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THE LACZKOVICH–KOMJÁTH PROPERTY FOR COANALYTIC

EQUIVALENCE RELATIONS

SU GAO, STEVE JACKSON, AND VINCENT KIEFTENBELD

Abstract. Let E be a coanalytic equivalence relation on a Polish space X and (An)n∈ù a sequence

of analytic subsets of X . We prove that if lim supn∈K An meets uncountably many E-equivalence classes

for every K ∈ [ù]ù , then there exists a K ∈ [ù]ù such that
T

n∈K An contains a perfect set of pairwise

E-inequivalent elements.

§1. Introduction. Let (An)n∈ù be a sequence of sets and K ∈ [ù]ù an infinite
subset of ù. The limit superior lim supn∈K An is the set of all elements which
belong to An for infinitely many n ∈ K . Laczkovich [6] showed that for every
sequence (An)n∈ù of Borel sets in a Polish space, if lim supn∈K An is uncountable
for everyK ∈ [ù]ù , then there exists aK ∈ [ù]ù such that

⋂

n∈K An is uncountable.
Komjáth [5] generalized this result to the case where the sets (An)n∈ù are analytic.
Note that by the perfect set property of analytic sets, if

⋂

n∈K An is uncountable,
then it contains a perfect set.
Balcerzak and Gła̧b [1] extended these results to Fó equivalence relations in the
following way.

Definition. An equivalence relation E on a Polish space X has the Laczkovich-
Komjáth property if for every sequence (An)n∈ù of analytic subsets of X such that
lim supn∈K An meets uncountably many E-equivalence classes for every K ∈ [ù]ù ,
there exists a K ∈ [ù]ù such that

⋂

n∈K An contains a perfect set of pairwise E-
inequivalent elements.

In this terminology, Komjáth has shown that the identity relation = has the
Laczkovich–Komjáth property. Balcerzak and Gła̧b [1] proved that every Fó equiv-
alence relation has the Laczkovich–Komjáth property. In this paper, we generalize
this to coanalytic equivalence relations.

Theorem 1. Every coanalytic equivalence relation on a Polish space has the Lacz-
kovich–Komjáth property.

Received August 14, 2009.
2000Mathematics Subject Classification. Primary 03E15, 54H05; Secondary 28A05.
Key words and phrases. Limit superior of a sequence of sets, coanalytic equivalence relations,

Laczkovich–Komjáth property.
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A fundamental result on coanalytic equivalence relations is Silver’s theorem: a
coanalytic equivalence relation either has only countably many equivalence classes,
or else there exists a perfect set of pairwise inequivalent elements. Silver’s original
proof [9] used forcing. Harrington (unpublished) later gave a simpler (forcing) proof
using effective descriptive set theory, which nowadays is usually cast in terms of the
Gandy–Harrington topology. We will use similar methods and assume familiarity
with effective descriptive set theory throughout the paper.
An introduction to effective descriptive set theory is given in [7], where the reader
can also find the topological version of Harrington’s proof. The review in [4]
provides details on the Gandy–Harrington topology and strong Choquet games.
Instead of strong Choquet games, we will make use of the set of low elements,
which is a Polish space in the Gandy–Harrington topology. We will summarize
the technical facts we use later on. Further details can be found in [2], which also
provides another source on effective descriptive set theory.
This paper is organized as follows. In Section 2 we review a well-known coding
mechanism for Π11 and ∆

1
1 sets, mainly to fix notation and establish the uniformity

of a diagonal intersection operator. In Section 3, we provide details on canonical
cofinal sequences as developed in [3]. We use these sequences in Section 4 to prove
our main technical result. Finally, we derive our main theorem in Section 5, where
we also derive a parametric version of the theorem, as was done by Balcerzak
and Gła̧b [1].

