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Abstract. The Rainbow Ramsey Theorem is essentially an “anti-Ramsey” theorem which

states that certain types of colorings must be injective on a large subset (rather than constant

on a large subset). Surprisingly, this version follows easily from Ramsey’s Theorem, even

in the weak system RCA0 of reverse mathematics. We answer the question of the converse

implication for pairs, showing that the Rainbow Ramsey Theorem for pairs is in fact strictly

weaker than Ramsey’s Theorem for pairs over RCA0. The separation involves techniques

from the theory of randomness by showing that every 2-random bounds an ω-model of the

Rainbow Ramsey Theorem for pairs. These results also provide as a corollary a new proof

of Martin’s theorem that the hyperimmune degrees have measure one.

1. Introduction

We begin by recalling Ramsey’s Theorem for the set ω of natural numbers.

Definition 1.1. Given a set Z and n ∈ ω, we let [Z]n = {x ⊆ Z : |x| = n}.

Definition 1.2. Suppose that n, k ∈ ω and f : [ω]n → k. We say that a set H ⊆ ω is

homogeneous for f if H is infinite and f is constant on [H]n.

Theorem 1.3 (Ramsey’s Theorem). Let n, k ∈ ω and suppose that f : [ω]n → k. There

exists a set H homogeneous for f .

The effective content and reverse mathematical strength of Ramsey’s Theorem have been

extensively studied (see Jockusch [9]; Seetapun, Slaman [15]; and Cholak, Jockusch, Slaman
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[3] for many of the central results). In particular, Ramsey’s Theorem for pairs (that is,

restricting to the case n = 2) has emerged as an interesting case study in reverse mathematics

because it is not equivalent to any of the “big five” systems to which most previously studied

theorems were equivalent (see Simpson [16] for an introduction to Reverse Mathematics).

This behavior of Ramsey’s Theorem for pairs arises because diagonalization techniques show

that homogeneous sets for computable colorings need not be simple, while [15] and [3] show

how little can be coded into such sets.

Hirschfeldt and Shore [8] considered many combinatorial statements which are simple con-

sequences of Ramsey’s Theorem for pairs such as “Every infinite linear ordering has either an

infinite ascending or infinite descending sequence” and “Every infinite partial ordering has

either an infinite chain or an infinite antichain”. They showed that these and other state-

ments are in fact strictly weaker and built an intricate web of implications/nonimplications

in this realm. Many of their techniques for showing that a specific statement is strictly

weaker than Ramsey’s Theorem for pairs involve either showing that computable instances

of the statement always have low solutions or in showing one can find solutions to com-

putable instances which fail to compute any diagonally noncomputable function. Below, we

establish a new technique using measure-theoretic considerations.

The key restriction in Ramsey’s Theorem is that the number of colors used is finite. In

contrast, the Rainbow Ramsey Theorem restricts attention to colorings considered where

each individual color can be used only some fixed finite number of times.

Definition 1.4. Let n, k ∈ ω. A function f : [ω]n → ω is k-bounded if |f−1(c)| ≤ k for

every c ∈ ω.

Definition 1.5. Suppose that n ∈ ω and f : [ω]n → ω. We say that a set R ⊆ ω is a rainbow

for f if R is infinite and f is injective on [R]n.
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Theorem 1.6 (Rainbow Ramsey Theorem). Let n, k ∈ ω and suppose that f : [ω]n → ω is

k-bounded. There exists a set R which is a rainbow for f .

The Rainbow Ramsey Theorem (and Ramsey’s Theorem itself) both follow easily from

the much more general Canonical Ramsey Theorem of Erdös and Rado (see Mileti [13] for

an effective analysis of this theorem). However, Galvin noticed that the Rainbow Ramsey

Theorem follows easily from Ramsey’s Theorem.

Proof of the Rainbow Ramsey Theorem. Fix a well-ordering ≺ of [ω]n. Define g : [ω]n → k

by letting

g(x) = |{y ∈ [ω]n : y ≺ x and f(y) = f(x)}|

By Ramsey’s Theorem, there exists a set H homogeneous for g. Suppose that x, y ∈ [H]n

with x 6= y. Since g(x) = g(y) and either x ≺ y or y ≺ x, it follows by definition of g that

f(x) 6= f(y). Therefore, H is a rainbow for f . �

The natural question now is whether one can recover Ramsey’s Theorem from the Rainbow

Ramsey Theorem in a similarly simple manner. In other words, are these statements simply

“duals” of each other? Todorcevic [18] and Abraham, Cummings, and Smyth [1] investigated

these questions in the uncountable realm. In particular, they showed that the question

of whether the Rainbow Ramsey Theorem for 2-bounded colorings of pairs holds at ℵ1 is

independent of ZFC (whereas Ramsey’s Theorem for colorings of pairs with 2 colors provably

fails at ℵ1). Also, in the finite realm, the Rainbow numbers for pairs grow polynomially (see

Alspach, Gerson, Hahn, Hell [2] and Hell, Montellano-Ballesteros [7]) while the Ramsey

numbers grow exponentially. We show below that when working on ω, the Rainbow Ramsey

Theorem for pairs is strictly weaker than Ramsey’s Theorem for pairs over RCA0.

We list here some notational conventions. We denote the set of natural numbers by ω.

We identify each n ∈ ω with the set of elements less than it, so n = {0, 1, 2, . . . , n − 1}.

