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Abstract

We consider two axioms of second-order arithmetic. These axioms assert, in
two different ways, that infinite but narrow binary trees always have infinite paths.
We show that both axioms are strictly weaker than Weak König’s Lemma, and
incomparable in strength to the dual statement (WWKL) that wide binary trees
have paths.

Contents

1 Introduction 1

2 The axiom systems VSMALL and DIM 4

3 RCA0 +WWKL 6⊢ VSMALL 5

4 RCA0 +DIM 6⊢ DNR 6

5 RCA0 +VSMALL 6⊢ DIM. 11

1 Introduction

We investigate here two new subsystems of second-order arithmetic and compare their
logical strengths to those of known systems. We are concerned in particular with subsys-
tems that are strictly weaker than Weak König’s Lemma (WKL) and, more specifically,
those consisting of axioms that dictate the existence of infinite paths through binary
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trees. Of course any axiom that implies the existence of at least one path through every
infinite binary tree is at least as strong as WKL, but we will apply such path-existence
axioms to restricted sets of trees. This direction of inquiry is informed by work done by
Simpson [13], Giusto, Brown [3] and others on the axiom WWKL, Weak Weak König’s
Lemma. WWKL states that every tree of positive measure (defined in terms of first-order
properties of the tree) has a path. This is shown to be strictly weaker than WKL and
significant reversals were established to theorems of analysis. The fact that WWKL is
weaker than WKL appeals to the intuition as one feels that it should be easier to find a
path through a tree that has many paths in some sense. Indeed if one chooses left or right
at random one always has a nonvanishing probability of finding a path through such a
tree. It is perhaps slightly paradoxical that an opposite heuristic is also applicable. That
is, if a tree has few paths in some sense, then it is also relatively easy to find a path. If
one imagines that one is at an infinitely extendible node σ on some infinite binary tree
and having to make a decision of whether to proceed to the left or right, one can wait
until it becomes apparent that the tree above σ0 or the tree above σ1 is finite (we are
assuming here that the set of nodes on the tree is known). If σi is finite, we take the
path through σ(1 − i). This strategy will work in allowing us to decide on an infinitely
extendible extension of σ if and only if there is there is only one such extension - that is
if σ is not a branching node of T . The intuition behind our weakening of WKL is that it
is easier to find paths through trees that have a small set of branching nodes - again in
some particular sense of small.

This leaves just the question about the appropriate definition of small. There are of
course some obvious candidates. One is that the set of branching nodes is finite; another
is that the set of branching nodes has a maximal (in the sense of extension) element. In
both situations the above strategy of waiting until it becomes clear which direction to
take will succeed in finding a path if one starts at this maximal branching node (or at
the root of the tree if no branching nodes exist). However these notions of smallness are
too strong in the sense that in both cases RCA0 proves that every tree with a small set
of branching nodes has a path. We thus weaken these notions to give us principles that
are strictly stronger than RCA0. We do this with the help of bounding witnesses.

Suppose Φ(n,m) is a formula in second order arithmetic, with free variables n,m. We
say f is a strong bounding witness for Φ if

∀n∃m 6 f(n)Φ(n,m).

And we say f is a weak bounding witness for Φ if

∃∞n∃m 6 f(n)Φ(n,m).

The revised concepts of smallness that we use in the paper are as follows:

1. the set of branching nodes Br(T ) is small if there is no weak witness for the predicate

Φ1(n, σ) ≡ [σ ∈ Br(T ) ∧ σ > n];
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2. the set of branching nodes is small if there is no strong witness for the predicate

Φ2(σ, τ) ≡ [σ ∈ Ext(T ) → (τ ∈ Br(T ) ∧ τ ⊇ σ)],

where Ext(T ) is the set of nodes on T with infinitely many extensions.

For any infinite binary tree T , ∀n∃σΦ1(n, σ) is true if and only if T has infinitely many
branching nodes, and ∀σ∃τΦ2(σ, τ) is true if and only if T is perfect. The two axioms
that these give rise to are:

1. VSMALL: If T is an infinite binary tree and there is no weak bounding witness for
the predicate Φ1, then T has a path.

