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BAIRE REDUCTIONS AND GOOD BOREL REDUCIBILITIES

LUCA MOTTO ROS

Abstract. In [8] we have considered a wide class of “well-behaved” reducibil-
ities for sets of reals. In this paper we continue with the study of Borel re-
ducibilities by proving a dichotomy theorem for the degree-structures induced
by good Borel reducibilities. This extends and improves the results of [8] al-
lowing to deal with a larger class of notions of reduction (including, among
others, the Baire class ξ functions).

1. Introduction

A reducibility for sets of reals1 is simply a collection F of functions from R to R
which is used to reduce a set of reals to another one: given A,B ⊆ R, we say that A
is F-reducible to B just in case there is some f ∈ F such that x ∈ A ⇐⇒ f(x) ∈ B
for every x ∈ R. Such an F allows to measure the “relative complexity” of the sets
of reals, and F itself can be viewed as the “unit of measurement” that we are using:
in general, the “smaller” is our set F , the more accurate is our measurement (i.e.
the finer is the hierarchy of degrees induced by F).

The first two reducibilities that one encounters in the literature are the collection
W of all continuous functions and the collection L of all Lipschitz functions with
constant less than or equal to 1. The corresponding degree-structures were exten-
sively studied (assuming AD, the Axiom of Determinacy) by Wadge, Steel, Van
Wesep and many other set theorists (Martin, Kechris, Louveau, Saint-Raymond
to name a few), and have had many applications in Set Theory and Theoretical
Computer Science (see for example [11] or [5]). Some years ago, Andretta and Mar-
tin considered the collection Bor of all Borel functions and the collection D2 of all
∆0

2-functions, and they proved that in both cases the degree-structures induced by
those reducibilities look like the Wadge one, i.e. like the one induced by continuous
functions. In [8] we have described a general method to extend this analysis to the
so-called Borel-amenable reducibilities, among which there are e.g. the continuous
functions, the Borel functions, the collection Dξ of all ∆0

ξ-functions for ξ < ω1, i.e.

the collection of those f such that f−1(D) ∈ ∆0
ξ for every D ∈ ∆0

ξ, and so on. As
for the previous cases, we have obtained that whenever F is a Borel-amenable set
of reductions the degree-structure induced by F looks like the Wadge one.

Since the Dξ’s form a natural stratification of the Borel functions, the present
work was mainly motivated by the natural idea of considering the other classical
stratification of the Borel functions, namely the Baire class ξ functions. Note that
although in [7] it has been pointed out that there is a link between the two stratifica-
tions, from the point of view of reducibilities between sets of reals they clearly have
a very different behaviour: in fact, we will prove that the Baire functions, contrarily
to the case of the Dξ’s, induce a degree-structure which looks like the structure of
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the L-degrees. This result is obtained comparing again the Baire stratification with
the Delta stratification, and showing that the first one gives reducibilities which are
equivalent to (i.e. induce the same degree-structures as) the ones obtained glueing
together chains of Borel-amenable sets of reductions. On the way of studying these
classes of functions, we will introduce the notion of good Borel reducibility which
considerably extends the definition of Borel-amenability given in [8] (in fact it in-
cludes, among others, all the examples quoted in this introduction): building on our
previous results, we will give a new general method to study these reducibilities,
which will lead to the following dichotomy theorem.

Theorem 1.1. Assume AD + DC(R). If F is a good Borel set of reductions then
it induces either a Lipschitz-like or a Wadge-like hierarchy of degrees.

This improves many of the results obtained in [8] and is a first step toward prov-
ing the näıve conjecture that the dichotomy above should hold for all “reasonable”
Borel sets of reductions.

The paper is organized as follows: in Section 2 we will fix some notation and
review some of the results about L-degrees and Borel-amenable reducibilities that
will be needed for the rest of the work. (We will systematically omit the proofs
of these results — the reader interested in some of them can consult [13], [12]
or the more succinct [3] for Lipschitz degrees, and [8] for Borel-amenable sets of
reductions.) In Section 3 we will give the definition of good Borel reducibility,
while in Section 4 we will introduce the Strong Decomposition Property and prove
some results which essentially form the framework of the proof of our dichotomy
theorem. In Section 5 we will deal with the cases of Lipschitz functions and chains
of reductions, and these results will in turn be used in Section 6 to analyze the
hierarchies of degrees induced by Baire functions. Finally, in Section 7 we will
show how to compare different degrees-structures (in particular showing how to
obtain a certain hierarchy from the finer ones).

2. Preliminaries

Unless otherwise stated, we will always assume ZF+ SLOL + ¬FS+ DC(R) (see
[8] and [3] for the definitions and for a brief account on these axioms). Anyway
SLOL and ¬FS are easy consequences of AD, thus one can also safely work in the
most well-known theory ZF + AD + DC(R). In both cases, all the “determinacy
axioms” are used in a local way throughout the paper, thus e.g. to compare Borel
sets is enough to assume Borel-determinacy. Our notation and terminology is quite
standard, and we systematically refer the reader to [8] for the basic definitions. We
just recall here that AB denotes the set of all functions from A into B, that a set
F ⊆ ω2 is said flip-set whenever ∃!n(z(n) 6= w(n)) ⇒ (z ∈ F ⇐⇒ w /∈ F ) for
every z, w ∈ ω2, and that, given any pointclass Γ ⊆ P(R), a function f : R → R is
said Γ-function if f−1(D) ∈ Γ for every D ∈ Γ.

Let now F ⊆ RR be a family of functions which is closed under composition,
contains L and admits a surjection j : R ։ F , that is a so-called set of reductions.
Recall that A ≤F B ⇐⇒ A = f−1(B) for some f ∈ F (notice that A ≤F B ⇐⇒
¬A ≤F ¬B), and let <F be the strict relation associated to ≤F . Since ≤F is
a preorder, we can canonically define the equivalence relation ≡F and study the
partial order ≤ induced by ≤F on the equivalence classes of ≡F , which are called F-
degrees. A set A (or its F -degree [A]F ) is said to be F-selfdual if and only if A ≤F

¬A (otherwise it is F-nonselfdual), and {[A]F , [¬A]F} is called nonselfdual pair
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whenever A �F ¬A. The Semi-Linear Ordering Principle for F is the statement

(SLOF ) ∀A,B ⊆ R(A ≤F B ∨ ¬B ≤F A).

Under SLOF we have that if A and B are ≤F -incomparable, then B ≡F ¬A: thus
the ordering induced on the F -degrees is almost a linear-order (it becomes indeed
linear if each degree is identified with its dual). If now F ⊆ G ⊆ RR are sets of
reductions, then ≤G is clearly coarser than ≤F : hence A ≤F B ⇒ A ≤G B, if A is
F -selfdual then it is also G-selfdual, and [A]F ⊆ [A]G . Moreover the following basic
lemma holds.

Lemma 2.1 (ZF). Let F ⊆ G ⊆ RR be two sets of reductions. Then SLOF ⇒ SLOG,

and assuming SLOF we have ∀A,B ⊆ R(A <G B ⇒ A <F B).

This lemma will be mostly used when F = L: this in particular means that under
our axiomatization we also have SLO

F for every set of reductions F . Moreover it
easily implies that ≤F is well-founded (since ≤L is): therefore we can associate a
rank ‖ · ‖F to each set A ⊆ R (resp. F -degree [A]F ), and speak of successor and
limit sets (resp. F -degrees), and of the cofinality of a set (resp. of an F -degree)
with the obvious meaning. The next theorem sum up the general properties of sets
of reductions — see Theorem 3.1 in [8]. Recall that given A,B,An ∈ R,

⊕

nAn

denotes the set
⋃

n(n
aAn), while A ⊕ B denotes

⊕

n Cn, where C2k = A and
C2k+1 = B for every k ∈ ω.

Theorem 2.2. Let F ⊆ RR be a set of reductions. Then

i) lh(≤F) = Θ, where Θ = sup{α | f : R ։ α for some surjection f};
ii) anti-chains have size at most 2 and are of the form {[A]F , [¬A]F} for some set

A;
iii) R �F ¬R = ∅ and if A 6= ∅,R then ∅,R <F A;
iv) if A �F ¬A then A⊕¬A is F-selfdual and is the successor of both A and ¬A.

In particular, after an F-nonselfdual pair there is a single F-selfdual degree;
v) if A0 <F A1 <F . . . is a countable F-chain of subsets of R then

⊕

nAn is
F-selfdual and is the supremum of these sets. In particular if [A]F is limit of
countable cofinality then A ≤F ¬A;

vi) if A �F ¬A and G ⊆ F is another set of reductions then [A]F = [A]G. In
particular, [A]F = [A]L.

Thus to determine the hierarchy of degrees induced by some F we have only
to understand what happens after a single selfdual degree and at limit levels of
uncountable cofinality.

Given any set of reductions F (or even just any set of functions) we can define
its characteristic set ∆F = {A ⊆ R | A ≤F N〈0〉}, which is formed by all sets
A ⊆ R which are simple from the “point of view” of F . As a simple excercise one
can check that ∆Dξ

= ∆0
ξ for every countable ξ, and that ∆Bor = ∆1

1. It is easy to

see that if F is closed under composition then every f ∈ F is a ∆F -function (even
if the converse is not always true — see [8] for a counter-example), thus it make
sense to define the saturation of F

Sat(F) = {f ∈ RR | f is a ∆F -function},

and to say that F is saturated just in case F = Sat(F). Moreover it is easy to see
that F ⊆ G implies ∆F ⊆ ∆G (the converse is not true in general, unless G = Bor

or G = Dξ for some ξ < ω1, and Ns ∈ ∆F for every s ∈ <ωω). Finally, F is said
to be Borel if {Ns | s ∈ <ωω} ⊆ ∆F ⊆ ∆1

1, that is if F ⊆ Bor and F recognizes as
simple all the basic clopen sets of R.