Lowercase roman letters near the beginning or middle of the alphabet (a,b,c,i,j,k,. . . ) will
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denote elements of ω, and lowercase roman letters near the end of the alphabet (x,y,z,u,. . . )

will denote finite subsets of ω. We identify a finite subset x of ω of size n with the n-tuple

listing x in increasing order and with the corresponding function g : n → ω. When we write

(x0, ..., xn−1) ∈ [ω]n, we assume that x0 < ... < xn−1. Uppercase roman letters near the

end of the alphabet (X,Y ,Z,. . . ) will denote subsets of ω, and uppercase roman letters near

the beginning or middle of the alphabet (A,B,C,H,I,J ,. . . ) will denote infinite subsets of

ω. Given X ⊆ ω, we denote the set of finite sequences of elements of X by X<ω. We use

σ, τ, . . . to denote elements of ω<ω. For a set X ⊆ ω, we let deg(X) denote the Turing degree

of X.

The topic of this paper relates to Computability Theory, Algorithmic Randomness, and

Reverse mathematics. For background in Computability Theory, we recommend Soare [17] or

Cooper [4]; for Algorithmic Randomness, Downey and Hirschfeldt [5], Nies [14], or Downey,

Hirschfeldt, Nies and Terwijn [6]; and for Reverse mathematics, Simpson [16].

2. Rainbows in the Arithmetical Hierarchy

Jockusch precisely characterized the position of homogeneous sets for computable colorings

in the arithmetical hierarchy.

Theorem 2.1 (Jockusch [9]).

(1) Let n ≥ 2. There exists a computable f : [ω]n → 2 such that no Σ0
n set is homogeneous

for f .

(2) Suppose that n, k ≥ 2 and that f : [ω]n → k is computable. There exists a Π0
n set

homogeneous for f .

Using the above proof of the Rainbow Ramsey Theorem from Ramsey’s Theorem, we

easily obtain the same Π0
n upper bound. Indeed, we begin with the following definition.
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Definition 2.2. For each n ∈ ω, we let ≺n be the reverse lexicographic ordering on [ω]n.

That is, given x, y ∈ [ω]n with x 6= y, say x = (x0, x1, . . . , xn−1) and y = (y0, y2, . . . , yn−1),

we let x ≺n y if xi < yi for the greatest i < n such that xi 6= yi. Notice that, given our

convention that x0 < x1 < ... < xn1, ≺n is a well-ordering of [ω]n of order type ω. Moreover,

not only is ≺n is computable, but given x ∈ [ω]n, we can compute a canonical index for the

set of elements ≺n-below x.

Corollary 2.3. Suppose that n, k ≥ 2 and that f : [ω]n → ω is k-bounded. There exists a

Π0
n set which is a rainbow for f .

Proof. Define g : [ω]n → k as in the proof of Theorem 1.6 using the well-ordering ≺n. Notice

that g is computable. By Theorem 2.1, we may fix a Π0
n set H homogeneous for g. By the

proof of Theorem 1.6, we then have that H is a Π0
n rainbow for f . �

In fact, we get the same lower bounds for rainbows as Jockusch obtained for homogenous

sets. We first handle the case when n = 2 using an argument similar to the one given by

Jockusch for Ramsey’s Theorem.

Theorem 2.4. There exists a computable 2-bounded f : [ω]2 → ω such that no Σ0
2 set is a

rainbow for f .

Proof. It suffices to build a computable 2-bounded f : [ω]2 → ω such that no ∆0
2 set is a

rainbow for f because every infinite Σ0
2 set has an infinite ∆0

2 subset, and every infinite

subset of a rainbow for f is also a rainbow for f . Using the Limit Lemma, we may fix a

computable g : ω3 → 2 such that for every ∆0
2 set D, there exists an e ∈ ω such that

• For all a ∈ D, we have lims g(e, a, s) = 1.

• For all a /∈ D, we have lims g(e, a, s) = 0.
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Concretely, we may let

g(e, a, s) =


1 if ϕKs

e,s (a) ↓ = 1

0 otherwise

We now define our computable function f in stages by defining f(a, s) for all a < s at stage

s. Suppose we’re at stage s. We now have s substages. At substage e < s, suppose that there

exist at least two numbers a and b with a < b < s such that g(e, a, s) = g(e, b, s) = 1 which

have not been claimed during stage s (otherwise, do nothing at this substage). Claim the

least such a and b, and define f(a, s) = 〈a, s〉 = f(b, s). Continue to the next substage. Once

we’ve gone through all of the substages less than s, define f(a, s) = 〈a, s〉 for all a < s which

were not claimed at stage s, and continue to the next stage. Notice that f is 2-bounded.

Suppose now that D is an infinite ∆0
2 set. Fix e ∈ ω such that

• For all a ∈ D, we have lims g(e, a, s) = 1.

• For all a /∈ D, we have lims g(e, a, s) = 0.

Let c be the (2e + 2)th element of D in increasing order (recall that D is infinite), and fix t

such that g has settled on e below c, i.e. such that

• For all a ∈ D with a ≤ c, and all s ≥ t, we have g(e, a, s) = 1.

• For all a /∈ D with a ≤ c, and all s ≥ t, we have g(e, a, s) = 0.

Fix s ≥ max{c + 1, t} such that s ∈ D. Since the approximation to D by g will be correct

up to c at stage s, and since c is the (2e + 2)th member of D, there will be 2e + 2 numbers

a ≤ c with g(e, a, s) = 1. Since at most 2e elements are claimed at stage s before substage e,

the construction at substage e then claims the least unclaimed elements a, b with g(e, a, s) =

g(e, b, s) = 1, and defines f(a, s) = f(b, s). By the minimality of a and b and the correctness

of g up to c, it follows that a, b ∈ D. But then a, b, s ∈ D and f(a, s) = f(b, s), so D is not

a rainbow for f . �
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From here, we use a relativized version of this theorem together with the Limit Lemma to

lift the result to all n.

