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Abstract

In 2007, Terence Tao wrote on his blog an essay about soft analysis, hard
analysis and the finitization of soft analysis statements into hard analysis
statements. One of his main examples was a quasi-finitization of the infinite
pigeonhole principle IPP, arriving at the “finitary” infinite pigeonhole principle
FIPP1. That turned out to not be the proper formulation and so we proposed
an alternative version FIPP2. Tao himself formulated yet another version
FIPP3 in a revised version of his essay.

We give a counterexample to FIPP1 and discuss for both of the versions
FIPP2 and FIPP3 the faithfulness of their respective finitization of IPP by
studying the equivalences IPP ↔ FIPP2 and IPP ↔ FIPP3 in the context
of reverse mathematics. In the process of doing this we also introduce a
continuous uniform boundedness principle CUB as a formalization of Tao’s
notion of a correspondence principle and study the strength of this principle
and various restrictions thereof in terms of reverse mathematics, i.e., in terms
of the “big five” subsystems of second order arithmetic.

1 Introduction

In his article [10], T. Tao introduced the program of finitizing infinitary principles
P in analysis. This is achieved by showing (using compactness and continuity ar-
guments) the existence of a uniform bound on some existential number quantifier
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(in a suitably reformulated version of P , e.g., corresponding to its Herbrand nor-
mal form) that is independent from the infinitary input of the principle (typically
an infinite sequence in some metric space). From this bound one then reads off
that the new (“finitary”) principle actually only refers to some finite part (e.g., a
finite initial segment in the case of a sequence) of that infinitary input. As two of
his prime examples he discusses the convergence principle for bounded monotone se-
quences of reals (PCM) and the infinitary pigeonhole principle (IPP). As observed in
[8], the finitary version of PCM proposed by Tao directly follows from a well-studied
proof-theoretic construction due to the second author, the so-called monotone Gödel
functional interpretation of PCM. In [8] a similar case is made concerning IPP, i.e.,
it is shown that the monotone functional interpretation of IPP leads to a “finitary”
version FIPP0 similar, but not identical, to the one proposed by Tao in his first
2007 posting of [10] (FIPP1). Like Tao, we use the prefix “finitary” here in quo-
tation marks as neither of the finitizations of IPP is strictly finitary (in the sense
the finitary form of PCM is) since non-finitary (in fact 2nd order) conditions on the
Herbrand index function need to be imposed.

One difference between FIPP0 and FIPP1 is that the former is formulated in a
language of primitive recursive functionals whereas the latter is formulated in terms
of sets and finitary set-functions. In closing the gap between the two formulations
the second author reformulated FIPP0 into a variant FIPP2 in the same vocabulary
as the latter. However, as it turns out, FIPP2 has a slightly weaker conclusion than
FIPP1. Subsequently, the first author found a counterexample to FIPP1 (see section
4 below). In reaction to that counterexample, Tao modified FIPP1 (in a revised
posting of [10] from August 2008) to yet another version FIPP3 which keeps the
original conclusion of FIPP1 but strengthens the premise of the latter principle. In
order to compare the two finitizations FIPP2 and FIPP3 w.r.t. their faithfulness as
finitizations of IPP we investigate in this paper the strength of the equivalences
IPP ↔ FIPP2 and IPP ↔ FIPP3 in terms of the systems RCA0, WKL0 and ACA0

from the program of reverse mathematics (see [9]). For FIPP0 it follows from the
reasoning given in [8] that it implies IPP over a system of functionals of finite type
that is conservative over Kalmar elementary arithmetic and that the implication
IPP→ FIPP0 follows with an additional use of WKL (needed to show that continuous
functionals Φ : 2N → N are bounded, see [6, 9]). This suggests that the version FIPP2

that was prompted by FIPP0 has a similar behavior: more precisely we show that
RCA0 proves FIPP2 → IPP while WKL0 proves IPP→ FIPP2.

For FIPP3 the direction FIPP3 → IPP still follows in RCA0. The implication
IPP→ FIPP3 can be established by an application of the Bolzano-Weierstraß prop-
erty of the compact metric space [n]N (with respect to the Baire metric) which
in turn is provable in (and in fact equivalent to) ACA0 (see [9]). So ACA0 proves
IPP→ FIPP3. This, however, is unsatisfactory as ACA0 is much stronger than IPP it-
self, whereas WKL0 does not prove IPP by a result due to [3]. So it is natural to try to
establish the implication IPP→ FIPP3 by a WKL-type “Heine-Borel”-compactness
argument rather than by using sequential compactness (requiring ACA0). Towards
this goal and aiming at a formalization of Tao’s informal notion of “correspondence
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principle” from [11] we formulate a “continuous uniform boundedness principle” CUB
that generalizes the usual FAN-uniform boundedness obtained from (the contrapos-
itive form of) WKL. In fact, CUB restricted to Σ0

1 formulas, denoted by Σ0
1-CUB,

is equivalent to WKL0 over RCA0 and the proof that WKL0 implies IPP → FIPP2

can nicely be recasted as an application of Σ0
1-CUB as we will do below. Also

IPP → FIPP3 can be established by an application of CUB. However, this time it
seems that a Π0

1 instance, i.e., a use of Π0
1-CUB is needed. Unfortunately, Π0

1-CUB
is no longer derivable in WKL0 but, in fact, is equivalent to ACA0 (over RCA0)
which shows that the strength of the correspondence principle as formalized by CUB

crucially depends on the logical complexity of the instance involved. In fact, over
RCA it turns out that the unrestricted CUB even is equivalent to full second order
comprehension over numbers, i.e., to Z2. While leaving open the question whether
WKL0 proves IPP → FIPP3, the results in this paper may suggest that the answer
is negative and at the same time show that the logical structure of the formula to
which a correspondence principle such as CUB is applied matters in determining
how close a finitization of some infinitary principle stays to that principle.

The following diagram summarizes the picture established in this paper:

Z2
oo

RCA
// CUB

Π1
1-CA0

OO
O�
O�

ATR0

OO
O�
O�

ACA0

OO

O�
O�

oo
RCA0

// Π0
1-CUB

RCA0
// (IPP→FIPP3)

?
kk

WKL0

OO

O�
O�

oo
RCA0

// Σ0
0-CUB

RCA0
// (IPP→FIPP2)

?
kk

RCA0

OO

O�
O�

// (FIPP2/3→IPP)

2 Definitions

In this paragraph we collect some notation and formulate the infinite pigeonhole
principle IPP as well as the three “finitary” infinite pigeonhole principles FIPP1,
FIPP2 and FIPP3.