§2. CodingΠ11 and ∆
1
1 sets. In this section we review a well-known coding mech-

anism for Π11 and ∆
1
1 sets, mainly to fix notation. A good introduction can be found

in [4, Section 3.2], where the notion of uniformity is also discussed. We will need
the uniformity of a diagonal intersection operation. Since this operation is not
canonical, we provide a little more of the details.
A product space is any X = X0 × · · · × Xn (with the product topology), where
each factor is either ù or ùù . For every product space X there is a UX ⊆ ù × X
such that UX ∈ Π11 and for any A ⊆ X , A ∈ Π11 iff ∃n (A = U

X
n ). Such a set U

X is
called a universalΠ11 set. A Π

1
1 code for A ⊆ X is any n ∈ ù such that A = UXn .

There exists a collection {UX } of universal Π11 sets with the following additional
property: for any m ∈ ù and any product space X there is a recursive function
Sm,X : ùm+1 → ù such that

(e, k1, . . . , km, x) ∈ U
ùm×X ⇔ (Sm,X (e, k1, . . . , km), x) ∈ U

X .

Such a collection is called a good universal system. For the rest of this paper, fix a
good universal system {UX } forΠ11. This good universal system can be used to code
∆11 subsets, which we now describe. This coding is always relative to a particular
product spaceX . When there is no danger of confusion, wewill drop the superscript
in UX . For every k ∈ ù, fix a recursive bijection (n0, . . . , nk−1) 7→ 〈n0, . . . , nk−1〉
betweenùk andù, and denote the recursive inverse map by n 7→ ((n)0, . . . , (n)k−1).
Define

(〈m, n〉 , x) ∈ U0 ⇔ (m,x) ∈ U,

(〈m, n〉 , x) ∈ U1 ⇔ (n, x) ∈ U.
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Then U0, U1 ∈ Π11. By the reduction property for Π
1
1 sets, there are Π

1
1 sets

U ∗
0 , U

∗
1 ⊆ ù × X such that U ∗

0 ∪ U ∗
1 = U0 ∪ U1 and U

∗
0 ∩ U ∗

1 = ∅. Let P = U ∗
0

and S = (ù × X ) \U ∗
1 . Define

〈m, n〉 ∈ C ⇔ ∀x ∈ X ((〈m, n〉 , x) ∈ U ∗
0 ∨ (〈m, n〉 , x) ∈ U ∗

1 ).

Then C ∈ Π11. For all n ∈ C ,

Pn = Sn := Dn.

A ∆11 code for A ⊆ X is any n ∈ C such that A = Dn. In that case, (n)0 is a Π11
code for A and (n)1 is a Π11 code for X \ A. Conversely, if m, n ∈ ù are Π11 codes
for A and X \ A, respectively, then 〈m, n〉 is a ∆11 code for A. It is important that
the set C of ∆11 codes is Π

1
1 and that operations hold effectively in the codes, in the

following way.

Example. Given ∆11 codes m, n ∈ C for A,B ⊆ X , we can effectively compute a
∆11 code for A \ B. To see this, define

(m, n, x) ∈ Z0 ⇔ x ∈ Dm ∧ x /∈ Dn,

(m, n, x) ∈ Z1 ⇔ x /∈ Dm ∨ x ∈ Dn.

Clearly, Z0, Z1 ∈ Π11. Let e0, e1 be their respective Π
1
1 codes. Then for i = 0, 1,

(m, n, x) ∈ Zi ⇔ (ei , m, n, x) ∈ U
ù2×X ⇔ (S2,X (ei , m, n), x) ∈ U

X .

Also, Z0 = (ù2 × X ) \Z1. Thus,
〈

S2,X (e0, m, n), S
2,X (e1, m, n)

〉

is a ∆11 code for A \ B.

Similar uniformities hold for all basic set-theoretic operations. We will need the
uniformity of a diagonal intersection operator, which we define next. Recall that
when H,K ∈ [ù]ù , H ⊆∗ K denotes that H is almost contained in K , i.e., K \H
is finite.

Definition. For a (finite or infinite) sequence (Kn) of infinite subsets of ù with
Kn ⊆∗ Km for n > m, define △Kn by m ∈ △Kn iff there exists m0 < m1 < · · · <
mk = m such that m0 is the least element of K0, m1 is the least element of K0 ∩ K1
such thatm1 > m0, . . . ,mk is the least element ofK0∩· · ·∩Kk such thatmk > mk−1.