Theorem 2.5. Let n ≥ 2 and let X ⊆ ω. There exists an X-computable 2-bounded f : [ω]n →

ω such that no Σ0,X
n set is a rainbow for f .

Proof. The proof is by induction on n, where the base case of n = 2 is handled by relativizing

Theorem 2.4. Suppose that n ∈ ω and we know the result for n. Fix an X ′-computable

2-bounded g : [ω]n → ω such that no Σ0,X′
n set is a rainbow for g. By the Limit Lemma,

there exists an X-computable g0 : [ω]n+1 → ω such that lims g0(x, s) = g(x) for all x ∈ [ω]n.

We define an X-computable 2-bounded f : [ω]n+1 → ω as follows. Define f by letting

f(x, s) =


〈g0(x, s), s, 0〉 if there exists at most one y ≺n x with g0(y, s) = g0(x, s)

〈rank≺n(x), s, 1〉 otherwise

(where rank≺n(x) is the position of x in the well-ordering≺n). Notice that f is X-computable

and 2-bounded.

Suppose that R is a rainbow for f . We claim that R is a rainbow for g. Assume for

a contradiction that x, y ∈ [R]n are such that y ≺n x and g(y) = g(x). Fix t ∈ ω such

that g0(z, s) = g(z) whenever z �n x and s ≥ t. Fix s such that s ∈ R, s ≥ t, and

s > max(x). Notice that since g is 2-bounded and g0(z, s) = g(z) for every z �n x, we have

f(z, s) = 〈g0(z, s), s, 0〉 = 〈g(z), s, 0〉 for every z �n x. Hence,

f(x, s) = 〈g(x), s, 0〉 = 〈g(y), s, 0〉 = f(y, s)

contradicting the fact that R is a rainbow for f . Therefore, R is a rainbow for g, so R is not

a Σ0,X′
n set. Since Σ0,X′

n sets are the same as Σ0,X
n+1 sets, it follows that R is not a Σ0,X

n+1 set.

Hence, no Σ0,X
n+1 set is a rainbow for f . �
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3. Working Below a 2-Random

In this section, we prove the following result about coloring of pairs.

Theorem 3.1. Suppose that f : [ω]2 → ω is k-bounded and computable, and that A is 2-

random. Then there exists a rainbow R for f such that R ≤T A.

3.1. Normal Colorings. In order to make some of our combinatorial bounds cleaner in

the proof of Theorem 3.1, we will assume that our colorings have the following additional

property.

Definition 3.2. Suppose that f : [ω]n → ω is k-bounded. We say that f is normal if f(x, a) 6=

f(y, b) whenever a 6= b.

Proposition 3.3. Suppose that f : [ω]n → ω is k-bounded and computable. There exists an

infinite computable A ⊆ ω such that f � [A]n is normal.

Proof. We define a increasing sequence of numbers a0 < a1 < · · · recursively. We begin by

letting ai = i for each i < n. Suppose that ` ≥ n and we’ve defined ai for every i < `. Since

f is k-bounded, for each c ∈ ω there exists at most k numbers b such that

{x ∈ [{ai : i < `}]n−1 : f(x, b) = c} 6= ∅

Therefore, since the set C` = f([{ai : i < `}]n) is finite, there are only finitely many numbers

b such that

{x ∈ [{ai : i < `}]n−1 : f(x, b) ∈ C`} 6= ∅

Let a` be the least b ∈ ω such that

{x ∈ [{ai : i < `}]n−1 : f(x, b) ∈ C`} = ∅

We then have that f(x, b) /∈ f([{ai : i < `}]n) for every x ∈ [{ai : i < `}]n−1.

Let A = {ai : i ∈ ω}. Notice that A is computable and that f � [A]n is normal. �
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Therefore, when considering the complexity of rainbows for computable colorings, we may

assume that our colorings are normal.

3.2. Building Rainbows Directly. We now give a direct proof of the Rainbow Ramsey

Theorem for pairs which does not directly appeal to Ramsey’s Theorem. As in some proofs

of Ramsey’s Theorem, the basic idea is to build a rainbow in stages while maintaining the

invariant of an infinite stock of available numbers still in play remains.

Definition 3.4. Suppose that f : [ω]2 → ω is k-bounded and that F ⊆ ω is finite.

• We say that F is heterogeneous for f if f is injective on [F ]2.

• Let

V iabf (F ) = {c ∈ ω : c > F and F ∪ {c} is heterogeneous for f}

We call V iabf (F ) the set of viable numbers for F relative to the coloring f .

• We say that F is admissible for f if F is heterogeneous for f and V iabf (F ) is infinite.

The idea to build a rainbow is as follows. Suppose that we have a set F which is admissible

for f . We want to pick an element of V iabf (F ) to add to F which will maintain the property

of admissibility (so that we will still have infinitely much room in which to work). The

following proposition says that only a small handful of elements of V iabf (F ) would destroy

this property.

