

Let F , G, G1, . . . , Gm be functions, and x = (x1, x2, . . . , xn), i.e. a n-tuple.
The following operators on natural number functions will be used:

• Substitution:

subst(F,G1, G2, . . . , Gm)(x) = F (G1(x), G2(x), . . . , Gm(x)).

A more special case is defined for one-argument functions,

(F ◦G)(x) = F (G(x)),

(FG)(x) = F (G(x)).

• Primitive recursion:

R[F,G](x, 0) = F (x),

R[F,G](x, y + 1) = G(x, y,R[F,G](x, y)).

• Restricted forms of primitive recursion:2

1) M [F ](0) = 0,

M [F ](x+ 1) = F (x,M [F ](x)),

2) F�(a)(0) = a,

F�(a)(x+ 1) = F (F�(a)(x)).

3) F�(x) = F�(0)(x).

• Power:

F 0(x) = x,

Fn+1(x) = F (Fn(x)).

• Miscellaneous:

1) (F +G)(x) = F (x) +G(x),

2) (F −· G)(x) = F (x)−· G(x),

3) |F −G|(x) = |F (x) −G(x)|,
4) J(F,G)(x) = J(F (x), G(x)).

1Some authors write 0x, sg(x) or cosg(x) instead of O(x).
2Notations F� and F�(a) are due to Szalkai[17].
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Table 1. Precedence and associativity of operators.

Precedence Operators Associativity

First F +G, F −· G Left
Second FG, F ◦G Any

Third Fn, F�, F�(a) −

In order to decrease the size of this article and improve readability, we will
give a symbolic notation for representing functions. If the definition of a new
function F : Nn → N is

F (x1, x2, . . . , xn) = expression(x1, x2, . . . , xn),

we will write

F ≡ expression,

where expression is composed by the functions and operators previously defined.
Precedence and associativity rules are shown in table 1. Here are some examples
of well-formed expressions:

D ≡ M [S ◦ S ◦ I22 ], O ≡ subst(R[1, P ◦ I33 ], I, I),
Pw ≡ S(I + I + 1)�, V ≡ Hf P Rt S D D D.

A finite set of initial functions and of functional operators is called basis. We
will denote with

F = 〈F1, F2, . . . , Fn, F
⊕, . . . , F ⊗G, . . .〉

the basis composed by the initial functions F1, F2, . . . , Fn, the unary operators
F⊕, . . . , the binary operators F ⊗G, . . . and so on.
We will denote with closF the closure of the basis F . An example is

Prim = clos〈0, S, Ink , subst,R[F,G]〉.

§3. Preliminaries. In [15], some recursion schemes are introduced (all of
them are particular cases of primitive recursion):

1. Mixed recursion with one parameter:
F (x, 0) = G(x), F (x, y + 1) = H(x, y, F (x, y)).

2. Pure recursion with one parameter:
F (x, 0) = G(x), F (x, y + 1) = H(x, F (x, y)).

3. Mixed iteration with one parameter:
F (x, 0) = x, F (x, y + 1) = H(y, F (x, y)).

4. Pure iteration with one parameter:
F (x, 0) = x, F (x, y + 1) = H(F (x, y)).

5. Mixed iteration without parameters:
F (0) = a, F (y + 1) = H(y, F (y)).

6. Pure iteration without parameters:
F (0) = a, F (y + 1) = H(F (y)).

7. Mixed iteration without parameters, and a = 0:
F (0) = 0, F (y + 1) = H(y, F (y)).
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Table 2. Table of functions that must be added as initial functions.