All the definitions take place in the context of the language of RCA0, where RCA0

is the base system used in reverse mathematics (see [9] for details). All undefined
notations are to be understood in the sense of [9]. We need to be rather formal in
our definitions working over the weak base system RCA0. For example, in point 1
of definition 5 we need to assume the existence of the union of an infinite sequence
of sets, since RCA0 in general doesn’t prove that such a union exists. But over
sufficiently strong systems such as ACA0, the clause stating the existence of the
union set is redundant.
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Tao formulated his “finitary” infinite pigeonhole principle using set functions,
i.e., functions that take as input a finite subset of N and return as output a natural
number. Those are, however, objects of a higher type than those available in the
language of RCA0, so we had to reformulate Tao’s principle using functions from N

to N by identifying a finite subset of N with a natural number encoding it.

Definition 1. We denote by [i] the set {j : j ≤ i} of the first i+1 natural numbers.
If i = 0, then we make the convention that [i− 1] is the empty set ∅.

Definition 2. If l ∈ Seq, then we define Al to be the set encoded by the finite
sequence with code l, i.e., Al := {l(i) : i < lh l}. We say that l is a code of a set A if
A = Al. One can also consider the minimal code which then is called the code of A.

Definition 3. If f : N → N is a function and m > 0 then we define f̄m to be the
code of the finite sequence 〈f(0), . . . , f(m−1)〉. For m = 0 we make the convention
that f̄m is the code of the empty sequence 〈〉. If s ∈ Seq, then we denote the
function that extends s by zeros by s⌢o.

Definition 4. Let f : X → Y be a function between sets X, Y . We define |A| = m
to mean “exists an f : [m − 1] → A one-to-one and onto”. Then we define |A| ≥
m :≡ ∃m′ (|A| = m′∧m′ ≥ m), and analogously for |A| > m, |A| ≤ m and |A| < m.

Definition 5.

1. A sequence (lm) represents a nested sequence with union of finite subsets of N
if and only if ∀m (lm ∈ Seq), ∀m (Alm ⊆ Alm+1

) and
⋃

m Alm exists.

2. A sequence (lm) weakly converges to an infinite set A if and only if ∀m (lm ∈
Seq) and for all finite sets B we have ∃i ∀j ≥ i (Alj ∩ B = A ∩ B). Then
we say that (lm) weakly converges if and only if it weakly converges to some
infinite set.

3. A function F : N → N is extensional if and only if ∀l, l′ ∈ Seq [Al = Al′ →
F (l) = F (l′)]. Alternatively, one can always use the unique minimal code
which allows one to drop the extensionality requirement.

4. A function F : N → N is asymptotically stable, denoted by F ∈ AS, if and
only if it is extensional and for all nested sequences with union (lm) we have
∃i ∀j ≥ i [F (li) = F (lj)].

5. A function F : N → N is asymptotically stable near infinite sets, denoted
by F ∈ ASNIS, if and only if it is extensional and for all weakly convergent
sequences (lm) we have ∃i ∀j ≥ i [F (li) = F (lj)].

Remark 6. A nested sequence with finite union is never weakly convergent (otherwise
it would converge to the finite union but a weakly convergent sequence must converge
to an infinite set). Every nested sequence with infinite union is weakly convergent
(to the infinite union), but there are weakly convergent sequences that are not nested
(e.g., Alm := [m] ∪ {m+ 2} weakly converges to N but is not a chain).
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We have ASNIS ( AS (if F ∈ ASNIS, then F stabilizes over a nested chain with
finite union because the chain itself stabilizes and F also stabilizes over a nested
chain with infinite union because such a chain is weakly convergent, so F ∈ AS;
the F ∈ AS from the counterexample to FIPP1 below is not in ASNIS otherwise it
would also be a counterexample to true FIPP3).

Definition 7.

1. The infinite pigeonhole principle IPP is the principle: every coloring f of N
into n + 1 colors has an infinite color class f−1(c). In symbols:

∀n ∀f : N→ [n] ∃c ∈ [n] [f−1(c) infinite],

where the set f−1(c) exists by Σ0
0 comprehension: ∀x [x ∈ f−1(c)↔ (x, c) ∈ f ].

2. The first “finitary” infinite pigeonhole principle FIPP1 is the principle: for all
asymptotically stable functions F there exists a k such that every coloring f
of [k] into n + 1 colors has a color class A = f−1(c) that is “big” in the sense
of |A| > F (A). In symbols:

∀n ∀F ∈ AS ∃k ∀f : [k]→ [n] ∃l ∈ Seq ∃c ∈ [n] [Al = f−1(c) ∧ |Al| > F (l)].

3. The second “finitary” infinite pigeonhole principle FIPP2 is the principle: for
all asymptotically stable functions F there exists a k such that every coloring
f of [k] into n+1 colors has a monochromatic set A that is “big” in the sense
of |A| > F (A). In symbols:

∀n ∀F ∈ AS ∃k ∀f : [k]→ [n] ∃l ∈ Seq
[
Al ⊆ [k]∧|Al| > F (l)∧f |Al

constant
]
.

4. The third “finitary” infinite pigeonhole principle FIPP3 is analogous to FIPP1

but with AS replaced by ASNIS.

Remark 8. IPP can also be formulated without reference to the set f−1(c) as

∀n ∀f : N→ [n] ∃c ∈ [n] [∀m ∃k > m (f(k) = c)].

In the presence of Σ0
0 comprehension (and hence over RCA0) there is no difference

between the two formulations.

By a well-known result due to J. L. Hirst [3], IPP is equivalent to the bounded
collection principle for Σ0

2 formulas (often called BΣ0
2, though set parameters are

allowed in the context of RCA0) and is not provable in WKL0:

Proposition 9 ([3]). WKL0 does not prove IPP.

Since BΣ0
2 and hence IPP easily follows from Σ0

2 induction we have that RCA

proves IPP as well as ACA0 proves IPP.

5



3 Technical lemmas

In this section we start by collecting in lemma 10 some folklore properties about
the cardinality of finite sets that we will need later. We first note that the formulas
lh(s) = m, s(i) = m, s ⊆ t (expressing that the finite sequence encoded by s is an
initial segment of the sequence encoded by t), etc. are all Σ0

0 (see [9]).

