
Combined Maximality Principles up to Large
Cardinals

Gunter Fuchs
Institut für Mathematische Logik und Grundlagenforschung

Westfälische Wilhelms-Universität Münster
Einsteinstraße 62, 48149 Münster, Germany

March 31, 2008

Abstract

The motivation for this paper is the following: In [Fuc08] I showed that
it is inconsistent with ZFC that the maximality principle for closed forcings
holds at unboundedly many regular cardinals κ (even only allowing κ it-
self as a parameter in the maximality principle for <κ-closed forcings each
time). So the question is whether it is consistent to have this principle at
unboundedly many regular cardinals or at every regular cardinal below some
large cardinal κ (instead of∞), and if so, how strong it is. It turns out that
it is consistent in many cases, but the consistency strength is quite high. As
a by-product, assuming the consistency of a supercompact cardinal, I show
that it is consistent that the least weakly compact cardinal is indestructible.

1 Introduction

Let ϕ(a) be a formula about a parameter a, and let Γ be a class of notions of
forcing (like c.c.c. forcings, σ-closed forcings, proper forcings, etc.), defined by a
formula ψΓ which may use parameters. Then ϕ(a) is Γ-forceable if there is a notion
of forcing P in Γ such that P 
 ϕ(ǎ). It is Γ-necessary if for every P ∈ Γ, P 
 ϕ(ǎ).
It is Γ-forceably necessary if there is a forcing P such that P forces that ϕ(ǎ) is
necessary. More precisely, this means that P 
 ∀Q (ψΓ(Q) =⇒ Q 
 ϕ(ǎ)).

The Maximality Principle for forcings in Γ with parameters in P , abbreviated
as MPΓ(P ) is the scheme of formulae expressing that every formula with parame-
ters in P that is Γ-forceably necessary is true. It is a very natural axiom scheme
that was first introduced by Stavi and Väänänen in [SV01], where they focused on
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the case where Γ is the collection of all c.c.c. forcings. It was then rediscovered and
investigated in a more general setting by Hamkins in [Ham03]. The most general
and abstract analysis of Maximality Principles is probably George Leibman’s dis-
sertation [Lei04]. In [Fuc08], I looked at the case where Γ is one of the following,
for a fixed regular cardinal κ:

• The class of all <κ-closed forcing notions,

• the class of all <κ-directed-closed forcing notions,

• the class Col(κ), which consists of all forcings of the form Col(κ, λ) or
Col(κ,<λ), where λ ranges over all ordinals.

What got me interested in these classes was that they have an intriguing number
of consequences which can be found in the aforementioned paper. A basic fact
about the relationship between these principles, for fixed κ, is that

MPCol(κ)(P ) =⇒ MP<κ-directed-closed(P ) =⇒ MP<κ-closed(P ).

Only parameter sets P ⊆ Hκ+ can consistently be allowed. In this paper, P = Hκ+

is the default, while the resulting principles are usually referred to as the boldface
closed maximality principles. A remark on smaller parameter sets:

MPΓ({κ}) ⇐⇒ MPΓ(Hκ ∪ {κ}),

where Γ is one of the <κ-closed classes of forcing. I refer to these principles as the
lightface closed maximality principles at κ.

The aspect of the research on these principles that I am focussing on in the
present paper has to do with the possibility of combining these principles, in the
sense that they may hold at several regular cardinals at the same time.

Definition 1.1. Let T be a constant symbol. Let
∧
τ∈T MP<τ−dir. cl.(Hτ+) denote

the scheme consisting of the sentences expressing:

∀κ̄ ∈ T (κ̄ is regular =⇒
∀x ∈ Hκ̄+(ϕ(x) is <κ̄-directed-closed-forceably necessary =⇒ ϕ(x))), 1

for every formula ϕ(x) with free variable x. I shall also express this scheme by
saying that the directed closed Maximality Principle holds on T . If κ is a regular
cardinal and T is the set of regular cardinals which are less than κ, then I’ll express∧
τ∈T MP<τ−dir. cl.(Hτ+) by saying that the directed closed Maximality Principle

holds below κ, and if T consists of the regular cardinals less than or equal to κ,
then I’ll say that the directed closed Maximality Principle holds up to κ.

1Formally, T occurs as a constant symbol in the scheme. The interpretation of this symbol
will be clear, so I shall omit the distinction between the symbol and its interpretation.
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The following theorem was proved in [Fuc08]:

Theorem 1.2. Assuming ZFCA + otp(A) = α < ∞ + “A is discrete and A
consists of regular fully reflecting cardinals”,2there is a forcing extension which
satisfies

ZFC +
∧

γ among the first
α regular cardinals

MP<γ−dir. cl.(Hγ+).

The reason why I am focussing on the Maximality Principles for closed and
directed closed forcing is the following lemma from [Fuc08], which essentially shows
that the Maximality Principle for collapses cannot be combined:

Lemma 1.3. If MPCol(κ0)(Hκ0 ∪ {κ0}) holds, then there can be no κ1 > κ+
0 such

that MP<κ1−closed(Hκ1
+) holds.

The argument shows also, for example, that there can be no κ1 > κ++
0 such

that MP<κ0−closed(Hκ0 ∪ {κ0}) and MP<κ1−closed(Hκ1 ∪ {κ1}) hold simultaneously.
Surprisingly there are general limitations to the extent to which the closed

Maximality Principles can be combined:

Theorem 1.4 ([Fuc08], Thm. 6.9). The theory ZFC+
∧
γ∈Reg MP<γ−closed(Hγ∪{γ})

is inconsistent.3

The argument also shows that the lightface closed Maximality Principles cannot
hold on an unbounded class of regular cardinals. The situation is somehow a little
bit like in the case of DC and α − AC: For any α, there is an inner model of a
forcing extension of the universe where the α − AC holds but DC fails, but if the
α − AC holds for every α, then this implies DC (see [Jen66]). So the question
I am investigating in the present work is whether the Maximality Principles can
be combined below or up to large cardinals of various strengths, or if they can
hold on unbounded or otherwise large sets below some large cardinal. So naively,
the question is whether ∞ can be replaced with a regular κ which satisfies strong
axioms of infinity.

In section 2, I am building models where the directed closed Maximality Prin-
ciples hold below a large cardinal. I also explain why the consistency strength of
certain combinations is quite high: If the closed Maximality Principles hold on a
measure one set below a measurable cardinal, then the set of indestructibly weakly

2Here, A is a predicate symbol which is added to the language of set theory. ZFCA is the
usual axiom scheme, where replacement and separation is now demanded for every formula in
the enriched language. A discrete class of ordinals is one which is disjoint from the collection of
its limit points.

3Reg is the class of all regular cardinals here.
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compact cardinals below that cardinal has measure one. I elaborate on the strength
of indestructible weak compactness some more. Section 3, deals with the construc-
tion of models where the directed closed Maximality Principles hold up to a large
cardinal, and section 3.2, takes up the thread on indestructible weak compactness,
building models where the least weakly compact cardinal is indestructible.4This is
somewhat surprising, since indestructibly weakly compact cardinals have certain
properties reminiscent of supercompactness - but this result shows that they have
almost no reflection properties.

Finally, in section 3.3, I consider combinations of the Maximality Principles up
to rather large cardinals like partially supercompact ones, or Woodinized super-
compact cardinals.

2 Closed Maximality Principles below a large

cardinal

In this section, I am interested in the following way of combining closed maximality
principles:

Definition 2.1. I shall say that a cardinal ρ is fully reflecting if the scheme Vρ ≺ V
holds. Let R be a set of regular fully reflecting cardinals and T a set of regular
cardinals. For τ ∈ T , let ρ(τ) ' min(R \ (τ + 1)) be the least member of R above
τ , if it exists. If ρ : T → R is a bijection, then I shall say that the pair 〈T,R〉
is interweaved. In that case, let Col(T,<R) be the reverse Easton iteration of
collapses Col(τ, <ρ(τ)).

Using this terminology, Theorem 5.3 of [Fuc08] can be restated as follows:

Theorem 2.2. Suppose that 〈T,R〉 is an interweaved pair. Then forcing with
Col(T,<R) produces models of

∧
τ∈T MP<τ−dir. cl.(Hτ+).

Let R′ be a set of regular fully reflecting cardinals. Then there is a canonical
interweaved pair 〈T,R〉 given by R′: R consists of the regular members of R′ which
are no limits of R′, and in order to define the canonical T , I define the function
ρ−1 with domain R as follows. Given ξ ∈ R, let ξ̄ = sup(R ∩ ξ). Then

ρ−1(ξ) =

{
ξ̄ if ξ̄ is a regular infinite cardinal,
ξ̄+ otherwise.

4When I say that a weakly compact cardinal κ is indestructible, I always mean that it is
indestructible by <κ-closed forcing. So it stays weakly compact in any forcing extension obtained
by <κ-closed forcing.
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Finally, let T = ran(ρ−1). Then obviously, the function to ρ witnesses that 〈T,R〉
is an interweaved pair. I refer to Col(T,<R) as the canonical collapse induced
by R′. If κ is a regular fully reflecting cardinal and R′ is the set of regular fully
reflecting cardinals less than κ, then I will refer to the canonical collapse induced
by R′ as the canonical collapse below κ. If R′ is the set of regular fully reflecting
cardinals less than or equal to κ, then the canonical collapse induced by R′ is the
canonical collapse up to κ.

Lemma 2.3. Let κ be a limit of regular fully reflecting cardinals.5 If G is generic
for the canonical collapse below κ, then in V[G], the boldface Maximality Principle
for directed closed forcings holds below κ. If, in addition, κ is regular (and hence
inaccessible), then κ remains inaccessible in V[G].6

Proof. It is an immediate consequence of Theorem 2.2 that the postulated Maxi-
mality Principles hold – note that the V[G]-regular cardinals below κ are precisely
the members of T . The canonical collapse below ρ was explicitly designed to
achieve this. κ’s inaccessibility is preserved since the canonical collapse below κ
satisfies the κ-c.c. – it is a reverse Easton iteration.

I shall try to work my way up through the large cardinal hierarchy in the
following.

Lemma 2.4. Let κ be a fully reflecting Mahlo cardinal. Then in forcing extensions
obtained by the canonical collapse below κ, κ is still Mahlo and the Maximality
Principle for directed closed forcings holds below κ.

Proof. Note that since κ is a fully reflecting Mahlo cardinal, it is a limit of fully
reflecting regular cardinals. So let P = Col(T,<R) be the canonical collapse below
κ, let G be V-generic for P, let p ∈ G be a condition in P, and let Ċ be a name
that is forced by p to be a club subset of κ. Let’s assume that Ċ is a nice name
for a subset of κ̌. I have to find a member of ĊG that’s regular, from V[G]’s point
of view.

Consider the structure M = 〈Vκ,∈, Ċ,
P, {p}〉. Since κ is inaccessible, M is
a model of ZFCĊ,
P

. Since κ is Mahlo, the set D consisting of the ordinals α with
M |Vα ≺ M is club in κ.7 So since κ is Mahlo, there is some regular κ̄ ∈ D. Let

5The “statement” that κ is a limit of fully reflecting regular cardinals can be expressed as a
scheme. Namely, it should be viewed as an abbreviation of the statement that the set of regular
κ̄ < κ such that Vκ̄ ≺ Vκ is unbounded in κ, together with the scheme expressing that κ is fully
reflecting.

6As was pointed out earlier, a fully reflecting Mahlo cardinal implies this. It is more than
needed, though: The set of regular fully reflecting cardinals below a fully reflecting Mahlo cardinal
which are limits of regular fully reflecting cardinals is stationary in the Mahlo cardinal.