One Parameter No Parameter

Recursion Iteration a variable a = 0 (fixed)

x+ y, Q [15]
Mixed − [15] − [15] x+ y [7] |x− y| [15]

x+ y, O §4
x+ y, E [15]
x+ y, K [16]

Pure − [6] − [7] |x− y| [7] x+ y, L [16]
J , K [16]

x−· y [3, 11] J , L [16]
|x− y| §5
x−· y §5

8. Pure iteration without parameters, and a = 0 (or simply called iteration):
F (0) = 0, F (y + 1) = H(F (y)).

We will refer to these schemes as rec1 , rec2 , . . . , rec8 in the same order listed
above. Note that schemes rec1 , rec7and rec8have symbolic notations: F ≡ H�(a),
F ≡ M [H ] and F ≡ H�.
Robinson and Gladstone proved that the primitive recursion scheme can be

replaced by one of the cases with one parameter, i.e. rec1 -rec4 . They also
proved that the cases without parameters, i.e. rec5 - rec8 , are adequate but
certain functions must be added to the initial functions. Table 2 summarizes
which functions are sufficient to be included as initial functions (the symbol −
denotes the null set). In this table, the references indicate where the proofs of
previous results can be found and the section references indicates where are the
proofs of new results. Now, the tables that appeared on p. 929 of [15] and on p.
654 of [7] can be substituted by our table.
In the cases without parameters, it is not necessary to take zero function as an

initial function because it can be obtained from identity and iteration as follows:

0(0) = 0, 0(x+ 1) = I(0(x)).

Moreover, in the pure cases without parameters, it is not necessary to take pro-
jection functions as initial functions if we are considering one-argument functions.
In Prim(N,N), there is only one projection, the identity function, which can be
obtained from successor and iteration as follows:

I(0) = 0, I(x + 1) = S(I(x)).

Notice that all constant functions belong to every case given in table 2, since they
can be generated using zero and successor functions: n(x) = Sn(0(x)). Constant
functions of more that one argument can be defined composing a one-argument
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constant function with an arbitrary function of n arguments (e.g. a projection).

At the end of §4 of [15], Robinson determined that Sq, O, Hf , Rt, addition
and substraction3 (x−y) are sufficient to add as initial functions when we works
with rec5 -rec8 . We will rewrite this result in the next lemma.

Lemma 3.1. For i ∈ {5, 6, 7, 8},
Prim = clos〈S, Ink , Sq, O,Hf,Rt,+,−, subst, reci〉.

In some sections, we just will work with unary primitive recursive functions
and the scheme of iteration. The following definition will help us.

Definition 3.2. We say that a basis F is suitable when closF = Prim(N,N).

Lemma 3.3. The basis 〈S, Sq,O,Hf,Rt, F +G,F −G,FG,F�〉 is suitable.

Proof. It follows from Lemma 3.1 (also see Theorem 2 of [15]) and I ≡ S�.
Due to the impossibility of introducing binary functions, we must incorporate
operators such as F +G and F −G. �

Furthermore, Robinson proved that Prim can be obtained by adding projection
functions, addition and the substitution operator to Prim(N,N) (cf. §7 of [15]).
We write this result as another lemma.

Lemma 3.4. Let F be a suitable basis. Then, Prim = clos(F + 〈Ink ,+, subst〉).
Now, we will derive a list of suitable bases for the pure cases without param-

eters (see table 3, the format is the same as in table 2). Bases provided in §6
are simpler than Robinson’s bases. In fact, the successor can be substituted by
1, and the addition operator can be substituted by a unary operator of the form
f 7−→ f + I.

§4. Mixed iteration without parameters. In §4 of [7], Gladstone showed
that rec5 is adequate if we include the addition function. Our aim is to verify
that rec7 is adequate too, but we must incorporate a function that is not non-
decreasing: cosignum. In order to do this, we need to follow the same steps as
[7] but keeping in mind that we must use rec7 .
At the scope of this section, let F = 〈S, Ink , O,+, subst,M [F ]〉.
Lemma 4.1. P,N,D, Sq,Hf, Pw ∈ closF .

Proof. In the first place, P ≡ M [I21 ], N ≡ M [O◦I22 ] and D ≡ M [S ◦S ◦I22 ].
Furthermore, we have:

• Square: Sq(0) = 0, Sq(x+ 1) = Sq(x) + 2x+ 1.
Sq ≡ M [subst(+, S ◦ I22 , D ◦ I21 )].