At some point we will need to talk about (continuous) functionals φ : [n]N → N

within RCA0, and to do so we need to show the existence of a code (in the sense of [9])
for them. As shown in [6], the existence of such a code is equivalent to the existence
of a so-called associate of φ in the sense of Kleene and Kreisel. In the cases at hand
it turns out to be easier to construct an associate rather than to produce a code
directly. For completeness we include lemma 11 which shows that the existence of
an associate implies the existence of a code. In the first point of lemma 13 we show
that every Σ0

0 formula is provably “uniformly continuous” in RCA0. In the second
point we prove that every formula of the form ∀f : N → [n] A(f) with A ∈ Σ0

0

is (over RCA0) equivalent to a Π0
1 formula. Finally, in the first point of lemma 14

we show that if F ∈ ASNIS and A is an infinite set, then the stable value that
F eventually attains on a sequence weakly converging to A doesn’t depend on the
sequence. In the second point we show that if F ∈ ASNIS, then F is “continuous”
in the sense of the Baire space NN with the metric

d(f, g) :=

{

2−m if exists m = minm′ [f(m′) 6= g(m′)],

0 otherwise,

at points that are characteristic functions of infinite sets A.

Lemma 10. RCA0 proves the following.

1. A is a finite if and only if ∃m (|A| = m) if and only if A has a code.

2. If l ∈ Seq, then the formulas |Al| = m, |Al| < m, |Al| > m are equivalent to
Σ0

0 formulas.

3. If A is infinite, then ∀i ∃j (|A ∩ [j − 1]| = i).

4. If A and B are finite sets and A ⊆ B, then |A| ≤ |B|.

Lemma 11 ([6]). If α : N→ N is an associate of φ : [n]N → N, i.e.,

1. ∀β : N→ [n] ∃m [α(β̄m) > 0];

2. ∀β : N→ [n] ∀m
[(
m = minm′ α(β̄m′) > 0

)
→ α(β̄m) = φ(β) + 1

]
;

then φ has a code as a continuous function [n]N → N in the sense of the definition
II.6.1 in [9].
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Proof. We may assume that α is a neighborhood function, i.e., ∀i, j [i ⊆ j ∧ α(i) >
0 → α(i) = α(j)] for otherwise we would replace α by the associate of φ and
neighborhood function

α′(j) :=

{

α(i) if j ∈ Seq and exists the shortest i ⊆ j such that α(i) > 0,

0 otherwise.

In [9] (example II.5.5) a construction is given of a code A, d (where A ⊆ N and
d : A × A → R) for infinite product spaces of complete separable metric spaces.
Particularizing the construction for [n]N =

∏∞

i=0[n] we get

A = {〈ai : i ≤ j〉 : j ∈ N ∧ ∀i ≤ j (ai ∈ [n])},

d(a, b) =
∞∑

i=0

2−i ·
|(a⌢o)(i)− (b⌢o)(i)|

1 + |(a⌢o)(i)− (b⌢o)(i)|
.

One easily verifies that

1. ∀a, b ∈ A [d(a, b) < 2−r → a⌢o r = b⌢o r];

2. ∀a, b ∈ A [a⌢o r = b⌢o r → d(a, b) < 2−(r−1)].

Let B(a, r, b, s) be a Σ0
0 formula expressing

2−(n+1) < r ≤ 2−n ∧ α(a⌢o n) > 0 ∧ |α(a⌢o n)− 1− b| < s.

Let Φ ⊆ N× A ×Q+ × N× Q+ be defined by Σ0
0 comprehension by (n, a, r, b, s) ∈

Φ↔ B(n, a, r, b, s) and define (a, r)Φ(b, s) :≡ ∃n [(n, a, r, b, s) ∈ Φ].
It is straightforward (though tedious) to verify that Φ is indeed a code for the

continuous function φ : [n]N → N.

Remark 12. The lemma, as stated, doesn’t fit the language of RCA0 since it refers to
the third order object φ. However, under the following interpretation it is provable
in RCA0: if α is an associate (i.e., it satisfies condition 1 of the lemma) and Φ is the
code presented in the proof of the lemma, then for all f : N → [n] the value on f
extracted from α is equal to the value on f extracted from Φ.

Lemma 13. Let A(f) be a Σ0
0 formula, f be a set variable and x be a tuple of

distinguished number variables in A(f).

1. RCA0 proves ∀z ∃y ∀f, g : N→ [n]
[
f̄y = ḡy → ∀x ≤ z

(
A(f)↔ A(g)

)]
.

2. There exists a Σ0
0 formula B(m) such that RCA0 proves ∀f : N→ [n] A(f)↔

∀m B(m). In particular, ∀f : N→ [n] A(f) is equivalent to a Π0
1 formula.

3. There exists a Σ0
0 formula C(m) such that RCA0 proves ∀f : N→ [n] [A(f)↔

∀m C(f̄m)].

7



Proof. 1. The proof is by induction on the structure of formulas. If f doesn’t occur
in an atomic formula A, then the result is obvious. If it occurs, then A must be of the
form t(x) ∈ f , i.e., (abbreviating t(x) by t) ∃i, j ≤ t [t = (i, j)∧ f(i) = j]. We prove
by induction on the structure of the number term t(≥ i) that ∃w ∀x ≤ z (t ≤ w)
(for example, if t ≡ t1 · t2 and by induction hypothesis we have ∃w1 ∀x ≤ z (t1 ≤ w1)
and ∃w2 ∀x ≤ z (t2 ≤ w2), then w := w1 · w2 is such that ∀x ≤ z (t ≤ w)). Then
y := w + 1 works.

For the negation ¬A of A we take the same y that by induction hypothesis
works for A. For conjunction A ∧ B we take the maximum of the y’s working
for A and B, and analogously for disjunction, implication and equivalence. For
the bounded universal quantifier ∀i < t A(i), by induction hypothesis we have
∀z ∃y ∀f, g : N → [n]

[
f̄ y = ḡy → ∀x, i ≤ z

(
A(f, i) ↔ A(g, i)

)]
. Thus taking

z′ = max(z, t) we get an y such that for all f, g : N → [n], if f̄y = ḡy, then for all
x ≤ z we have ∀i < t [A(f, i) ↔ A(g, i)]. Hence ∀i < t A(f, i) ↔ ∀i < t A(g, i).
Argue analogously for the bounded existential quantifier.

2. Each occurrence of f in A(f) must be in the form t ∈ f . Let B(m) be the
formula obtained from A(f) by replacing each such occurrence t ∈ f by the Σ0

0

formula

C(m, t, n) :≡ m ∈ Seq ∧ ∃i, j ≤ t
[

t = (i, j) ∧
(

i < lhm→ j = min
(
n,m(i)

))

∧ (i ≥ lhm→ j = 0)
]

,

where [. . .] expresses that j = min
(
n, (m⌢o)(i)

)
. Then B(m) is a Σ0

0 formula. Let
us prove ∀f : N→ [n] A(f)↔ ∀m B(m).