2. DIM: If T is an infinite binary tree T and there is no strong bounding witness for
the predicate Φ2, then T has a path.

In the next section we give slightly different but equivalent versions of these two axioms.
DIM is evidently stronger than VSMALL as if a tree has a strong bounding witness for
its perfection, the same witness serves as a weak bounding witness for the infinitude of its
set of branching nodes. Our main result is that both DIM and VSMALL are independent
of WWKL and the DNR axiom.

The DNR axiom is related to the simplest way of producing a non-computable func-
tion - diagonalisation. Take a computable enumeration of the partial computable func-
tions 〈ϕe〉. Let f : N → N be such that f(e) 6= ϕe(e) for all e. DNR is the principle that
asserts the existence of such a function.

In [14] it is shown that DNR is a strictly weaker principle than WWKL, but is still
non-constructive in the sense that there are models of RCA0 in which it fails. In fact
it is a general rule that any principle which implies the existence of a non-computable
set or function is non-constructive in this sense. This is so because there is a model of
RCA0 all of whose sets are computable. We show that our axioms are independent of
both DNR and WWKL.

We follow standard notation. N is the set of natural numbers, 2N is the powerset of
N with standard topology and measure. ϕe is the e

th partial recursive function, and 〈., .〉
is a fixed computable bijection between N and N×N. We will identify subsets of N with
their characteristic functions without comment. Lowercase Greek letters σ, τ , γ and so
on will be used to denote elements of 2<N and upper case Roman letters X , Y and Z will
usually denote elements of 2N or, equivalently, subsets of N. The letters f , g and h will
be used to denote functions from N to N, that is for elements of NN. σ ⊂ X or σ ⊆ τ

expresses the fact that the infinite binary sequence X or string τ extends σ. σi is the
concatenation of σ and 〈i〉. A tree will be a subset of 2<N, with ⊆ as its partial order
relation. The root of all trees will be the empty string λ. A path through a tree T is the
union of an infinite maximal linearly ordered subset of T . The set of paths through T is
denoted [T ]. The cardinality of a set D is denoted ||D||.
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2 The axiom systems VSMALL and DIM

It is easy to prove that any infinite binary tree with only finitely many branching nodes
must have a path. In fact one can prove, just from the axiom system RCA0, that any
infinite binary tree with a maximal branching node must have a path (such a path is
∆0

1-definable). In this paper we consider infinite binary trees whose sets of branching
nodes are small in some sense. Translating into the language of second order arithmetic
we describe axioms which state that if an infinite binary tree has only a small set of
branching nodes, then the tree must have a path.

Definition 2.1. If T is a binary tree, then s ∈ T is an extendible node of T if the set
{τ ∈ T : τ ⊇ σ} is infinite. The set of extendible nodes of T is denoted Ext(T ). If
P = [T ], then by Ext(P ) we mean Ext(T ). σ ∈ T is a branching node of T if both σ0
and σ1 are extendible nodes. The set of branching nodes of T is denoted Br(T ), and
similarly for Br(P ) if P = [T ].

The two axioms we consider are:

VSMALL: If T is an infinite binary tree with the property that there is no
function f : N → N such that

∃∞n∃σ[f(n) 6 |σ| < f(n+ 1) ∧ σ ∈ Br(T )]

then T has a path.

VSMALL is evidently a strengthening of the statement, provable in RCA0, that every
infinite tree with finitely many branching nodes has an infinite path. The second axiom
deals with perfect trees. A tree is perfect if every extendible node of T is extended by
a branching node. The second axiom we look at captures the notion of a witness to the
perfection of a tree.

DIM: If T is an infinite binary tree with the property that there is no function
f : N → N such that,

∀σ ∈ Ext(T )∃τ ∈ Br(T )[τ ⊇ σ ∧ |τ | 6 f(|σ|)],

then T has a path.