• Half: Hf(0) = 0, Hf(x+ 1) = Hf(x) +N(x).
Hf ≡ M [subst(+, I22 , N ◦ I21 )].

• Power of two: Let F be defined as follows: F (0) = 0, F (x+1) = 2F (x)+1.
Therefore, F (x) = 2x − 1 and Pw ≡ S ◦ M [S ◦D ◦ I22 ].

3The notation x−y without dot or vertical bars, will always be used in an ambiguous sense,
to stand for any function F (x, y) which is equal to x− y for x≥y, regardless of its value when
x<y. Any difference function, such as x−· y or |x− y|, can substitute x− y.
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Table 3. Initial functions for characterizations of Prim(N,N)
using pure iteration.

a variable a = 0 (fixed)

S, E, F +G [15]
S, K, F +G [16]
S, L, F +G [16]

S, |F −G| [7] S, E, J(F,G) [16]
S, K, J(F,G) [16]
S, L, J(F,G) [16]
S, |F −G| §5

S, F −· G [3, 11] S, F −· G §5
1, E, F + I §6
1, K, F + I §6
1, L, F + I §6

�

Lemma 4.2. The function δ(x, y) =

{

1 if x = y

0 otherwise
(namely Kronecker delta

function) belongs to closF .

Proof. In Lemma 6 of §4 of [7], the following function f is defined using
scheme rec5 :

f(0) = 2,

f(x+ 1) = N(z) + z + 2x+O(N(z)) + 2x+2O(N(z)),

where z =

⌊

f(x)

2

⌋

. We can simulate this function by transferring the index in

one unit:

f ′(0) = 0,

f ′(x+ 1) = N(z′) + z′ + 2x+O(N(z′))−1 + 2x+2O(N(z′))−1 +O(O(x)),

where z′ =

⌊

f ′(x)− 1

2

⌋

. Thus, f(x) = f ′(x+ 1)− 1.

Now, let g be defined as g(0) = 0, g(x+ 1) = N

⌊

f(x− 1)

2

⌋

.

According to Gladstone,4

g(x) =

{

1 if x is a power of two,

0 otherwise.

Note that x = y iff 2x + 2y is a power of two, so δ(x, y) = g(2x + 2y). �

Lemma 4.3. Rt,− ∈ closF .

4In his paper, g(x) returns 0 when x is a power of two, and 1 if not.
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Proof. Integer square root is computed as follows: Rt(0) = 0, Rt(x + 1) =
Rt(x) + δ((Rt(x) + 1)2, x+ 1). Symbolically,

Rt ≡ M [subst(+, I22 , subst(δ, Sq ◦ S ◦ I22 , S ◦ I21 ))].

Let H be defined as follows:

H(0) = 0,

H(x+ 1) = H(x) + 2N(⌊
√
x⌋)−· 1.

Hence, H(x) = E(x) when ⌊√x⌋ is an odd number (cf. part (4) of §6 of [15]),
so that

x− y = H((2x+ 2y)2 + 5x+ 3y + 1)

whenever x ≥ y. The formula above defines the function substraction as a
functional operator. Finally, − ≡ I21 − I22 . �

Theorem 4.4. Prim = clos〈S, Ink , O,+, subst,M [F ]〉.

Proof. It follows from Lemma 3.1 and Lemmata 4.1-4.3. �

We will prove two theorems which explain the reason we included cosignum
function in Theorem 4.4.

Theorem 4.5. Let F ′ = F − 〈O〉 (the result of removing O from the basis
F ). Every function F of one argument of closF ′ is non-decreasing:

∀x∈N F (x) ≤ F (x + 1).

Proof. We will proceed by structural induction over functions defined using
one argument. The fact is trivial for identity and successor function. If F and G
are non-decreasing functions, its substitution (i.e. F ◦ G) and its addition (i.e.
subst(+, F,G)) are non-decreasing too.
Now, let F be defined as

F (0) = 0, F (x + 1) = G(x, F (x)).