‘→’: Take any m ∈ Seq. We define f : N → [n] by f(i) := min
(
n,m(i)

)
if

i < lhm and f(i) := 0 if i ≥ lhm. Then t ∈ f ↔ C(m, t, n), so A(f)↔ B(m).
‘←’: Take any f : N → [n]. By point 1, let y be such that ∀g : N → [n]

[
f̄ y =

ḡy →
(
A(f) ↔ A(g)

)]
. In particular, taking g = f̄ y⌢o we get A(f) ↔ A(f̄ y⌢o).

Let m := f̄ y. Then t ∈ f̄ y⌢o↔ C(m, t, n), so B(m)↔ A(f̄ y⌢o)↔ A(f).
3. First we easily show, by induction on the structure of the term t(i), that RCA0

proves i ≤ q → t(i) ≤ t(q).
Let A′(a) be the formula obtained from A(f) by (adding the assumption a ∈ Seq

and) replacing each instance of q ∈ f by ∃i, j ≤ q [q = (i, j) ∧ a(i) = j]. We show,
by induction on the structure of A(f), that there exists a term t such that RCA0

proves ∀f : N → [n]
[
m ≥ t →

(
A(f) ↔ A′(f̄m)

)]
. For an atomic formula A, if

f doesn’t occur, then the result is obvious; if f occurs in A, then A is of the form
q ∈ f , that is equivalent to ∃i, j ≤ q [q = (i, j) ∧ f(i) = j], so t := q + 1 works. For
¬A we take the same t that works for A. For A∧B, A∨B, A→ B and A↔ B we
take the sum of the t’s working for A and B. For ∀i < q A(i) we have by induction
hypothesis a term t′(i) that works for A(i), so using the previous paragraph we see
that the term t(q) works for ∀i < q A(i). Argue, analogously for ∃i < q A(i).

Finally, using the previous paragraph we easily see that C(a) :≡ m ≥ t→ A′(a)
works.

Lemma 14. RCA0 proves the following.
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1. For all F ∈ ASNIS and for all infinite sets A, there exists a c such that for
all sequences (lm) weakly convergent to A, we have ∃i ∀j ≥ i [F (lj) = c].

2. For all F ∈ ASNIS and for all infinite sets A, there exist c and d such that
∀l ∈ Seq [Al ∩ [d] = A ∩ [d]→ F (l) = c].

Proof. 1. Let F ∈ ASNIS and let A be an infinite set. First we define c. We define by
primitive recursion a sequence (lm) where each lm is such that Alm = A∩[m]. Clearly
(lm) weakly converges to A, so since F ∈ ASNIS we have ∃h ∀j ≥ h [F (lh) = F (lj)].
Let c := F (lh).

Consider an arbitrary sequence (l′m) weakly converging to A. Let us define i. We
have ∃h′ ∀j ≥ h′ [F (l′h′) = F (l′j)]. By primitive recursion define the sequence (l′′m)
by

l′′m :=

{

lm/2 if m is even,

l′(m−1)/2 if m is odd.

Since both (lm) and (l′m) weakly converge to A, then also (l′′m) weakly converges
to A, and so since F ∈ ASNIS we have ∃h′′ ∀j ≥ h′′ [F (l′′h′′) = F (l′′j )]. Let i :=
max(2h, 2h′, h′′).

It remains to prove ∀j ≥ i [F (l′j) = c]. Since i ≥ h′, and so ∀j ≥ i [F (l′h′) =
F (l′j)], it is enough to prove F (l′h′) = c. So take an even j ≥ i. Then l′′j = lj/2 and
l′′j+1 = l′j/2. Since j ≥ 2h and j ≥ 2h′, we have j/2 ≥ h and j/2 ≥ h′. Thus F (l′′j ) =

F (lj/2) = F (lh) = c and F (l′′j+1) = F (l′j/2) = F (l′h′). But F (l′′j ) = F (l′′h′′) = F (l′′j+1)

since j ≥ h′′. We conclude that F (l′h′) = c.

2. Let F ∈ ASNIS and, by contradiction, let us assume that A is an infinite set
such that for all c and d there exists an l ∈ Seq such that Al∩[d] = A∩[d]∧F (l) 6= c.
Notice that the latter formula is equivalent to a Σ0

0 formula. Let c be the number
given by the previous point. We define a sequence (lm) by lm := min l

[
l ∈ Seq ∧

Al ∩ [m] = A∩ [m]∧F (l) 6= c
]
so that ∀m

[
Alm ∩ [m] = A∩ [m]∧F (lm) 6= c

]
. Then

(lm) weakly converges to A while ∀m [F (lm) 6= c], contradicting point 1.

4 Counterexample to IPP↔ FIPP1

In this section we give a counterexample to FIPP1. In particular, FIPP1 is not
equivalent to the true IPP.

Theorem 15. RCA0 refutes FIPP1.

Proof. We define F ∈ AS, n and a sequence of colorings fk : [k]→ [n].

We take n := 1. Let us write ṁ to mean that the number m was given the color
0 and m̈ to mean that it was given the color 1.

LetO := {1, 3, 5, . . .} be the set of the odd natural numbers and E := {0, 2, 4, . . .}
be the set of the even natural numbers. Let us make the (non-standard) convention

9



min ∅ := 0. We define

F : N→ N

l 7→

{

min(Al ∩O) + min(Al ∩ E) + 2 if l ∈ Seq,

0 otherwise.

Let us prove F ∈ AS. Clearly F is extensional. Consider a nested sequence with
union (lm). Then we have a nested sequence Al0 ∩O ⊆ Al1 ∩O ⊆ Al2 ∩O ⊆ · · · . So
eventually the numbers min(Alm ∩ O) will become constant. In an analogous way,
eventually the numbers min(Alm∩E) will become constant. So F (lm) will eventually
become constant.

We color each set [k] in the following way:

1. the odd numbers are given the color 0 and the even numbers are given the
color 1;

2. except for the last two numbers k − 1 and k, where the odd number is given
the color 1 and the even number is given the color 0.

In the cases of k = 0 and k = 1, i.e., in the cases of the sets [0] and [1], we consider
that 0 and 1 are the last two numbers, so we apply the second rule to them.