Here are some basic facts about L-degrees: after a selfdual L-degree there is
always another selfdual L-degree, and a limit L-degree is selfdual if and only if it is
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of countable cofinality, otherwise it is nonselfdual. Thus after a selfdual L-degree
[A]L there is always an ω1-chain of consecutive selfdual L-degrees, and therefore the
L-hierarchy looks like this:

(1)

• • • •
• • • · · ·
︸ ︷︷ ︸

ω1

• • • · · ·
︸ ︷︷ ︸

ω1

· · · · · · • · · · · · · · · · · · ·
• • • •

↑

cof = ω

↑

cof > ω

Any structure of this kind will be called Lipschitz-like.
Now we turn our attention to Borel-amenable sets of reductions.

Definition 1. A set of reductions F is Borel-amenable if:

i) Lip ⊆ F ⊆ Bor;
ii) for every ∆F -partition 〈Dn | n ∈ ω〉 and every collection {fn | n ∈ ω} ⊆ F we

have that
f =

⋃

n∈ω
(fn ↾ Dn) ∈ F ,

where Lip is the collection of all Lipschitz functions (with any constant).

As an example of Borel-amenable reducibility one can take any of the Dξ’s or
Bor. It turns out that for every Borel-amenable set of reductions F there is some
ξ ≤ ω1 (called the level of F) such that ∆F = ∆0

ξ (where, with a little abuse of

notation, we put ∆0
ω1

= ∆1
1): thus, in particular, Sat(F) is always either one of

the Dξ’s or Bor. Moreover for any Borel-amenable set of reductions F we have the
following lemma.

Lemma 2.3. Let 〈Dn | n ∈ ω〉 be a ∆F -partition of R and let A 6= R.

a) ∀n ∈ ω(A ∩Dn ≤F A).
b) If C ⊆ R and A ∩Dn ≤F C for every n ∈ ω then A ≤F C.
c) If ∀n ∈ ω(A∩Dn <F A) then A ≤F ¬A. Moreover, if Dn = ∅ for all but finitely

many n’s then A is not limit.

Let us say that F has the Decomposition Property (DP for short) if for every
selfdual A /∈ ∆F there is a ∆F -partition 〈Dn | n ∈ ω〉 of R such that A∩Dn <F A
for every n or, equivalently, if for every selfdual A which is L-minimal in [A]F one
has that A ≤L ¬A (and A is either limit or successor of a nonselfdual pair with
respect to ≤L). Using this property (which turns out to be a consequence of Borel-
amenability) we have proved in [8] that both after a single selfdual degree and at
limit levels of uncountable cofinality there is a nonselfdual pair. Thus the hierarchy
of degrees induced by F looks like this:

(2)

• • • • •
• • • · · · · · · • • · · · · · · • · · ·

• • • • •
↑

∆F \ {∅,R}
↑

cof = ω

↑

cof > ω

Any structure of this kind will be called Wadge-like. Notice that one gets both the
Wadge hierarchy and the degree-structures induced by Bor and D2 as particular
instances of the previous result.

The DP allows also to compare different sets of reductions by means of the
degree-structures induced by them. Let us say that two sets of reductions F and
G are equivalent (F ≃ G in symbols) if they induce the same hierarchy of degrees,
that is if for every A,B ⊆ R we have A ≤F B ⇐⇒ A ≤G B: if F and G are
Borel-amenable sets of reductions then

F ≃ G ⇐⇒ ∆F = ∆G ,
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that is F ≃ G if and only if their degree-structures coincide on the first nontrivial
level. In particular, since ∆F = ∆Sat(F), we have that F ≃ Sat(F).

We want to conclude this section by recalling how to construct, given an F -
selfdual set A ⊆ R, where F is of level ξ < ω1, its successor degree(s). Fix an
increasing sequence of ordinals 〈µn | n ∈ ω〉 cofinal in ξ, and a sequence of sets Pn

such that Pn ∈ Π0
µn

\ Σ0
µn

. Let 〈·, ·〉 : ω × ω → ω be any bijection, and for any

zero-dimensional space2 X define the homeomorphism
⊗X

: ω(ωX ) → ω
X : 〈xn | n ∈ ω〉 7→ x =

⊗X

n
xn,

by letting x(〈n,m〉) = xn(m), and, conversely, the “projections” πX
n : ωX → ωX

by setting πX
n (x) = 〈x(〈n,m〉) | m ∈ ω〉 (clearly, every “projection” is surjective,

continuous and open). Note that given a sequence of functions fn :
ωX → ωX , we

can use the homeomorphism
⊗X

to define the function
⊗X

〈fn | n ∈ ω〉 =
⊗X

n
fn :

ω
X → ω

X : x 7→
⊗X

n
fn(x),

and it is not hard to check that
⊗X

n fn is continuous if and only if all the fn’s are
continuous. Now consider the sets

Σξ(A) = {x ∈ R | ∃n(π2n(x) ∈ Pn ∧ ∀i < n(π2i(x) /∈ Pi) ∧ π2n+1(x) ∈ A)}

and

Πξ(A) = Σξ(A) ∪Rξ,

where Rξ = {x ∈ R | ∀n(π2n(x) /∈ Pn)}: it turns out that for every A ≤F ¬A the
sets Σξ(A) and Πξ(A) are ≤F -incomparable and are the immediate successors of
A.

3. Good Borel reducibilities

In [8] we have studied a special kind of Borel reducibilities but, as we will see later
in this paper, there are also other “natural” sets of reductions which are not of this
kind (namely Lipschitz functions, uniformly continuous functions, Baire functions,
and so on). Thus our goal is to weaken the condition of Borel-amenability in order
to be able to study also these other examples. Recall that the second condition of
Borel-amenability says that f =

⋃

n(fn ↾ Dn) ∈ F whenever {fn | n ∈ ω} ⊆ F
and 〈Dn | n ∈ ω〉 is a ∆F -partition of R. We will weaken this condition both
allowing to use only fn’s which are in L and using the concept of boundness (in
a pointclass): a pointclass Λ is (L-)bounded in an L-pointclass Γ if there is some
A ∈ Γ such that B ≤L A for every B ∈ Λ (which in particular implies that Λ ⊆ Γ).
Moreover, 〈Dn | n ∈ ω〉 is a Γ-bounded partition of R if it is a Γ-partition of R such
that {Dn | n ∈ ω} is bounded in Γ.

Definition 2. We say that F satisfies the partitioning condition (PC for short) if
for every ∆F -bounded partition 〈Dn | n ∈ ω〉 of R and every collection {fn | n ∈
ω} ⊆ L one has that

f =
⋃

n∈ω
(fn ↾ Dn) ∈ F .

Notice that there are just three types of Borel reducibilities that can satisfy the
PC:

TYPE I: ∆F = {A ⊆ R | A ≤L Ns for some s ∈ <ωω};
TYPE II: ∆F = ∆0

ξ for some countable ξ or ∆F = ∆1
1;

TYPE III: ∆F = ∆0
<λ =

⋃

µ<λ ∆
0
µ for some countable limit ordinal λ.

2When X = ω we will simply drop the symbol X in all the relevant notation.
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The proof of this fact is essentially the same of Proposition 4.3 in [8]. By Borel
determinacy we need to consider just two cases3, namely ∆0

1 ( ∆F and ∆F ⊆ ∆0
1.

In the first case, assume that ∆F 6= ∆1
1 and that F is not of type III, and let

1 < ξ < ω1 be the smallest ordinal such that ∆F ⊆ ∆0
ξ. If D ∈ ∆0

ξ, then there

is some partition 〈Dn | n ∈ ω〉 of R such that D =
⋃

i∈I Di for some I ⊆ ω and

Dn ∈ Π0
µn

for some µn < ξ (see Theorem 4.2 in [7]). Since ∆0
µ ( ∆F for every

µ < ξ (by minimality of ξ), we have that
⋃

µ<ξ Π
0
µ ⊆ ∆F by Borel determinacy

again, and hence that {Dn | n ∈ ω} ⊆
⋃

µ<ξ Π
0
µ is bounded in ∆F (when ξ is limit

use the fact that F is not of type III). Let g0, g1 be the constant functions with value
~0 and ~1, respectively, and put fi = g0 if i ∈ I and fi = g1 otherwise. By the PC,
f =

⋃

n∈ω(fn ↾ Dn) ∈ F and f−1(N〈0〉) = D, i.e. D ∈ ∆F : therefore ∆0
ξ ⊆ ∆F

and F is of type II. Finally, the argument for the case ∆F ⊆ ∆0
1 is similar to the

previous one (it suffices to prove that if F is not of type I then ∆F = ∆0
1), and it

is left to the reader.
As a corollary, one gets that ∆F is an algebra of sets (i.e. it is closed under com-

plementation and finite intersections). Moreover, the PC implies F ⊇ L: therefore,
since ∆F ⊆ ∆1

1 already implies that there is a surjection j : R ։ F , a Borel set
of functions F which satisfies the PC is also a set of reductions just in case it is
closed under composition.

Another consequence of the PC is Lemma 4.4 of [8] (since any finite ∆F -partition
of R is obviously bounded in ∆F): if D ⊆ D′ are in ∆F and A ⊆ R is such that
A ∩ D′ 6= R then A ∩ D ≤F A ∩ D′ (in particular, if A 6= R then A ∩ D ≤F A
for every D ∈ ∆F). Finally, the PC allows to reprove Lemma 2.3 (using almost
the same argument) in case F is a Borel set of reductions which satisfies the PC

(but non necessarily a Borel-amenable one) as soon as the partition 〈Dn | n ∈ ω〉
is bounded in ∆F and part b) is replaced by the following condition:

(⋆) if C ⊆ R and A ∩Dn ≤L C for every n then A ≤F C.

Besides the PC, there is also another condition which is somewhat hidden in the
definition of Borel-amenability.