If such an f as referred to in DIM existed, it would also serve to contradict VSMALL.
Thus DIM+RCA0 is sufficient to prove VSMALL. We show in the following sections that
DIM+RCA0 is not sufficient to prove DNR, and that WWKL+RCA0 is not sufficient to
prove VSMALL. Consequently, both DIM and VSMALL are independent of both WWKL
and DNR. Finally we prove that VSMALL+RCA0 is not sufficient to prove DIM.
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3 RCA0 +WWKL 6⊢ VSMALL

The following four lemmas are well-known or are easy extensions of the cited results.

Definition 3.1. If X = {x0 < x1 < x2 . . . } ⊆ N, then the principal function of Y pY is
the function n 7→ xn.

Lemma 3.2 ([5] Theorem 1.2). There exists a c.e. set A such that for almost all X ∈ 2N,
and for all Y 6T X, the principal function of Nr A dominates Y.

Lemma 3.3 ([6] Theorem 5.3). A Π0
1 class is a separating class if it is of the form

{X ∈ 2N : ∀n[(n ∈ A → n ∈ X) ∧ (n ∈ B → n 6∈ X)]}

for some disjoint c.e. sets A and B. If S ⊆ 2N is a Π0
1 separating class with no computable

element, then the set {X∈2N : ∃Y ∈S X >T Y } has measure zero.

Lemma 3.4 ([7]). The set of 1-random reals has measure 1.

Definition 3.5. f ∈ N
N is of hyperimmune-free degree if for all g ∈ N

N such that g 6T f ,
g is dominated by a computable function. If h ∈ N

N, then f is of hyperimmune-free degree
relative to h if for all g ∈ N

N such that g 6T f , g is dominated by an h-computable
function.

Lemma 3.6 ([6]). If f ∈ N
N and if T is an infinite binary f -computable tree, then

there is a g ∈ [T ] such that g ⊕ f is of hyperimmune-free degree relative to f . If f is of
hyperimmune-free degree, then g ⊕ f is of hyperimmune-free degree.

Proof. This is just the hyperimmune basis theorem of [6] relativised to f .

Definition 3.7. An infinite binary tree T is very small if the principal function of its set
of branching nodes Br(T ) dominates every computable function. P = [T ] is very small
if T is.

If T is an infinite binary tree, then define the branching level set of T to be the set
{|τ | : τ ∈ Br(T )}. The principal function of this set we call the branching level function
of T . It is proved in [1] that an infinite computable binary tree is very small if and only
if its branching level function dominates every computable function. We use this in the
following result.

Theorem 3.8. RCA0 +WWKL 6⊢ VSMALL

Proof. Let A be as in Lemma 3.2, and let A0 and A1 be infinite c.e. sets such that
A0 ∪ A1 = A and A0 ∩ A1 = ∅ and such that no computable X ∈ 2N separates A0 and
A1 (such a partition is possible for any c.e. set - see [11]). Let S be the separating class
of A0 and A1. Then the principal function of NrA is the branching level function of S.

Now let R ∈ 2N be such that
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1. R is 1-random

2. R does not compute any element of S

3. For all g 6T R the principal function of N rA dominates g.

Such an R exists as the classes from Lemmas 3.2 3.3 and 3.4 are of measure 1 and
hence their intersection is non-empty.

Let Ri be the ith column of R (that is let Ri(j) = R(〈i, j〉) for all j) and let Xn =
⊕n

i=0Ri. We claim that the ω-model M whose second order part is given by {Y :
∃n Y 6T Xn} is a model of WWKL but not of VSMALL.

To see that it is a model of WWKL, let T be a tree of positive measure in M. T

is then computable from some Xn and therefore, for every R′ ∈ 2N which is 1-random
relative to Xn, R

′ ⊕ Xn computes an element of [T ] (see [7]). But Rn+1 is 1-random
relative to Xn as every column of a 1-random is random relative to the join of finitely
many other columns.

Thus Rn+1 ⊕Xn computes a path through T and hence M is a model of WWKL.