Note that △Kn ⊆∗ Km for all m. To obtain the desired uniformity for this
diagonal intersection operation, we need to assume that the sequence of ∆11 codes
for (Kn) is effective. One way to formalize this is to let n ∈ C

∗ iff

1. n ∈ Cù,
2. Dùn is infinite,
3. ∀m (m ∈ Dùn ⇒ (m)1 ∈ Cù), and
4. ∀i ∃!m (m ∈ Dùn ∧ (m)0 = i).

Informally, n ∈ C ∗ iff n is a ∆11 code for an infinite subset of ù of the form
{〈i, ni〉 : i ∈ ù, ni ∈ C}. Clearly, C ∗ ∈ Π11.

Lemma 2. There is a functionDiag : ù → ù which is ∆11 on C
∗ such that whenever

n ∈ C ∗ is a code for an infinite ∆11 subset {〈i, ni〉 : i ∈ ù, ni ∈ C} of ù, Diag(n) is a
∆11 code for△D

ù
ni .
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Proof. It suffices to find Π11 codes e0 and e1 for△D
ù
ni andù \△Dùni , respectively,

because 〈e0, e1〉 will then be a ∆11 code for△D
ù
ni . We need the following three facts:

1. There is a recursive function u : ù → ù such that whenever n = 〈n0, . . . , nk〉
is a finite sequence of ∆11 codes, u(n) is a ∆

1
1 code for D

ù
n0 ∩ · · · ∩Dùnk .

2. There is a ∆11 on the codes function i : ù×ù → ù such that whenever n ∈ C ∗,
i(n, j) is the (unique) m ∈ ù such that 〈j,m〉 ∈ Dùn .

3. There is a ∆11 on the codes function ì : ù × ù → ù such that whenever n is a
∆11 code for an infinite subset of ù, ì(n, j) is the least element of D

ù
n greater

than or equal to j.

Now define

(n,m) ∈ Z0 ⇔ n ∈ C
∗ ∧ ∃ 〈m0, . . . , mk〉 (m0 < · · · < mk ∧mk = m ∧

m0 = ì(u(〈i(n, 0)〉), 0) ∧m1 = ì(u(〈i(n, 0), i(n, 1)〉), m0 + 1) ∧

· · · ∧mk = ì(u(〈i(n, 0), . . . , i(n, k)〉), mk−1 + 1)).

Then Z0 ∈ Π11. Pick a Π
1
1 code e0 for Z0. Similarly, we can write down a Π

1
1

definition for Z1 = C ∗ \ Z0 and pick a Π11 code e1. The rest of the argument is as
in the example. ⊣

Now that we have established the uniformity of this diagonal intersection operator,
we will use it implicitly. Finally, for codes h, k ∈ Cù, we write h ⊆∗ k iff the set
coded by h is almost contained in the set coded by k. Writing out the definitions,
we see that h ⊆∗ k is ∆11 on the set C

ù of codes.

§3. Canonical cofinal sequences. For w ∈ 2ù, define a binary relation <w on a
subset of ù by

m <w n ⇔ w(〈m, n〉) = 1.

The domain of <w is the set

dom(<w) = {n ∈ ù : ∃m ∈ ù (m <w n or n <w m)}.

Let LO denote the set of allw ∈ 2ù such that<w is a linear order, and let LO
∗ denote

the set of all w ∈ LO such that<w has a least element and every n ∈ dom(<w) has
an immediate successor n+<w . For w ∈ LO, let |<w | denote the order type of <w .
The next lemma shows that in a uniform way, we can effectively obtain a canonical
cofinal sequence in <w given w ∈ LO

∗.