Definition 3. If ∆ is an L-pointclass, we say that an arbitrary function f : R → R
is σ-bounded (in ∆) if for every countable collection {Dn | n ∈ ω} bounded in ∆
one has that {f−1(Dn) | n ∈ ω} is bounded in ∆ as well (thus, in particular, f is
a ∆-function). A set of functions F satisfies the σ-boundness condition (σ-BC for
short) if every f ∈ F is σ-bounded in ∆F .

It is easy to check that if F is of type II then every countable collection {Dn | n ∈
ω} ⊆ ∆F is bounded in ∆F , thus σ-BC becomes relevant only when F is not of type
II (this is the reason for which this condition was not explicity highlighted in [8]).
On the other hand, if F is of type I or III the σ-BC turns out to be equivalent to the
seemingly stronger statement “if f ∈ F and Γ is bounded in ∆F (with Γ of arbitrary
size) then {f−1(C) | C ∈ Γ} is bounded in ∆F”: this is because in the cases under
consideration ∆F has “countable cofinality” (i.e. there is a countable chain which
is L-unbounded in ∆F), and therefore from every pointclass L-unbounded in ∆F

one can extract a countable subpointclass which is still L-unbounded in ∆F .
We will see that the PC and the σ-BC are strong enough to civilize the hierarchy

of degrees induced by F , so let us give the following definition:

3The principle SLOL for Borel sets, which follows from Borel determinacy, implies that for

every pair of L-pointclasses Γ,Λ ⊆ ∆
1
1 either Γ ⊆ Λ or Λ̆ ⊆ Γ: therefore if both Γ and Λ are

selfdual either Γ ⊆ Λ or Λ ⊆ Γ.
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Definition 4. A Borel set of reductions is said to be a good Borel reducibility if it
satisfies both the PC and the σ-BC. The collection of all good Borel reducibilities
will be denoted by GR.

Note that the Borel-amenable reducibilities form a proper subset of good Borel
reducibilities of type II, as Lip * DL

ξ for any ξ < ω1, where DL
ξ is the collection of

those f which are in L on a (countable) ∆0
ξ-partition (in particular this proves that

each DL
ξ does not contain any Borel-amenable set of reductions). In fact, one can

easily check that the pseudoidentity id− : R → R : x 7→ 〈x(n + 1) | n ∈ ω〉 is such
that for every countable partition 〈Dn | n ∈ ω〉 and every family {fn | n ∈ ω} ⊆ L

there is some n0 such that fn0 ↾ Dn0 6= id− ↾ Dn0 (the argument is based on the
Baire Category Theorem and is almost identical to the one used in Remark 6.2 of
[8]).

4. The Strong Decomposition Property and the Dichotomy Theorem

First we want to prove that every good Borel reducibility F has the following
bounded version of the Decomposition Property.

Definition 5. A set A ⊆ R has the Strong Decomposition Property with respect
to a Borel set of reductions F if there is a ∆F -bounded partition 〈Dn | n ∈ ω〉 of R
such that A ∩Dn <F A for every n.

A Borel set of reductions has the Strong Decomposition Property (SDP for short)
if every A ⊆ R such that A ≤F ¬A and A /∈ ∆F has the Strong Decomposition
Property with respect to F .

Observe that if F is of type II then the SDP is equivalent to the DP by the
observation following Definition 3.

Remark 4.1. If F satisfies the σ-BC, then A has the Strong Decomposition Prop-
erty with respect to F if and only if there is some B in [A]F which has the Strong
Decomposition Property with respect to F . In fact, let f ∈ F be a reduction
of A into B, and let 〈D′

n | n ∈ ω〉 be a ∆F -bounded partition of R such that
B ∩ D′

n <F B. Put Dn = f−1(D′
n): 〈Dn | n ∈ ω〉 is a ∆F -bounded parti-

tion of R by the σ-BC, and since f witnesses A ∩ Dn ≤F B ∩ D′
n we have also

A ∩Dn ≤F B ∩D′
n <F B ≤F A.

If F is good (and satisfies a simple technical condition) then the SDP can also
be recast in an equivalent way.

Proposition 4.2. Let F ∈ GR be such that kaB ≤F B for every k ∈ ω and every
B ⊆ R (we can require for instance that Lip(2) ⊆ F). Then for every A ⊆ R the
following are equivalent:

i) A has the Strong Decomposition Property with respect to F ;
ii) if B is L-minimal in [A]F then B ≤L ¬B.

Moreover, B is either limit or successor of a nonselfdual pair with respect to ≤L.

Proof. If A = ∅ or A = R neither i) nor ii) can hold, thus we can assume A 6= ∅,R.
If A has the Strong Decomposition Property with respect to F , let 〈Dn | n ∈ ω〉
be a ∆F -bounded partition of R such that A ∩ Dn <F A for every n and put
Bn = A∩Dn. Clearly we can not have that there is an m ∈ ω such that Bn ≤L Bm

for every n ∈ ω, otherwise A ≤F Bm by condition (⋆), a contradiction! Therefore
∀m∃n(Bn �L Bm) and hence B =

⊕

nBn is L-selfdual. Moreover B ≤L C for every
C ∈ [A]F since Bn <L C for every n ∈ ω: on the other hand, A ≤F B by condition
(⋆) again, hence B is L-minimal in [A]F .

Assume now that ii) holds. Recall that if C is an arbitrary subset of R and
k ∈ ω, then C⌊k⌋ denotes the set {x ∈ R | kax ∈ C}. It is a classical fact
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that since B is L-selfdual we have B⌊k⌋ <L B for every k ∈ ω, and hence by L-
minimality of B in [A]F we have also B⌊k⌋ <F B. Our technical condition implies
that B ∩ N〈k〉 ≤F B⌊k⌋, and since 〈N〈k〉 | k ∈ ω〉 is always bounded in ∆F then
B has the Strong Decomposition Property with respect to F . But by Remark 4.1
this implies that A has the Strong Decomposition Property with respect to F as
well. The last part of the statement easily follows from our technical condition
and the L-minimality of B in [A]F , as if B is the successor with respect to ≤L of
an L-selfdual set B′ then B ≡L 0aB′ (see e.g. [12] or [3] for a proof of this easy
fact). �

We will prove in Theorem 4.6 that the σ-BC already implies the SDP (also in
absence of the PC and of the other technical condition), but first we need the next
proposition, which is a deep application of the Martin-Monk method and a further
strengthening of Theorem 16 in [4] and of Theorem 5.3 in [8]. As for the other
results of this kind, we will use the following lemma (probably due to Kuratowski,
see Lemma 5.1 in [8] and the references given there).

Lemma 4.3 (ZF+ACω(R)). Let d be the usual metric on R, τ the topology induced
by d, and let ξ be any nonzero countable ordinal. For any family {Dn | n ∈ ω} ⊆ ∆0

ξ

there is a metric d′ on R such that

i) (R, τ ′) is Polish and zero-dimensional, where τ ′ is the topology induced by d′;
ii) τ ′ refines τ ;
iii) each Dn is τ ′-clopen;
iv) there is a countable clopen basis B′ for τ ′ such that B′ ⊆ ∆0

ξ.

Proposition 4.4. Assume that F is of type I, II or III and has the σ-BC. Let
A ⊆ R be such that A ≤F ¬A, A /∈ ∆F and A is L-minimal in its F-degree. Then
A has the Strong Decomposition Property with respect to F .

Proof. We start by considering the case in which F is of type III, the other cases
will be treated in a similar way. First observe that since A ≤F ¬A we have A �F

A ∩D ⇐⇒ A ∩D <F A. Let ξ < ω1 be such that ∆F = ∆0
<ξ, and let f ∈ F be

any reduction of A into ¬A. Toward a contradiction, assume that for every ∆F -
bounded partition 〈Dn | n ∈ ω〉 of R there is some n0 ∈ ω such that A ≤F A∩Dn0 .
We will construct three sequences4

〈Cn | n ∈ ω〉, 〈dn | n ∈ ω〉, 〈fn | n ∈ ω〉

such that for every n ∈ ω:

i) Cn ∈ ∆F and A ≤F A ∩ Cn;
ii) fn : R → Cn is such that f−1

n (A ∩ Cn) = A (i.e. fn reduces A to A ∩ Cn), and
hence also f−1

n (¬A ∩ Cn) = ¬A;
iii) dn is a metric on R such that the induced topology τn is zero-dimensional

and Polish, refines all the previous τm’s (m ≤ n), Cn is τn-clopen, and both
fn : (R, τn+1) → (R, τn) and fn ◦ f : (R, τn+1) → (R, τn) are continuous;

iv) for every m ≤ n and every x, y ∈ Cn+1

(∗) dm(gm ◦ . . . ◦ gn(x), gm ◦ . . . ◦ gn(y)) < 2−n

where for each i either gi = fi ◦ f ↾ Ci+1 or gi = fi ↾ Ci+1.

Observe that by ii) we have that fn ◦ f : R → Cn is such that

∀x ∈ Cn+1(x ∈ A ∩ Cn+1 ⇐⇒ fn ◦ f(x) ∈ ¬A ∩ Cn),

4The major difference from the present argument and the proof of Theorem 5.3 in [8] is that
in this case we will not require that Cn+1 ⊆ Cn, so that we will have to use some special fn’s
(which “jump” from one Cn into the next one) rather than the identity function.
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and that fn : R → Cn is such that

∀x ∈ Cn+1(x ∈ A ∩ Cn+1 ⇐⇒ fn(x) ∈ A ∩Cn).