Let us write the colored sets [0], [1], [2], . . . and, on the left of each set, the value
of F over the 0- and 1-color classes:

2̇ 2̈ { 0̇ }
2̇ 3̈ { 0̇, 1̈ }
4̇ 3̈ { 0̈, 1̈, 2̇ }
5̇ 5̈ { 0̈, 1̇, 2̇, 3̈ }
7̇ 5̈ { 0̈, 1̇, 2̈, 3̈, 4̇ }
7̇ 7̈ { 0̈, 1̇, 2̈, 3̇, 4̇, 5̈ }
9̇ 7̈ { 0̈, 1̇, 2̈, 3̇, 4̈, 5̈, 6̇ }
9̇ 9̈ { 0̈, 1̇, 2̈, 3̇, 4̈, 5̇, 6̇, 7̈ }
...

...
...

...
...

...
...

...
...

...
. . .

Notice that the cardinality of any fk-color class is less than or equal to |[k]| = k+1
which in turn is less than or equal to the value of F over (a code for) that color
class. So we have ∀k ∀l ∈ Seq ∀c ∈ [1] [Al = (fk)

−1(c)→ |Al| ≤ F (l)], which falsifies
FIPP1.

5 Proofs of FIPP2 → IPP and FIPP3 → IPP

In this section we give proofs in RCA0 of the implications FIPP2 → IPP and FIPP3 →
IPP. Latter we study the reverse implications.

Theorem 16.

10



1. RCA0 proves FIPP2 → IPP.

2. RCA0 proves FIPP3 → IPP.

Proof. 1. FIPP2 implies

∀n ∀F ∈ AS ∀f : N→ [n] ∃k ∃l ∈ Seq
[
Al ⊆ [k] ∧ |Al| > F (l) ∧ f |Al

constant
]

︸ ︷︷ ︸

≡:B(F,f)

.

(1)
Assume ¬IPP. Then there exists n and f : N→ [n] such that

∀A ∃m (|A| ≤ m ∨ f |A not constant). (2)

If A is given by a code l, then by point 2 of lemma 10 the formula “|Al| ≤ m ∨
f |Al

not constant” is equivalent to some Σ0
0 formula (using that the image of f is in

[n]), thus by primitive recursion we can define the function

F : N→ N

l 7→

{

minm (|Al| ≤ m ∨ f |Al
not constant) if l ∈ Seq,

0 otherwise.

Let us prove F ∈ AS. Take any nested sequence (lm) with union A :=
⋃

mAlm .
If A is finite, then ∃i ∀j ≥ i (Ali = Alj ) (using BΣ0

1 which is derivable in RCA0).
Hence F eventually stabilizes over (lm). If A is infinite, then by (2) we have ∃x, y ∈
A [x 6= y ∧ f(x) 6= f(y)] and ∃i (x, y ∈ Ali) which yields ∀j ≥ i (x, y ∈ Alj ). Thus
∀j ≥ i [F (li) = 0 = F (lj)]. This concludes the proof of F ∈ AS.

So we have found n, F ∈ AS and f : N→ [n] such that ¬B(F, f), contradicting
(1).

2. The proof is analogous to the proof of point 1, except for the argument that
F ∈ ASNIS. Let us prove F ∈ ASNIS. Take any sequence (lm) weakly convergent to
an infinite set A. By (2) we get ∃x, y ∈ A [x 6= y∧f(x) 6= f(y)]. Let z := max(x, y).
Since (lm) is weakly convergent to A we have ∃i ∀j ≥ i (Alj ∩ [z] = A ∩ [z]). But
x, y ∈ A ∩ [z] and so ∀j ≥ i (x, y ∈ Alj ), thus ∀j ≥ i [F (li) = 0 = F (lj)].

Together with proposition 9 we get

Corollary 17. WKL0 does not prove FIPP2. Also WKL0 does not prove FIPP3.

6 Continuous uniform boundedness

In definition 18 we will define a predicate cont(A) that, in particular, expresses the
continuity of the functional

φ : [n]N → N, f 7→ min x [A(f, x)].

Then we define a compactness principle CUB that roughly speaking expresses that
if φ is continuous and total, then it is bounded on the compact [n]N. There is also a

11



variant CUB′ that emphasizes that the conclusion only talks about an initial segment
of f . However, it turns out that for the instances of CUB and CUB

′ in which we
are interested, the two principles are equivalent, as we show in proposition 21. In
proposition 19 we show that Σ0

0-CUB and Σ0
0-CUB

′ can be upgraded to Σ0
1-CUB and

Σ0
1-CUB

′. In theorem 22 we calibrate the strength of Φ-CUB in terms of the “big
five” subsystems of second order arithmetic.

Definition 18. The following definition is made within RCA0.

1. Let A(f, x) be a formula with (among others) a distinguished set variable f
and a distinguished tuple of number variables x. We say that A is continuous
(w.r.t. f, x), and write cont(A) (more precisely cont(A(f, x))), if and only if

∀f : N→ [n] ∀z ∃y ∀g : N→ [n]
[
f̄y = ḡy → ∀x ≤ z

(
A(f, x)↔ A(g, x)

)]
,

where the variable n doesn’t occur free in A.

2. The continuous uniform boundedness principle CUB is the schema

∀n
[(
cont(A) ∧ ∀f : N→ [n] ∃x A(f, x)

)
→ ∃z ∀f : N→ [n] ∃x ≤ z A(f, x)

]
.

We denote by Γ-CUB the restriction of CUB to formulas A(f, x) in Γ.

3. The variant continuous uniform boundedness principle CUB
′ is the schema

∀n
[(
cont(A) ∧ ∀f : N→ [n] ∃x A(f, x)

)
→

∃z ∀f : N→ [n] ∃x ≤ z
(
A(f, x) ∧ ∀g : N→ [n]

(
f̄ z = ḡz → A(g, x)

))]
.

We denote by Γ-CUB′ the restriction of CUB′ to formulas A(f, x) in Γ.

Proposition 19. RCA0 proves the following.

1. Σ0
0-CUB↔ Σ0

1-CUB.

2. Σ0
0-CUB

′ ↔ Σ0
1-CUB

′.

Proof. 1. The right-to-left implication is trivial. Let us consider the left-to-right
implication. Consider any Σ0

1 formula ∃w A where A is a Σ0
0 formula. We assume

the part ∀f : N → [n] ∃x [∃w A(f, x, w)] of the assumption of Σ0
1-CUB. By point

1 of lemma 13 we have cont(A) (w.r.t. f, x, w). By Σ0
0-CUB applied to A we get

∃z ∀f : N→ [n] ∃x, w ≤ z A(f, x, w). From here we get the conclusion ∃z ∀f : N→
[n] ∃x ≤ z [∃w A(f, x, w)] of Σ0

1-CUB.
2. The proof is analogous to the proof of the previous point.