Clearly, G is a function written in terms of I21 , I
2
2 and non-decreasing functions.

So, G satisfy the following property:

∀a,b,x,y∈N G(x, y) ≤ G(x+ a, y + b).

Suppose that F (x) ≤ F (x+ 1). Then,

G(x, F (x)) ≤ G(x+ 1, F (x+ 1)).

Therefore, F (x+ 1) ≤ F (x + 2). �

Theorem 4.6. Prim = clos〈S, Ink , F̂ ,+, subst,M [F ]〉, where F̂ is not non-
decreasing.

Proof. If F̂ is not non-decreasing then exists a natural number a that verifies
F̂ (a) > F̂ (a+ 1). Let G be defined as G(x) = F̂ (x + a), i.e G ≡ F̂ ◦ Sa. Thus,
G(0) > G(1). Let H be defined as H(x) = G(x)−· G(1), i.e. H ≡ PG(1) ◦ G,
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where P ≡ M [I21 ]. Thus, H(0) > H(1) = 0.
Next, let Sgn ≡ M [ 1 ]. It follows easily that

Sgn(H(Sgn(0))) = Sgn(H(0)) = 1,

Sgn(H(Sgn(x+ 1))) = Sgn(H(1)) = 0.

Therefore, O ≡ Sgn ◦H ◦ Sgn. And now, we can apply Theorem 4.4. �

Remark 4.7. In this section, we fixed the value of a to zero. However, we
could have fixed the value of a to another number.5

We will show that scheme rec7 can be expressed using rec5with a > 0. First, we
define the functions below:

P̂ (0) = a, P̂ (x+ 1) = x, i.e. P̂ ≡ Ma[I
2
1 ],

a(0) = a, a(x+ 1) = a(x), i.e. a ≡ Ma[I
2
2 ],

0 ≡ P̂ a ◦ a,
Ô(0) = a, Ô(x+ 1) = 0, i.e. Ô ≡ Ma[0],

where Ma[F ](0) = a, Ma[F ](x+ 1) = F (x,Ma[F ](x)).
Now, every function F which satisfies F (0) = 0 and F (x+ 1) = H(x, F (x)) will
be written as follows:

G(0) = a,

G(x+ 1) = H(x,G(x) − a) + a.

By a simple induction, F (x) = G(x) − a, and

M [H ] ≡ P̂ a ◦ Ma[S
a ◦ subst(H, I21 , P̂

a ◦ I22 )].

Note also that Ô is not non-decreasing. So, applying Theorem 4.6 we prove that
Prim = clos〈S, Ink ,+, subst,Ma[F ]〉.

§5. Iteration and difference. We will follow §5 of [7] (also see Lemma 1 of
[11]), replacing rec6 by rec8 : Prim is generated using a difference function (may
be |x− y| or x−· y) as the unique initial function. However, we will propose an
equivalent statement. Let F be 〈S, |F − G|, FG, F�〉 or 〈S, F −· G,FG,F�〉.
Our intention is to prove that F is suitable.
As much as possible, we will try to use F−G instead of |F−G| and F −· G, but

taking care of not subtracting two functions that render the expression mean-
ingless. In the first place,

I ≡ S�, D ≡ (SS)�,

0 ≡ S − S, 1 ≡ S0,

Pw ≡ S(SD)�, Sgn ≡ 1
�
,

P ≡ I − Sgn, O ≡ 1− Sgn.

5This differs from Gladstone, because he used rec5 with several values of a (more precisely,
with a ∈ {0, 1, 2}). We show that it is sufficient to choose one value for a.
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Next step is to construct the addition. The following sequence of functions
{

f0 ≡ S,

fn+1 ≡ f
�(fn(1))
n

is a kind of Ackermann’s sequences (i.e. if f(x, n) = fn(x) then f grows faster
than any primitive recursive function; nevertheless, fn is primitive recursive).
Georgieva[3] discovered a method for constructing the addition between two
functions, based on this sequence.
Let F,G ∈ closF . According to Lemma 6 of [3], there exists i ∈ N such that
F (x) ≤ fi(x) for every x (and there exists j ∈ N such that G(x) ≤ fj(x)). Let k
be the maximum value between i and j. Hence, F (x)+G(x) ≤ 2fk(x). Therefore
(cf. Lemma 7 of [3]),

F +G ≡ Dfk − ((Dfk − F )−G).