7If N is a model and X is a subset of the domain of N , then I denote by N |X the reduct of
N to X.
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M̄ = M |Vκ̄. Necessarily, P̄ := P ∩ Vκ̄ = Col(T ∩ κ̄, <(R ∩ κ̄)). Since M̄ ≺ M , it
follows that κ̄ is a limit of regular fully reflecting cardinals, and that P∩Vκ̄ is the
canonical collapse below κ̄. Let’s split Col(T,<R) as

Col(T,<R) ∼= Col(T ∩ κ̄, <(R ∩ κ̄)) ∗ Ċol(T ∩ [κ̄, κ), <(R ∩ (κ̄, κ))).

Let G = G � κ̄ ∗ G � [κ̄, κ) be split accordingly. By elementarity, p forces via P̄
over M̄ that Ċ ∩Vκ̄ is a club class. Note that P̄ is a class forcing from M̄ ’s point
of view. But it is an iteration with increasing closure, so the forcing theorem holds
in M̄ for P̄ . So ĊG�κ̄ = ĊG ∩ κ̄ is club in κ̄. So κ̄ ∈ ĊG. By Lemma 2.3, κ̄ is
inaccessible in V[G � κ̄], and since the tail forcing is <κ̄-closed over V[G � κ̄], κ̄
remains inaccessible in V[G] = V[G � κ̄][G � [κ̄, κ)].

Let ZFC∗ be a finite fragment of ZFC which includes the powerset axiom and
the axiom of choice and which is sufficiently strong. I shall need the following
lemmas in several lifting arguments to follow.

Lemma 2.5. Let P be a forcing iteration of length κ, where κ is regular, P has
size κ, and P = Pκ is formed as a limit with bounded supports. Also, assume that

for any α < κ, there is a β < κ such that it is forced via Pβ that ~̇Q � [β, κ) is

<α-closed, and that for every γ < κ, Pγ < κ.
Let M be a transitive model of ZFC∗ (whether it is set-sized or a proper class

does not matter), let <κM ⊆M , and suppose that P ∈M . Then if G is P-generic
over V,

V[G] ∩ <κM [G] ⊆M [G].

We say that M [G] is <κ-closed in V[G] to express this. Also, if κM ⊆ M , then
M [G] is κ-closed in V[G]:

V[G] ∩ κM [G] ⊆M [G].

Proof. Let’s concentrate on <κ-closedness first. Let θ = On ∩M , where θ = On
is possible. I shall first prove that V[G] ∩ <κθ ⊆M [G].

So let α < κ, and 〈xν | ν < α〉 ∈ V[G], with xν < θ, for every ν < α. By the
assumptions on P, there is some γ s.t. ~x ∈ V[G � γ]. Let ḟ be a Pγ-name for ~x,
and pick a condition p0 ∈ G � γ which forces wrt. Pγ that ḟ is an α-sequence of
ordinals less than θ. Now, for ν < α, let Aν be the set of conditions below p0 (in
Pγ) which decide the value of ḟ(ν). Every Aν is dense below p0 and has size at

most Pγ, which is less than κ. So A :=
⋃
ν<α{ν}×Aν has size less than κ as well,

by the regularity of κ. Now let g : A −→ θ be such that p 
Pγ ḟ(ν) = g(ν, p).
Clearly, g ∈ M , as M is <κ-closed. But ~x is definable from g and G, namely,
xν = ξ, where g(ν, p) = ξ, for some p ∈ G.

Now let ~y = 〈yν | ν < β〉 ∈ V[G] ∩ <κM [G]. Since M is a model of ZFC∗,
M [G] still satisfies a strong enough fragment of ZFC to conclude that M [G] =
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⋃
α<θ V

M [G]
α . So it makes sense to define the sequence ~r = 〈rν | ν < β〉 of ordinals

below θ by letting rν be the least γ with yν ∈ V
M [G]
γ . So ~r ∈ M [G], by what was

shown in the first part. So ρ := sup~r ∈ M [G], since ~r ∈ V
M [G]
γ , for some γ < θ

(so that sup~r < γ). Now by the axiom of choice in M [G], let f : λ −→ V
M [G]
ρ be

a bijection with f ∈ M [G]. Let ȳν = f−1(yν), for ν < β. Then again by the first
part of the proof, 〈ȳν | ν < β〉 ∈M [G]. Hence, so is ~y.

The proof showing that κ-closedness is preserved is simpler and hence omitted.
It works for arbitrary posets P ∈M which have cardinality at most κ.

The following Lemma is a crucial ingredient in most lifting arguments. It is
well-known, but I state it with proof due to its central role for my purposes.

Lemma 2.6. Let j : M −→ N be an elementary embedding, where M and N are
transitive models of ZFC. Let P ∈ M be a notion of forcing. Let G be P-generic
over M , and let H be j(P)-generic over N such that j“G ⊆ H. Then there is an
elementary embedding j′ : V[G] −→M [H] which extends j.

Proof. Define j′(τG) := j(τ)H . Both the correctness of this definition and the
elementarity of j′ can be seen as follows: If M [G] |= ϕ(τ), then there is a p ∈ G
with M |= (p 
P ϕ(τ)). Then N |= (j(p) 
j(P) ϕ(j(τ)), and since j(p) ∈ H, this
means that N [H] |= ϕ(j(τ)G).

Lemma 2.7. Let κ be weakly compact and fully reflecting. If G is V-generic for
the canonical collapse below κ, then in V[G], κ is still weakly compact, and the
boldface Maximality Principle for directed closed forcings holds below κ.

Proof. Let P = Col(T,<R), where 〈T,R〉 is the canonical interweaved pair given
by the fact that κ is a regular limit of fully reflecting regular cardinals.

I shall use the fact that a cardinal τ is weakly compact iff for every transitive
model P 3 τ of size τ , there is another transitive model P ′ and an elementary
embedding π : P −→ P ′ with critical point τ .

So let M̃ ∈ V[G] be transitive, have V[G]-cardinality κ and have κ ∈ M̃ . I
shall also use the following fact:

(1) H
V[G]

κ+ = Hκ+ [G].

Proof. For the substantial direction, if x ∈ HV[G]

κ+ , then x is coded by a subset a
of κ. Let τ be a nice name for a subset of κ with a = τG. Then clearly, τ ∈ Hκ+ ,
and so, a ∈ Hκ+ [G]. Now x can be decoded from a in Hκ+ [G], since this is a
ZFC−-model.

So we can pick τ ∈ Hκ+ s.t. τG = M̃ . Let M̄ ∈ V have the following properties:

1. M̄ is a transitive model of ZF−,
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2. M̄ ∈ Hκ+ ,

3. TC({τ}) ⊆ M̄ ,

4. P ∈ M̄ ,

5. <κM̄ ⊆ M̄ ,

6. M̄ |= ZFC∗.

The existence of such an M̄ is guaranteed by the inaccessibility of κ. In particular,
M̃ ∈M := M̄ [G].

Let j : M̄ −→ N̄ be a weakly compact embedding, w.l.o.g. given by an ultra-
filter U on M̄ (external to M̄). I shall produce a weakly compact embedding from
M to a generic extension of N := N̄ [G] in V[G].

(2) M̄ is closed under <κ-sequences in V.

Proof. Since M̄ is closed under <κ-sequences, so is N̄ . This is a general fact about
ultrapowers: If ~x = 〈xν | ν < α〉 ∈ <κN̄ , then every xν has the form j(fν)(κ),
for some fν ∈ M̄ . So the whole sequence 〈fν | ν < α〉 is a member of M̄ . I am
now looking for a function g which represents ~x in the ultrapower. Using the  Loś
theorem, g has this property if for every ν < α,

{µ < κ |M |= (g(µ) is a sequence of length α and g(µ)ν = fν(µ))} ∈ U.

So defining g(µ) = 〈fν(µ) | ν < α〉 for µ < κ yields a function with the desired
property.

(3) V[G] ∩ (<κM) ⊆M and V[G] ∩ (<κN) ⊆ N.

Proof. This is Lemma 2.5.

Set Q = j(~̇Q) � [κ, j(κ))G.

(4) P = (j(P))κ, and N |= Q is <κ-closed.

Proof. By elementarity of j.

(5) V[G] |= Q is <κ-closed.
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Proof. This follows from the previous two points.
This last point can be made use of in order to find a filter H in V[G] which is

Q-generic over N̄ [G]. One just has to construct a decreasing κ-chain of conditions

~p in Q such that pα ∈ Dα, where ~D enumerates (in V[G]) the dense subsets of Q
which are in N . Since N has size κ in V[G] and Q is <κ-closed, this can be done
in V[G].

Finally, the embedding j : M̄ −→ N̄ can now be lifted to an embedding
j′ : M −→ N [H], by Lemma 2.6. This is possible because j“G ⊆ G ∗H, as P is a
direct limit.

So j′ is a weakly compact embedding for M in V[G]. We have to get one for M̃ .
But note that since M̃ ∈M , it follows that j′ � M̃ : M̃ −→Σω j

′(M̃), and j′(M̃) is
transitive: M̃ is transitive, M̃ ∈ M , and M is transitive, so M thinks that M̃ is
transitive, so N [H] thinks that j(M̃) is transitive. Moreover, N [H] is transitive,
so that j(M̃) is indeed transitive. And it’s obvious that the critical point of j′ � M̃
is κ, so we’ve found the desired weakly compact embedding of M̃ .

Note that up to now, the constructions were very economic in the following
sense. If ϕ(κ) expresses one of the following large cardinal concepts: “κ is inacces-
sible”, “κ is Mahlo”, “κ is weakly compact”, then I constructed models in which
ϕ(κ) is true and the boldface Maximality Principles for directed closed forcings
hold below κ, starting from a model in which ϕ(κ) + “κ is a limit of fully reflect-
ing regular cardinals” holds.8 This will (provably) not be possible for the stronger
large cardinal concepts I am going to analyze later. But let me state that in the
realm of small large cardinals, it is possible to go the other way:

Lemma 2.8. Let ϕ(κ) express one of the following large cardinal concepts: “κ is
inaccessible”, “κ is Mahlo”, “κ is weakly compact”. Then the following theories
are transitive model equiconsistent, locally in κ:9

1. ZFC +
∧
τ∈Reg∩κ MP<τ−dir. cl.(Hτ+) + ϕ(κ),

2. ZFC + “κ is a limit of fully reflecting regular cardinals” + ϕ(κ).

Proof. The direction from 2 to 1 has been shown in the previous sequence of
lemmas. For the converse, it has been shown in Theorem 3.8 of [Fuc08] that
MP<τ−closed(Hτ+) (which is weaker than MP<τ−dir. cl.(Hτ+)) implies that τ+ is in-
accessible in L and that Lτ+ ≺ L.10 So if the boldface Maximality Principles for
directed closed forcings hold below a limit cardinal κ, then the set of L-cardinals

8In case κ is Mahlo, κ is a fully reflecting limit of fully reflecting regular cardinals if and only
if κ is fully reflecting.

9For a formal definition of the concept of local transitive model equiconsistency, I refer the
reader to [Fuc08].

10It has also been shown in [Fuc08] that MP<τ−dir. cl.(Hτ+) implies MP<τ−closed(Hτ+).
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which are fully reflecting regular cardinals in L is unbounded in κ. So since the
class of fully reflecting cardinals is closed, it follows that Lκ ≺ L, too. Finally,
the large cardinal concepts considered go down from V to L, so that the theory
mentioned in 2 holds in L.

The following remark explains a posteriori why I am mainly interested in com-
binations of the boldface closed maximality principles.

Remark 2.9. The following theories are equiconsistent:

1. ZFC + κ is Mahlo +
∧
τ∈Reg∩κ MP<τ−dir. cl.(Hτ+),

2. ZFC + κ is Mahlo +
∧
τ∈Reg∩κ MP<τ−dir. cl.(Hτ ∪ {τ}).

Proof. For the substantial direction, starting from a model of the second theory,
we get that in L, κ is a Mahlo limit of fully reflecting ordinals, so κ is a fully
reflecting Mahlo cardinal in L. So κ is a Mahlo limit of regular fully reflecting
cardinals in L, and hence we can force the first theory over L, using the canonical
collapse below κ.