Proposition 3.5. Suppose that f : [ω]2 → ω is 2-bounded and normal, and that F ⊆ ω is

admissible for f . We then have that

|{c ∈ V iabf (F ) : F ∪ {c} is not admissible for f }| ≤ |F |

Proof. Let ` = |F |, and suppose that c0, c1, . . . , c` ∈ V iabf (F ) are distinct numbers such that

F∪{ci} is not admissible for f for each i. Since ci ∈ V iabf (F ) for each i, we have that F∪{ci}

is heterogeneous for f for each i. Therefore, it must be the case that V iabf (F ∪{ci}) is finite
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for each i. Fix d ∈ V iabf (F ) such that d is greater than every element of V iabf (F ∪ {ci})

for each i. For each i, we then have that d /∈ V iabf (F ∪ {ci}), hence F ∪ {ci, d} is not

heterogeneous for f . Since f is normal, for each i, we may fix ai ∈ F such that f(ai, d) =

f(ci, d). By the Pigeonhole Principle, there exist distinct i, j ≤ ` such that ai = aj. We then

have that f(ci, d) = f(ai, d) = f(aj, d) = f(cj, d), contradicting the fact that f is 2-bounded

(because the numbers ci, cj, and ai are distinct). �

This proposition describes a way to build a rainbow for a normal 2-bounded f . We begin

with the set {0}, which is clearly admissible for f . Notice that V iabf ({0}) = ω\{0}. By the

Proposition, we may add one of the first two elements of V iabf ({0}), that is either 1 or 2,

to the set {0} to obtain a set which is admissible for f . If, say, {0, 2} is admissible, then one

of the first three elements of V iabf ({0, 2}) can be added to maintain admissibility, etc.

There is nothing particular special about the case k = 2, although the bound increases a

bit for larger k.

Proposition 3.6. Suppose that f : [ω]2 → ω is k-bounded and normal, and that F ⊆ ω is

admissible for f . We then have that

|{c ∈ V iabf (F ) : F ∪ {c} is not admissible for f }| ≤ |F | · (k − 1)

Proof. Let ` = |F | · (k − 1), and suppose that c0, c1, . . . , c` ∈ V iabf (F ) are distinct numbers

such that F ∪ {ci} is not admissible for f for each i. Since ci ∈ V iabf (F ) for each i, we

have that F ∪ {ci} is heterogeneous for f for each i. Therefore, it must be the case that

V iabf (F∪{ci}) is finite for each i. Fix d ∈ V iabf (F ) such that d is greater than every element

of V iabf (F ∪ {ci}) for each i. For each i, we then have that d /∈ V iabf (F ∪ {ci}), hence

F ∪ {ci, d} is not heterogeneous for f . Since f is normal, for each i, we may fix ai ∈ F such

that f(ai, d) = f(ci, d). By the Pigeonhole Principle, there exists a set Z ⊆ {0, 1, . . . , `}

of cardinality k such that ai = aj for all i, j ∈ Z. For all i, j ∈ Z, we then have that
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f(ci, d) = f(ai, d) = f(aj, d) = f(cj, d), contradicting the fact that f is k-bounded (because

the numbers ci for i ∈ Z, together with the common value of the ai, are distinct). �

3.3. Using Trees of Positive Measure. We outlined a direct proof of the Rainbow Ram-

sey Theorem for pairs in the previous section where we noted that since there were only

finitely many elements of V iabf (F ) which destroy admissibility, we always had a choice

which would allow us to continue. In fact, there was a computable bound on the number

of elements of V iabf (F ) which would destroy admissibility. Thus, the intuition is that if we

pick an element from the computable set V iabf (F ) with enough randomness, then we should

never run into problems.

We make this intuition precise by building a 0′-computable subtree of 2<ω such that the set

of branches has positive measure and such that any branch of the tree computes a rainbow

for f . We first build a subtree of ω<ω from any coloring which grabs the first available

number to maintain heterogeneity at each level.

Definition 3.7. Suppose that f : [ω]2 → ω is k-bounded and computable. We define a partial

computable function ϕf : ω<ω → ω as follows. Let ϕf (λ) = 0. Suppose that σ ∈ ω<ω and

n ∈ ω, and suppose that we have defined ϕf (τ) for all τ ⊆ σ. Let ϕf (σ n̂) equal the (n+1)st

element m of ω greater than ϕf (σ) such that {ϕf (τ) : τ ⊆ σ} ∪ {m} is heterogeneous for f ,

if it exists.

Definition 3.8. Suppose that f : [ω]2 → ω is k-bounded.

(1) Let Tf = dom(ϕf ).

(2) Let Af = {σ ∈ Tf : {ϕf (τ) : τ ⊆ σ} is admissible for f}.

Suppose that f : [ω]2 → ω is k-bounded, normal, and computable. Since ϕf is a partial

computable function, the tree Tf is a c.e. subset of ω<ω. Given σ ∈ Tf , we have that
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{ϕf (τ) : τ ⊆ σ} is heterogeneous for f and that

V iabf ({ϕf (τ) : τ ⊆ σ}) = {ϕf (σ n̂) : n ∈ ω}

Notice that Af is a subtree of Tf . Also, from Proposition 3.6, we know that if σ ∈ Af , then

|{n ∈ ω : σ n̂ /∈ Af}| ≤ |σ| · (k − 1)

The tree Tf has the desired property that every path of Tf corresponds to a rainbow of f .

Indeed, if h is a path in Tf it is easy to see that R = {ϕf (τ) : τ ⊂ h} is a rainbow for f .

Moreover, since ϕf (σ) > ϕf (τ) for any σ ⊃ τ , it follows that R ≤T h.

We now need to convert this subtree of ω<ω into a subtree of 2<ω which has positive

measure many branches.

Proposition 3.9. Let X ⊆ ω. Suppose that T ⊆ ω<ω is an X-computable tree, that A ⊆ T

is an arbitrary nonempty subtree of T (i.e. no computability restrictions), and that h : ω → ω

is a computable function such that for each σ ∈ A we have

|{n ∈ ω : σ n̂ /∈ A}| ≤ h(|σ|)

There exists an X-computable tree S ⊆ 2<ω such that

• µ({g ∈ 2ω : g is a branch of S}) > 0.

• For every branch g of S, there exists a g-computable branch of T .