Remark 20. By point 1 of lemma 13, cont(A) is always satisfied for Σ0
0 formulas A

and so can be dropped in Σ0
0-CUB. The proof of point 1 in proposition 19 above

shows that dropping cont(A) also in Σ0
1-CUB results in an equivalent principle. For

Π0
1-CUB this is no longer the case (see the comments at the end of this paper).
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Proposition 21. RCA0 proves the following.

1. Σ0
0-CUB↔ Σ0

0-CUB
′.

2. Π0
1-CUB↔ Π0

1-CUB
′.

3. CUB↔ CUB
′.

Proof. 1. The right-to-left implication is trivial. Let us prove the left-to-right im-
plication. We assume the premise cont(A) ∧ ∀f : N → [n] ∃x A(f, x) of Σ0

0-CUB
′,

where A(f, x) is a Σ0
0 formula. Then by Σ0

0-CUB we have

∃z′ ∀f : N→ [n] ∃x ≤ z′ A(f, x, y). (3)

By point 1 of lemma 13 we have

∃y ∀f, g : N→ [n] ∀x ≤ z′
[
f̄y = ḡy →

(
A(f, x)↔ A(g, x)

)]
. (4)

Let z := max(y, z′). Then from (3) and (4) we get the conclusion of Σ0
0-CUB

′.
2. The right-to-left implication is trivial. Let us prove the left-to-right implica-

tion. We assume the premise cont(∀w A(f, x, w))∧ ∀f : N→ [n] ∃x [∀w A(f, x, w)]
of Π0

1-CUB
′, where ∀w A(f, x, w) is a Π0

1 formula and A(f, x, w) is a Σ0
0 formula.

Then

∀f : N→ [n] ∃x ∃y
[
∀w A(f, x, w) ∧ ∀g : N→ [n]

(
f̄ y = ḡy → ∀w A(g, x, w)

)]

︸ ︷︷ ︸

≡:B

.

Note that f̄y = ḡy is equivalent to

∀i < y ∀z ≤ n [(i, z) ∈ f ↔ (i, z) ∈ g] ∈ Σ0
0.

Moving the quantifiers ∀w and ∀g : N → [n] in B to the front of B we get an
equivalent formula of the form ∀w ∀g : N→ [n] C were C is a Σ0

0 formula. By point
2 of lemma 13, ∀g : N→ [n] C is equivalent to a Π0

1 formula, so B is equivalent to a
Π0

1 formula. Therefore we can apply Π0
1-CUB to B (note that cont(B) w.r.t. f, x, y

since cont(∀w A(f, x, w))) getting

∃z ∀f : N→ [n] ∃x, y ≤ z
[
∀w A(f, x, w)∧∀g : N→ [n]

(
f̄ y = ḡy → ∀w A(g, x, w)

)]
.

Now replacing y by z in f̄ y = ḡy we get the conclusion of Π0
1-CUB

′.
3. The proof is analogous to the proof of point 2, disregarding the considerations

about the complexity of B.

Theorem 22.

1. RCA0 proves Σ0
0-CUB↔ WKL0.

2. RCA0 proves Π0
1-CUB↔ ACA0.
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3. RCA (not RCA0) proves CUB↔ Z2.

Proof. 1. ‘→’: We assume Σ0
0-CUB and, by contradiction, ¬WKL0. Then we have an

infinite binary tree T ⊆ 2<N with no infinite path, i.e., ∀f : N → [1] ∃x (f̄x /∈ T )
where the formula f̄x /∈ T is ∆0

1 and hence Σ0
1. By Σ0

1-CUB and so (using proposition
19) also by Σ0

0-CUB we have ∃z ∀f : N → [1] ∃x ≤ z (f̄x /∈ T ). This means that
every branch in T has length bounded by z − 1, so the binary tree T is finite,
contradicting the fact that it is infinite.

‘←’: First we show that RCA0 proves

WKL0 →
[(
∀k ∃f : N→ [n] ∀x ≤ k A(f, x)

)
→

(
∃f : N→ [n] ∀x A(f, x)

)]
,

where A is Σ0
0. We assume WKL0 and ∀k ∃f : N→ [n] ∀x ≤ k A(f, x). By point 3 of

lemma 13 we can write A(f, x) as ∀m B(f̄m, x) where B is Σ0
0. By Σ0

0 comprehension
we define the bounded tree T := {τ ∈ [n]<N : ∀x,m ≤ lh(τ) B(τ̄m, x)}. We have
∀p ∃τ ∈ T [lh(τ) = p]: taking k = p in our assumption we get an f : N → [n] such
that ∀x,m ≤ p B(f̄m, x) where f̄m = τ̄m for τ := f̄ p ∈ T with length lh(τ) = p. So
T is infinite, thus by WKL0 (actually by bounded König’s lemma that is equivalent
to WKL0 over RCA0 as proved in lemma IV.1.4 in [9]) there is an infinite path
f : N → [n] through T . Then ∀x A(f, x), i.e., ∀x,m B(f̄m, x): for p := max(x,m)
we have τ := f̄p ∈ T , i.e., ∀x′, m′ ≤ p B(τ̄m′, x′) where τ̄m′ = f̄m′, and so taking
x′ = x and m′ = m we get B(f̄m, x).

Finally, we show that RCA0 proves WKL0 → Σ0
0-CUB taking the contrapositive

of the inner implication proved in the previous paragraph.
2. It is enough to show that RCA0 proves that Π0

1-CUB is equivalent to Π0
1 com-

prehension, since Π0
1 comprehension is equivalent to Σ0

1 comprehension and in turn,
as proved in lemma III.1.3 in [9], Σ0

1 comprehension is equivalent over RCA0 to ACA0.
‘→’: Let us prove that Π0

1-CUB implies Π0
1 comprehension. Consider any Π0

1

formula ∀m A(x,m) where A(x,m) is a Σ0
0 formula. By contradiction, we assume

¬∃X ∀x [x ∈ X ↔ ∀m A(x,m)], i.e., ¬∃f : N → [1] ∀x [f(x) = 0 ↔ ∀m A(x,m)].
Then

∀f : N→ [1] ∃x,m ∀m′ ¬
[(
f(x) = 0→ A(x,m)

)
∧
(
A(x,m′)→ f(x) = 0

)]

︸ ︷︷ ︸

≡:B(f,x,m)

.