Lemma 2.10. Let κ be measurable, as witnessed by some normal ultrafilter U on κ,
and fully reflecting. Let 〈T,R〉 be an interweaved pair such that R ⊆ κ and T /∈ U .
Let j : V −→U M be the ultrapower embedding. Then in a generic extension of V
by j(Col(T,<R), κ is measurable and

∧
τ∈T MP<τ−dir. cl.(Hτ+) holds.

Proof. This is a variant of Kunen-Paris forcing. If T is bounded in κ, then P :=
Col(T,<R) is small forcing and hence preserves the measurability of κ, so the
interesting case is that T is unbounded in κ, and so P is an iteration of length κ.
Let Ḡ be P-generic over V.

Let j : V −→M be the ultrapower embedding given by U . So M is κ-closed in
V, and hence, M [Ḡ] is κ-closed in V[Ḡ], by Lemma 2.5. Note that the tail forcing

P′ = j(~̇Q) � [κ, j(κ))Ḡ is <κ+-closed in M [Ḡ], and hence also in V[Ḡ].

Let G′ be j(~̇Q) � [κ, j(κ))G�κ-generic over V[Ḡ], and set G = Ḡ ∗G′. Note that
P = j(P)κ. We know that the desired maximality principle holds in V[Ḡ]. By
[Fuc08, Lemma 4.2], they still hold in V[Ḡ][G′]. So we are left to show that κ is
measurable there.

By the Kunen-Paris argument (see [Jec03, Thm. 21.3]), the embedding j :
V −→ M now can be lifted to an embedding j′ : V[G � κ] −→ M [G], simply by
setting j(τG�κ) = j(τ)G. The point is that j“(G � κ) ⊆ G, because for any p ∈ P,
j(p) � [κ, j(κ)) ≡ 1, as the support of p is bounded in κ, so that the support of
j(p) is the same as the support of p.

This embedding can be defined in V[G]. Let U ′ be the normal ultrafilter on

P(κ)V[G�κ] derived from j′. Note that M [G � κ] believes that j(~̇Q) � [κ, j(κ))G�κ is
<κ+-closed. This is because κ /∈ j(T ), as T has measure 0. Also, κM ⊆ M and
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P has size κ, so that Lemma 2.5 yields that V[G � κ] ∩ (κM [G � κ]) ⊆ M [G � κ].

This means that V[G � κ] also believes that j(~̇Q) � [κ, j(κ))G�κ is <κ+-closed. So
P(κ) ∩ V[G � κ] = P(κ) ∩ V[G]. This means that U ′ is a normal ultrafilter on κ
from the point of view of V[G] as well, so we’re done.

Note: If 2κ = κ+, then just forcing with Col(T,<R) will produce the desired
model. For if Ḡ is generic for that forcing, we can find a filter G′ which is generic
for the tail forcing over M [Ḡ] already in V[Ḡ]. The tail forcing has cardinality
j(κ) in M [Ḡ], so we may view every subset of it as a subset of j(κ). Every subset
of j(κ) in M [G] has the form τ Ḡ, for some nice P-name τ ∈M for a subset of j(κ).
Since P has size κ in M , every such name can be viewed as a function from j(κ)
to P(κ) which is a member of M . So every such function has the form [f ]U , for
some function f : κ −→ V, f ∈ V, such that for every α < κ, f(α) : κ −→ P(α)
(by  Lóz’s theorem). There are 2κ = κ+ such functions. So V[Ḡ], the collection of
dense subsets of the tail forcing which exist in M [Ḡ] has cardinality κ+. The tail
forcing is ≤ κ-closed, so one can construct in V[Ḡ]. a filter G′ which is generic over
M [G] for the tail forcing. Then we can lift j to j′ : V[Ḡ] −→ M [Ḡ][G′], showing
that κ is measurable in V[Ḡ].

The assumptions made in the previous lemma were not too strong:

Lemma 2.11. If the theory expressing that the closed maximality principle holds
on an unbounded subset of a measurable cardinal is consistent, then so is the theory
expressing that there is a measurable fully reflecting cardinal.

Proof. Work in a universe where the first theory holds. If there is an inner model
with a Woodin cardinal, then the second theory is easily seen to be true in a
segment of that inner model: If W is the inner model and δ is Woodin in W , then
the set of measurable cardinals below δ in W is stationary in δ (from the point of
view of W ). So by considering the club of α < δ such that VW

α is closed under
Skolem functions for VW

δ , we get a member κ of the intersection of these sets. So
κ is measurable in VW

δ and VW
κ ≺ VW

δ . So VW
δ is a model of the desired theory.

If there is no inner model with a Woodin cardinal, then the core model K exists,
by a recent result due to Jensen and Steel.11Assume that κ is measurable and the
closed maximality principle holds on an unbounded subset T of κ. It follows from
[Fuc08] that K|τ+ ≺ K, for any τ ∈ T , because K is forcing invariant. So since
the set of τ+, τ ∈ T , in unbounded in κ, it follows that K|κ ≺ K. And κ is
measurable in K, so K is a model of the desired theory.

Dropping the requirement that the set on which the closed Maximality Principle
holds has measure 0 increases the consistency strength drastically:

11It is no longer necessary to work below a measurable cardinal Ω, as in [Ste96]. The results
showing how to eliminate this technical assumption are still unpublished.
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Remark 2.12. If κ is measurable, U is a normal ultrafilter on κ and the set of
κ̄ < κ such that MP<̄κ−closed(Hκ̄ ∪ {κ̄}) holds has U -measure 1, then the set of
indestructibly weakly compact cardinals below κ has U -measure 1.12

Proof. MP<κ−dir. cl.(Hκ∪{κ}) holds in M := Ult(V, U) by  Lóz’s theorem: Fixing a
formula ϕ(~x), the statement “for every ~a ∈ Hα∪{α}, if ϕ(~a) is <α-directed-closed-
forceably necessary, then ϕ(~a)” is true for U -measure 1 many α. So by normality
of U , it is true of κ in M . Moreover, since VM

κ+1 = Vκ+1, it follows that κ is
weakly compact in M . Now Theorem 3.6 of [Fuc08] states that MP<κ−closed(Hκ ∪
{κ}) already implies <κ-closed-generic Σ1

2(Hκ)-absoluteness. The statement that
κ is weakly compact is a Π1

2(Hκ) statement, and consequently pertains to <κ-
closed-generic extensions of M , so that κ is indestructibly weakly compact in M .
Applying  Lóz’s theorem again yields the claim.

The consistency strength of an indestructibly weakly compact cardinal is at
least that of a non-domestic mouse13, so the assumption that the closed maximality
principle holds on a measure one set below a measurable cardinal has at least that
strength.

In order to formulate the assumption I need in order to get the directed closed
Maximality Principle on a measure one set below a measurable cardinal, let me
recall the following definition.

Definition 2.13 ([Men74]). Let F be a normal fine measure on Pκλ, and let
f : κ −→ κ be a function. Then σ(F , f) is the statement that

{x ∈ Pκλ | f(otp(x ∩ κ)) ≥ otp(x)} ∈ F .

In terms of the ultrapower embedding j : V −→F M = Ult(V,F), this means that
j(f)(κ) ≥ λ. Say that σ(F , f) weakly fails if j(f)(κ) ≤ λ.

While Menas was mainly interested in normal measures F for which there is
a function such that σ(F , f) holds (this is what he refers to as σ(F)), I need a
normal filter F which weakly fails to satisfy σ(F , f), for some specific function f .
It was pointed out in [Men74, Prop. 2.29 and the following remark] that it is the
failure of σ that has high consistency strength, e.g., if there is a measure on Pκ(λ)
which fails to satisfy σ, then there is a normal measure on κ concentrating on
supercompact cardinals. It is weaker than almost hugeness, though. And I only
need the weak failure of σ(F , f), for some specific f , not simultaneously for all f .

12A cardinal τ is indestructibly weakly compact if τ is weakly compact in any forcing extension
by a <τ -closed forcing.

13See [Fuc08] and [JSSS07] for a further discussion. The strength of a non-domestic mouse
exceeds what is known as the ADR hypothesis. For more on indestructible weak compactness,
the reader is referred to [AH01] and the forthcoming [Fuc].
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Remark 2.12 shows an interesting aspect of the next lemma, because it provides
a new way of producing an indestructibly weakly compact cardinal, other than
using the Laver preparation to make a supercompact cardinal indestructible.14

Lemma 2.14. Assume that κ is fully reflecting. Let f : κ −→ κ be the function
which maps ξ < κ to the least ρ > ξ such that ρ is regular and Vρ ≺ Vκ. Assume
there is a normal measure F on Pκρ such that σ(F , f) weakly fails. Then there
is a forcing P such that if G is P-generic over V, then in V[G], κ is measurable,
MP<κ−dir. cl.(Hκ+) holds, and the set of λ < κ which are regular and at which
MP<λ−dir. cl.(Hλ+) holds has measure 1 wrt. any normal ultrafilter on κ in V[G].

Proof. Given a set X of ordinals, let X ′ denote the set of limit points of X which
are less than the supremum of X, and let Reg be the class of regular cardinals. Let
A be the set of regular reflecting cardinals below κ, and set T = (A ∩ κ)′ ∩ Reg.
This is the intersection of a club set with a set that has measure one wrt. every
normal ultrafilter on κ, hence the same is true of T . Note that every member of
T is strongly inaccessible. Let j : V −→F M = Ult(V,F), so j(f)(κ) ≤ ρ, where
f and F are as in the statement of the lemma. Let R be the image of T under
f . Then 〈T,R〉 is an interweaved pair, and P̄ = Col(T,<R) will force the closed
maximality principle at every δ ∈ T .

By elementarity, j(P̄) = (Col(j(T ), <j(R)))M . So j(P̄) can be decomposed as

j(P) ∼= Col(T,<R)M ∗ Ċol(T ′, <R′)
M
.

Note that j(T ) and j(R) are defined from j(A) in M as T and R were defined
from A in V. Actually, we get the following decomposition:

j(P̄) ∼= Col(T,< R) ∗ Ċol(κ,< j(f)(κ))M ∗ Ċol(T̃ , <R̃)M .

Namely, since κ is a regular limit of j(A) in M , it follows that κ ∈ j(T ), which
explains why the second component in the decomposition collapses to κ.

The least member of T̃ is an inaccessible cardinal (in M) greater than j(f)(κ).
Since M is closed under ρ-sequences,

P := Col(T,<R)V ∗ Ċol(κ,<j(f)(κ))V = Col(T,<R)M ∗ Ċol(κ,<j(f)(κ))M ,

so we get the decomposition

j(P) ∼= P ∗ Ċol(T̃ , R̃)M︸ ︷︷ ︸
Q̇

.

14The Laver preparation makes a supercompact cardinal indestructibly so under <κ-directed-
closed forcing. It follows that κ’s weak compactness will be indestructible under <κ-closed
forcing; see [Fuc, Observation 2.2]

13



Let G be P-generic over V. I will employ a master condition argument due to
Silver, which I will give in detail, since it will be necessary to apply variations of it
in more and more complicated contexts. Note that if p ∈ P, then it is a sequence
p = 〈pα | α ≤ κ〉, such that for any α ≤ κ, p � α ∈ Pα and p � α 
Pα pα ∈ Q̇α.

Set:
D = {τG | ∃p ∈ G∃p′ j(p) = 〈p′, τ〉 ∈ P ∗ Q̇}.

(1) D ∈M [G], and D
M [G]

< ρ.

Proof. The point is that M [G] is ρ-closed in V[G]. In particular, j � (G � (κ+ 1))
as well as G are in M [G], and D is definable from these parameters. Moreover,

D
M [G]

≤ G
M [G]

, and that is (j(f)(κ)<κ)M [G]. But j(f)(κ) = (κ+)M [G], and in
M [G], (κ+)<κ = κ+, since 2κ = κ+ there, as j(f)(κ) is inaccessible in M . 2(1)

(2) M [G] |= “Q̇ is <ρ′-directed-closed”, for some M [G]-inaccessible ρ′ > j(f)(κ).