That it is not a model of VSMALL is seen in the fact that every set inM is computable
from R and hence cannot compute a path through S (by 2 above). So S has no paths
in M. But S is a nonempty Π0

1 class and is thus the set of paths through some infinite
computable tree TS which must be in M. Furthermore the branching level function of
TS is the set NrA which dominates everything computable from R. Thus any function
dominating the branching level function of TS is not computable from R and hence not
in M. So TS satisfies the provisions of VSMALL and yet does not have a path. Therefore
M is not a model of VSMALL.

4 RCA0 +DIM 6⊢ DNR

The published version of this section contains an error. This error and some of its
consequences are here indicated in red.

We now prove the second half of the main result. Our strategy is to create a model
satisfying DIM whose second-order part consists entirely of noncomplex elements of
hyperimmune-free degree. Theorem 6 in [16] states that a real wtt-computes a DNR
function if and only if it is complex. It is well-known that if X is of hyperimmune-free
degree and X >T Y , then X >wtt Y . Thus if every real in the model we construct is
hyperimmune and noncomplex, no element in the model computes a DNR function and
hence our model will not satisfy the DNR axiom. We make use of the following definitions
and lemmas.

Definition 4.1. A tree T is computably perfect if there is a strictly increasing computable
function f such that for all n and all σ ∈ Ext(T ) of length f(n), there are at least two

6



distinct extensions τ1, τ2 of σ in Ext(T ) of length f(n+ 1). If P = [T ], then we say P is
computably perfect if T is.

Definition 4.2. An infinite tree T is diminutive if no computable tree T ′ with [T ′] ⊆ [T ]
is computably perfect. If f ∈ N

N, then T is f -diminutive if no f -computable subtree is
computably perfect. P = [T ] is (f -)diminutive if T is.

For the rest of the paper we will make extensive use of the concept of the Kolmogorov
complexity of a binary string σ, denoted C(σ). For an overview of Kolmogorov complexity
see [9]. There will be no need in what follows to distinguish between plain complexity
and prefix-free complexity.

Definition 4.3. A real X ∈ 2N is complex if there is a computable function f such that

∀n[C(X ↾ f(n)) > n].

If g ∈ N
N, then X is g-complex if there is a computable function f such that

∀n[Cg(X ↾ f(n)) > n],

where Cg(σ) denotes the Kolmogorov complexity relative to g - the shortest description
of σ on a universal machine using g as an oracle.

In [2] it is shown that a computable tree contains a computably perfect subtree if and
only if it contains a complex path. We relativise this in one direction here.

Lemma 4.4. No path through an infinite f -diminutive f -computable tree is f -complex.

Proof. Suppose T is an f -computable and f -diminutive infinite binary tree, and A is an
infinite path through T . Let g(n) be any increasing computable function - a putative
witness to the complexity of the A. Let u ∈ N and define a new computable function h

by

1. h(0) = g(0)

2. h(n+ 1) = g(2h(n) + u).

Eventually we will use the Recursion Theorem to choose a u that suits our purposes, but
until then we treat it as a fixed parameter.

The set of paths through T is a Πf
1 class P , and we can let P =

⋂

s Ps where each

Ps is a clopen subclass of 2N and 〈Ps〉s∈N is an f -computable sequence. Consider the Πf
1

class Q ⊆ P defined as follows. Let Q0 = 2N. If Qs has been defined, let Ss ⊆ 2<N be
the set

{σ ∈ Ext(Qs) : ∃n 6 s
[

|σ| = h(n) ∧ ∃!τ ∈ Ext(Qs)[τ ⊇ σ ∧ |τ | = h(n+ 1)]
]

}.
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If S∗
s = {X ∈ 2N : ∃σ ∈ SsX ⊃ σ}, then define Qs+1 = Ps+1 ∩Qs r S∗

s . Q is then
⋂

s Qs.

Q as defined is apparently computably perfect - witnessed by h - and a Πf
1 class,

and thus the paths through some f -computable computably perfect tree. But as P is
diminutive, Q must be empty. Thus there is a stage s such that A ∈ S∗

s , and there is an
n such that A ↾ h(n) ∈ Ss.