By Π0
1-CUB applied to the (continuous) Π0

1 formula B we get a z such that

∀f : N→ [1] ∃x ≤ z ¬
[(
f(x) = 0→ ∀m ≤ z A(x,m)

)
∧
(
∀m′ A(x,m′)→ f(x) = 0

)]
.

But that is contradicted by the function

f : N→ [1]

x 7→

{

0 if ∀m ≤ z A(x,m),

1 otherwise

which is definable by Σ0
0 comprehension.
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‘←’: Now let us see that Π0
1 comprehension implies Π0

1-CUB. We assume Π0
1

comprehension, and, therefore, we have ACA0. We assume the premise cont(A) ∧
∀f : N→ [n] ∃x A(f, x) of Π0

1-CUB, where A(f, x) is a Π0
1 formula, and we want

to prove the conclusion ∃z ∀f : N → [n] ∃x ≤ z A(f, x) of Π0
1-CUB. Take any

f : N→ [n]. In ACA0 there exists min z [∃x ≤ z A(f, x)]. Consider the functional

φ : [n]N → N

f 7→ min z [∃x ≤ z A(f, x)].

This functional cannot directly be formed in ACA0 as it is a 3rd order object. How-
ever, we will show now that it has a (2nd order) code as a continuous function in
the sense of [9]. Let

l ∈ Seq≤n :≡ l ∈ Seq ∧ l⌢o : N→ [n],

B(l) :≡ l ∈ Seq≤n ∧ ∀l
′ ∈ Seq≤n

[
l ⊆ l′ → min z [∃x ≤ z A(l⌢o, x)] = min z [∃x ≤ z A(l′⌢o, x)]

]
.

In ACA0 there exists the following function α which – as we will argue now – is an
associate for φ:

α(l) :=

{

min z [∃x ≤ z A(l⌢o, x)] + 1 if B(l),

0 otherwise.

Take any β : N→ [n]. By cont(A) there exists a y such that

∀g : N→ [n]
[
β̄y = ḡy → ∀x ≤ min z [∃x̃ ≤ z A(β, x̃)]

(
A(β, x)↔ A(g, x)

)]
,

thus

∀g : N→ [n]
[
β̄y = ḡy → min z [∃x ≤ z A(β, x)] = min z [∃x ≤ z A(g, x)]

]
. (5)

(a) First we prove that there exists an m such that α(β̄m) > 0. Let m := y. We
have B(β̄m): for all l′ ∈ Seq≤n such that β̄m ⊆ l′, taking g = β̄m⌢o and g = l′⌢o
in (5) we get, respectively,

min z [∃x ≤ z A(β, x)] = min z [∃x ≤ z A(β̄m⌢o, x)],

min z [∃x ≤ z A(β, x)] = min z [∃x ≤ z A(l′⌢o, x)].

Thus min z [∃x ≤ z A(β̄m⌢o, x)] = min z [∃x ≤ z A(l′⌢o, x)]. Since we have
B(β̄m), then by definition of α we have α(β̄m) > 0.

(b) Now we take the least m such that α(β̄m) > 0 and we prove α(β̄m) =
φ(β) + 1. Since α(β̄m) > 0 we have B(β̄m). Let w := max(m, y). By B(β̄m) and
taking g = β̄w⌢o in (5) we get, respectively,

=α(β̄m)−1
︷ ︸︸ ︷

min z [∃x ≤ z A(β̄m⌢o, x)] = min z [∃x ≤ z A(β̄w⌢o, x)],

min z [∃x ≤ z A(β, x)]
︸ ︷︷ ︸

=φ(β)

= min z [∃x ≤ z A(β̄w⌢o, x)].
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Thus α(β̄m) = φ(β) + 1.
This concludes the proof that α is an associate for φ. Thus by lemma 11, φ

has a code as continuous function. Since [n]N is (provably already in RCA0) a
compact metric space (see [9] (examples III.2.6)) it follows from [1] (Theorem 4.1)
that (provably in WKL0 and so a-fortiori in ACA0) φ has an upper bound z. Then
∀f : N→ [n] ∃x ≤ φ(f) ≤ z A(f, x).

3. We prove that Z2 implies CUB essentially in the same way that we proved in the
previous point that Π0

1 comprehension implies Π0
1-CUB. To see that, conversely, CUB

implies (relative to RCA) Z2 it is enough to show that CUB implies the comprehension
axiom for arbitrary formulas A. By induction on z we prove ∀z ∃m ∈ Seq≤1

[
lhm =

z + 1 ∧ ∀x ≤ z
(
m(x) = 0 ↔ A(x)

)]
. By contradiction assume ¬∃X ∀x [x ∈ X ↔

A(x)], that is, ∀f : N → [1] ∃x B(f, x) where B(f, x) :≡ ¬[f(x) = 0 ↔ A(x)].
Clearly cont(B), so applying CUB to B we get ∃z ∀f : N→ [1] ∃x ≤ z B(f, x). But
this is contradicted by f = m⌢o.

Remark 23. As the proof above shows, the strength of the various CUB-principles
considered does not depend on whether they are formulated with general n or just
with n = 1 (this can also be seen directly using the construction on page 220 in
[12]). Note, however, that IPP restricted to n = 1 or any fixed n is much weaker
(and essentially provable in pure logic) than IPP.

7 Proofs of IPP → FIPP2 and IPP → FIPP3 using

continuous uniform boundedness

In the previous section we calibrated the strength of Σ0
0-CUB and Π0

1-CUB in terms
of the “big five”. In this section we give upper bounds on the strength of the
implications IPP→ FIPP2 and IPP→ FIPP3.

Theorem 24.

1. RCA0 + Σ0
0-CUB proves IPP→ FIPP2.

2. RCA0 +Π0
1-CUB proves IPP→ FIPP3.

Proof. 1. Take any n and F ∈ AS. Let

B(f, k) :≡ ∃l ∈ Seq
[
Al ⊆ [k] ∧ |Al| > F (l) ∧ f |Al

constant
]
.

Let us prove ∀f : N→ [n] ∃k B(f, k). Take any f : N→ [n]. By IPP there exists an
infinite color class f−1(c) with c ∈ [n]. By primitive recursion in f define a sequence
(lm) where each lm ∈ Seq is such that Alm = f−1(c) ∩ [m]. Then (lm) is a nested
sequence with union f−1(c), so there exists a k′ such that ∀m ≥ k′ [F (lm) = F (lk′)].
Since f−1(c) is infinite, by points 3 and 4 of lemma 10 there exists a k′′ such that
∀m ≥ k′′ [|Alm| > F (lk′)]. Let k := max(k′, k′′). Then we have B(f, k). This finishes
the proof of ∀f : N→ [n] ∃k B(f, k).
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Notice that Al ⊆ [k] and “f |Al
constant” are equivalent to some bounded formu-

las and |Al| > F (l) is equivalent to the Σ0
0 formula

∃j ≤ l ∃i < j [|Al| = j ∧ (l, i) ∈ F ].