Now, we will explain how to construct fi given F by means of the following
recursive definition:







































A : F → N

A (S) = 0

A (|F −G|) = max(A (F ),A (G))

A (F −· G) = A (F )

A (FG) = max(A (F ),A (G)) + 2

A (F�) = A (F ) + 1

To express F+G using rec8 instead of rec6 , we need only to generate a sequence
that grows faster than fn.

Lemma 5.1. The following sequence of functions
{

B0 ≡ S,

Bn+1 ≡ (Sfn(1) Bn)
�

satisfies

∀x,n∈N Bn(x + 1) ≥ fn(x).

Proof. First, we will try to rewrite fn with iterations.










f ′
0(x) = x,

f ′
n+1(0) = 0,

f ′
n+1(x + 1) = gn(f

′
n+1(x))

where gn(x) = fn(1)O(x)+ f ′
n(x)Sgn(x). Hence, f

′
n(x+1) = fn(x) (by a simple

induction on x and n). Consider the sequence










B0(x) = x+ 1,

Bn+1(0) = 0,

Bn+1(x+ 1) = hn(Bn+1(x))

where hn(x) = fn(1)+Bn(x). Clearly, Bn+1(x) ≥ f ′
n+1(x) if Bn(x) ≥ f ′

n(x) (by
comparing gn and hn). We conclude that Bn(x+ 1) ≥ fn(x). �
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Lemma 5.2. If F,G ∈ closF then F +G ∈ closF .

Proof. Remember that there exists i, j ∈ N such that F (x) ≤ fi(x) and
G(x) ≤ fj(x). By virtue of the previous lemma, F (x) ≤ Bi(x + 1) and G(x) ≤
Bj(x + 1). Let k = max(i, j), so

F (x) +G(x) = 2Bk(x+ 1)− ((2Bk(x+ 1)− F (x))−G(x)).

In other words,

F +G ≡ DBmax(A (F ),A (G))S − ((DBmax(A (F ),A (G))S − F )−G).

�

Now, we only need to prove that Sq,Rt,Hf ∈ closF . We will do this in the
next lemmata.

Lemma 5.3. The following families of functions belong to closF :

• Characteristic of n:

On(x) =

{

1 if x = n,

0 otherwise.

• Multiplication functions:

Mn(x) = nx.

• Cycle functions:

Cn+2(x) =

{

x+ 1 if x ≤ n,

0 otherwise.

• Moduli functions:

Modn+2(x) = x mod (n+ 2).

• Division functions:

Divn+2(x) = ⌊x/(n+ 2)⌋.
Proof. We will show the formulas of each one in the same order. All of them

can be proved easily by induction on n.6

Characteristic of n:

O0 ≡ O, O1 ≡ O(O + P ), On+2 ≡ On+1P.

Multiplication functions:

Mn ≡ (Sn)�.

Cycle functions:

C2 ≡ O, Cn+3 ≡ Cn+2 +Mn+2On+1.

Moduli functions:

Modn+2 ≡ C�

n+2.

Division functions:

Divn+2 ≡ (S +O Modn+3 S S)� − I.

6Some proofs can be consulted in §5 of [7].
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�

Definition 5.4. The conditional operator F → G is defined as follows

(F → G)(x) =

{

G(x) if F (x) = 0,

0 otherwise.

Lemma 5.5. If F,G ∈ closF then F → G ∈ closF .

Proof. Let α(x) = 2x+1+Mod2(x) − 2x+1. If x is even, α(x) = 0. And if x is
odd, α(x) = 2x+1. In formal terms,

α ≡ Pw(S +Mod2)− Pw S.