Now consider a machine M that works as follows. M takes σ ∈ 2N as input and tests
to see if it is of length h(n) for some n 6 |σ|. If it is, it uses f to search for an t such
that σ ∈ St. If it finds such an t, it outputs the unique extension of σ of length h(n+ 1)
on Qt. We call this output τ , and we have Cf(τ) < |σ|+O(1).

On input A ↾ h(n) M will output the unique string on Qs of length h(n+1) extending
A ↾ h(n). That is, it will output A ↾ h(n + 1). So

Cf
(

A ↾ h(n+ 1)
)

< h(n) +O(1),

or
Cf

(

A ↾ g(h(n) + u)
)

< h(n) +O(1).

The last equation suggests that if we choose u propitiously, we can ensure that g does
not witness the fact that A is f -complex. We do this now.

The value of the constant on the right-hand side of the equation depends only on the
index for the Πf

1 class Q (or more precisely on an index for the sequence 〈Ss〉s∈N), and
there is a computable function k such that if e is any index forQ , then Cf(τ) 6 |σ|+k(e).
Furthermore, there is a computable function ϕ that, given the parameter u, will give an
index for Q. Thus

Cf
(

A ↾ g(h(n) + u)
)

6 h(n) + k(ϕ(u)).

Using the Recursion Theorem, we fix a value e such that the Πf
1 class with index

ϕ(k(e)) is equal to the Πf
1 class with index e. Now we choose the parameter u to be

equal to k(e). So we have

Cf
(

A ↾ g(h(n) + k(e))
)

< h(n) + k(ϕ(k(e))).

But as ϕ(k(e)) and e index the same Πf
1 class,

Cf
(

A ↾ g(h(n) + k(e))
)

< h(n) + k(e),

and A is not f -complex.

Definition 4.5. A set A ∈ 2N is (f -)hyperimmune if its principal function is not domi-
nated by any (f -)computable function.

In [16] it is shown that a set X is not wtt-reducible to a hyperimmune set if and only
if X is complex. We need a limited relativisation of this theorem here and we present
just the direction we require. The proof closely follows [16] Theorem 10.
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Lemma 4.6 ([16]). If f is of hyperimmune-free degree and A is not wtt-reducible to an
f -hyperimmune set, then A is f -complex.

Proof. Suppose A is not wtt-reducible to any f -hyperimmune set. We identify, without
further comment, the binary string σ with the natural number whose binary expansion is
1σ. Suppose Cf is calculated using the universal f -oracle machine Uf and choose d ∈ N

so that Cf(σ) 6 |σ|+ d for all σ. Let g(n) be the least σ such that Uf (σ)↓⊇ A ↾ n. Now
let

B := {〈n, σ〉 : g(n) = σ ∧ ∀k < n[g(k) 6= σ]},

and observe that A 6wtt B. [As pointed out by Laurent Bienvenu and Paul Shafer
(personal communication, 2012) it seems that the reduction of A to B also requires
oracle access to f .] (Given n one finds the maximum σ of length at most n+ 1+ d such
that 〈m, σ〉 ∈ B for some m 6 n + 1. Then Uf (σ, n) = A(n) and the queries to B are
bounded by (2n+d+2 − 1) × (n + 1).) Therefore B is not f -hyperimmune. Let h be an
f -computable function such that there are more than 2n+1 elements of B in the rectangle

{0, 1, . . . h(n)− 1} × {0, 1, . . . 2h(n)+d − 1}.

As h is f -computable and f is of hyperimmune-free degree, there is a computable function
h′ such that h′(n) > h(n) for all n. Therefore there are more than 2n+1 elements of B in
the rectangle

{0, 1, . . . h′(n)− 1} × {0, 1, . . . 2h
′(n)+d − 1}.

Then g(h′(n)) > 2n and Cf(A ↾ h′(n)) > n and so A is f -complex.

Corollary 4.7. If f is of hyperimmune-free degree, then A is complex if and only if it
is f -complex.

Proof. The right to left direction is trivial. If f is hyperimmune-free, then it it easy to
see that all hyperimmune sets are f -hyperimmune. Lemma 4.6 and Theorem 10 in [16]
completes the proof.