Having these sequences, we will be able to construct a flip-set (Wadge-reducible
to A) using essentially the same argument contained in the proof of Theorem
16 in [4]. For every z ∈ ω2 put gzn = fn ◦ f if z(n) = 1, and gzn = fn oth-
erwise. For every n ∈ ω choose some yn+1 ∈ Cn+1, and for every m ≤ n put
xzn,m = gzm ◦ . . . ◦ gzn(yn+1) ∈ Cm. If we fix m we get that gzm(xzn,m+1) = xzn,m for
every n > m, and that {xzn,m | n ≥ m} ⊆ Cm is a Cauchy sequence with respect to
dm by (∗). Therefore we can put xzm = limn→∞ xzn,m and notice that xzm ∈ Cm by
the fact that Cm is τm-closed, and that gzm(xzm+1) = xzm by continuity of gzm. Now
it is easy to verify that F = {z ∈ ω2 | xz0 ∈ A} is a flip-set.

The construction of the required sequences will be carried out by induction on
n. To reach this goal we will construct also two auxiliary sequences

〈Pn | n ∈ ω〉, 〈µn | n ∈ ω〉

such that:

1) µn is an increasing sequence of ordinals smaller than ξ and fn is a ∆0
µn

-function;

2) τn admits a countable basis Bn ⊆ ∆0
µn

;

3) Pn = 〈Dn
m | m ∈ ω〉 is a ∆0

µn
-partition of R (in particular is bounded in ∆F),

Pn+1 refines Pn, Cn = Dn
m for some m, and each Dn

m is τn-clopen.

At stage n we will define Cn, Pn, fn together with dn+1 and µn+1. First let C0 = R,
P0 be defined by D0

0 = R and D0
m+1 = ∅, f0 = id, µ0 = 1, and d0 be the usual

metric on R. By σ-BC there is some µ1 < ξ such that {f−1(Ns) | s ∈ <ωω} ⊆ ∆0
µ1
,

and we can let d1 be the metric obtained applying Lemma 4.3 to this collection of
sets (so that f = f0 ◦ f : (R, τ1) → (R, τ0) is continuous). For the inductive step we
need the following claim, which is analogous to Claim 5.3.1 of [8].

Claim 4.4.1. Let D ⊆ R be in ∆0
µ (for some µ < ξ). If A ≤F A ∩D then there is

g ∈ Dµ such that g : R → D and g reduces A to A ∩D.

Proof of the Claim. We can assume D 6= ∅,R and ¬A ∩ D 6= ∅, as if D = R
then we can simply take g to be the identity, while if D = ∅ or D ⊆ A then
A ≤F A ∩ D = D would contradict A /∈ ∆F . By the observation above we have
that A �F A ∩ D ⇐⇒ A ∩ D <F A, and by Lemma 2.1 and L-minimality of A
in its F -degree we have that A ∩D <F A ⇐⇒ A ∩D <L A. Thus A ≤F A ∩ D
implies that either A ≤L A∩D or, by SLOL, ¬A ≤L A∩D. If the second alternative
holds, then since A∩D ≤Dµ

A (see Lemma 4.4 in [8]) one also has A ≤Dµ
¬A: thus

in every case A ≤Dµ
A ∩D. Let g′ ∈ Dµ be a witness of this fact. Let k ∈ Dµ be

defined by k(x) = x if x ∈ D and k(x) = y otherwise, where y is any fixed point in
¬A ∩D. Letting g = k ◦ g′ it is easy to check that our claim holds. � Claim

Now suppose to have constructed all the sequences until stage n, that is Ci, Pi, fi,
dj and µj for i ≤ n and j ≤ n+1. Recall also from Claim 5.3.2 of [8] that for every
m ≤ n there is a ∆0

µm
-partition {Ci

m | i ∈ ω} of R such that dm-diam(Ci
m) < 2−n

and Ci
m is τm-clopen for every i ∈ ω. Fix s ∈ n+12 and let gsk be defined (for every

k ≤ n) by

gsk =

{

fk ◦ f if s(n) = 1

fk if s(n) = 0.

Let 〈D0
i,s | i ∈ ω〉 be an enumeration of

{(gs0 ◦ . . . ◦ g
s
n)

−1(Ci
0) ∩D

n
m | i,m ∈ ω}
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and for k < n let 〈Dk+1
i,s | i ∈ ω〉 be an enumeration of

{(gsk+1 ◦ . . . ◦ g
s
n)

−1(Ci
k+1) ∩D

k
j,s | i, j ∈ ω}.

Arguing by induction on k ≤ n, it is not hard to see that 〈Dn
i,s | i ∈ ω〉 is a ∆0

µn+1
-

partition which refines Pn, and that each Dn
i,s is τn+1-clopen since, by induction

on k < n again, one can prove that gsk ◦ . . . ◦ g
s
n : (R, dn+1) → (R, dk) is continuous

(and the τn+1-clopen sets are contained in ∆0
µn+1

, as Bn+1 ⊆ ∆0
µn+1

by inductive

hypothesis).
Now fix an enumeration 〈sl | l < 2n+1〉 of n+12 and inductively repeat the

argument above but using 〈Dn
i,sl

| i ∈ ω〉 instead of Pn at stage l + 1. Let Pn+1 =

〈Dn+1
m | m ∈ ω〉 be the final partition of R obtained at stage 2n+1, and observe that

one has again that Dn+1
m ∈ ∆0

µn+1
and that Dn+1

m is τn+1-clopen for every m ∈ ω.

Choose m̄ ∈ ω such that A ≤F A∩Dn+1
m̄ (such an m̄ must exist by our assumption,

since Pn+1 is a ∆F -bounded partition of R), put Cn+1 = Dn+1
m̄ , and let fn+1 be

the function obtained applying Claim 4.4.1 to Cn+1. We claim that there is some
µn+2 ≥ µn+1 smaller than ξ such that both

{f−1
n+1(B) | B ∈ Bn+1} ⊆ ∆0

µn+2
and {(fn+1 ◦ f)

−1(B) | B ∈ Bn+1} ⊆ ∆0
µn+2

.

In fact, the first part is obvious (since fn+1 is a∆
0
µn+1

-function and Bn+1 ⊆ ∆0
µn+1

).

For the second part, since {f−1
n+1(B) | B ∈ Bn+1} ⊆ ∆0

µn+1
is countable and

bounded in ∆F , by the σ-BC there must be some ν < ξ such that

{f−1(f−1
n+1(B)) | B ∈ Bn+1} ⊆ ∆0

ν .

Put µn+2 = max{µn+1, ν}: it is easy to check that µn+2 is as required.
Finally, apply Lemma 4.3 to the collection

{f−1
n+1(B), (fn+1 ◦ f)

−1(B) | B ∈ Bn+1} ⊆ ∆0
µn+2

to get dn+2 with the desired properties (in particular, we have that both fn+1 ◦
f : (R, dn+1) → (R, dn) and fn+1 : (R, dn+1) → (R, dn) are continuous). It is not
hard to check that the sequences inductively constructed in this way satisfy all the
conditions required, and this conclude the proof for the case when F is of type III.

Now let us consider the other possibilities for the set of reductions F : if F is
of type I we can use the same argument as above but avoiding to construct the
µn’s, letting dn be the usual metric on R for every n ∈ ω (thus dropping essentially
condition iii), and constructing the partitions Pn in such a way that for each n ∈ ω
there is some kn such that each element of Pn, and in particular Cn, is L-reducible
to N0(kn) (the collection ∆kn

= {A ⊆ R | A ≤L N0(kn)} can be easily seen to be
closed under finite intersections and unions)5. Finally, if F is of type II one can
repeat the argument above (in a slightly simpler way) taking advantage of the fact
that every countable family of ∆0

ξ sets is bounded in ∆0
ξ. �

Remark 4.5. We can completely remove the hypothesis that A is L-minimal in its
F -degree and reprove Proposition 4.4 assuming only ZF+ACω(R)+¬FS (thus giving
essentially a direct proof of Theorem 4.6 under a weaker axiomatization) whenever
F satisfies the following property (which is a consequence of PC): if D ∈ ∆F and f
is a constant function then id ↾ D ∪ f ↾ ¬D is in F . This is because in this case we
can compose any reduction f ∈ F of A into A∩D with the function k defined in the
proof of Claim 4.4.1 to get that if A ≤F A ∩D then there is some g ∈ F such that
g : R → D and g reduces A to A ∩D. This fact can then be used to construct the
fn’s and conclude the argument exactly in the same way. About the construction,

5One has also to modify the statement of Claim 4.4.1 in the following way: “Let D ⊆ R be in
∆kn

(for some kn ∈ ω). If A ≤F A ∩D then there is a g : R → D such that g is a ∆kn
-function

which reduces A to A ∩D”.
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one should just be careful in the inductive step, and check that an ordinal µn+2

with the desired properties exists because both fn+1 and f are σ-bounded in ∆F ,
and the composition of σ-bounded functions is still σ-bounded.

Now we are ready to prove the Strong Decomposition Theorem.

Theorem 4.6. Let F be a Borel set of reductions which satisfies the σ-BC. Then
F has the SDP.

Proof. Assume first that F is of type I, II or III. Let A ≤F ¬A /∈ ∆F and let B be
L-minimal in [A]F : then B has the Strong Decomposition Property with respect
to F by Proposition 4.4, which by Remark 4.1 implies that A has the Strong
Decomposition Property with respect to F as well.

Now assume that F is not of type I–III, i.e. that ∆0
<ξ ( ∆F ( ∆0

ξ for some

countable ξ (notice that in this case we will not use the σ-BC). By Proposition 3.3
of [8] we have that F ⊆ Dξ, thus if A ≤F ¬A we have also A ≤Dξ

¬A. By the SDP

for Dξ, there must be a ∆0
ξ-partition 〈D′

n | n ∈ ω〉 of R such that A∩D′
n <Dξ

A for

every n. This partition can be refined to a
⋃

µ<ξ Π
0
µ-partition 〈Dn | n ∈ ω〉 of R

with the same property, that is such that A∩Dn <Dξ
A for every n. But

⋃

µ<ξ Π
0
µ

is easily seen to be bounded in ∆F , and A ∩Dn <F A by SLOF . �

The Strong Decomposition Theorem (together with part c) of Lemma 2.3) im-
plies that A ≤F ¬A if and only if A has the Strong Decomposition Property with
respect to F , thus if F is good we can adjoin the condition A ≤F ¬A to the equiv-
alents of Proposition 4.2. Moreover, as a corollary of Theorem 4.6 one gets also
that if F is a good Borel reducibility then at limit levels of uncountable cofinality
there is a nonselfdual pair.