Proof. This is because in M , Q̇ is a P-name for Col(T̃ , R̃), and min(T̃ ) > j(f)(κ),
as T consisted only of regular limit points of A. 2(2)

(3) D is a directed subset of Q̇G.

Proof. Let p, q ∈ D. Let p̄, q̄ ∈ G be such that, letting j(p̄) = 〈p′, ṗ〉 ∈ P ∗ Q̇ and
j(q̄) = 〈q′, q̇〉 ∈ P ∗ Q̇, p = ṗG and q = q̇G. Since G is generic for P, there is an
r̄ ≤P p̄, q̄ with r̄ ∈ G. So

(∗) j(r̄) ≤j(P̄) j(p̄), j(q̄).

View r̄ as a function with domain κ + 1, such that r̄ � κ ∈ P̄. Then j(r̄ � κ) �
(κ+ 1) ∈ G: To see this, note that r̄ � κ is eventually trivial, because P̄ is a direct
limit. So

j(r̄ � κ) � κ = r̄ � κ and j(r̄ � κ) � [κ, j(κ)) ≡ 1.

So, j(r̄) � (κ+ 1) ≥ r̄ ∈ G, which shows that j(r̄ � κ) � (κ+ 1) ∈ G, as claimed.
Now view j(r̄) as a pair 〈r′, ṙ〉 ∈ P ∗ Q̇. So r′ = j(r̄) � (κ + 1) ∈ G, which

means that r := ṙG ∈ D. By (∗),

r′ ≤P p
′, q′ and r′ 
P ṙ ≤Q̇ ṗ, q̇.

So, since r′ ∈ G, r ≤Q p, q, which shows that D is directed. 2(3)

Now pick a master condition a ∈ Q below each condition in D. This is possible
by (1), (2) and (3). Let H be Q-generic over V[G] with a ∈ H.

(4) j“G ⊆ G ∗H.
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Proof of (4). Of course, one has to view G∗H as a subset of j(P) in order to make
sense of the inclusion at hand. Let p̄ ∈ G, and view its image as j(p̄) = 〈p′, ṗ〉 ∈
P ∗ Q̇. Then p := ṗG ∈ D, and so, a ≤Q p. So p ∈ H. Moreover, the argument in
the proof of (3) showed that p′ ≥ p̄, so that p′ ∈ G. So j(p̄) = 〈p′, ṗ〉 ∈ G ∗H, as
claimed. 2(4)

So j : V −→ M lifts to an embedding j′ : V[G] −→ M [G][H], by Lemma 2.6.
Finally, the normal ultrafilter U derived from j′ is in V[G] (so we’re done), since
we left sufficiently large gaps between the cardinals at which we forced the closed
maximality principle. The point is that Q is ≤j(f)(κ)-closed not only in M [G]
but also in V[G], as M [G] is ρ-closed in V[G], j(f)(κ) ≤ ρ and Q is <ρ′-closed in
M [G] and ρ′ > j(f)(κ). So we can view U as a (2κ)V[G][H]-sequence of subsets of
κ each of which is in V[G]. But (2κ)V[G] = j(f)(κ), as j(f)(κ) is inaccessible (not
only in M , but also in V, because M is ρ-closed and ρ ≤ j(f)(κ)), so the forcing
adding G is j(f)(κ)-c.c. over V. So U is the image of a j(f)(κ)-sequence (which
is in V[G][H]) of members of P(κ)V[G], and hence it is in V[G], by the fact that Q
is ≤j(f)(κ)-closed in V[G].

In Lemma 3.21, I construct a model where the closed Maximality Principle
holds at every regular cardinal below a Woodinized supercompact cardinal.

3 Closed Maximality Principles up to a large

cardinal

In this section I am aiming at producing models in which the closed maximality
principle holds on an unbounded set of regular cardinals less than κ and at κ itself,
where κ satisfies some strong axiom of infinity.

I shall say that the closed maximality principle holds up to κ if it holds at every
regular cardinal less than or equal to κ.

3.1 Up to small large cardinals

Combining up to inaccessible or Mahlo cardinals works without any complications:

Lemma 3.1. Let ϕ(κ) express either that κ is inaccessible or that κ is Mahlo.
Then the following theories are transitive model equiconsistent, locally in κ and ρ:

1. ZFC +
∧
τ∈Reg∩(κ+1) MP<τ−dir. cl.(Hτ+) + ϕ(κ) + ρ = κ+,

2. ZFC + Vκ ≺ V + ϕ(κ) + κ < ρ + ρ is regular + Vρ ≺ V.

Proof. For the direction from 1 to 2, since the large cardinal properties involved
go down to L, the constructible universe will model the second theory. And vice
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versa, forcing with the canonical collapse up to ρ will produce a model of the
first theory. Note that this collapse is the same as the canonical collapse up to κ,
followed by one further collapse, which is <κ-closed and hence preserves the large
cardinal property of κ.

Definition 3.2. Let A be a set and λ an ordinal. Let j : V −→ M be an
elementary embedding, where M is transitive. Say that j moves A correctly up
to λ if j(A) ∩ Vλ = A ∩ Vλ. A cardinal κ is said to be (A, λ)-supercompact if
there is a λ-supercompact embedding j : V −→ M with critical point κ (i.e., M
is transitive, λM ⊆ M , j � κ = id, j(κ) > κ and j(κ) ≥ λ)15 that moves A
correctly up to λ. κ is A-supercompact up to λ′ if it is (A, λ)-supercompact, for
every λ < λ′. Analogously, κ is almost (A, λ)-huge if there is an almost huge
embedding j : V −→M with critical point κ (so that <j(κ)M ⊆M and j(κ) ≥ λ)
which moves A correctly up to λ. It is almost A-huge up to λ′ if it is almost
(A, λ)-huge, for every λ < λ′.

If F is a fine normal measure on Pκλ, then I will write

π : V −→F M

to express that π is the canonical elementary embedding from V into the transi-
tivized ultrapower of V by F , which I also denote by M = Ult(V,F).

I shall give an upper bound on the consistency strength of the assumption
made in the next lemma after its proof.

Lemma 3.3. Assume that κ < ρ are regular fully reflecting cardinals and κ is
(A, ρ + 1)-supercompact, where A consists of the regular fully reflecting cardinals
that are less than or equal to ρ, where ρ = min(A \ (κ + 1)). Then there is
a forcing P such that if G is P-generic over V, then in V[G], κ is measurable,
MP<κ−dir. cl.(Hκ+) holds, and the set of λ < κ which are regular and at which
MP<λ−dir. cl.(Hλ+) holds has measure 1 wrt. any normal ultrafilter on κ in V[G].

Proof. The proof follows that of Lemma 2.14 very closely, which is why I will omit
most of the details. As in that proof, let T = (A ∩ κ)′ ∩ Reg. Let j : V −→M be
an embedding witnessing that κ is (A, ρ+ 1)-supercompact. So j(A)∩ (ρ+ 1) = A
and ρM ⊆M .

Now, for τ ∈ T , let f(τ) be the least member of A greater than τ . Let R be
the image of T under f . Then 〈T,R〉 is an interweaved pair, and P̄ = Col(T,<R)
will force the maximality principle at every δ ∈ T ∪ {κ}. Let P = P̄ ∗ Ċol(κ,< ρ).
So P forces the maximality principle at κ in addition.

15It is well-known how to avoid the apparent metamathematical difficulties arising from the
quantification over classes. E.g., in the case of supercompactness, it suffices to consider ultra-
power embeddings induced by fine normal measures on some Pκ(λ).
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Note that j(T ) and j(R) are defined from j(A) in M as T and R were defined
from A in V. So since A is moved correctly up to ρ+1, and since T ∈ U , it follows
that j(P̄) decomposes as

j(P) ∼= P ∗ Ċol(T̃ , R̃)M︸ ︷︷ ︸
Q̇

.

Let G be P-generic over V. Set:

D = {τG | ∃p ∈ G∃p′ j(p) = 〈p′, τ〉 ∈ P ∗ Q̇}.

The following claims are proved as before:

(1) D ∈M [G], and D
M [G]

= ρ.

(2) M [G] |= “Q̇ is <ρ′-directed-closed”, for some ρ′ > ρ.

(3) D is a directed subset of Q̇G.

Now pick a master condition a ∈ Q below each condition in D, which can be done
in M [G], by (1), (2) and (3). Let H be Q-generic over V[G] with a ∈ H. Like
before, it follows that

(4) j“G ⊆ G ∗H.

Now lift j : V −→ M to j′ : V[G] −→ M [G][H]. The normal ultrafilter U
derived from j′ is in V[G]. For we can view U as a (2κ)V[G][H]-sequence of subsets
of κ each of which is in V[G]. But (2κ)V[G] = ρ, as ρ is inaccessible in V, so the
forcing adding G is ρ-c.c. So U is the image of a ρ-sequence (which is in V[G][H])
of members of P(κ)V[G], and hence it is in V[G], by the fact that the tail forcing
adding H is ≤ρ-closed in V[G].

Remark 3.4. If the theory ZFC + “there is an almost huge cardinal” is consistent,
then so are the assumptions of the previous lemma.

Proof. Let j : V −→ M be an almost huge embedding with critical point κ. Let
A = {α | α is regular and Vα ≺ Vκ}. Let ρ = min(j(A) \ (κ + 1)). Let F be
the normal measure on Pκ(ρ + 1) derived from j. Then F ∈ M , as ρ < j(κ) and
<j(κ)M ⊆ M . Let j′ : M −→F N be the ultrapower by F . Then j′ � ρ + 1 = j �
ρ + 1. So in M , the statement that there is a regular limit point κ′ of j(A) such
that, letting ρ′ = min(j(A) \ (κ′+ 1)), κ′ is (j(A), ρ′+ 1)-supercompact, is true (as
witnessed by κ). So the same is true of A in V. So let κ̄ be a regular limit point
of A which witnesses the statement, and let ρ̄ = min(A \ (κ̄+ 1)). Then in Vκ, κ̄
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is fully reflecting and (Ā, ρ̄+ 1)-supercompact, where Ā = A∩ (ρ+ 1) is the set of
regular fully reflecting cardinals (in Vκ) less than or equal to ρ.

In fact, the argument shows that almost hugeness is strictly stronger than the
assumption of the lemma.

I left gaps in the regular cardinals at which the maximality principle is forced
below the measurable cardinal κ, in order to be able to lift the supercompact
embedding and to find the derived ultrafilter back in V[G].

When only interested in weak compactness, I can do without those gaps:

Lemma 3.5. Let κ < ρ be regular fully reflecting cardinals. Let A be a set of
regular fully reflecting cardinals such that A ∩ κ is cofinal in κ and ρ = min(A \
(κ + 1)). Assume that κ is (A, ρ + 1)-supercompact. Then there is a forcing
P which yields an extension V[G] such that κ is weakly compact in V[G] and
MP<̄κ−dir. cl.(Hκ̄+) holds at every regular κ̄ ≤ κ.

Proof. Let P be the canonical collapse induced by A∩ (ρ+ 1). Let G be P-generic
over V. So the maximality principle holds up to κ in V[G], as wished. So it has
to be shown that κ is weakly compact in V[G].

Let j : V −→M be an (A, ρ+ 1)-supercompact embedding. We cannot easily
lift j to an embedding j′ : V[G] −→ M [G][H], for some H generic for the tail
forcing as in the proof of Lemma 3.3. For using the terminology of that proof, D
would be a directed set of size ρ, and the tail forcing would only be <ρ-closed in
M [G], since there are no gaps in the iteration. So the master condition argument
would fail.