Corollary 4.8. If f is of hyperimmune-free degree, then no path of hyperimmune-free
degree through an infinite f -computable f -diminutive tree computes a DNR function.

[This is false, as pointed out by Laurent Bienvenu and Paul Shafer (personal com-
munication, 2012): take f to be a ML-random of hyperimmune-free degree, and A = f ;
then A is complex but not f -complex.]

Proof. By Lemma 4.4, any path through such a tree is not f -complex. Hence by the
previous lemma, it is not complex and does not wtt-compute a DNR function. As it is
of hyperimmune-free degree, it does not Turing compute a DNR function.
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Theorem 4.9. RCA0 +DIM 6⊢ DNR

Proof. To construct a model of DIM that is not a model of DNR, we first define a sequence
N = X0, X1, . . . of elements of 2N such that for all i > 0

1. Xi 6T Xi+1,

2. Xi is of hyperimmune-free degree,

3. Xi+1 is a path through some Xi-diminutive Xi-computable tree.

The second order part of our model will be {Y : ∃iY 6T Xi}. As usual 〈., .〉 is a
computable bijection from N × N onto N and we can assume that 〈m,n〉 > m for all
n and m. Suppose that Xi has properties 1, 2, and 3 for all 0 < i 6 〈m,n〉. Now
we define X〈m,n〉+1. If T = {n}Xm is not an infinite binary X〈m,n〉-diminutive tree, then
let X〈m,n〉+1 = X〈m,n〉. Otherwise, as Xm 6T X〈m,n〉, T is also X〈m,n〉-computable and,
by Lemma 3.6, there is a Y ∈ [T ] such that Y ⊕ X〈m,n〉 is of hyperimmune-free degree
relative to X〈m,n〉. As X〈m,n〉 is of hyperimmune-free degree by 2, Y ⊕ X〈m,n〉 is also of
hyperimmune-free degree by Lemma 3.6. Set X〈m,n〉+1 = Y ⊕X〈m,n〉. Properties 1 and 2
are satisfied immediately.

To prove property 3, first observe that if X〈m,n〉 = X〈m,n〉+1 , then X〈m,n〉+1 is a path
through the nonbranching tree {X〈m,n〉 ↾ s : s ∈ N}.

Otherwise X〈m,n〉+1 is a path through the tree T ′ consisting of the extendible nodes
of

{f ⊕X〈m,n〉 : f ∈ [T ]},

where [T ] is as above. But the branching nodes of T ′ are uniformly sparser than the
branching nodes of T (each branching node of T ′ is exactly twice the length of the
corresponding branching node in T ), and as T is X〈m,n〉-diminutive, so is T ′. As X〈m,n〉+1

is a path through T ′, property 3 is satisfied.

The model of DIM will be the ω-model with second order part {f ∈ N
N : ∃i f 6T Xi}.

Lemma 4.8 then gives that no Xi computes a DNR function for any i. As every
element in the second-order part of the model is computable from some Xi, no element
in our model computes a DNR function. So our model does not satisfy the DNR axiom.

Theorems 3.8 and 4.9 together show that VSMALL and DIM are independent of both
DNR and WWKL.

Finally we show that DIM and VSMALL are distinct.
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5 RCA0 +VSMALL 6⊢ DIM.

In this section we produce a model M of VSMALL that is not a model of DIM. To
construct the model we use a method very similar to the one used in Section 4 but
instead of using diminutive trees, we use very small trees. Recall from Definition 3.7
that a tree T is very small if the principal function of Br(T ) dominates every computable
function. Equivalently, if the principal function of {|σ| : σ ∈ Br(T )} dominates every
computable function. Furthermore, instead of using the concept of f -complexity to
distinguish DIM from DNR as in Theorem 4.9, now we use the concept of computable
traceability to distinguish VSMALL and DIM.

Definition 5.1. The canonical index of a finite set {x1 < x2 < · · · < xn} ⊆ N is

n
∏

i=1

pxi

i ,

where pi is the i
th prime number. We denote by Dn the finite set with canonical index n.