Corollary 4.7. Let F be a good Borel set of reductions and let [A]F be a selfdual
limit degree. Then [A]F is of countable cofinality.

Proof. Let 〈Dn | n ∈ ω〉 be a ∆F -bounded partition of R such that A ∩Dn <F A
and

(†) ∀n ∈ ω∃m ∈ ω(A ∩Dn <F A ∩Dm)

(such a partition must exist by Theorem 4.6 and by the fact that [A]F is limit):
then A = {[A ∩ Dn]F | n ∈ ω} witnesses that [A]F is of countable cofinality (use
condition (⋆) and the fact that if A ∩Dn ≤F B for every n then A ∩Dn <L B by
(†) and Lemma 2.1). �

The Strong Decomposition Theorem implies also that we can compare good
Borel reducibilities with respect to the degree-structures induced by them.

Theorem 4.8. Let F and G be two Borel sets of reductions such that G has the
SDP, F satisfies the PC, and ∆G ⊆ ∆F . Then for every A,B ⊆ R

A ≤G B ⇒ A ≤F B.

In particular, if F and G are good Borel reducibilities then F ≃ G if and only if
∆F = ∆G .

The proof is identical to the one of Theorem 4.7 in [8] — the only obvious
modification is that we have to use SDP instead of DP. Using Theorem 4.8, one
can now obtain the dichotomy theorem for good Borel reducibilities (which is simply
a more detailed recasting of Theorem 1.1).

Theorem 4.9. Let F be a good Borel reducibility. Then one of the following holds:
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i) F induces a Wadge-like degree-structure:

• • • • •
• • • · · · · · · • • · · · · · · • · · ·

• • • • •
↑

cof = ω

↑

cof > ω

ii) F induces a Lipschitz-like degree-structure:

• • • •
• • • · · ·
︸ ︷︷ ︸

ω1

• • • · · ·
︸ ︷︷ ︸

ω1

· · · · · · • · · · · · · · · · · · ·
• • • •

↑

cof = ω

↑

cof > ω

In particular, the first alternative holds if F is of type II, while the second alternative
holds if F is either of type I or of type III.

The proof of this theorem can be obtained by choosing some “canonical” repre-
sentative for each equivalence class induced by the equivalence relation ≃ on GR,
and by studying the degree-structure induced by it. These examples are, respec-
tively: Lip for the collection of the good Borel reducibilities of type I, Dξ or Bor for
the F ’s of type II such that ∆F = ∆0

ξ (for each ξ ≤ ω1), and the chain of reductions
⋃

µ<ξ Dµ for the F ’s of type III such that ∆F = ∆0
<ξ (for every countable limit ξ).

The degree-structures of Bor and Dξ have already been determined in [8], while the
degree-structures of Lip and of the chains of reductions will be determined in the
next section of this paper (one can check that all these results are coherent with the
description given in Theorem 4.9). Therefore it will be enough to apply Theorem
4.8, with G being the suitable “canonical” representative (i.e. the canonical example
such that ∆F = ∆G), to get the result for an arbitrary good Borel reducibility F .

5. Good Borel reducibilities of type I and III

In this section we will analyze the degree-structures induced by Lip and by (reg-
ular) chains of reductions, showing in particular that they are all Lipschitz-like.
This will complete the proof of Theorem 4.9.

5.1. Lipschitz functions. First we want to prove that Lip is a good Borel re-
ducibility of type I, and this practically amounts to compute that

∆Lip =
⋃

06=n∈ω

[N0(n) ]L ∪ {∅,R} =
⋃

s∈<ωω

[Ns]L ∪ {∅}.

One direction is obvious, so we will just prove ∆Lip ⊆
⋃

06=n∈ω[N0(n) ]L ∪{∅,R}. Let
∅ 6= A ∈ ∆Lip: by definition there are f ∈ Lip and n ∈ ω such that f ∈ Lip(2n) and
f−1(N〈0〉) = A. We want to show that S = {s ∈ n+1ω | f(Ns) ⊆ N〈0〉} is such that
A =

⋃

s∈S Ns: since the set on the right of the equation is clearly L-reducible to
N0(n+1) , this will finish the proof. Clearly

⋃

s∈S Ns ⊆ A. For the other direction,
pick any x ∈ A: being f a reduction of A into N〈0〉, f(x) ∈ N〈0〉. Since f ∈ Lip(2n),

d(f(x), f(y)) ≤ 2−1 for every y ∈ Nx↾(n+1), which means f(Nx↾(n+1)) ⊆ N〈0〉: but
then x ↾ (n+ 1) ∈ S and hence x ∈

⋃

s∈S Ns.
Since we have just proved that Lip ∈ GR, to determine the degree-structure

induced by Lip we have only to understand what happens after a selfdual degree.
Given any set A ⊆ R define

sLip(A) =
⊕

n
0(n)aA.

We want to prove that if A ≤Lip ¬A then [sLip(A)]Lip is selfdual and is the imme-
diate successor of [A]Lip. This will prove that after a selfdual Lip-degree there is
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always another selfdual Lip-degree, and that Lip induce a degree-structure which is
Lipschitz-like.

Proposition 5.1. Let A ⊆ R be Lip-selfdual. Then sLip(A) ≤Lip ¬sLip(A), A <Lip

sLip(A) and there is no B such that A <Lip B <Lip sLip(A).

Proof. Let A be L-minimal in its Lip-degree and observe that one has A ≤L ¬A by
Proposition 4.2 (note that obviously Lip(2) ⊆ Lip). This implies that A <L 0aA <L

. . . <L 0(n)aA <L . . . , and hence that sLip(A) ≤L ¬sLip(A). Moreover it is clear

that for every n ∈ ω we have A ≤L 0(n)aA and that 0(n)aA ≤Lip A via a function
f ∈ Lip(2n). If B <Lip sLip(A) we have that B <L sLip(A) by Lemma 2.1, which in

turn implies B ≤L 0(n)aA for some n ∈ ω: hence B ≤Lip A. Therefore it remains
only to prove that sLip(A) �Lip A. Toward a contradiction, assume that there is
f ∈ Lip such that f−1(A) = sLip(A), and let n be the smallest natural number such
that f ∈ Lip(2n), so that f(N0(n+1)) ⊆ N〈k〉 for some k ∈ ω. Let g be defined by

g(x) = f(x) if x ∈ N0(n+1) and g(x) = (k+1)a~0 otherwise: then g ∈ Lip(2n+1) and
reduces 0(n+1)aA to A∩N〈k〉. But it is easy to check that A∩N〈k〉 ≤Lip A⌊k⌋ and
A⌊k⌋ <L A: therefore, by L-minimality of A in its Lip-degree we would have that

0(n+1)aA ≤Lip A⌊k⌋ <Lip A,

a contradiction! �

The definition of the successor operator sLip, allows also to obtain a way to con-
struct the Lip-degrees from the L-degrees. In fact, if [A]Lip is nonselfdual, then
[A]Lip = [A]L by Theorem 2.2, while if A ≤L ¬A and A is L-minimal in its Lip-

degree, then [A]Lip is exactly
⋃

n∈ω[0
(n)aA]L.

As an application of Theorem 4.8, let us now consider the set of the uniformly
continuous functions (which will be denoted by UCont): it turns out (perhaps rather
surprisingly, since uniform continuity is just a weak “refinement” of continuity) that
UCont is equivalent to Lip (rather than to W), and thus gives a hierarchy of degrees
which is Lipschitz-like. In fact, one can easily check that UCont is a good Borel
reducibility and that ∆UCont =

⋃

s∈<ωω [Ns]L ∪ {∅}: Ns is reducible to N〈0〉 via a

function in Lip(2lh(s)) ⊆ UCont, while if f is uniformly continuous then there must
be some m ∈ ω such that for every x, y ∈ R

d(x, y) ≤ 2−m ⇒ d(f(x), f(y)) ≤ 2−1,

and thus, in particular, f can not reduce
⊕

n N0(n) to N〈0〉 (the argument is similar
to the one used in Proposition 5.1). This proves also that ∆Lip = ∆UCont, and that
UCont is of type I: therefore Lip ≃ UCont by Theorem 4.8. Moreover it is not hard
to check that UCont is maximal among the good Borel reducibilities of type I, since
the fact that F is of type I and satisfies the σ-BC implies F ⊆ UCont — UCont is
exactly the collection of all σ-bounded ∆Lip-functions.

5.2. Chains of reductions. A (countable) chain of (Borel-amenable sets of) re-

ductions is simply any sequence ~F = 〈Fn | n ∈ ω〉 of Borel-amenable sets of
reductions. To each chain of reductions we will associate the unique sequence of
ordinals 〈µn | n ∈ ω〉 such that 1 ≤ µn ≤ ω1 and ∆Fn

= ∆0
µn

for every n ∈ ω,

which will be called the type of ~F . Moreover we will say that ~F is of rank ω1 if
µn = ω1 for some n ∈ ω, and of rank 1 ≤ ξ < ω1 if µn < ω1 for every n ∈ ω and
ξ = sup{µn + 1 | n ∈ ω}. A chain of reductions will be called regular if each Fn

is saturated and Fn ( Fn+1 for every n (in particular, the rank ξ of ~F must be
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countable and limit6). Note that in this case
⋃

n Fn =
⋃

µ<ξ Dµ is a Borel set of
reductions, and since

∆⋃
n Fn

=
⋃

n
∆Fn

=
⋃

n
∆0

µn
= ∆0

<ξ

one can check that
⋃

n Fn is good and of type III: thus, as we have already pointed
out, regular chains of reductions provide a canonical way to construct good Borel
reducibilities of type III (one for each possible characteristic set). From now onward,

we will fix some limit ξ < ω1 and consider a regular chain of reductions ~F =
〈Fn | n ∈ ω〉 of rank ξ. By Corollary 4.7, in order to describe the structure of
degrees induced by7 ≤ ~F we have only to determine what happens after a selfdual
degree: this can be done using the following proposition about Borel-amenable sets
of reductions.