So I will not be able to lift the embedding all the way to V[G] but only to
intermediate forcing extensions which will contain all I need. The intermediate
forcing will have a gap, as did the forcing from Lemma 3.3.

Namely, to see that κ is weakly compact in V[G], let N ∈ V[G] be a transitive
structure with κ ∈ N , which is of size κ in V[G]. I have to find a weakly compact
embedding of N in V[G]. Pick ρ̄ such that if Ḡ = G � (Pκ ∗ Ċol(κ,<ρ̄)), N ∈ V[Ḡ].
This is possible since P is ρ-c.c. Let P′ = Pκ∗Ċol(κ,<ρ̄). Since j moves A correctly
up to ρ, it follows that

j(P′) = P ∗ Ċol(T̃ , <R̃)M︸ ︷︷ ︸
Q̇

,

where min(T̃ ) = ρ. Let Q := Q̇G, and let P̄ = Pκ, the canonical collapse induced
by A ∩ κ. This time, let

D = {τG | ∃p ∈ Ḡ∃p′ j(p) = 〈p′, τ〉 ∈ P ∗ Q̇}.

(1) D ∈M [G], and D
M [G]

< ρ.
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(2) M [G] |= “Q is <ρ-directed-closed”.

(3) D is a directed subset of Q.

Proof. Let p, q ∈ D. Let p̄, q̄ ∈ Ḡ be such that, letting j(p̄) = 〈p′, ṗ〉 ∈ P ∗ Q̇ and
j(q̄) = 〈q′, q̇〉 ∈ P ∗ Q̇, p = ṗG and q = q̇G. Let r̄ ≤P′ p̄, q̄ with r̄ ∈ Ḡ. So

(∗) j(r̄) ≤j(P′) j(p̄), j(q̄).

Viewing r̄ as a function with domain κ+ 1, it follows that j(r̄ � κ) � (κ+ 1) ∈ G:
Since P̄ is a direct limit,

j(r̄ � κ) � κ = r̄ � κ and j(r̄ � κ) � [κ, j(κ)) ≡ 1.

So j(r̄)(κ) is a P̄-name for the empty condition in Ċol(κ,<ρ) but also in Ċol(κ,<ρ̄).
This means that that j(r̄) � (κ+ 1) ≥ r̄ ∈ Ḡ, which shows that j(r̄ � κ) � (κ+ 1) ∈
Ḡ, as claimed.

Now view j(r̄) as a pair 〈r′, ṙ〉 ∈ P ∗ Q̇. So r′ = j(r̄) � (κ + 1) ∈ Ḡ, which
means that r := ṙG ∈ D. By (∗),

r′ ≤P p
′, q′ and r′ 
P ṙ ≤Q̇ ṗ, q̇.

Moreover, r′ ∈ Ḡ ⊆ G, so r ≤Q p, q, which shows that D is directed. 2(3)

Now pick a master condition a ∈ Q below each condition in D. Let H be
Q-generic over V[G] with a ∈ H.

(4) j“Ḡ ⊆ G ∗H.

Proof of (4). Let p̄ ∈ Ḡ, and view its image as j(p̄) = 〈p′, ṗ〉 ∈ P ∗ Q̇. Then
p := ṗG ∈ D, and so, a ≤Q p. So p ∈ H. Moreover, the argument in the proof of (3)
showed that p′ ≥ p̄, so that p′ ∈ Ḡ. In particular, p′ ∈ G. So j(p̄) = 〈p′, ṗ〉 ∈ G∗H,
as claimed. 2(4)

So by Lemma 2.6, this gives us an elementary embedding

j′ : V[Ḡ] −→M [G][H]

which extends j. This embedding is definable in V[G][H]. As before, ρ(M [G]) ∩
V[G] ⊆M [G], because P has size ρ and M is closed under ρ-sequences. Moreover,
in M [G], Q̇G is <ρ-closed, hence so it is in V[G].

Remember that N ∈ V[Ḡ], so N ∪ {N} ⊆ dom(j′). So by setting ̃ := j′ � N ,
we get an elementary embedding

̃ : N −→ j′(N).

Since N has size κ < ρ in V[G], ̃ is an element of V[G], by the <ρ-closedness of
Q̇G in V[G], and it yields a weakly compact embedding of N .

It is worthwhile to note that the forcing notion from the previous lemma is a
natural forcing which makes κ’s weak compactness indestructible, but it has no
closure points. So the situation of [AH01] doesn’t apply.
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3.2 The least weakly compact cardinal can be
indestructible

Lemma 3.5 produces a natural model with a surprising indestructibility property:

Corollary 3.6. In the model of Lemma 3.5, the least weakly compact cardinal is
indestructibly weakly compact. In particular, this cardinal is indestructibly weakly
compact but not measurable, not even Π1

2-indescribable, and not Σ2-correct.

Proof. Let κ be the least weakly compact cardinal in this model. Since the set of
weakly compact cardinals below a measurable cardinal has measure one wrt. every
normal measure on that cardinal, κ cannot be measurable. It cannot be Π1

2-
indescribable, since the Π1

2 statement about ξ that expresses that ξ is weakly
compact is true for ξ = κ but for no smaller ζ. Finally, the statement “there is a
weakly compact cardinal” can be expressed in the form “there is an ordinal ξ and
a set x such that x = Vξ+1 and x believes that ξ is regular and every tree of height
ξ has a cofinal branch”. The statement “x = Vξ+1” is Σ2.

This result is reminiscent of the result of Apter and Gitik [AG98] that the least
measurable cardinal can be Laver indestructible. In fact, if one is only interested
in this corollary, the assumptions can be weakened. I’ll show two ways how to
do this. The first one works with a partial maximality principle for <κ-closed
forcings, which is of independent interest, and which is still strong enough to draw
the conclusion of the previous corollary:

Definition 3.7. Let Λ be a collection of formulae, Γ a collection of forcing notions,
and P be a set. Then MPΛ

Γ(P ) is the principle asserting that every statement ϕ ∈ Λ
about parameters in P that’s Γ-forceably necessary is already true.

Let Col(κ) be the class of forcings of the form Col(κ, λ) or Col(κ,<λ), where
λ ranges over all ordinals. A closer look at the proof of [Fuc08, Thm. 2.10] yields
the following:

Lemma 3.8. Assume that κ < δ, κ is regular, n ≥ 1 and Vδ is Σn+2-correct. Let
P = Vδ. Then MPΣn

Col(κ)(P ) holds in V[G], where G is V-generic for P = Col(κ,<

δ). If in addition, δ is regular, then in V[G], MPΣn
Col(κ)(Hκ+) holds.

Proof. Let’s focus on the first part of the lemma. The second part works like the
proof in [Fuc08], enhanced by the argument to follow. Assume that in V[G], ϕ(a) is
a Col(κ)-forceably necessary Σn-statement about a ∈ P . Let Col(κ,<ζ) force ϕ(a)
to be Col(κ)-necessary over V[G], where ζ may be picked as large as wished. Let
H be Col(κ,<ζ)-generic over V[G], so that ϕ(a) is Col(κ)-necessary in V[G][H].
Then in V, it is also true that ϕ(a) is forced to be Col(κ)-necessary by Col(κ,<ζ),
because there is a Col(κ,<ζ)-generic filter over V such that V[G][H] = V[H ′].
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So by homogeneity of Col(κ,< ζ), 1l forces via Col(κ,< ζ) over V that ϕ(a) is
Col(κ)-necessary.

The statement that Col(κ,<ζ) forces that ϕ(a) is Col(κ)-necessary is equivalent
to saying that for every ζ ′ ≥ ζ, Col(κ, ζ ′) forces that ϕ(a) is true. This latter
statement says: “For every ζ ′ ≥ ζ and for every P, P 6= Col(κ, ζ ′), or P 
 ϕ(a)”.
And “P = Col(κ, ζ ′)” says: For all x ∈ P, x is a function from an ordinal less
than κ to ζ ′, and for all functions y from an ordinal less than κ to ζ ′, y ∈ P.
This is a Π1 statement. And “P 
 ϕ(a)” is a Σn statement in the parameters P
and a. So altogether, we get that the statement that Col(κ,<ζ) forces ϕ(a) to be
Col(κ)-necessary is a Πn+1 statement, and hence, the statement that there is such
a ζ is Σn+2.

So since Vδ ≺Σn+2 V, it is true in Vδ that ϕ(a) is Col(κ)-forceably necessary.
Let ζ̄ < δ be such that in Vδ, Col(κ,<ζ̄) forces ϕ(a) to be Col(κ)-necessary. Again,
ζ̄ may be picked as large as wished (below δ). Using elementarity upwards this
time, it follows that in V, Col(κ,< ζ̄) forces ϕ(a) to be necessary. By [Fuc08,
Cor. 2.4], Col(κ,< ζ̄) × Col(κ,<δ) is forcing equivalent to Col(κ,<δ). This is
because by the reflection properties of δ, for every µ < δ, µ<κ < δ. It follows that
V[G] can be viewed as V[G̃][H], where G̃ is Col(κ,<ζ̄)-generic over V, and H is
Col(κ,< δ)-generic over V[G̃]. Note that the definitions of all these forcings are
absolute between all the involved models. ϕ(a) is Col(κ)-necessary in V[G̃], and
so, it is true in V[G̃][H] = V[G]. This was to be shown.

By methods introduced in [Fuc08], it follows that

MPΛ
Col(κ)(P ) =⇒ MPΛ

<κ-directed-closed(P ) =⇒ MPΛ
<κ-closed(P ).

Many other facts about the full Maximality Principles go through for the partial
ones as well, like, e.g., that the partial Maximality Principle for closed forcings at
κ is preserved under <κ+-closed forcing, and the one for directed closed forcings
is preserved by <κ+-directed-closed forcing.

So by adapting the construction of canonical collapses to iterated collapses of
the form Col(µ,<δ), where δ doesn’t necessarily have to be regular, the following
Lemma can be proved by changing the proof of Lemma 3.5 in the obvious way.

Lemma 3.9. Let κ < ρ. Let A be a set of Σn+2-reflecting cardinals such that
A ∩ κ is cofinal in κ. Let ρ = min(A \ (κ + 1)), and assume that κ is (A, ρ + 1)-
supercompact. Then there is a forcing P which yields an extension V[G] such that
κ is weakly compact in V[G] and MPΣn

<κ̄-directed-closed(Hκ̄∪{κ̄}) holds at every regular
κ̄ ≤ κ.

Since the statement that κ is weakly compact is a Σ2-statement about κ, it
follows that in the model of the previous lemma, the least weakly compact cardinal
is indestructible. In fact, it is possible to weaken the assumptions further, if one
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is only interested in producing a model where the least weakly compact cardinal
is indestructible.

Theorem 3.10. If a supercompact cardinal is consistent, then so is the state-
ment that the least weakly compact cardinal is indestructibly weakly compact. More
specifically, if there is a supercompact cardinal κ and a δ > κ such that Vδ |= ZFC,
then there is a forcing notion which forces that a proper initial segment of the
universe is a model of the theory ZFC + “the least weakly compact cardinal is
indestructible”.

Proof. I shall define an iteration 〈〈Pα, Q̇α〉|α < ζ〉 by recursion on α. It will turn
out afterwards what the length of the iteration will be less than κ.

The beginning is as usual: P0 is trivial forcing.
Now suppose α ≤ κ is a limit ordinal and 〈〈Pβ, Q̇β〉 | β < α〉 has been defined

already. Then Pα is the limit of the previous iteration, with Easton support. So if
α is a regular limit cardinal, we take the direct limit, and otherwise, we take the
inverse limit.