A (h-)computable array is an infinite sequence of canonically indexed finite sets 〈Dr(n)〉
with r a (h-)computable function.

Definition 5.2. f ∈ N
N is computably traceable (relative to h) if for all nondecreasing

unbounded computable functions ϕ and for all g 6T f , there is a (h-)computable array
〈Dr(n)〉 of finite sets such that

1. ∀n ||Dr(n)|| 6 ϕ(n)

2. ∀n g(n) ∈ Dr(n)

Lemma 5.3. If f is computably traceable, and g computably traceable relative to f , then
g is computably traceable.

Proof. Fix any nondecreasing unbounded computable function ϕ and any function h 6T

g. As g is computably traceable relative to f , there is an f -computable index function
r(n) satisfying

1. ∀n ||Dr(n)|| 6
√

ϕ(n)

2. ∀n h(n) ∈ Dr(n).

As r 6T f there is a computable index fuction s satisfying

3. ∀n ||Ds(n)|| 6
√

ϕ(n)

4. ∀n r(n) ∈ Ds(n).

11



Now we can define a computable function t(n) so that

Dt(n) =
⋃

{Dm : m ∈ Ds(n) and ||Dm|| 6
√

ϕ(n)}.

For all n ||Dt(n)|| 6
√

ϕ(n) · ||Ds(n)|| 6 ϕ(n) so t(n) satisfies clause 1 of Definition 5.2.

Also, r(m) ∈ Ds(n) and ||Dr(m)|| 6
√

ϕ(n) so Dr(n) ⊆ Dt(n). Therefore h(n) ∈ Dt(n) and
the second clause of Definition 5.2 is satisfied. ϕ and h were arbitrary so g is computably
traceable.

Definition 5.4. Let T be a tree and P = [T ], the class of paths through T . For
convenience we introduce the notation

T [n] = P [n] := {σ ∈ Ext(T ) : |σ| = n}

for the set of extendible nodes of T or P of length n.

Lemma 5.5. If f ∈ N
N and h is a hyperimmune-free element of a very small Πf

1 class
P , then for all h′ 6T h h′ is a hyperimmune-free element of a very small Πf

1 class.

Proof. As h′ 6T h and h is hyperimmune-free, there is a total computable functional Φ
on 2N such that Φ(h) = h′ (see [10] Theorem VI.5.5 and Proposition III.3.2). As h is
hyperimmune-free, so is h′ and h′ ∈ Φ[P ]. A straightforward relativisation of Theorem
4.3.6 in [1], and using the fact that f is of hyperimmune-free degree, gives that Φ[P ] is
a very small Πf

1 .

Lemma 5.6. Let f ∈ N
N and g be a hyperimmune-free element of a very small Πf

1 class.
Then g is computably traceable relative to f .

Proof. Let ϕ be any nondecreasing unbounded computable function and suppose h 6T g.
By Lemma 5.5, h is a element of some very small Πf

1 class Q. Let 〈Qk〉 be an f -computable
sequence of nested clopen sets such that Q =

⋂

k Qk.

As Q is very small there is an N such that ||Q[n + 1]|| 6 ϕ(n) for all n > N . And
hence for each n > N there is a k such that ||Qk[n + 1]|| 6 ϕ(n). Let s = s(n) be the
least such k for each n. Now define an f -computable function r(n) by

Dr(n) = {σ(n) : σ ∈ Qs[n+ 1]}.

It is straightforward now to see that clauses 1 and 2 of Definition 5.2 are satisfied for h
and r and for cofinitely many n. We can then finitely adjust r to satisfy 1 and 2 for all
n. As h and ϕ were arbitrary, it follows that g is computably traceable relative to f .

The next lemma is based on a theorem by Robinson and Lachlan ([12], [8]). The type
of construction is relatively well-known, but for completeness we include a sketch of the
proof.
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Lemma 5.7 (Lachlan, Robinson). There is a co-c.e. hyperimmune set X ⊆ N and a
strictly increasing computable function f such that for all co-c.e. Y ⊆ X there exists
infinitely many n ∈ N such that ||{m ∈ Y : m < f(n)}|| > n. That is f dominates the
principal function of Y infinitely often.