Proposition 5.2. Let G and G′ be two Borel-amenable sets of reductions such that
∆G ( ∆G′ (i.e. such that G is of level strictly smaller than G′). Let A ≤G ¬A and B
be a (nonselfdual) successor of A with respect to ≤G: then B ≤G′ A. In particular,
if µ is the level of G and A ≤G ¬A, then Σµ(A) ≤G′ A and Πµ(A) ≤G′ A.

Proof. If G and B are as above then either B ≡G Σµ(A) or B ≡G Πµ(A) ≡G

¬Σµ(A), and since ∆G ⊆ ∆G′ implies A ≤G B ⇒ A ≤G′ B for every A,B ⊆ R
(by Theorem 4.8), it is enough to prove Σµ(A) ≤G′ A. Let Pn and Rµ be the
sets used to define the operation Σµ, and define F0 = {x ∈ R | π0(x) ∈ P0}
and Fn+1 = {x ∈ R | π2(n+1)(x) ∈ Pn+1 ∧ ∀i ≤ n(π2i(x) /∈ Pi)}. Clearly, every

Fn ∈ ∆0
µ ⊆ ∆G′ , and since Rµ ∈ Π0

µ and ∆0
µ ( ∆G′ , we have also Rµ ∈ ∆G′ (as

Σ0
µ ∪Π0

µ ⊆ ∆G′ by Borel-determinacy). On each of these sets we can continuously
reduce Σµ(A) to A using π2n+1 on the Fn’s and a constant function with value
ȳ /∈ A on Rµ (A 6= R as A ≤G ¬A), hence Σµ(A) ≤DW

µ′

A, where µ′ is the level of

G′. But since G′ ≃ DW
µ′ we are done. �

Theorem 5.3. If A ≤ ~F ¬A then there is some B ≤ ~F ¬B with the property that

A < ~F B and there is no C such that A <~F
C < ~F B. Thus after an ~F-selfdual

degree there is another ~F-selfdual degree.

Proof. Taking A to be L-minimal in [A] ~F , by Proposition 4.2 and the fact that ~F
has the SDP we can assume A ≤L ¬A (hence, in particular, A ≤Fn

¬A for every

n ∈ ω). Let 〈µn | n ∈ ω〉 be the type of ~F and define the successor operator s ~F by
letting

B = s ~F (A) =
⊕

n
Σµn(A).

Clearly A ≤L s ~F(A), and if C < ~F s ~F(A) then we have also C <L s ~F (A), which
implies C ≤L Σµn(A) for some n ∈ ω: but since Σµn(A) ≤Fn+1 A by Proposition
5.2, we have also C ≤ ~F A. Finally, the fact that s ~F(A) ≤ ~F ¬s ~F (A) will follow from
the fact that Σµn(A) <L Σµn+1(A) for every n ∈ ω (since this implies s ~F(A) ≤L

¬s ~F (A)). To see this, recall that Σµn(A) ≤Fn+1 A while A <Fn+1 Σµn+1(A), which
implies Σµn(A) <Fn+1 Σµn+1(A): hence Σµn(A) <L Σµn+1(A) by Lemma 2.1. �

In particular, Theorem 2.2, Corollary 4.7 and Theorem 5.3 implies that the

degree-structure induced by any regular chain of reductions ~F (i.e. by the preorder
≤ ~F) is Lipschitz-like.

6It is easy to check that each chain of reductions is equivalent either to a Borel-amenable set
of reductions (if it has successor or uncountable rank) or to a regular chain of reductions with the
same rank.

7For simplicity of notation, from now on we will systematically identify ~F with
⋃

n
Fn when

there is no possibility of misunderstanding.
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6. Baire reductions

Let Bα (for α < ω1) denote the set of all Baire class α functions from R into
itself, i.e. the set of all functions f : R → R such that f−1(U) ∈ Σ0

α+1 for every
open set U . Clearly D1 = B0 ⊆ Bα ⊆ Bor for every α < ω1, and Bµ ⊆ Bν if and
only if µ ≤ ν. Moreover it is well known that the Baire class α functions provides
a stratification of Bor in ω1-many levels which is alternative to the one induced by
∆0

ξ-functions, thus it is quite natural to try to study the reducibilities induced by

the Baire class functions (of some level). Unfortunately, if α 6= 0 then Bα is not a
set of reductions as it is not closed under composition: in fact, it is easy to check
that if f ∈ Bµ and g ∈ Bν then g ◦f ∈ Bµ+ν and, moreover, there are such an f and
g for which g ◦ f /∈ Bη for any η < µ+ ν. Nevertheless, we can exactly compute the
closure under composition of Bα by reversing the previous composition law, i.e. by
showing that if h ∈ Bµ+ν then there are f ∈ Bµ and g ∈ Bν such that h = g ◦ f . To
obtain this computation we will use Lemma 4.3 together with the following crucial
fact (for simplicity of notation we will put ∆0

0 = ∆0
1).

Lemma 6.1 (ZF + ACω(R)). For every nonzero µ, ν < ω1 with ν > 1 and every
C = {Cn | n ∈ ω} ⊆ ∆0

µ+ν there is B = {Bm | m ∈ ω} ⊆ ∆0
µ+1 such that

C ⊆ ∆0
ν(τ

′) for every topology τ ′ for which B ⊆ ∆0
1(τ

′).

Proof. Clearly we can assume that C is closed under complementation (if not simply
adjoin ¬Cn to C for every n). We will prove the lemma by induction on ν, and
the base of the induction and the successor case will be proved together. Assume
ν = η+1 (with η ≥ 1): by definition there must be a collection D′ = {D′

n,k | n, k ∈

ω} ⊆ Π0
µ+η such that Cn =

⋃

k∈ωD
′
n,k for every n, and by definition again there

must be some D = {Dn,k,i | n, k, i ∈ ω} ⊆ ∆0
µ+η such that D′

n,k =
⋂

i∈ωDn,k,i for
every n, k. Put B = D if η = 1 or, in the other case, use the inductive hypothesis
applied to D to find some countable B ⊆ ∆0

µ+1 such that for every topology τ ′ on

R if B ⊆ ∆0
1(τ

′) then D ⊆ ∆0
η(τ

′). In both cases D′ ⊆ Π0
η(τ

′) and C ⊆ ∆0
η+1(τ

′)
(by closure under complementation of C), hence we are done.

Now let ν be limit and let 〈νi | i ∈ ω〉 be any increasing sequence of ordinals
cofinal in ν such that νi > 1 for every i. Since C ⊆ ∆0

µ+ν there must be some D =

{Dn,k | n, k ∈ ω} ⊆ ∆0
<(µ+ν) such that Cn =

⋃

k∈ω Dn,k. Put Di = {Dn,k ∈ D |

Dn,k ∈ ∆0
µ+νi

} for every i, so that D =
⋃

i∈ω Di. Applying the inductive hypothesis

to each Di and using ACω(R), we can find for every i a collection Bi ⊆ ∆0
µ+1 such

that if τ ′ is any topology on R for which Bi ⊆ ∆0
1(τ

′) then Di ⊆ ∆0
νi
(τ ′). Put now

B =
⋃

i∈ω Bi. Then B ⊆ ∆0
µ+1 and if τ ′ is such that B ⊆ ∆0

1(τ
′) then D ⊆ ∆0

<ν(τ
′)

and hence C ⊆ ∆0
ν(τ

′). �

Recall now the following classical fact: if X is a zero-dimensional Polish space
then there is a closed set F ⊆ R and an homeomorphism H : F → X .

Proposition 6.2 (ZF + ACω(R)). Let h : R → R be in Bµ+ν (for some countable
ordinals µ and ν). Then there are f ∈ Bµ and g ∈ Bν such that h = g ◦ f .

Proof. Let τ be the usual topology on R. If µ = 0 or ν = 0 the result is trivial
(simply take f = id and g = h or, respectively, f = h and g = id). Hence we
can assume µ, ν > 0. Put C = {h−1(Ns) | s ∈ <ωω} ⊆ ∆0

µ+ν+1. Let B ⊆ ∆0
µ+1

be obtained as in the previous lemma, that is such that for any topology τ ′ if
B ⊆ ∆0

1(τ
′) then C ⊆ ∆0

ν+1(τ
′). Apply Lemma 4.3 to B in order to obtain a zero-

dimensional Polish topology τ ′ such that B ⊆ ∆0
1(τ

′) and let F ⊆ R be a closed
set such that H : (F, τ) → (R, τ ′) is an homeomorphism. Finally let r : R ։ F be a
retraction. Now put g = h ◦H ◦ r : (R, τ) → (R, τ) and f = H−1 : (R, τ) → (R, τ).
It is easy to check that h : (R, τ ′) → (R, τ) is of Baire class ν, and thus also g is of
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Baire class ν. Moreover, since H−1 : (R, τ ′) → (F, τ) is continuous and ∆0
1(τ

′) ⊆
∆0

µ+1(τ), we have that f is of Baire class µ. Thus we have only to prove that

g◦f = h. Since range(H−1) = F , we have that r(H−1(x)) = id(H−1(x)) = H−1(x)
for every x ∈ R. But then

g ◦ f(x) = h(H(r(H−1(x)))) = h(H(H−1(x))) = h(x). �

Observe that the same statement is true if we replace h with a Σ0
µ+ν-measurable

function (with µ, ν > 1) and we require that there are a Σ0
µ-measurable function

and a Σ0
ν-measurable function whose composition gives h.