Proof. Define α : ω → ω to be the computable function obtained by letting α(n) be the least

` ≥ 1 such that

h(n)

2`
≤ 1

2n+2

Define a computable function β : N → N by letting β(n) =
∑n

i=0 α(i). Define γ : 2<ω → ω<ω

as follows. Given σ ∈ 2<ω, write σ as τ0̂ τ1̂ . . . τk ρ̂ where |τi| = α(i) and |ρ| < α(k + 1), and
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let γ(σ) = (bin(τ0), bin(τ1), . . . , bin(τk)) where bin(τ) is the number obtained by viewing τ

as written in binary. Notice that γ is computable. Let

S = {σ ∈ 2<ω : γ(σ) ∈ T}

and let

B = {σ ∈ 2<ω : γ(σ) ∈ A}

Now S is a subtree of 2<ω which is T -computable, and hence X-computable. Also, notice

that B is a subtree of S. By induction on i it follows that

|{σ ∈ 2β(i) : σ /∈ B}|
2β(i)

≤
i∑

n=0

1

2n+2
.

Indeed, in the case i = 0,

|{σ ∈ 2β(0) : σ /∈ B}|
2β(0)

=
|{σ ∈ 2α(0) : σ /∈ B}|

2α(0)

=
|{σ ∈ 2α(0) : γ(σ) /∈ A}|

2α(0)

≤ |{k ∈ ω : k /∈ A}|
2α(0)

≤ h(|λ|)
2α(0)

≤ 1

22
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For the inductive step,

|{σ ∈ 2β(i+1) : σ /∈ B}|
2β(i+1)

=
|{σ ∈ 2β(i+1) : σ � β(i) /∈ B}|+ |{σ ∈ 2β(i+1) : σ � β(i) ∈ B ∧ σ /∈ B|}

2β(i+1)

=
2α(i+1) · |{σ ∈ 2β(i) : σ /∈ B}|+ |{σ ∈ 2β(i+1) : σ � β(i) ∈ B ∧ σ /∈ B|}

2β(i+1)

=
2α(i+1) · |{σ ∈ 2β(i) : σ /∈ B}|

2β(i+1)
+
|{σ ∈ 2β(i+1) : σ � β(i) ∈ B ∧ σ /∈ B}|

2β(i+1)

=
|{σ ∈ 2β(i) : σ /∈ B}|

2β(i)
+
|{σ ∈ 2β(i+1) : γ(σ � β(i)) ∈ A ∧ γ(σ) /∈ A}|

2β(i+1)

≤
i∑

n=0

1

2n+2
+

2β(i) · h(i + 1)

2β(i+1)

=
i∑

n=0

1

2n+2
+

h(i + 1)

2α(i+1)

≤
i∑

n=0

1

2n+2
+

1

2i+3

=
i+1∑
n=0

1

2n+2

Since
∑∞

n=0
1

2n+2 = 1
2
, it follows that µ({g ∈ 2ω : g is a branch of S}) ≥ 1

2
. Suppose now

that g is a branch of S. Define f ∈ ωω by decoding the branch pieces in binary, i.e. letting

f = ∪σ⊂gγ(σ), and notice that f is a g-computable branch of T . �

Theorem 3.10. Suppose that f : [ω]2 → ω is k-bounded and that A is 2-random. There

exists a rainbow R for f such that R ≤T A.

Proof. We may assume that f is normal (otherwise work on an infinite computable subset

such that the restriction is normal). The tree Tf is c.e. and hence 0′-computable. Let

Sf be a tree obtained from Proposition 3.9. We then have that Sf is 0′-computable and

the set of branches of Sf has positive measure. Relativizing a result of Kučera [11], there

exists a branch g of Sf such that g ≤T A. Let h be a g-computable branch of Tf . Then

R = {ϕf (τ) : τ ⊂ h} is a rainbow for f which is h-computable, and hence A-computable. �
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4. Making Rainbows Hyperimmune

Theorem 4.1. There exists a computable 2-bounded f : [ω]2 → ω such that every rainbow

for f is hyperimmune.

Proof. Recall that a set A is hyperimmune iff no strictly increasing computable function

majorizes A. That is, for A = {a0 < a1 < a2 < ...}, let pA(n) = an, the principal function of

A. A computable function h majorizes A if h(x) > pA(x) for all x. Thus A is hyperimmune

iff for all strictly increasing computable functions h, there exists an x such that pA(x) ≥ h(x).

Suppose first that we have one h which is a total strictly increasing computable function.

We will use a 2-pronged attack. The idea is to seize on two elements at a time, and ensure

that if those two elements are in a particular rainbow, then there is a huge gap in that

rainbow later which we ensure by making those two elements have the same color with each

element of the proposed gap.

We first need to get a bound on where the first two elements that might cause us trouble

will be. We consider h(1), and for the sake of definiteness suppose that h(1) = 8. Notice

that if R is a rainbow and pR(1) ≥ 8, then we’ve met this requirement trivially. The problem

then is to deal with potential rainbows R with pR(1) < 8, i.e. potential rainbows R with two

elements less than 8. We first tackle the possibility that 0, 1 ∈ R. We make (0, k) and (1, k)

have the same color for each k with 8 ≤ k < h(8). Now if R is a rainbow, and 0, 1 ∈ R,

then k /∈ R for all k with 8 ≤ k < h(8), hence pR(8) ≥ h(8). We next move on to tackling

the possibility that 0, 2 ∈ R. For definiteness, suppose that h(8) = 31. We then make (0, k)

and (2, k) have the same color for each k with 31 ≤ k < h(31). Now if R is a rainbow, and