Now, we will divide the proof in two cases depending on the substraction operator
which we are working:

• Distance: Let β ≡ (|α− (I +Pw)|+ I)−Pw. If x is even, β(x) = 2x. And
if x is odd, β(x) = 0.

• Arithmetic difference: Let β ≡ D−· α. If x is even, β(x) = 2x. And if x is
odd, β(x) = 0.

Finally, we will observe the behavior of w = β(2z + Sgn(y)). When y is zero,
w = 4z. And when y is positive, w = 0. So, w = 4.(F → G)(x) if y = F (x) and
z = G(x), and

(F → G) ≡ Div4β(DG + Sgn F ).

�

Lemma 5.6. Q ∈ closF .

Proof. We follow Lemma 2.3 of [4]. Let W be defined as follows:

W (x) =































2 if x = 0,

⌊3x/2⌋ if x 6= 0, x mod 10 = 0,

⌊2x/5⌋ if x 6= 0, x mod 2 6= 0, x mod 5 = 0,

⌊2x/3⌋ if x 6= 0, x mod 3 = 0, x mod 5 6= 0,

⌊15x/2⌋ if x 6= 0, x mod 3 6= 0, x mod 5 6= 0.

For all x > 0, W�(x) mod 3 6= 0 if and only if x is a square. To write W we
must use the operator defined above (see 5.4):

W1(x) ≡ DO,

W2(x) ≡ (O +Mod10 → Div2 M3),

W3(x) ≡ (O +O Mod2 +Mod5 → Div5 D),

W4(x) ≡ (O +Mod3 +O Mod5 → Div3 D),

W5(x) ≡ (O +O Mod3 +O Mod5 → Div2 M15).

Each Wi represents one case (one line of the definition of W ). The conditions
are mutually exclusive, so W (x) = Wi(x) for some i between 1 and 5.
Thus, W ≡ W1 +W2 +W3 +W4 +W5 and

Q ≡ Sgn Mod3 W� +O.

�
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Lemma 5.7. Sq,Rt,Hf ∈ closF .

Proof. We follow §5 of [15]. Suppose that R(x) = x+ 2⌊√x⌋.
Then, R ≡ (S +DQSSSS)� and

Sq ≡ (SR)�, Rt ≡ Div2(R − I), Hf ≡ Div2.

�

Theorem 5.8. The bases 〈S, |F − G|, FG, F�〉 and 〈S, F −· G,FG,F�〉 are
both suitable.

Proof. It follows from Lemma 3.3 and Lemmata 5.1-5.7. �

We conclude this section with the following theorem, which is a consequence
of the previous results.

Theorem 5.9. Prim = clos〈S, Ink ,⊖, subst, F�〉, where ⊖(x, y) can be x−· y or
|x− y|.

Proof. Let F = 〈S, F⊖G,FG,F�〉. In virtue of Theorem 5.8, F is suitable,
and therefore the operator addition belongs to closF . Note that + ≡ I21 + I22 ,
F ⊖ G ≡ subst(⊖, F,G) and FG ≡ subst(F,G), so clos〈S, Ink ,⊖, subst, F�〉 ⊇
clos〈S, Ink , F ⊖G, subst, F�〉 ⊇ clos(F + 〈Ink , subst〉) ⊇ clos(F + 〈Ink ,+, subst〉) =
Prim (use Lemma 3.4). Therefore, Prim = clos〈S, Ink ,⊖, subst, F�〉. �

Remark 5.10. In this section, we used scheme rec6 with a = 0. However, we
could have fixed the value of a to another number as we did in 4.7. In fact,

F� ≡ P̂ a(SaFP̂ a)�(a)

where P̂ may be |S − 2| or S−· 2, and 2 ≡ SS(S − S).

Remark 5.11. A further line of inquiry is to analyze if it is possible to rewrite
the operator F → G using the difference F −G instead of F −· G and |F −G|.
For example, if we prove that Sq ∈ closF , then we can write

(F → G) ≡ Div2(Sq(OF +G)− (Sq O F )− (Sq G))

and replace F −· G and |F −G| by F −G in table 3.