The interesting case is that 〈〈Pβ, Q̇β〉 | β < α〉 has been defined already, where
α ≤ κ. It is now clear what Pα is, as well. In case α < κ, we have to specify Q̇α.
By construction, for β ≤ α, there will be κβ and λβ such that Q̇β is a Pβ-name
for Col(κβ, <λβ). It will be the case that if β̄ < β < α, κβ̄ < λβ̄ < κβ < λβ.
The iteration is a weakly homogeneous forcing notion. Let κβ be the least κ̄ such
that Pα forces that κ̄ is weakly compact. Inductively, it will be the case that
κα ≥ supβ<α λβ. Let δα be the least ζ > κα such that Vζ |= ZFC. Now ask the
question:

Does Pα ∗ Ċol(κα, <ν) force that κα is weakly compact, for every ν < δα?

If so, then VPα
δα

is a model of ZFC which thinks that κα is the least weakly compact
cardinal, and it is indestructible.

If, on the other hand, the answer is no, then let λα be least such that Pα ∗
Ċol(κα, <λα) forces that κα is not weakly compact. So λα < δα. Let Q̇α be a
Pα-name for Col(κα, <λα).

I claim that the iteration breaks down below κ, i.e., that the question deciding
about the successor case is answered affirmatively at some point below κ. Then
the sought after model has been found already, as pointed out before. So assume,
towards a contradiction, that the iteration does not break down below κ. Then,
inductively, the following hold:

1. For α < β < κ, κα < λα < κβ < λβ,

2. Pα forces that κα is the least weakly compact cardinal in VPα ,

3. κα is not weakly compact in VPβ , for α < β ≤ κ,
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4. λα < δα < κβ, for α < β < κ.

Let δ = δκ be least above κ such that Vδ |= ZFC, and let j : V −→ M witness

the δ<κ-supercompactness of κ. Let ~κ = 〈κα | α < κ〉, ~λ = 〈λα | α < κ〉 and
~δ = 〈δα | α < κ〉. We get that

j(Pκ) = Pκ ∗ Ċol(κ,<j(~λ)(κ)) ∗ Q̇.

Namely, j(P) � κ = Pκ, since κ is the critical point of j. Further, κ is weakly
compact in MPκ , which can be seen using the argument of the proof of Lemma
2.7. So this shows that j(~κ)κ = κ, by item 2. Moreover,

λ′ := j(~λ)κ < δ.

This is because Vδ = VM
δ , so δ is least above κ with Vδ |= ZFC from the point

of view of M as well as of V. So, arguing in M , if Ḡ is Pκ-generic over M , then
V

V[G]
δ = Vδ[G] |= ZFC, which means that the least ζ > κ such that in V[G],

Vζ |= ZFC, is at most δ. So j(~λ)κ < j(~δ)κ ≤ δ. Now let

P = Pκ ∗ Ċol(κ,<λ′).

Then
j(P) = P ∗ Q̇,

and there is a gap between P
M

and the closedness of the tail forcing Q̇. So, letting
G be P-generic over V, the argument of the proof of 3.3 shows that there is an H
which is Q̇G-generic over V, such that j lifts to j′ : V[G] −→ M [G][H]. We find
the normal ultrafilter on κ derived from j′ already in V[G], so that κ is measurable
in V[G]. This is a contradiction, since κ is the least weakly compact cardinal in
V[G]!

This theorem may be a bit surprising, because of the following consideration:
In the notation of the theorem, we find κ̄ < κ and an inaccessible δ̄ < κ such
that in Vδ̄[G], κ̄ is indestructibly weakly compact. Assume that the forcing is
non-trivial (which is harmless, as one may precede the forcing by adding a Cohen
real - being small forcing, this destroys the indestructibility any weakly compact
cardinal might have had, by [Ham98] so that in fact, the forcing which makes κ̄
weakly compact must have been an iteration of length κ̄). Anyway, that forcing
has closure points, and so, by the main result of [AH01], κ̄ is supercompact in
Vδ̄. This shows that one cannot start in a minimal universe with a supercompact
cardinal (i.e., a universe in which there is no ordinal α such that Vα is a model
of “ZFC + there is a supercompact cardinal”) and carry out the argument; this
would produce a contradiction. By the way, the fact that if κ and δ are as in the
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statement of the theorem, then there are κ̄ < δ̄ < κ such that Vδ̄ |= ZFC and κ̄
is supercompact in Vδ̄, can be proved using methods from [Mag74]. Namely, he
introduced the following concept:

Definition 3.11 ([Mag74]). κ is β reducible if κ < β and there is an α < β and
an elementary embedding j : 〈Vα,∈〉 −→ 〈Vβ,∈〉 such that j is not the identity
and such that if γ is the critical point of j, then j(γ) = κ.

The relevance of this concept is expressed in:

Theorem 3.12 ([Mag74], Thm. 1). κ is supercompact iff it is β reducible, for
every β > κ.

In fact, his proof shows: If κ is iλ-supercompact, then it is λ-reducible, and
the witness α to λ-reducibility is less than κ. So, returning to the assumptions
of Theorem 3.10, since κ is iδ-supercompact, there must be a δ̄ < κ and a j :
〈Vδ̄,∈〉 −→ 〈Vδ,∈〉 with critical point κ̄, so that j(κ̄) = κ. Since Vδ |= ZFC, the
same is true of Vδ̄, and since j(κ̄) = κ, κ̄ is supercompact in Vδ̄.

So there is no contradiction.

3.3 Up To Larger Cardinals

First, let’s try to eliminate the gaps between the regular cardinals below a mea-
surable at which the closed Maximality Principle holds. I’ll use the following
notation: If P is a forcing iteration, it will usually have the form 〈Pα | α < λ〉,
where Pα+1 = Pα ∗Q̇α. Then, for α < β ≤ λ, let ~̇Q � [α, β) be a canonical Pα-name
for a forcing such that

Pβ ∼= Pα ∗ ~̇Q � [α, β).

Accordingly, if G is Pβ-generic in this situation, I shall write

G ∼= G � α ∗G � [α, β),

where G � α is generic for Pα and G � [α, β) is (~̇Q � [α, β))G�α-generic over V[G � α].

Lemma 3.13. Let κ be almost (A, ρ+ 1)-huge, where

κ < ρ ∈ A = {ρ̄ ≤ ρ | ρ̄ is regular and Vρ̄ ≺ V}

and ρ = min(A \ (κ + 1)). Let j : V −→ M be almost (A, ρ + 1)-huge (i.e.,
j(A) ∩ (ρ + 1) = A, j(κ) > ρ and <j(κ)M ⊆ M). Let P be the canonical collapse
up to ρ, and let G be j(P)j(κ)-generic over V. Then in V[G], κ is measurable and
the directed closed Maximality Principle holds up to κ.
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Proof. Let P = Pκ+1. Since j is almost huge wrt. A, it follows that P = j(P)κ+1.
We shall force with j(P)j(κ). So let G be generic for that partial order. Set:

D = {j(p)Gj(κ) | p ∈ G � (κ+ 1)},

where I view p ∈ P, as a sequence p = 〈pα | α ≤ κ〉, such that for any α ≤ κ,
p � α ∈ Pα and p � α 
Pα pα ∈ Q̇α.

(1) D ∈M [G], and D
M [G]

= ρ.

Proof. The point is that M [G] is <j(κ)-closed in V[G], by Lemma 2.5. In parti-
cular, j � (G � (κ + 1)) as well as G are in M [G], and D is definable from these
parameters. Note that ρ < j(κ). 2(1)

(2) M [G] |= “j(~̇Q)Gj(κ) is <j(κ)-directed-closed.”.

Proof. This is because in M , j(~̇Q)j(κ) is a j(P)j(κ)-name for Col(j(κ), < ρ′), where
ρ′ = j(ρ) > j(κ). 2(2)

(3) D is a directed subset of j(~̇Q)Gj(κ).

Proof. Let p, q ∈ D. Let p̄, q̄ ∈ G � (κ + 1) be such that, letting ṗ = j(p̄)j(κ) and
q̇ = j(q̄)j(κ), p = ṗG and q = q̇G. Since G � (κ + 1) is generic for P, there is an
r̄ ≤P p̄, q̄ with r̄ ∈ G � (κ+ 1). So

(∗) j(r̄) ≤j(P) j(p̄), j(q̄).

I claim that j(r̄) � j(κ) ∈ G. To see this, note that

j(r̄) � κ = r̄ � κ and j(r̄) � [κ, j(κ)) ≡ 1.

So, given any condition r′ ∈ G with r̄ � κ = j(r̄) � κ = r′ � κ, it follows that
j(r̄) ≥j(P)j(κ)

r′, which implies that j(r̄) � j(κ) ∈ G. Such an r′ must exist, of
course, since r̄ ∈ G � κ+ 1.

Let now ṙ = j(r̄)j(κ) and r = ṙG. So r ∈ D. By (∗),

j(r̄) � j(κ) 
j(P)j(κ)
ṙ ≤

j(~̇Q)j(κ)
ṗ, q̇.

Since j(r̄) � j(κ) ∈ G, this means that r ≤
j(~̇Q)G

j(κ)

p, q, which shows that D is

directed, as claimed. 2(3)

Now I can pick a master condition a ∈ j(~̇Q)Gj(κ) below each condition in D. Let

H be j(~̇Q)Gj(κ)-generic over V[G] with a ∈ H. Define

j′ : V[G � (κ+ 1)] −→M [G][H]
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by setting j′(τG) = j(τ)G∗H , for τ ∈ VP. Both the correctness of this definition
and the elementarity of j′ are shown by the following argument: If V[G � (κ+1)] |=
ϕ(~τG), then there is a condition p ∈ G � (κ+ 1) with p 
P ϕ(~τ). By elementarity
of j, this implies that

M |= j(p) 
j(P) ϕ(j(~τ)).

Now j(p)Gj(κ) ∈ D, and so, j(p)Gj(κ) ≥j(~̇Q)G
j(κ)

a ∈ H. So, in particular, j(p)Gj(κ) ∈ H.

Moreover, in the proof of (3) it was shown that j(p) � j(κ) ∈ G. So j(p) ∈ G ∗H,
which shows that

M [G][H] |= ϕ(j(~τ)G∗H),

as wished.
Now let U be the normal ultrafilter on P(κ) derived from j′. U is an element

of V[G][H], but I aim to show that U ∈ V[G] already. Note that j(κ) is an
inaccessible cardinal in V[G]. I have already mentioned that M [G] is closed under

<j(κ)-sequences in V[G]. Since moreover M [G] believes that j(~̇Q)Gj(κ) is <j(κ)-

closed, this implies that the same is true in V[G]. This will exploited in the
following, finally putting the full available closedness to use.

Note that (2κ)V[G] < j(κ). So U is a set of cardinality less than j(κ) in V[G][H],
and it is contained in V[G], by the closedness of the tail forcing. So since in V[G],

j(~̇Q)Gj(κ) is <j(κ)-closed, it follows that U ∈ V[G]. By the same argument, U

is a normal ultrafilter in V[G], since it is V[G � (κ + 1)]-normal, but V[G] has
no more subsets of κ or regressive functions on κ than V[G � (κ + 1)] has, since

j(~̇Q) � [κ + 2, j(κ))G�(κ+1) is <ρ-closed in V[G � (κ + 1)] and ρ > κ. So κ is
measurable in V[G].

The purpose of the following lemma is to collect some aspects relevant to
my purposes in which external supercompactness embeddings behave like internal
ones.

Lemma 3.14. Let P and Q be inner models, j : P −→ Q an elementary embed-
ding with critical point κ < λ, λ < j(κ) and λQ ⊆ Q. Let

F = {x ∈ (Pκλ)P | j“λ ∈ j(x)}

be the λ-supercompactness measure on (Pκλ)P derived from j.16Then F is a fine
P-normal measure on Pκλ∩P. Moreover, letting π : P −→F Q̄ be the ultrapower
of P by F , there is an elementary embedding k : Q̄ −→ Q, defined by

k([f ]PF) = j(f)(j“λ).

16So F = {A ∈ (Pκλ) ∩ P | j“λ ∈ j(A)}.
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Here, [f ]PF denotes the image of the equivalence class of functions in P which are
equivalent modulo F to f , under the Mostowski collapse.