0, 2 ∈ R, then k /∈ R for all k with 31 ≤ k < h(31), hence pR(31) ≥ h(31). We then in turn

handle all pairs both of whose elements are less than 8. Notice that in working on this h,

we only act on finitely many elements of ω, so there is room for other computable functions

to work.
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Suppose now that ϕe is a partial computable function which is strictly increasing. Suppose

that we are only allowed to work with numbers greater than or equal to m (because other

requirements have claimed the numbers less than m). Suppose also that whenever ϕe(x)[s] ↓,

we have ϕe(x)[s] < s. The problem is that we cannot just compute ϕe(m + 1) because it

may not converge. However, we can sit around and wait for ϕe(m + 1)[s] ↓, and if it never

does, then we win because ϕe is not total. Suppose that we see ϕe(m + 1)[s] ↓, and let n0

be a fixed stage at which this occurs. Notice that if R is a rainbow (in fact any set) with

|{x ∈ R : m ≤ x < n0}| ≤ 1, then

pR(m + 1) ≥ n0 > ϕe(m + 1)[n0] = ϕe(m + 1)

We thus need to handle potential rainbows with |{x ∈ R : m ≤ x < n0}| ≥ 2. We begin by

handling the possibility that m, m + 1 ∈ R. To do this, we make (m, k) and (m + 1, k) have

the same color for all k ≥ n0 until we see ϕe(n0)[s] ↓. If this does not happen, then we win.

If it does, fix such a stage n1 at which point we can stop making (m, k) and (m + 1, k) have

the same color. Notice that if R is a rainbow with m, m + 1 ∈ R, then k /∈ R for all k with

n0 ≤ k < n1, so

pR(n0) ≥ n1 > ϕe(n0)[n1] = ϕe(n0)

As in the total case, we then in turn handle all pairs both of whose elements are between

m and n0. Notice that in working on this ϕe, we only assign colors to pairs whose first

component comes from a finite set, so there is room for other partial computable functions

to work.

With this setup, the proof is now a finite-injury priority argument. We will build a

computable 2-bounded f : [ω]2 → ω such that no computable function majorizes a rainbow

for f .
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We let ϕ0, ϕ1, ... be an enumeration of the increasing partial computable functions. In

other words, we have

ϕe(x) ↓⇒ (∀y < x)[ϕe(y) ↓< ϕe(x)]

We will meet for all e ∈ ω the requirements:

Re : ϕe total =⇒ ϕe does not majorize any rainbow for f

That is, if ϕe is total, then for any rainbow R for f we must guarantee the existence of a

number nR such that pR(nR) > ϕe(nR).

We now outline how we would meet the single requirement R0. We give a computable

construction of f , where at stage s = 〈l, k〉 we define f(l, k). We first define a finite (possibly

empty) list of numbers n0 < n1 < ... inductively as follows. Let n0 be the least stage where

ϕ0,s(1) ↓. For i + 1 ≤ (n0)2−n0

2
, let ni+1 be the least stage where ϕ0,s(ni + 1) ↓. List the

(n0)2−n0

2
pairs (m, l) with 0 ≤ m < l < n0 in an order. Associate (m, l) with its position in

the list (a number between 1 and (n0)2−n0

2
).

At stage s, for 〈l, k〉 = s, we must define f(l, k). Let i be maximal such that ni is defined

at stage s and ni < k. If there exists m < l such that (m, l) = i + 1 (of course, there is at

most one such), set f(l, k) = 〈m, k〉. Otherwise, set f(l, k) = 〈l, k〉.

Note that if we defined f(l, k) = 〈m, k〉, then we must have defined f(m, k) = 〈m, k〉

(since (m, l) = i + 1 and l 6< m), so f(l, k) = f(m, k). It is also (relatively) easy to see that

f is 2-bounded. Finally, note that if k > ni, then any pair 〈l, k〉 > k > ni, and since ni is

defined at stage ni, ni is defined by stage 〈l, k〉. Thus for any pair (m, l) = i + 1 ≤ n2
0−n0

2
,

for any ni < k ≤ ni+1, f(m, k) = f(l, k).

Let R be any rainbow for f . Choose the least m ∈ R. If m ≥ n0, then pR(0) =

m ≥ n0 > ϕ0(0). If m < n0, choose the least l ∈ R such that m < l. If l ≥ n0, then

pR(1) = l ≥ n0 > ϕ0(1). Otherwise, m < l < n0. Let i be such that i + 1 = (m, l). Since
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m, l ∈ R, and R is a rainbow for f , no number between ni and ni+1 can be in R. Thus

pR(ni + 1) ≥ ni+1 > ϕ0(ni + 1).

We now note that if ϕ0 was not total, then it did not matter how we defined f . We also

note that if ϕ0 is total, we only needed to define f in a particular way on finitely many pairs.

Thus we can use finite injury to meet all the requirements Re.

Stage s: Let me[s] = max{nq
i [s] : q < e & nq

i [s] is defined}. Let ne
0[s] be the least stage

t ≤ s such that ϕe,t(1 + me[s]) ↓. For i + 1 ≤ (ne
0−me)2−(ne

0−me)

2
[s], let ne

i+1 be the least stage

where ϕe,t(n
e
i [s] + 1) ↓. List the

(ne
0−me)2−(ne

0−me)

2
[s] pairs (m, l) with me[s] ≤ m < l < ne

0[s]

in an order. Associate (m, l) with its position in the list.

Note that for any q < e, nq
i [s] < ne

0[s] whenever both are defined. Note also that for any

e, ne
i [s] < ne

i+1[s] whenever both are defined. Finally, note that if ne
i [t] is defined, then the

only reason it would become undefined is if some nq
j becomes defined for some q < e.