§6. Iteration and unary operator. Robinson[15] proved that 〈S,E, F +
G,FG,F�〉 is a suitable basis. In this section, we will simplify this result,
showing that 〈1, E, F+, FG, F�〉 is suitable too. Let F = 〈1, E, F+, FG, F�〉,
where the operator F+ is defined as

F+(x) = F (x) + x,

and its precedence is the same as in F�. The aim of this section is to show that
it is not necessary to have a binary operator such as the addition (except for,
of course, the substitution). In fact, the addition can be replaced by a unary
operator.
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In the first place, the following functions belong to closF :

S ≡ 1
+
, Sgn ≡ 1

�
,

0 ≡ E1, Mod3 ≡ (ESS)�,

D ≡ (0
+
)+, M3 ≡ D+,

O ≡ E D S Sgn, Q ≡ OE,

R ≡ ((DQSSS)+S)�, Sq ≡ (SR)�.

Definition 6.1. In this section, the following operators on one argument
functions will be used:

F−(x) = F (x) − x, (F ⊗G)(x) = F (x)G(x),

(F ⊕G)(x) = F (x) +G2(x), (F ⊖G)(x) = F (x) −G2(x),

whenever F (x) ≥ x and G(x) ≥ x for every x ∈ N. In the definition of ⊖,
F (x) ≥ G2(x) must hold too.7

The precedences of ⊕ and ⊖ are the same as in the addition, while the precedence
of F− is the same as in F+. The precedence of ⊗ is between addition and
substitution (like products in arithmetical expressions).

Lemma 6.2. Let F ∈ closF . If F (x) ≥ x for every x, then F− ∈ closF .

Proof. Robinson has proved that, if α ≥ β, then

α− β = E((α + β)2 + 3α+ β + 1).

If we take α = F (x) and β = x, the formula becomes

F (x) − x = E((F (x) + x)2 + 3F (x) + x+ 1).

The following diagram shows how to compute F−:

x 7 (Sq F+)+−−−−−−→ F+(x)2 + x 7 (M3FE)+−−−−−−→ F+(x)2 + 3F (x) + x 7 ES−−→ F−(x)

since E((F (x) + x)2 + x) = x. Therefore,

F− ≡ ES(M3FE)+(Sq F+)+.

�

Lemma 6.3. Hf,Rt ∈ closF .

Proof. Cf. §5 of [15]:

Hf ≡ ((S Mod3
+)�)−,

Rt ≡ Hf R−.

�

Lemma 6.4. Let F,G ∈ closF . If F (x) ≥ x and G(x) ≥ x, then F ⊕ G ∈
closF . If F (x) ≥ G2(x) too, then F ⊖G ∈ closF .

7G2(x) must be read as G(x)G(x), and not G(G(x)).
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Proof. We will use the fact that if G(x) ≥ x then E(G2(x)+x) = x. Hence,

x 7 (Sq G)+−−−−−→ G2(x) + x 7 (F
−E)+−−−−−→ F (x) +G2(x),

x 7 (Sq G)+−−−−−→ G2(x) + x 7 (F
+E)−−−−−−→ F (x)−G2(x).

Therefore,

F ⊕G ≡ (F−E)+(Sq G)+,

F ⊖G ≡ (F+E)−(Sq G)+.

�

Lemma 6.5. Let F,G ∈ closF . If F (x) ≥ x and G(x) ≥ x, then F ⊗ G ∈
closF .

Proof. Note that

α2β2 =

[

(α2 + 1)2 + β2 − α4 − 1
]2 − β4

4
− α4.