Thus B(f, k) is equivalent to a Σ0
1 formula. Also notice that we have cont(B).

By Σ0
1-CUB we get ∃k ∀f : N→ [n] ∃k′′′ ≤ k B(f, k′′′). Since B(f, k) is monotone

in k, i.e., k′′′ ≤ k ∧ B(f, k′′′) → B(f, k) we get ∃k ∀f : N → [n] B(f, k). Now since
f is only applied in B(f, k) to arguments in [k], we can consider only functions f
with domain [k]: ∃k ∀f : [k]→ [n] B(f, k).

2. Take any n and F ∈ ASNIS. Let

B(f, k) :≡ ∃c ∈ [n] ∀l ∈ Seq
[
Al ∩ [k] = f−1(c) ∩ [k]→ |Al| > F (l)

]
.

Let us prove ∀f : N→ [n] ∃k B(f, k). Take any f : N→ [n]. As in the proof of the
previous point we have an infinite color class f−1(c) and a sequence (lm) where each
lm ∈ Seq is such that Alm = f−1(c)∩ [m]. Then (lm) weakly converges to f−1(c), so
there exists a k′ such that

∀m ≥ k′ [F (lm) = F (lk′)]. (6)

Since f−1(c) is infinite, then by points 3 and 4 of lemma 10 there exists a k′′ such
that

∀m ≥ k′′ [|f−1(c) ∩ [m]| > F (lk′)]. (7)

By lemma 14.2 there exist c′ and k′′′ such that

∀l ∈ Seq
[
Al ∩ [k′′′] = f−1(c) ∩ [k′′′]→ F (l) = c′

]
. (8)

Let k := max(k′, k′′, k′′′). Taking m = k in (6) and l = lk in (8) we get c′ = F (lk′).
For all l ∈ Seq, if Al ∩ [k] = f−1(c)∩ [k], then Al ∩ [k

′′′] = f−1(c)∩ [k′′′] and by point
4 of lemma 10 we have |Al| ≥ |f

−1(c) ∩ [k]|, thus by (7) and (8) we get |Al| > F (l).
This finishes the proof of ∀f : N→ [n] ∃k B(f, k).

Notice that Al ∩ [k] = f−1(c) ∩ [k] is equivalent to a Σ0
0 formula and by point 2

of lemma 10 |Al| > F (l) is (as shown above) equivalent to a Σ0
0 formula, so (using

BΣ0
1) B is equivalent to a Π0

1 formula. Also notice that we have cont(B) since the
only occurrence of f in B is f−1(c) ∩ [k], i.e., (f |[k])

−1(c).
Now, analogously to the proof of the previous point, apply Π0

1-CUB, use the
monotonicity of B(f, k) on k, and notice that we can restrict the functions f to [k].
Finally, taking l = lk (so Alk = f−1(c) where f : [k]→ [n]) we get the FIPP3.

Corollary 25.

1. WKL0 proves IPP↔ FIPP2.

2. ACA0 proves IPP↔ FIPP3.
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While the first equivalence shows that FIPP2 is a nontrivial finitization of IPP
as neither principle is derivable in WKL0, the second equivalence does not establish
this for FIPP3 since ACA0 not only proves IPP (and hence FIPP3) but even much
stronger principles (e.g., Ramsey’s theorem RT(k) for every fixed k, see [9], or, on the
arithmetical side, BΣ0

∞). So while the fact that RCA0 suffices to prove FIPP3 → IPP

shows that FIPP3 is strong enough to count as a “finitization” of IPP, the fact that
for the other direction we only have proofs using ACA0 leaves open the possibility
that FIPP3 may be too strong to be a faithful finitization of IPP.

8 Historical comments on CUB

Without the continuity assumption cont(A), principles of the form CUB feature
prominently in intuitionistic mathematics under the label of “fan principles”. In fact,
in intuitionistic analysis it is common to assume (classically inconsistent) continuity
principles that, in particular, imply cont(A) (see [12]). In our language context of
2nd order arithmetic, Σ0

0 formulas A automatically satisfy cont(A) and so in Σ0
0-CUB

and (by its reduction to Σ0
0-CUB) even in Σ0

1-CUB one can drop the assumption
cont(A). However, in contexts formulated in the language in all finite types over
N, the corresponding version without cont(A), called Σ0

1-UB, is not valid in the
full type structure over N but satisfies very useful conservation results. Σ0

1-UB
was first introduced in [4] and is studied in detail in [8] (for a systematic proof-
theoretic treatment of even more general forms of uniform boundedness by a specially
designed so-called bounded functional interpretation see [2]). Recently in [7, 8],
Σ0

1-UB was generalized to a principle ∃-UBX dealing with uniformities in the absence
of compactness for abstract bounded metric and hyperbolic spaces. Again, while
not valid in the intended model, the principle satisfies strong conservation theorems
and so can be used safely for proofs of large classes of statements.

With classical logic alone (essentially), however, even Π0
1-CUB becomes inconsis-

tent (and so in particular over RCA0 and much weaker systems) if the assumption
cont(A) is dropped. E.g., just consider the logically valid statement

∀f : N→ [1] ∃x ∈ N ∀y ∈ N [f(y) = 0→ f(x) = 0]
︸ ︷︷ ︸

≡:A(f,x)∈Π0
1

.

Then CUB without the continuity assumption cont(A) (which does not hold here)
would imply that

∃z ∀f : N→ [1]
[
∃y ∈ N

(
f(y) = 0

)
→ ∃x ≤ z

(
f(x) = 0

)]

which obviously is wrong. A syntactic condition that guarantees cont(A) to hold is
that A(f, x) can be written as Ã

(
f̄(t(x)), x

)
for some number term t (possibly with

further number parameters of A), where Ã(z, x) ∈ Π0
1 does not contain f . This is

the case in the use of Π0
1-CUB in the proof of theorem 24.2 (with t(k, c) := k + 1).

In fact, (a version of) such a form (denoted by Π0
1-UB|\) of CUB is considered in
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[5], where it is shown to imply the Bolzano-Weierstraß property of [0, 1]d (over an
extremely weak base system). Moreover, the proof of theorem 22.2 immediately
shows that Π0

1-UB|\ still implies Π0
1 comprehension.
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