Remark 6.3. The previous proposition can be applied also to other Polish spaces
X (clearly we can assume again that µ, ν 6= 0, otherwise the result is trivial). In
fact the same argument shows that for every h : X → X of Baire class µ+ ν there
are f : X → R of Baire class µ and g : R → X of Baire class ν such that h = g ◦ f .
Moreover, if we assume that X is (uncountable and) not Kσ, the same result
remains true also replacing f and g with two functions f ′, g′ : X → X of Baire
class µ and ν, respectively. In fact in this case there is a closed set F of X which
is homeomorphic to R via some function H ′, hence one can define f ′ = H ′−1 ◦ f
and g′ = (g ◦H ′ ↾ F )∪ (f0 ↾ X \F ), where f and g are obtained as in the previous
proof and f0 is any constant function, and check that they are still of the correct
Baire class. Finally, this last version of Proposition 6.2 can be further extended to
every uncountable Polish space X if we assume ν 6= 1: in fact in this case we can
use the fact that every zero-dimensional Polish space is homeomorphic to some Gδ

subspace of the Cantor space ω2, which is in turn homeomorphic to a closed subset
of X . Therefore any zero-dimensional Polish space is homeomorphic to a Gδ set
G of X via some function H ′, and we can define f ′ and g′ as above but replacing
F with G.

Theorem 6.4 (ZF + ACω(R)). Let α be a nonzero countable ordinal. Then the
closure under composition of Bα is exactly

⋃

µ<ξ Bµ, where ξ = α · ω is the least
additively closed ordinal above α.

Proof. One direction is trivial (since the composition of n Baire class α functions
is in Bα·n). Suppose now that h belongs to Bα·n for some 1 ≤ n ∈ ω. We will prove
by induction on n that h belongs to the closure under composition of Bα. If n = 1
there is nothing to prove, while if n = m + 1 (for some m ≥ 1) then h ∈ Bα·m+α

and we can apply Proposition 6.2 to get f ∈ Bα·m and g ∈ Bα such that h = g ◦ f .
Applying now the inductive hypothesis to f we get the result. �

By the previous theorem, we are naturally led to take any countable additively
closed ordinal ξ (recall that ξ is additively closed if and only if either ξ = 0, 1 or
ξ = ωµ for some ordinal µ) and study the degree structure induced by

Bξ = B<ξ =
⋃

µ<ξ
Bµ

(by the rule of composition above, Bξ is closed under composition and hence it is
a Borel set of reductions). Since it is straightforward to check that Bξ is a good
Borel reducibility (and therefore has the SDP), and that ∆Bξ

= ∆0
<ξ (which in

particular implies that Bξ is of type III), we can apply Theorem 4.8 to get that Bξ

is equivalent to any (regular) chain of reductions of rank ξ, and thus induces the
same degree-structure.

This equivalence is non trivial (at least for ξ = ω): in fact we will show that Bω

is not contained in
⋃

n∈ω Dn by proving that there is a Baire class 1 function which
is not in Dn for any n ∈ ω (this discussion will also cover the missing proofs about
the Pawlikowski function in [8]). First let us recall the definition of the Pawlikowski
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function P from [10]. Let ω + 1 have the order topology and consider the space
ω(ω+1) endowed with the corresponding product topology. It is easy to check that
ω(ω + 1) is perfect, zero-dimensional and compact, hence it is homeomorphic to
the Cantor space ω2. Let γ : ω + 1 → ω be the bijection defined by γ(ω) = 0 and
γ(n) = n+1 for any n ∈ ω, and define P : ω(ω+1) → R using γ coordinatewise, i.e.
putting P (x) = 〈γ(x(n)) | n ∈ ω〉. Define also (again coordinatewise) a “partial”
function

γ̂ : <ω(ω + 1) → <ωω : s 7→ 〈γ(s(i)) | i < lh(s)〉,

and note that both P and γ̂ are bijection between the corresponding spaces.
Given τ ∈ <ω(ω + 1), consider the set Cτ = {x ∈ ω(ω + 1) | τ ⊆ x}: by simple

arguments, it turns out that Cτ is always a closed set, has empty interior if and
only if there is some i < lh(τ) such that τ(i) = ω, and is also open (hence a clopen
set) if and only if τ(i) 6= ω for every i < lh(τ). In particular, this implies that for
every n ∈ ω the set Kn = {x ∈ ω(ω + 1) | x(n) = ω} is a closed set with empty
interior and hence a nowhere dense proper closed set (from this fact one can also
derive that ωω is a proper Gδ subset of ω(ω +1) which is also comeager and dense
in it).

Lemma 6.5 (ZF+ACω(R)). Let X be any zero-dimensional space. Let α < ω1 be
a nonzero ordinal and let 〈αn | n ∈ ω〉 be an increasing sequence of ordinals smaller
than α and cofinal in it. For every family of sets {Pn ⊆ ωX | n ∈ ω} such that Pn

is Π0
αn

-complete (for every n ∈ ω), the set S ⊆ ωX defined by

S = {x ∈ ω
X | ∃n(πX

n (x) ∈ Pn)}

is a Σ0
α-complete set. In particular, if P ⊆ ωX is a Π0

α-complete set then S =
{x ∈ ωX | ∃n(πX

n (x) ∈ P )} is a Σ0
α+1-complete set.

Proof. Clearly S ∈ Σ0
α. Let now Q be any set in Σ0

α: by definition there is an
increasing sequence 〈βk | k ∈ ω〉 of ordinals smaller than α such that Q =

⋃

k Rk

for some sets Rk ∈ Π0
βk
. Since the sequence 〈αn | n ∈ ω〉 is increasing and

cofinal in α we can find a subsequence 〈αnk
| k ∈ ω〉 such that βk ≤ αnk

for any
k ∈ ω. Moreover, since every Pn is Π0

αn
-complete we can choose a sequence of

points 〈xn | n ∈ ω〉 such that xn /∈ Pn for every n ∈ ω. Now define a sequence
of continuous functions 〈fn | n ∈ ω〉 by letting fnk

be any continuous reduction of
Rk in Pnk

(which exists since Rk ∈ Π0
βk

⊆ Π0
αnk

), and fn be the constant function

with value xn if there is no k ∈ ω such that n = nk. Finally, put f =
⊗X

n fn.
Clearly f is continuous and it is not hard to check that it reduces Q to S, i.e. that
x ∈ Q ⇐⇒ f(x) ∈ S for every x ∈ ωX . �

Now we are ready to prove the following proposition which gives the exact com-
plexity of P .

Proposition 6.6 (ZF+ACω(R)). The function P is of Baire class 1 and is in Dω

but not in Dn (for any nonzero n ∈ ω).

Proof. Since P−1(Ns) = Cγ̂−1(s) for every s ∈ <ωω, we have that P−1(U) is the
union of countably many closed sets for any open set U ⊆ R: hence P is of Baire
class 1 (this also implies that P ∈ Dω since every Baire class n function is in Dω).
It remains only to prove that P is not in Dn for any n ∈ ω. First define

S1 = {x ∈ R | ∃n(x(n) = 0)}

Sn+1 = {x ∈ R | ∃n(πn(x) /∈ Sn}

for n ≥ 1. One can inductively check that Sn ⊆ R is a Σ0
n set, and that P−1(Sn) ⊆

ω(ω + 1) is a complete (and hence also proper) Σ0
n+1 set (use Lemma 6.5 for the
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inductive step). Passing to the complements, we have that ¬Sn ∈ Π0
n ⊆ ∆0

n+1 but
P−1(¬Sn) /∈ ∆0

n+1, i.e. P is not a ∆0
n+1-function. �

The function P is defined from ω(ω + 1) to R, while we are interested in func-
tions from R into itself. Nevertheless it is easy to see how to obtained from P
a function P̂ : R → R with the same complexity. Let h : ω(ω + 1) → ω2 be any
homeomorphism between ω(ω + 1) and the Cantor space ω2 (which is a closed

subspace of R). Define P̂ : R → R by letting P̂ (x) = P (h−1(x)) if x ∈ ω2 and

P̂ (x) = ~0 otherwise. Following [10], for every f : X1 → Y1 and g : X2 → Y2 put
f ⊑ g just in case there are two embeddings ϕ : X1 → X2 and ψ : f(X1) → Y2
such that ψ ◦ f = g ◦ ϕ. Clearly, if f ⊑ g and g is a ∆0

ξ-function (respectively, a

Baire class ξ function) then also f is a ∆0
ξ-function (respectively a Baire class ξ

function), and therefore if f is not a ∆0
ξ-function (resp. a Baire class ξ function)

then neither g is a ∆0
ξ-function (resp. a Baire class ξ function). Since it is not hard

to prove that P̂ is still a Baire class 1 function and that h and the identity function
witness P ⊑ P̂ , we have that P̂ ∈ Dω but P̂ /∈ Dn for any n ∈ ω, hence we are done.

7. Comparing hierarchies of degrees

All sets of functions considered in this section are assumed to be good Borel re-
ducibilities. Let Gµ denote an arbitrary good Borel set of reductions with ∆Gµ

= ∆0
µ

(in particular Gµ is always of type II). To clarify the relationship between (the
degree-structures induced by) different good Borel reducibilities, note that each F
of type I induces the finest possible hierarchy (in particular finer than the hierarchy
induced by any G1, which is in some sense the next “level of reducibility”), and each
H of type III with ∆H = ∆0

<ξ (for ξ a countable limit ordinal) induces an hierarchy

of degrees which is coarser than the hierarchy of the Gµ-degrees (for any µ < ξ),
and finer than the hierarchy of the Gξ-degrees. Finally Bor, and the sets of reduc-
tions with the same characteristic set, gives the coarsest hierarchy. By part vi) of
Theorem 2.2, it is clear that for an F -hierarchy being coarser than the F ′-hierarchy
amount to the fact that the F -selfdual degrees are obtained gluing together many
F ′-degrees: therefore to understand how the F -structure can be obtained from the
finer ones we must describe how each F -selfdual degree is constructed.