The critical point of k, if it exists, is at least λ.

Proof. That F is a fine ultrafilter on Pκ(λ)P is straightforward. Let’s check its
normality: Let A ∈ F , and let f : A −→ λ be a choice function, and f ∈ P .
We know that j“λ ∈ j(A). So j(f)(j“λ) ∈ j“λ. In particular, j(f)(j“λ) is in
the image of j, so we can let α = j−1(j(f)(j“λ)) < λ. Then j“λ is a member of
j({x ∈ A | f(x) = α}), which means that the set of x ∈ A with f(x) = α is in F .

The proof that k, as defined in the statement of the lemma, is elementary, is
standard; the point is that  Loś’s theorem stays valid for external ultrapowers. So
one can argue that

Q̄ |= ϕ([f ]PF) ⇐⇒ {x | P |= ϕ(f(x))} ∈ F
⇐⇒ j“λ ∈ {x | Q |= ϕ(j(f)(x))}
⇐⇒ Q |= ϕ(j(f)(j“λ)).

A crucial observation which stays true for external ultrapowers is that [id]PF =
π“λ: If a ∈ [id]PF , then a = [f ]PF , for some f ∈ P . So {x | f(x) ∈ x} ∈ F , which
means that f is a choice function on a measure one set. So there is some α < λ
with {x | f(x) = α} ∈ F , which means precisely that [f ]PF = [constα]PF = π(α). In
the other direction, if α < λ, then claiming that π(α) ∈ [id]PF amounts to saying
that {x | α ∈ x} ∈ F , which is the case, since F is fine.

A consequence of this observation is that [f ]PF = π(f)(π“λ). This can be used
to show that any α < λ is represented by the function rα : PκλP −→ λ defined by

rα(x) = otp(x ∩ α).

This is because [rα]PF = π(rα)(π“λ) = otp(π“λ ∩ π(α)) = α.
This, in turn, can be used to show that k � λ = id: For α < λ, k(α) =

k([rα]PF) = j(rα)(j“λ) = otp(j(α) ∩ j“λ) = α, as claimed.

Remark 3.15. A word of caution: If P is an inner model and F is a P-normal
fine ultrafilter on (Pκλ)P , then it need not be the case that the ultrapower of
P by F , call it Q, is closed under λ-sequences. Its closure is as follows: If s =
〈[fi]PF | i < λ〉 ∈ λQ, and 〈fi | i < λ〉 ∈ P , then s ∈ Q. In particular, if λP ⊆ P ,
then λQ ⊆ Q.

Lemma 3.16. Let κ be almost huge wrt. A = {ρ | ρ is regular and Vρ ≺ V},
where κ ∈ A.17Let j : V −→ M be almost huge wrt. A (so <j(κ)M ⊆ M and

17This is equivalent to saying that there is an almost huge embedding j : V −→M with critical
point κ, such that Vj(κ) ≺ V.
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j(A ∩ κ) = A ∩ j(κ)). Then there is a forcing extension of V in which κ is
<j(κ)-supercompact and the directed closed Maximality Principle holds up to κ.

Proof. Let P be the canonical collapse below κ and let j : V −→ M be almost
huge wrt. A. It follows that P = j(P)κ, and moreover, that j(P) is the canonical
collapse below j(κ). I shall force with j(P). So let G be generic for that partial
order.

In order to show that κ is supercompact up to j(κ) in V[G], let ξ < λ < j(κ)
be regular limits of A, λ > ξ > κ (there are unboundedly many such cardinals
below j(κ)). In particular, ξ and λ are inaccessible, so that ξξ < λ. I shall show
that in V[G], κ is ξ-supercompact.

Set:
D = {j(p) � [j(κ), j(λ))G | p ∈ G � λ}.

To understand the term (j(p) � [j(κ), j(λ)))G, note that if p ∈ j(P)λ, then it
is a sequence p = 〈pα | α < λ〉, such that for any α < λ, p � α ∈ j(P)α and

p � α 
j(P)α pα ∈ j(
~̇Q)α. Let Ṗtail = j(j(~̇Q)) � [j(κ), j(λ)). Then the term (j(p) �

[j(κ), j(λ)))G is to be understood in the following way: j(p) can be viewed as a
pair 〈j(p) � j(κ), j(p) � [j(κ), j(λ))〉, where j(p) � j(κ) ∈ j(P), j(p) � [j(κ), j(λ)) is
a j(P)-name, and j(p) � j(κ) 
j(P) j(p) � [j(κ), j(λ)) ∈ Ṗtail.

(1) D ∈M [G], and D
M [G]

= λ.

Proof. The point is again that M [G] is <j(κ)-closed in V[G], by Lemma 2.5. In
particular, j � (G � λ) as well as G are in M [G], and D is definable from these
parameters. That D has size λ in M [G] is obvious. 2(1)

(2) M [G] |= “ṖGtail is <j(κ)-directed-closed.”

Proof. By elementarity: 1lP forces that j(~̇Q) � [κ, λ) is <κ-directed-closed. 2(2)

Let Ptail = ṖGtail.

(3) D is a directed subset of Ptail.

Proof. Let p, q ∈ D. Let p̄, q̄ ∈ G � λ be such that, letting ṗ = j(p̄) � [j(κ), j(λ))
and q̇ = j(q̄) � [j(κ), j(λ)), p = ṗG and q = q̇G. Since G � λ is generic for j(P)λ,
there is an r̄ ≤j(P)λ p̄, q̄ with r̄ ∈ G � λ. So

(∗) j(r̄) ≤j(j(P)) j(p̄), j(q̄).
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Then j(r̄) � j(κ) ∈ G, since j(r̄) � κ = r̄ � κ and j(r̄) � [κ, j(κ)) ≡ 1. So, given
any condition r′ ∈ G with j(r̄) � κ = r′ � κ, it follows that j(r̄) ≥j(P)�j(κ) r

′, which
implies that j(r̄) � j(κ) ∈ G.

Let now ṙ = j(r̄) � [j(κ), j(λ)) and r = ṙG. By (∗),

j(r̄) � j(κ) 
j(P) ṙ ≤Ṗtail
ṗ, q̇.

Since j(r̄) ∈ G, this means that r ≤Ptail
p, q. Since r ∈ D, this shows that D is

directed. 2(3)

Let a ∈ j(j(~̇Q)) � [j(κ), j(λ))G be a master condition below each condition in
D. Let H be Ptail-generic over V[G] with a ∈ H. Define

j′ : V[G � λ] −→M [G][H]

by setting j′(τG�λ) = j(τ)G∗H , for τ ∈ Vj(P)λ . To check correctness and elementar-
ity of j′, suppose V[G � λ] |= ϕ(~τG�λ). Then there is a condition p ∈ G � λ with
p 
j(P)λ ϕ(~τ). By elementarity of j, this implies that

M |= (j(p) 
j(j(P))j(λ)
ϕ(j(~τ))).

Now (j(p) � [j(κ), j(λ)))G ∈ D, and so, (j(p) � [j(κ), j(λ)))G ≥ a ∈ H, hence
(j(p) � [j(κ), j(λ)))G ∈ H. Since in the proof of (3) it was shown that j(p) �
j(κ) ∈ G, it follows that j(p) ∈ G ∗H, which shows that

M [G][H] |= ϕ(j(~τ)G∗H),

as wished.
Note that j′ is defined in V[G][H]. I want now to pull (part of) it back to V[G].

So let F be the ξ-supercompactness measure on PκξV[G�λ] derived from j′,

F = {X ⊆ (Pκξ)V[G�λ] | X ∈ V[G � λ] ∧ j“ξ ∈ j′(X)}.

(4) (ξ<κ)V[G�λ] = (ξ<κ)V[G].

Proof. The point is that ξ is an inaccessible cardinal in both models, because it is
a regular limit of A. 2(4)

(5) P(Pκξ)V[G�λ] = P(Pκξ)V[G].

Proof. First, note that
(Pκξ)V[G�λ] = (Pκξ)V[G].

This is because the forcing j(~̇Q) � [λ, j(κ))G�λ is <λ-closed in V[G � λ]. Moreover,
Pκξ has size ξ both in V[G] and in V[G � λ], by (4). So, using a bijection between
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Pκξ and ξ in V[G � λ] (which then is also a bijection between Pκξ and ξ in V[G]),
Pκξ may be identified with ξ, in the sense that it suffices to show that

P(ξ)V[G�λ] = P(ξ)V[G].

But this is again true by the fact that j(~̇Q) � [λ, j(κ))G�λ is <λ-closed in V[G � λ].
2(5)

(6) F ∈ V[G].

Proof. Working in V[G][H], the cardinality of F is the same as the cardinality
of (2ξ

<κ
)V[G�λ], which is the same as the cardinality of (2ξ)V[G�λ]. But since λ is

inaccessible in V[G � λ], (2ξ)V[G�λ] < λ, so F has cardinality less than j(κ) in
V[G][H]. Now it’s crucial that in V[G], Ptail is <j(κ)-closed. This is because
by (2), Ptail is <j(κ)-closed in M [G], and because M [G] is closed under <j(κ)-
sequences by Lemma 2.5, Ptail is <j(κ)-closed in V[G] as well. Now F is the range
of a sequence of elements of V[G � λ] which has length <j(κ). So the sequence,
and hence F , is in V[G]. 2(6)

Since F is derived from a ξ-supercompact embedding, it must be V[G � λ]-
normal, by Lemma 3.14. But then it is also V[G]-normal, since V[G] and V[G � λ]
have the same choice functions f : A −→ Pκξ with A ∈ F and f(x) ∈ x, f.a. x
(the proof of (5) shows that they have the same functions with domain Pκξ and
range contained in V[G � λ]). So F is a ξ-supercompactness measure on Pκξ in
V[G].

Remark 3.17. The consistency strength of a huge cardinal is strictly higher than
the assumption of Lemma 3.16, namely an almost huge embedding j : V −→ M
with critical point κ such that Vκ ≺ Vj(κ) ≺ V.

Before turning to the proof, I need a concrete characterization of almost huge-
ness that I can work with. The following definition and theorem is from [Kan03,
p. 333 f.].

Definition 3.18. Let κ ≤ γ < δ, and let F be a measure on Pκδ. Then

F ↓ γ = {{x ∩ γ | x ∈ A} | A ∈ F}.

〈Fγ | κ ≤ γ < λ〉 is a coherent sequence of supercompactness measures if for every
γ ∈ [κ, λ), Fγ is a fine normal measure on Pκγ, and whenever κ ≤ γ < δ < λ,
then Fγ = Fδ ↓ γ.

Theorem 3.19. κ is almost huge iff there are an inaccessible λ > κ and a co-
herent sequence of supercompactness measures 〈Fγ | κ ≤ γ < λ〉 with the following
additional property: If κ ≤ γ < λ and α is such that, letting jγ : V −→Fγ Mγ,
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γ ≤ α < jγ(κ), then there is a δ ∈ [γ, λ) such that, letting jδ : V −→Fδ Mδ and
kγ,δ : Mγ −→Mδ be the canonical embedding defined by

kγ,δ(jγ(f)(jγ“γ)) = jδ(f ↑ δ)(jδ“δ),

then kγ,δ(α) = δ.18

Let’s call a coherent sequence of supercompactness measures as in the theorem
an almost hugeness system.

Proof. The argument of the proof of Remark 3.4 works here as well. Let j :
V −→F M be a huge embedding with critical point κ, and let A be the set of
regular cardinals ρ with Vρ ≺ Vκ, including κ.19Let ~F = 〈Fγ | κ ≤ γ < λ〉 be
the almost hugeness system of measures derived from j. I.e., λ = j(κ) and for
κ ≤ γ < λ,

Fγ = {X ⊆ Pκγ | j“γ ⊆ X}.