If we take α = F (x) and β = G(x), we can reach αβ with

F ⊗G ≡ Rt((Hf Hf(Sq P̂ ((Sq S Sq F ⊕G)⊖ Sq F ) ⊖ Sq G)) ⊖ Sq F ),

where P̂ ≡ ((Sq+)+)+ ⊖ S, i.e. P̂ (x+ 1) = x. �

Lemma 6.6. Let F,G ∈ closF . So, F +G ∈ closF . If F (x) ≥ G(x) for every
x, then F −G ∈ closF too.8

Proof. First, we will compute the sum F+(x)+G+(x) by using the following
properties: (α + β)2 = 2αβ + α2 + β2, F+(x) ≥ x, G+(x) ≥ x,

F+(x) +G+(x) =
√

2F+(x)G+(x)⊕ F+(x) ⊕G+(x).

Now, see that F (x) +G(x) = F+(x) +G+(x)− 2x. Therefore,

F +G ≡ ((Rt((D(F+ ⊗G+)⊕ F+)⊕G+))−)−.

To compute F −G, we can use the same trick as in Lemma 6.2. Finally,

F −G ≡ ES(Sq(F +G) +M3F +G).

�

Theorem 6.7. 〈1, E, F+, FG, F�〉 is a suitable basis.

Proof. It follows from Lemma 3.3 and Lemmata 6.2-6.6. �

Now, we will prove that F is suitable if we use K (or L) instead of E. Let
F ′ = 〈1,K, F+, FG, F�〉. Following p. 664 of [16],

S ≡ 1
+
, Sgn ≡ 1

�
,

0 ≡ K1, D ≡ (0
+
)+,

Y ≡ ((Sgn K)+S)�, Z ≡ (SSK+)�,

8The formula of F − G works well even when F (x) < G(x) for some values of x. We can
use them regardless of the values which render the formula meaningless.
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where Y (x) = 2x− ⌊√x⌋ and Z(x) = x(x + 3)/2.
Let F ∈ closF ′. Using the fact that

K((α+ β)(α+ β + 3)/2 + 2α+ 3) = α− β, if α≥β,

we see that

I − F ≡ KSSS((ZF+)+)+, if x≥F (x),

and that

D − F ≡ KSSS(((((Z(F+)+)+)+)+)+), if 2x≥F (x).

Thus,

Rt ≡ D − Y, Sq ≡ (((1
+
)+Rt)+)�, E ≡ I − Sq Rt.

The application of Theorem 6.7 makes F ′ suitable. If F ′′ = 〈1, L, F+, FG, F�〉,
we may define K by the formula K ≡ L1

+
((1

+
)+L)+, and F ′′ results to be

suitable too.

Theorem 6.8. 〈1,K, F+, FG, F�〉 and 〈1, L, F+, FG, F�〉 are suitable bases.

Remark 6.9. In this section, we used scheme rec6 with a = 0. However, we
could have fixed the value of a to another number as we did in 5.10. We only
need a suitable predecessor P̂ , i.e. P̂ (x+ 1) = x.
For a = 1, we can proceed as follows:

(I) Let F = 〈E,F+, FG, F�(1)〉. Then,
O ≡ E�(1), 0 ≡ EO,

1 ≡ O0, S ≡ 1
+
,

D ≡ (0
+
)+, Q ≡ OE,

G ≡ (((DQSS)+S)�(1))�(1), P̂ ≡ ESS((G+)+)+,

where G(x) = (x + 1)2. Now, iteration can be defined with

F� ≡ P̂ (SFP̂ )�(1).

In virtue of Theorem 6.7, F is suitable.
(II) Let F = 〈K,F+, FG, F�(1)〉. Then,

O ≡ K�(1), 0 ≡ KO,

1 ≡ O0, S ≡ 1
+
,

H ≡ S(SK+S)�(1), P̂ ≡ KSSS(H+)+,

where H(x) = (x+1)(x+4)/2. Now, iteration can be defined as in (I). In virtue
of Theorem 6.8, F is suitable.
(III) Let F = 〈L, F+, FG, F�(1)〉. Then,

1 ≡ L�(1), K ≡ L1
+
((1

+
)+L)+,

and by using (II) we prove that F is suitable.
For a > 1 it is not known if 〈X,F+, FG, F�(a)〉, forX ∈ {E,K,L}, is suitable.

This question will be studied in the future.
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