Lemma 3 (Gao–Jackson–Laczkovich–Mauldin [3]). There is a ∆11 function

Cof : {(w, n, j) ∈ LO
∗ × ù2 : n ∈ dom(<w)} → ù

such that

1. if w ∈ LO
∗, n ∈ dom(<w) and j ∈ ù, then Cof(w, n, j) ∈ dom(<w) and

Cof(w, n, j) <w n, unless n is the <w-least element;
2. if w ∈ LO

∗ and n ∈ dom(<w) has an immediate predecessor in <w , then
Cof(w, n, j)+w = n for all j ∈ ù;

3. if w ∈ LO
∗, n ∈ dom(<w) is not <w-least and n does not have an immediate

predecessor in <w , then
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(a) if j < j′, then Cof(w, n, j) <w Cof(w, n, j′), and
(b) for any q ∈ dom(<w) with q <w n there is a j ∈ ù such that q <w
Cof(w, n, j). ⊣

We also need a variation of this lemma for Π11 norms, whose proof uses the same
ideas. Recall that a Π11-norm on a pointset P ∈ Π11 is a function ϕ from P into
the ordinals On such that there exist binary relations <∗

ϕ and ≤∗
ϕ in Π

1
1 with the

following properties:

x ≤∗
ϕ y ⇔ P(x) ∧ (¬P(y) ∨ ϕ(x) ≤ ϕ(y)),

x <∗
ϕ y ⇔ P(x) ∧ (¬P(y) ∨ ϕ(x) < ϕ(y)).

Recall thatWO denotes the set of all w ∈ LO such that <w is a well-order. Every
Π11 set P ⊆ ù admits a Π11-norm ϕ : P → ùCK1 , where

ùCK1 = sup{|<w | : w ∈ WO is recursive},

see for example [8, Section 4B].

Lemma 4. Let ϕ be a Π11-norm on a Π
1
1 set P ⊆ ù. There is a Π11 function

Cof : ù → ù such that

1. for all j ∈ ù, Cof(j) ∈ P;
2. if j < j′, then Cof(j) <∗

ϕ Cof(j
′) unless Cof(j) is <ϕ-maximal;

3. for any q ∈ P, there is a j ∈ ù such that q <∗
ϕ Cof(j) unless q is <ϕ-maximal.

Proof. We define the function Cof by induction on j. Let p0 = Cof(0) be the
least integer in P. Assume we have defined pj = Cof(j). If pj is <ϕ-maximal, let
pj+1 = pj . Otherwise, let pj+1 = Cof(j + 1) be the smallest integer in P such that
pj < pj+1 and pj <∗

ϕ pj+1. Since n = pj+1 iff n ∈ P and pj < n and pj <
∗
ϕ n and

∀m (pj < m < n ⇒ m ≤∗
ϕ pj), this defines a Π

1
1 function. To see that (3) holds, let

q ∈ P be a nonmaximal element. Since the sequence (pj)j∈ù is strictly increasing
in the natural order < on ù, there is a least integer j such that pj ≤ q < pj+1.
Because pj+1 is the least integer larger than pj such that pj <∗

ϕ pj+1, we cannot
have pj <∗

ϕ q. Hence, q ≤
∗
ϕ pj <

∗
ϕ pj+1. ⊣

§4. A completely good pair. Suppose E is a Π11 equivalence relation on ù
ù . A

key idea in Harrington’s proof of Silver’s dichotomy is to consider the set

W = {x ∈ ùù : there is no ∆11 set D such that x ∈ D ⊆ [x]E}.

A computation shows that W is Σ11. Moreover, when E has uncountably many
equivalence classes,W 6= ∅ and every nonempty Σ11 subset X ⊆W meets uncount-
ably many E-equivalence classes. In fact, a nonempty Σ11 subset X ⊆ ùù meets
uncountably many E-equivalence classes iff X ∩W 6= ∅.
We will establish the following corresponding result in our context.

Proposition 5. Let E be a Π11 equivalence relation on ù
ù and (An)n∈ù a se-

quence of uniformly Σ11 subsets of ù
ù . If lim supn∈K An meets uncountably many E-

equivalence classes for every K ∈ [ù]ù , then there exists a nonempty Σ11 set V ⊆ ùù

and a ∆11 set H ∈ [ù]ù such that for every nonempty Σ11 set X ⊆ V and every ∆11 set
K ∈ [H ]ù the set X ∩ lim supn∈K An meets uncountably manyE-equivalence classes.
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We call such a pair (V,H ) completely good. The rest of this section is devoted to
the proof of Proposition 5 and a further refinement. In contrast with Harrington’s
proof, we need a recursive construction of transfinite length, in which we remove all
possible ‘bad pairs’ one by one.