Proof. (Sketch) We begin by fixing a computable partition of N into intervals 〈αi〉 such
that ||αi|| = i · 2i+1 for each i, and such that maxαi + 1 = minαi+1. In the construction
we produce a computable double sequence of finite sets 〈βi,s〉 such that for each i and
each stage s,

1. βi,0 = αi,

2. βi,s+1 ⊆ βi,s,

and we let βi = lims βi,s. We produce concurrently a double sequence of markers 〈mi,s〉
such that for all i and s,

1. mi,0 = i,

2. mi,s < mi+1,s,

3. mi,s+1 = mj,s for some j > i.

4. limt mi,t exists.

If limtmi,t is denoted mi, then the set X required by the theorem will be
⋃

i∈N βmi
.

The values of mi,s are determined to satisfy the requirement that X be hyperimmune
- at each stage s if it appears that some approximation to a computable function is going
to dominate the principal function of X , then the markers are moved to ensure that this
fails to occur (for details on such movable marker arguments see for example [15]).

To determine the value of βi,s+1 we find the least j < i such that

1. Wj,s 6⊇ βi,s

2. ||Wj,s ∩ βi,s|| >
1
2
||βi,s||

and we let βi,s+1 = βi,s∩Wj,s (where We,s is some standard enumeration of the c.e. sets).
As Wj,s is increasing in s and βi,s is decreasing in s, βi,t ⊆ Wj,t for all t > s and so for
any i, βi,s+1 6= βi,s at most i times, and for each such s ||βi,s+1|| >

1
2
||βi,s||. Therefore, if

βi = lims βi,s, then ||βi|| > 2i for each i.

To see that X now has the required properties, first recall that the movable-marker
construction makes it hyperimmune (the reduction of the βi over time cannot conflict
with this requirement, and as βi is nonempty for all i > 0, X is infinite). Suppose now
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that Y = We is an infinite co-c.e. subset of X . Therefore for infinitely many i, We 6⊇ βi.
For each such i > e,

||We ∩ βi|| <
1

2
||βi||,

(or else at some stage βi would have been reduced so that βi ⊆ We). So for infinitely
many i

||We ∩ βi|| >
1

2
||βi|| > i.

The function f(n) := maxαn (which is independent of e) then dominates the principal
function of We infinitely often.

Theorem 5.8. RCA0 +VSMALL 6⊢ DIM.

Proof. We create a model M of VSMALL by the same method as in Theorem 4.9 using
very small trees rather than diminutive trees. The lemmas above then give that every
element of the second-order part of the model is computably traceable. We then produce
using Lemma 5.7 a diminutive Π0

1 class that has no computably traceable element and
hence no element in M.

Let X and f be as in Lemma 5.7. Let X0 and X1 be a c.e. partition of X and let
S = {Y : Y ⊇ X0 and Y ∩ X1 = ∅} - the separating set of X0 and X1. S is a Π0

1 class
and X0 and X1 can be chosen so that S has no computable element (see [11] Theorem
1). It is straightforward to show that {|σ| : σ ∈ Br(S)} = X and that S is diminutive as
X is hyperimmune.

Suppose now that S has a computably traceable element Z and consider the Z-
computable function n 7→ Z ↾ f(n). As Z is computable traceable, there is a computable
sequence of canonically indexed sets of binary strings 〈Dn〉 such that Z ↾ f(n) ∈ Dn and
||Dn|| < n for all n. Now let

S ′ = S ∩ {Y ∈ 2N : ∀nY ↾ f(n) ∈ Dn}.

S ′ is a Π0
1 class and contains Z so is non-empty. S ′ is perfect as S has no computable

element. Furthermore W := {|σ| : σ ∈ Br(S ′)} is a co-c.e. subset of X . But ||{σ ∈
Ext(S ′) : |σ| = f(n)}|| < n for all n, so ||{m ∈ W : m < f(n)}|| < n, contradicting the
assumptions on X and f . Thus S is a diminutive Π0

1 class with no computably traceable
element.
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