The first case, that is when we want to compare the F -hierarchy (for F of type
I) with the G1-hierarchy, is clearly solved by the Steel–Van Wesep Theorem, which
says that A ≤W ¬A ⇐⇒ A ≤L ¬A: in fact since L ⊆ F ⊆ W ≃ G1 it must be
the case that A ≤G1 ¬A if and only if A ≤F ¬A, and as sLip(A) ≤W A we get that
each G1-selfdual degree is exactly the union of a (maximal) ω1-chain of consecutive
F -selfdual degrees.

Now considerH of type III as above: asH ≃
⋃

µ<ξ Gµ, it is clear that if A ≤H ¬A

then [A]H =
⋃

µ<ξ[A]Gµ
. Therefore the H-hierarchy is the minimal degree-structure

which is refined by all the Gµ-structures.

Finally, to compare the H-hierarchy with the Gξ-hierarchy, for ~F a regular chain
of reductions first define8 sαξ [B] ~F (for B ⊆ R and 1 ≤ α < ω1) by letting s1ξ[B] ~F =

[B] ~F , s
α
ξ [B] ~F = [

⊕

n Cn] ~F (where Cn ∈ sαn

ξ [B] ~F and the αn’s are increasing and

cofinal in α) if α is limit, and sαξ [B] ~F = [s ~F (C)] ~F (where C ∈ sα
′

ξ [B] ~F ) if α = α′+1.

(Note that if B ≤ ~F ¬B then the sαξ [B] ~F ’s are exactly the ω1-chain of consective ~F -

selfdual degrees which follows [B] ~F .) Moreover, given a pointclass Γ and a nonzero

8We must define the ω1-chain on the ~F-degrees (rather than on sets) because the Perfect Set
Property, which already follows from SLOL, forbids the possibility of having an ω1-chain of sets
of bounded Borel rank.
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ordinal µ < ω1, define

PUµ(Γ) =
{

⋃

n
(An ∩Dn) | An ∈ Γ and 〈Dn | n ∈ ω〉 is a ∆0

µ-partition of R
}

and

SUµ(Γ) =
{

⋃

n
(An ∩Dn) | An ∈ Γ, Dn ∈ ∆0

µ and Dn ∩Dm = ∅ if n 6= m
}

.

Finally, for µ limit and µn’s (strictly) increasing and cofinal in µ define SU<µ,α(Γ)
by the following induction on α < ω1 (note the definition is independent from the
choice of the µn’s):

SU<µ,α(Γ) =

{

Γ if α = 0
⋃

n SUµn
(
⋃

α′<α SU<µ,α′(Γ)) if α > 0.

Proposition 7.1 (ZF+ACω(R)). Let ~F be a regular chain of reductions of rank ξ
(for ξ a countable limit ordinal). For A,B ⊆ R, A ≤DW

ξ
B if and only if A ≤W C

for some C ∈ sαξ [B] ~F and α < ω1.

Proof. Let Γ = Γ(B) = {D ⊆ R | D ≤W B} be the boldface pointclass generated
by B. It is immediate to check that A ≤DW

ξ
B ⇐⇒ A ∈ PUξ(Γ). By Theorem E.4

of chapter IV of Wadge’s [13], PUξ(Γ) =
⋃

α<ω1
SU<ξ,α(Γ), so let α be smallest

such that A ∈ SU<ξ,α(Γ). We will prove by induction on α that A ≤W C for some

C ∈ sα+1
ξ [B] ~F . If α = 0, then A ∈ SU<ξ,0(Γ) = Γ and therefore A ≤W B (by

definition of Γ) and obviously B ∈ [B] ~F = s1ξ[B] ~F . Now assume α > 0, and let

n be such that A ∈ SUµn
(
⋃

α′<α SU<µ,α′(Γ)), so that A =
⋃

m(Am ∩ Dm) where

Dm ∈ ∆0
µn

, Dm ∩ Dm′ = ∅ if m 6= m′, and Am ∈ SU<µ,αm
(Γ) for some αm < α

(depending onm). By inductive hypothesis, Am ≤W Cm for some Cm ∈ sαm+1
ξ [B] ~F ,

and therefore Am ≤W

⊕

m Cm for every m. Moreover
⊕

m Cm ∈ sαξ [B] ~F as α =

sup{αm + 1 | m ∈ ω} by its minimality.

Claim 7.1.1. A ≤W Σµn+1(
⊕

m Cm).

Proof of Claim. Let 〈µn | n ∈ ω〉 be the type of ~F , P be the complete Π0
µn

-set used

to define the operator Σµn+1, and fm be continuous functions such that f0 reduces
¬
⋃

mDm to P , f2(m+1) reduces Dm to P , f1 is constant with value y /∈
⊕

m Cm,
and f2m+3 is a reduction of Am to

⊕

m Cm: it is easy to check that
⊗

m fm reduces
A to Σµn+1(

⊕

m Cm) as required. � Claim

Since µn < µn + 1 ≤ µn+1, we get Σµn+1(
⊕

m Cm) ≤W Σµn+1(
⊕

m Cm) ≤W

s ~F(
⊕

m Cm) ∈ sα+1
ξ [B] ~F and hence we are done. �

As a corollary of Proposition 7.1 one gets a Steel–Van Wesep-style theorem for
higher levels.

Theorem 7.2. Let Gξ be as above and ~F be a regular chain of reductions of rank
ξ. Then A ≤Gξ

¬A if and only if A ≤ ~F ¬A. In particular, A ≤Dξ
¬A implies that

A ≤Dµ
¬A for some µ < ξ.

Proof. One direction is easy, as
⋃

µ<ξ Dµ ⊆ Dξ ≃ Gξ. For the other direction let

B be L-minimal in [A]Gξ
, so that B ≤L ¬B. As Gξ ≃ DW

ξ , apply Proposition 7.1

and let α be minimal such that A ≤W C for some C ∈ sαξ [B] ~F . Since A < ~F C
contradicts the minimality of α, we must have C ≤ ~F A and therefore A ≡ ~F C: but

as C is ~F -selfdual (since B is) we get A ≤ ~F ¬A as desired. �
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All this discussion solves the problem of comparing the H-hierarchy with the

Gξ-hierarchy: using the fact that Gξ ≃ DW
ξ , H ≃ ~F (where ~F is any regular chain

of rank ξ), and s ~F (A) ≤DW
ξ
A, we get that each Gξ-selfdual degree is exactly the

union of a (maximal) ω1-chain of consecutive H-selfdual degrees.

Appendix: Some alternative proofs of the SDP

In many of the concrete examples, one can directly prove (in a simpler way)
that a Borel set of reductions F has the SDP using the fact that Lip(2) ⊆ F and
applying Proposition 4.2. For instance, if F = Lip or F = UCont, given a set
A ≤F ¬A which is L-minimal in its F -degree we can use the fact that A ≤W ¬A
(since Lip ⊆ UCont ⊆ W) and then apply the Steel–Van Wesep Theorem to get
A ≤L ¬A.

In the case of a regular chains of reductions ~F = 〈Fn | n ∈ ω〉, we can prove
that if A ≤ ~F ¬A and B is L-minimal in [A] ~F then B ≤L ¬B as follows: let n0 be
minimal such that A ≤Fn0

¬A, so that A ≤Fm
¬A for every m ≥ n0. Moreover, for

every m ≥ n0 let Bm be L-minimal in [A]Fm
(so that Bm ≤L ¬Bm by Corollary 5.4

in [8]), and note that if 0 ≤ k ≤ m then Bm ≤L C for every C ∈ [A]Fk
because ~F

is regular (in particular, if n0 ≤ k ≤ m then Bm ≤L Bk). Since ≤L is well-founded,
there must be some n1 ≥ n0 such that Bm ≡L Bn1 for everym ≥ n1. Put B

′ = Bn1 :
then B′ ≤L ¬B′ and B′ is easily seen to be L-minimal in [A] ~F , so that B′ ≡L B
and we are done.

However, Baire reductions Bξ are perhaps the most interesting case.

Lemma (ZF+ACω(R)). Let A,B ⊆ R be such that A ≤Bξ
B. Then there is some

C ≡Bξ
A such that C ≤L A and C ≤L B.

Proof. It is enough to prove that there is some A′ ≡Bξ
A such that A′ ≤W A

and A′ ≤W B: then applying twice Lemma 19 of [1] we get the desired C as in
the proof of Lemma 8 in [4]. Let µ < ξ and f ∈ Bµ be such that A = f−1(B).
Applying Lemma 4.3 to the family {f−1(Ns) | s ∈ <ωω} ⊆ ∆0

µ+1, we get a new
zero-dimensional Polish topology τ ′ ⊇ τ on R such that f : (R, τ ′) → (R, τ) is
continuous and Σ0

1(τ
′) ⊆ Σ0

µ+1(τ). Let H : (F, τ) → (R, τ ′) be an homeomorphism
between a closed set F ⊆ R and R endowed with the new topology, and let r : R ։ F
be a retraction on F . Finally, put A′ = (H ◦r)−1(A): since H−1 : (R, τ) → (R, τ) is
of Baire class µ we get A ≤Bξ

A′, and since H ◦r and f ◦H ◦r are clearly continuous
function from (R, τ) to (R, τ) which witness A′ ≤W A and A′ ≤W B, respectively,
A′ is as required. �

Let now B be L-minimal in [A]Bξ
, where A ≤Bξ

¬A. Since B ≤Bξ
¬B, we can

apply the previous lemma to get C ≡Bξ
B such that C ≤L B and C ≤L ¬B. By

minimality of B, we must have B ≡L C and hence B ≤L ¬B.
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