Definition. We say that n = 〈y, k〉 ∈ ù is a bad pair if the following properties
hold:

1. y ∈ Cù
ù

and k ∈ Cù ,
2. Dùk ∈ [ù]ù , and

3. Dù
ù

y ∩ lim supn∈Dù
k
An meets only countably many E-equivalence classes, i.e.,

Dù
ù

y ∩W ∩ lim supn∈Dù
k
An = ∅.

It is clear from this definition that the set P ⊆ ù of all bad pairs is Π11. Let
ϕ : P → ùCK1 be a Π

1
1-norm on P. Define a well-order on P by

m <ϕ n ⇔ ϕ(m) < ϕ(n) ∨ (ϕ(m) = ϕ(n) ∧m < n)

and let ≤∗
ϕ be the Π

1
1 relation given by

m ≤∗
ϕ n ⇔ P(m) ∧ (¬P(n) ∨ ϕ(m) ≤ ϕ(n)).

For the rest of the paper, let Cof : ù → ù be the Π11 function related to ϕ and P as
given by Lemma 4.
Denote byCù∞ the set of all n ∈ C

ù such thatDùn ∈ [ù]ù . ThenCù∞ is Π
1
1. Given

an h ∈ Cù∞, we define the next bad pair relative to h to be the <ϕ-least 〈y, k〉 ∈ P
such that k ⊆∗ h. Set R(h, 〈y, k〉) iff 〈y, k〉 is the next bad pair relative to h.

Lemma 6. The relation R ⊆ ù × ù is Π11. Moreover, R is a ∆
1
1 function on the set

B = {h ∈ ù : h ∈ Cù∞ ∧ ∃n (R(h, n))}.

Proof. We have R(h, 〈y, k〉) iff

h ∈ Cù∞ ∧ 〈y, k〉 ∈ P ∧ k ⊆∗ h ∧ ∀y′, k′ ∈ ù (〈y, k〉 �∗
ϕ 〈y′, k′〉 ⇒ k′ *∗ h).

This is a Π11 definition. IfR(h, n) holds, then n is the unique such integer. Thus, for
h ∈ B, ¬R(h, n)⇔ ∃m (R(h,m) ∧ n 6= m), which is Π11. Hence, R is ∆

1
1 on B. ⊣

Similarly, given a Π11 set A ⊆ P we define the next bad pair in A relative to h to be
the <ϕ-least 〈y, k〉 ∈ A such that k ⊆∗ h. The corresponding version of Lemma 6
still holds.
Initial segments of the recursive construction can be coded by reals, as follows.
Recall thatWOα = {w ∈ WO : |<w | = α} and for α < ù

CK
1 , we haveWOα ∈ ∆11.

Definition. Let α < ùCK1 . A real z ∈ ù
ù is α-adequate if z = 〈w, v, h〉, where

w ∈ 2ù , v ∈ ùù, and h ∈ ùù , and the following conditions are satisfied:

1. w ∈ WOα ,
2. if n /∈ dom(<w), then v(n) = h(n) = 0,
3. the <w-least element is the <ϕ-least element,
4. if n ∈ dom(<w) is a <w-successor (say n = m

+
<w ), then the following holds:

(a) n = 〈y, k〉 is the next bad pair relative to h(m) such that 〈y, k〉 /∈
dom(<w) ↾ n,

(b) v(n) is a canonical code for Dù
ù

v(m)
\Dù

ù

y ,

(c) h(n) = k.
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5. if n ∈ dom(<w) is a <w-limit, then with v′ the canonical code for
⋂

j∈ù

Dù
ù

v(Cof(w,n,j))

and h′ the canonical code for△j∈ù D
ù
h(Cof(w,n,j))

, the following holds:

(a) n = 〈y, k〉 is the next pair relative to h′ such that 〈y, k〉 /∈ dom(<w) ↾ n,
(b) v(n) is the canonical code for Dù

ù

v′ \Dù
ù

y , and

(c) h(n) = k.