It was shown in the proof of Theorem 3.19 that ~F is indeed an almost hugeness
system. Note that λ is inaccessible, since it is the image of κ, and hence is in-
accessible in M , which is closed under λ-sequences, so that it is also inaccessible
in V. Fix γ ∈ [κ, λ) for a moment. Then (Pκγ)M = Pκγ. Also, Fγ ⊆ Pκγ has
cardinality less than λ, so that Fγ ∈ M . So since M is closed under λ-sequences,
~F ∈ M . It is now easy to check that M agrees with V that ~F is an almost
hugeness system: Each Fγ of course is still a normal ultrafilter on Pκγ, and the
sequence is obviously coherent, since this is true in V. To see that the additional
conditions are also satisfied, let jMγ : M −→ Nγ and kMγ,δ be defined as in Theorem
3.19, for κ ≤ γ < δ < λ, in M . Suppose γ ≤ α < jMγ (κ). Let α = [fα]MFγ , i.e.,

α = jMγ (fα)(jMγ “γ). This means that in M ,

{x ∈ Pκγ | otp(x) ≤ fα(x) < κ} ∈ Fγ.

So by absoluteness, this is also true in V, and hence, γ ≤ [fα]Fγ < jγ(κ). Since ~F
is an almost hugeness system in V, there is a δ ∈ [γ, λ) such that kγ,δ([fα]Fγ ) = δ.
In other words, this means that

{x ∈ Pκδ | fα(x ∩ γ) = otp(x)} ∈ Fδ.

But since V and M agree about Pκδ, this is also true in M , showing that kMγ,δ(α) =

δ. So ~F is an almost hugeness system in M .

18In the definition of kγ,δ, f is a function with domain Pκγ. Its lift to Pκδ is the function
f ↑ δ : Pκδ −→ V defined by: (f ↑ δ)(x) = f(x ∩ γ).

19Starting from a huge embedding l : V −→ M ′ with critical point κ, let F be the normal
measure on Pκλ derived from l, where λ = j(κ). Then form j : V −→F M . This will be a huge
embedding again. F has the property that {x ∈ Pκλ | otp(x) = κ} ∈ F .
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Let j′ : M −→ ~F N be the embedding induced by the almost hugeness system:

〈N, 〈jγ,∞ | κ ≤ γ < λ〉〉 = dir lim(〈Nγ | κ ≤ γ < λ〉, 〈kMγ,δ | κ ≤ γ < δ < λ〉),

where N is transitive, and j′ = jκ,∞ ◦ jMκ , where jκ,∞ : Ult(M,Fκ) −→ N is the di-
rect limit embedding and jMκ : M −→Fκ Ult(M,Fκ) is the ultrapower embedding.
Then j′ is, in M , an almost huge embedding with critical point κ ∈ j(A). This
was shown in the proof of 3.19, see [Kan03]. Moreover, j′ moves j(A) correctly up
to j′(κ). To see this, note the following facts, which are not hard to verify:

• crit(kMγ,δ) > γ,

• crit(jδ,∞) > δ,

• crit(kγ,δ) > γ

• For x ⊆ κ and γ ∈ [κ, λ),

j(x) ∩ (γ + 1) = jγ(x) ∩ (γ + 1) and j′(x) ∩ (γ + 1) = jMγ (x) ∩ (γ + 1).

But it’s also clear that for x ⊆ κ and γ ∈ [κ, λ), jMγ (x) ∩ γ = jγ(x) ∩ γ. Note
that j′(κ) = j(κ) = λ, which follows from the above and the condition turning a
coherent sequence of supercompactness measures into an almost hugeness system.
Putting these facts together, it follows that

j′ � P(κ) = j � P(κ).

So since j obviously moves j(A) correctly up to λ, so does j′. And since j(κ) ∈
j(A), the same is true of j′(κ).

So the statement about j(κ) and j(A) that there is an almost huge embedding
j′ with critical point κ′ ∈ j(κ)∩j(A), which moves j(A) correctly up to j′(κ′), and
such that j′(κ′) ∈ j(A), is true in M , as witnessed by κ. So the same statement is
true of κ and A in V. Pick witnesses ̄ and κ̄ in V. Then ̄ � Vκ witnesses that Vκ

is a model of the desired theory.
Of course, the cardinal up to which the directed closed Maximality Principle

holds in the model of the previous lemma is also Woodin. But since the lifting
techniques don’t work so well with cardinals satisfying variants of strongness, it’s
natural to replace Woodinness with a similar large cardinal notion which bears
closer connections to supercompactness than to strongness. The following defini-
tion is inspired by [For].

Definition 3.20. A cardinal κ is Woodinized supercompact if for every A ⊆ Vκ,
there is a κ̄ < κ which is A-supercompact up to κ. Analogously, κ is Woodinized
almost huge if for every A ⊆ Vκ, there is a κ̄ < κ which is almost huge wrt. A up
to κ. I.e., if for every λ < κ, there is an almost huge j : V −→ M with critical
point κ̄, which moves A correctly up to j(κ) and j(κ) > λ.
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The concept of Woodinized large cardinals is quite general. So, for example, a
Woodin cardinal is a Woodinized strong cardinal.

The final aim is to produce a model in which the closed maximality principle
holds up to a Woodinized supercompact cardinal. First, let’s produce a model
where it holds below a Woodinized supercompact, even though formally, this con-
struction should belong in section 2. But with almost no additional work, the
construction produces a model where the closed Maximality Principle holds up to
a Woodin cardinal, and the methods used in the proof fit better in the present
section.

Lemma 3.21. Let κ be a fully reflecting Woodinized almost huge cardinal. Then
there is a forcing P such that if G is P-generic over V, then in V[G], κ is Woodi-
nized supercompact, and the directed closed Maximality Principle holds below κ.

Proof. Let A = {ρ | Vρ ≺ Vκ∧ρ is regular}. Let P = PA be the canonical collapse
below κ. I want to show that κ is a Woodinized supercompact cardinal in V[G],
where G is P-generic over V.

So let B = ḂG ∈ V[G], B ⊆ κ, Ḃ a nice P-name for a subset of κ̌. Let

Ḃ =
⋃
α<κ

{α̌} × Aα,

where Aα is an antichain in P.
If α < κ, then I shall say that α is Ḃ-closed if for all β < α and all conditions

p = 〈pγ | γ < κ〉 ∈ Aβ, the support of p is contained in α. In other words, for all
γ ∈ [α, κ), pγ = 1l. So essentially, α is Ḃ-closed if Aβ ⊆ Pα, for all β < α. Clearly,
the set C of Ḃ-closed ordinals is club in κ.

Let κ̄ < κ be such that κ̄ is A⊕ Ḃ-huge up to κ, where A⊕ Ḃ is some subset
of Vκ coding A and Ḃ; for example (A× {0})∪ (Ḃ × {1}) would work. Note that
in particular, κ̄ is a limit point of C and of A, so that κ̄ is Ḃ-closed and Vκ̄ ≺ Vκ.

Let ξ < λ be regular limits of A and C less than κ. I want to show that in V[G],
κ̄ is ξ-supercompact wrt. B. So let j : V −→ M be an A ⊕ Ḃ-huge embedding
with j(κ̄) > λ, and let P̄ = Pκ̄. It follows that

j(P̄) = (Pj(A∩κ̄))
M = Pj(κ̄);

the latter equality follows from the <j(κ̄)-closedness of M and from the fact that
j moves A correctly up to j(κ̄).

Note that since κ̄ ∈ A and A is an initial segment of the class of all fully
reflecting regular cardinals, the assumptions of Lemma 3.16 are satisfied by κ̄. It
was shown in the proof of that lemma (right after claim (3)) that j lifts to

j′ : V[G � λ] −→M [G � j(κ̄)][H],
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for some H which is generic over M [G � j(κ̄)] for the partial order Ptail = (j(j(~̇Q �
κ̄)) � [j(κ̄), j(λ)))G�j(κ̄). j′ is defined by:

j′(τG�λ) = j(τ)(G�j(κ̄))∗H .

I now want to show that j′ moves B correctly up to λ. To this end, let Ḃ u γ =⋃
α<γ{α} × Aα, and note:

1. If α ∈ C, then B ∩ α = (Ḃ u α)G�α.

2. λ is j(Ḃ)-closed.

The second point holds since λ is a limit of C and j(C)∩λ = C∩λ, as C is defined
from Ḃ, which is moved correctly by j up to j(κ) > λ. It follows that:

j′(B) ∩ λ = j′(B ∩ κ̄) ∩ λ
= j′((Ḃ u κ̄)G�κ̄) ∩ λ
= j′((Ḃ u κ̄)G�λ) ∩ λ
= (j(Ḃ u κ̄))G∗H ∩ λ
= (j(Ḃ u κ̄) u λ)G∗H

= (j(Ḃ) u λ)G∗H

= (j(Ḃ ∩ Vλ))
G∗H

= (Ḃ ∩ Vλ)
G∗H

= (Ḃ u λ)G∗H

= (Ḃ u λ)G�λ

= B ∩ λ.

Now let F be the ξ-supercompactness measure on (Pκ̄ξ)V[G�λ] derived from j′

(in V[G � j(κ̄)][H]). Then as in the proof of Lemma 3.16, it follows that actually
F ∈ V[G � j(κ̄)], and that F is a ξ-supercompactness measure on (Pκ̄ξ)V[G�j(κ̄)].

Since ~̇Q � [j(κ̄), κ)G�j(κ̄) is < j(κ̄)-closed in V[G � j(κ̄)], and since j(κ̄) is
inaccessible there, it follows that F is a fine normal ultrafilter on Pκ̄ξ from V[G]’s
point of view as well.

Now form
π : V[G] −→F N.

Then π is (in V[G]) a ξ-supercompact embedding with critical point κ̄. It has to
be verified that it moves B correctly up to ξ.

To this end, Lemma 3.14 is applicable: Let π̄ : V[G � λ] −→F N̄ be the
ultrapower embedding of V[G � λ] by F , and let k : N̄ −→ M [G � j(κ̄)][H] be
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the factor map. By the lemma, k is the identity up to ξ. The situation looks as
follows:

V[G]
π

- N

⊆

V[G�λ]
j′
- M [G�j(κ̄)][H]

N̄

k

?

π̄

-

Now let x ∈ P(κ̄)V[G], and let α < ξ. Then

α ∈ π(x) ⇐⇒ {z ∈ (Pκ̄ξ)V[G] | otp(z ∩ α) ∈ x} ∈ F
⇐⇒ {z ∈ (Pκ̄ξ)V[G�λ] | otp(z ∩ α) ∈ x} ∈ F
⇐⇒ α ∈ π̄(x)

⇐⇒ α = k(α) ∈ k(π̄(x)) = j′(x).

This argument just used that V[G] is a forcing extension of V[G � λ] by a forcing
that’s <κ̄-closed - much more is true, of course. In particular, since j′ moved B
correctly up to ξ, so does π.

Corollary 3.22. Let κ be a fully reflecting Woodinized almost huge cardinal with
a fully reflecting regular cardinal ρ above. Then there is a forcing P such that if G
is P-generic over V, then in V[G], κ is a Woodinized supercompact cardinal and
the directed closed Maximality Principle holds up to κ.

Proof. First force with the forcing of the previous lemma. In the extension, it is
still the case that Vρ ≺ V, so further forcing with Col(κ,<ρ) yields a model in
which the desired maximality principles hold (the ones down low remain true), and
κ’s Woodinized supercompactness is preserved as well, because this is a Π1

1(Hκ)-
property.

I’ll close the paper with the following question:

Question 3.23. Is it consistent that the closed Maximality Principle holds up to
a supercompact cardinal?

This is a subtle question since it would seem that one has to carry out a proper
class canonical collapse in order to produce such a model, while at the same time
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preserving the Maximality Principles, which is very problematic: In general, these
principles are not preserved in such an iteration, as one could otherwise force the
closed Maximality Principle to hold up to ∞, which is impossible, as pointed out
in the Introduction - see [Fuc08].
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