Now, for 〈l, k〉 = s, we must define f(l, k). Let ne
i [s] be maximal such that ne

i [s] is

defined and ne
i [s] < k. If there exists me[s] < m < l such that (m, l) = i + 1[s] (of

course, there is at most one such), set f(l, k) = 〈m, k〉. Otherwise, set f(l, k) = 〈l, k〉.

Note that f is 2-bounded. Indeed, assume for a contradiction that we have already defined

f(a, b) = 〈m, k〉 for a third pair (a, b) such that (a, b) 6= (m, k). By our construction, we

must have had b = k. Also, at the stage t when f(a, k) was defined, we must have had a

maximal nq
j [t] < k < 〈a, k〉 = t for some q ≥ e. We could not have had q = e and j = i since

then we we would have (m, l) = (a, k). Sine ne
i [s] was maximal less than k at stage s, there

must have been a stage t < t′ ≤ s when some nq′

j′ [t′] with q′ < e became defined. But then

k < 〈a, k〉 = t < t′ = nq′

j′ [t′] ≤ me[t′] ≤ ne
0[t

′] ≤ ne
0[s] ≤ ne

i [s], a contradiction.

Let ne
0 = lims ne

0[s]. Allowing “undefined” as a possibility, it is easy to see inductively

that each ne
0 exists. (Here, if we say ne

0 is undefined, we mean the strong fact that there is a

stage after which ne
0[s] is always undefined). Moreover, after the stage when ne

0 has reached
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its limit, if ne
i is defined then it never changes (and there are at most

(ne
0)2−ne

0

2
such i, which

become defined in order).

Suppose ϕe is total, and let R be a rainbow for f . Let m = pR(me). If m ≥ ne
0,

then pR(me) = m ≥ ne
0 > ϕe(m

e). If m < ne
0, let l = pR(me + 1). If l ≥ ne

0, then

pR(me + 1) = l ≥ ne
0 > ϕe(m

e + 1). Otherwise, me ≤ pR(me) = m < l < ne
0. Let s be

a stage by which ne
0 has reached it’s limit. Let i be such that i + 1 = (m, l)[s]. Note that

ne
i = ne

i [t] for any t ≥ ne
i . Thus for any k > ne

i , ne
i [〈l, k〉] < k. Thus for any ne

i < k ≤ ne
i+1,

f(l, k) = f(m, k). Since m, l ∈ R, and R is a rainbow for f , no number between ne
i and ne

i+1

can be in R. Thus pR(ne
i + 1) ≥ ne

i+1 > ϕ0(n
e
i + 1).

�

Corollary 4.2 (Martin). Every 2-random computes a hyperimmune set. In particular,

µ({X ∈ 2ω : X computes a hyperimmune set}) = 1

Proof. By Theorem 4.1, we may fix a computable 2-bounded f : [ω]2 → ω such that every

rainbow for f is hyperimmune. For any 2-random A, we know from Theorem 3.10 that A

computes a rainbow for f , and hence A computes a hyperimmune set. The final statement

follows using the fact that µ({A ∈ 2ω : A is 2-random}) = 1. �

5. Reverse Mathematics

We refer the reader to Simpson for the basic definitions of reverse mathematics including

the systems RCA0, WKL0, and ACA0.

Definition 5.1. The following definitions are made in second-order arithmetic.

(1) RTn
k is the statement that every for every f : [N]n → k, there exists a set which is

homogeneous for f .
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(2) RRTn
k is the statement that for every k-bounded f : [N]n → N, there exists a set which

is a rainbow for f .

Theorem 5.2. For each fixed n, k ∈ ω, we have that RCA0 + RTn
k ` RRTn

k . Thus, for each

fixed n, k ∈ ω, we have that ACA0 ` RRTn
k .

Proof. The proof of Theorem 1.6 easily goes through in RCA0. The last line follows from the

fact that ACA0 ` RTn
k for all n, k ∈ ω �

Theorem 5.3. For each fixed n, k ∈ ω, we have RCA0 + RRTn+1
k ` RRTn

k .

Proof. Fix n, k ∈ ω. Fix a model M of RCA0 + RRTn+1
k . Suppose that f ∈ M is such

that f : [N]n → N is k-bounded. Define g : [N]n+1 → N by letting g(x, i) = 〈f(x), i〉 for

all x ∈ [N]n and all i ∈ N. Notice that g is k-bounded. Suppose that R is a rainbow for

g. Let x, y ∈ [R]n, and fix i ∈ R with i > max(x) and i > max(y). We then have that

g(x, i) 6= g(y, i), hence f(x) 6= f(y). It follows that R is a rainbow for f . �

Theorem 5.4. WKL0 6` RRT2
2.

Proof. Fix an ω-model M of WKL0 such that every set in M is low. By Theorem 2.4, we

may fix a computable 2-bounded f : [ω]2 → ω such that no Σ0
2 set is a rainbow for f . We

then have that no low set is a rainbow for f , so f ∈ M but no rainbow for f is in M. It

follows that M 6� RRT2
2. �

Theorem 5.5. Suppose that A is 2-random. There exists an ω-model M of RCA0 + RRT2
2

such that X ≤T A for all X ∈M.

Proof. Write A as ⊕n∈ωAn, and let

M = {X ∈ 2ω : X ≤T A0 ⊕ A1 ⊕ · · · ⊕ An for some n ∈ ω}
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Notice that M is a Turing ideal, so M is a model of RCA0. Suppose that f : [ω]2 → ω

is 2-bounded and that f ∈ M. Fix n ∈ ω such that f ≤T A0 ⊕ A1 ⊕ · · · ⊕ An. By van

Lambalgen’s Theorem [19], we know that A0 ⊕ A1 ⊕ · · · ⊕ An ⊕ An+1 is 2-random, hence

by van Lambalgen’s Theorem again, we know that An+1 is 2-(A0 ⊕ A1 ⊕ · · · ⊕ An)-random.