Some comments on these conditions: (1) says that z represents the construction
up to stage α, (2) is needed only to ensure that there can be at most one α-adequate
real for every α < ùCK1 , (3), (4a), and (5a) state that <w represents the order in
which the bad pairs are picked in our construction and that we pick a new bad pair
at each stage, and conditions (4b,c) and (5b,c) require v(n) and h(n) to be codes
for the correct sets whenever n ∈ dom(<w).
We call a real adequate if it is α-adequate for some α < ùCK1 .

Lemma 7. The set of all adequate reals is Π11.

Proof. Replace condition (1) above with condition (1)′ w ∈ WO<ùCK1
, which

is Π11. Conditions (2) and (3) are arithmetical. For (4), n is a <w-successor,
n = (m)+<w , and (4b, c) are arithmetical predicates, while (4a) is Π

1
1. Thus, (4)

is Π11. Similarly, (5) is Π
1
1. ⊣

It is immediate from the definition of α-adequate that for each α < ùCK1 , if there is
an α-adequate real, then this real is unique; denote it by zα .

Lemma 8. Every adequate real is ∆11.

Proof. Let zα be α-adequate for some fixed α < ùCK1 . Then z = 〈w, v, h〉
equals zα iff z satisfies conditions (1) through (5). The first 3 conditions are ∆11.
Conditions (4) and (5) are Π11, because (4a) and (5a) contain a predicate R(n, h),
i.e., n is the next bad pair relative to h (where h = h(m) in 4a and h = h′ in 5a).
However, since z is given, we know that this h is an element of B = {h ∈ ù : h ∈
Cù∞ ∧ ∃n (R(h, n))}. By Lemma 6, R is ∆11 on B. Thus, conditions (4) and (5) are
∆11 in this case. ⊣

Finally, we define V ⊆ ùù andH ∈ [ù]ù as follows. Let x ∈ V iff

∀z ∈ ∆11 (z = 〈w, v, h〉 adequate⇒ ∀n (n ∈ dom(<w)⇒ x ∈ Dù
ù

v(n)))

and n ∈ H iff

∃z ∈ ∆11 (z = 〈w, v, h〉 is adequate ∧

∀j ≤ n (Cof(j) ∈ dom(<w)⇒ n ∈ △j≤n h(Cof(j)))).

Equivalently by Lemma 8, n ∈ H iff

∀z ∈ ∆11 (z = 〈w, v, h〉 is adequate ∧

∀j ≤ n (Cof(j) ∈ dom(<w)⇒ n ∈ △j≤n h(Cof(j)))).

Lemma 9. V ∈ Σ11 andH ∈ ∆11. Moreover, V 6= ∅ andH ∈ [ù]ù .
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Proof. By Kleene’s restricted quantification theorem (see for example [8, Theo-
rem 4D.3]), V ∈ Σ11. (Note: if the construction stops below ù

CK
1 , thenV is actually

∆11 but we will not need that fact.) Similarly, the first definition of H is Π
1
1 and the

second definition is Σ11. Therefore, H ∈ [ù]ù is ∆11. We show that V 6= ∅.
Suppose towards a contradiction that V = ∅. Then for every x ∈ ùù there is an
α < ùCK1 and a k ∈ ù such that for zα = 〈wα , vα , hα〉, we have k ∈ dom(<wα ) and

x /∈ Dù
ù

vα(k)
. For k ∈ dom(<wα ), denote by yα(k) the code for the set removed at

that stage. By assumption,

ùù =
⋃

α<ùCK1

⋃

k∈dom(<wα )

Dù
ù

yα(k)
.

Since H ⊆∗ Dù
hα(k)

for every k ∈ dom(<wα ),

lim sup
n∈H

An ⊆ lim sup
n∈Dù

hα (k)

An.

In particular for every k ∈ dom(<wα ),

Dù
ù

yα(k)
∩ lim sup

n∈H
An ⊆ D

ùù

yα(k)
∩ lim sup
n∈Dù

hα (k)

An.