Therefore, An+1 is 2-f -random, so there is a rainbow R for f such that

R ≤T f ⊕ An+1 ≤T A0 ⊕ A1 ⊕ · · · ⊕ An ⊕ An+1

Thus, there exists a rainbow R for f such that R ∈ M. It follows that M is a model of

RRT2
2. �

Corollary 5.6. RRT2
2 does not imply WKL0 over RCA0.

Proof. By Jockusch and Soare [10], we have that µ({X ∈ 2ω : deg(X) is PA}) = 0. Thus,

we may fix a 2-random set A such that deg(A) is not PA. By Theorem 5.5, there exists an

ω-model M of RCA0 + RRT2
2 such that X ≤T A for all X ∈ M. Since M does not contain

a set of PA degree, it follows that M 6� WKL0. �

The following theorem appears in Mileti [12].

Theorem 5.7. If A is hyperimmune, then µ({X ∈ 2ω : X computes an infinite subset of

A}) = 0.

Using this result, the following is concluded.

Corollary 5.8. There exists a computable f : [ω]2 → 2 such that µ({X ∈ 2ω : X computes

a set homogeneous for f}) = 0.

Now using this measure-theoretic distinction, we can now conclude that the Rainbow

Ramsey Theorem for pairs is strictly weaker than Ramsey’s Theorem for pairs over RCA0.

Corollary 5.9. RRT2
2 does not imply RT2

2 over RCA0.
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Proof. Using Corollary 5.8, fix a computable f : [ω]2 → 2 such that µ({X ∈ 2ω : X computes

a set homogeneous for f}) = 0. Since the set of 2-randoms has measure 1, we may fix a

2-random set A such that A does not compute a set homogeneous for f . By Theorem 5.5,

there exists an ω-model M of RCA0 + RRT2
2 such that X ≤T A for all X ∈ M. Since M

does not contain a set homogeneous for f , it follows that M 6� RT2
2. �

If fact, RRT2
2 is sufficiently weak that it does not prove many very weak versions of Ram-

sey’s Theorem for pairs. The following definition is from Hirschfeldt and Shore [8] and is

the “stable” version of the statement that every infinite linear ordering has either an infinite

ascending sequence or an infinite descending sequence.

Definition 5.10. In second-order arithmetic, SADS is the statement “For any infinite linear

ordering L in which each element either has finitely many predecessors or finitely many suc-

cessors, there exists either an infinite ascending sequence or an infinite descending sequence

in L”.

Theorem 5.11. RRT2
2 does not imply SADS over RCA0.

Proof. Fix a linear ordering L of order type ω + ω∗ with no computable ascending or de-

scending sequences. If A is the set of elements in the ω-part and B is the set of elements

in the ω∗ part, then since L has no computable ascending or descending sequence we cer-

tainly have that A and B are both immune. Moreover, both A and B are hyperimmune

as we can argue as follows. Suppose that {Df(n)}n∈ω is a disjoint strong array such that

Df(n) ∩ A 6= ∅ for all n ∈ ω. Notice that for each n ∈ ω, since Df(n) ∩ A 6= ∅, we have

that minL(Df(n)) ∈ A. Letting C = {minL(Df(n)) : n ∈ ω} it follows that C is an infinite

c.e. subset of A, contradicting the immunity of A.

Since A and B are both hyperimmune, we know from Theorem 5.7 that

µ({X ∈ 2ω : X computes an infinite subset of either A or B}) = 0
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Since every ascending sequence from L computes an infinite subset of A, and every descending

sequence of L computes an infinite subset of B, it follows that

µ({X ∈ 2ω : X computes an ascending or descending sequence from L}) = 0

Since the set of 2-randoms has measure 1, we may fix a 2-random set A such that A does

not compute a set homogeneous for f . By Theorem 5.5, there exists an ω-model M of RCA0

+ RRT2
2 such that X ≤T A for all X ∈ M. Since M does not contain an ascending or

descending sequence from L, it follows that M 6� SADS. �

Corollary 5.12. RRT2
2 does not imply RRT3

2 over RCA0.

Proof. Let f : [ω]3 → ω be a 2-bounded computable function such that no ∆0
3 set is a rainbow

for f . Fix a 2-random set A such that A ≤T 0′′. By Theorem 5.5, there exists an ω-model

M of RCA0 + RRT2
2 such that X ≤T A for all X ∈ M. Since M does not contain a set

homogeneous for f , it follows that M 6� RRT3
2. �

Definition 5.13. If ~R = {Ri}i∈ω is a sequence of sets, an infinite set S is ~R-cohesive if

(∀i)(∃s)[(∀j > s)(j ∈ S → j ∈ Ri) ∨ (∀j > s)(j ∈ S → j 6∈ Ri)].

COH is the statement that for every sequence ~R, there is an ~R-cohesive set.

Proposition 5.14. COH does not imply RRT2
2 over RCA0.

Proof. This follows from general conservation results of Hirschfeldt and Shore [8] (see their

discussion after Corollary 2.21). �

We close with a few questions. It is known that RCA0 + RTn
2 ` ACA0 for all n ≥ 3, but

the questions for the Rainbow Ramsey Theorem are open.

Question 5.15. Does there exist an n such that RCA0 + RRTn
2 ` ACA0?
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Since RCA0 + RTn
2 is equivalent to ACA0 for all n ≥ 3, it follows that for any m,n ≥ 3,

RTm
2 is equivalent to RTn

2 over RCA0.

Question 5.16. Does there exist an n ≥ 3 such that RCA0 + RRTn
2 ` RRTn+1

2 ?
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