Hence,

lim sup
n∈H

An =
⋃

α<ùCK1

⋃

k∈dom(<wα )

Dù
ù

yα(k)
∩ lim sup

n∈H
An

⊆
⋃

α<ùCK1

⋃

k∈dom(<wα )

Dù
ù

yα(k)
∩ lim sup
n∈Dù

hα (k)

An

meets only countablymanyE-equivalence classes, a contradiction. Thus,V 6=∅. ⊣

We now verify that the pair (V,H ) is indeed completely good. In the proof of the
next lemma we use the following observation. Let z = 〈w, v, h〉 be an adequate real.
If m <w n, then m, n ∈ P and ϕ(m) < ϕ(n). This is the case, because whenever
〈y, k〉 is a bad pair such that k ⊆∗ h(n), also k ⊆∗ h(m), since h(n) ⊆∗ h(m).

Lemma 10. If X ⊆ V is a nonempty Σ11 set and K ∈ [H ]ù a ∆11 set, then X ∩
lim supn∈K An meets uncountably many E-classes.

Proof. Suppose X ∩ lim supn∈K An meets only countably many E-equivalence
classes, i.e., X ∩ lim supn∈K An∩W = ∅. By Σ11-separation, there is a ∆

1
1 setY ⊆ ùù

such that X ⊆ Y and Y ∩ lim supn∈K An ∩W = ∅. Let y, k be a code for Y,K ,
respectively. Clearly, 〈y, k〉 is a bad pair.
First, suppose the construction halted at stage α < ùCK1 . Let z = 〈w, v, h〉 be
the unique α-adequate real. The construction stops only if there does not exist a
next bad pair which we have not picked already. Since 〈y, k〉 is a bad pair such
that k ⊆∗ h(n) for every n ∈ dom(<wα ), there must be an n ∈ dom(<wα ) such
that n = 〈y, k〉, i.e., we picked 〈y, k〉 at that stage (otherwise, we can extend the
construction by picking it now). But thenDù

ù

v(n)
∩Dù

ù

y = ∅, which impliesV ∩Y = ∅

and so V ∩ X = ∅.
Second, suppose the construction continued all the way up to ùCK1 . Then there
exists an α < ùCK1 such that α > ϕ(〈y, k〉). Let z = 〈w, v, h〉 be α-adequate.
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By the observation above, the pair 〈y, k〉 was considered, hence there exists an
n ∈ dom(<wα ) such that n = 〈y, k〉. Again, this implies V ∩ X = ∅. ⊣

This finishes the proof of Proposition 5. We now derive a further refinement. A
second key element of Harrington’s proof is that E is meager onW ×W , whenW
is given the (subspace) Gandy–Harrington topology ôGH. This is the topology on
ùù generated by the Σ11 sets. Although ù

ù with the Gandy–Harrington topology
is not metrizable, it is strong Choquet and this enables one to redo the familiar
construction of a perfect set of inequivalent elements, using a winning strategy for
the second player. While this approach would also work in our case, we will use the
set Xlow of low elements instead. This makes the construction in the proof of the
main theorem more transparent, at the cost of some technicalities which we now
summarize.
Let Xlow = {x ∈ ùù : ùCK(x)1 = ùCK1 }.We will use the following facts aboutW ,
Xlow, and ôGH:

1. W and Xlow are both nonempty Σ
1
1 sets,

2. Xlow is dense in ôGH and (Xlow, ôGH) is a Polish space, and
3. a nonempty Σ11 set A ⊆ ùù meets uncountably many E-equivalence classes iff
A ∩W 6= ∅ iff A ∩W ∩ Xlow 6= ∅.

Proofs of these facts can be found in [2].

Proposition 11. Let E be a Π11 equivalence relation on ù
ù and (An)n∈ù a se-

quence of uniformly Σ11 subsets of ù
ù . If lim supn∈K An meets uncountably many

E-equivalence classes for every K ∈ [ù]ù , then there exists a completely good pair
(V,H ) such that V is a Polish space in the Gandy–Harrington topology ôGH and E is
meager on V × V (with the product topology ôGH × ôGH).

Proof. Let (V,H ) be the completely good pair given by Proposition 5. Using
the facts stated above, it is easy to see that (V ∩W ∩Xlow,H ) is a completely good
pair with the required additional properties. ⊣

§5. Proof of the main theorem. We now prove an effective version of Theorem 1.
By the usual relativization and transfer arguments, this implies our main result.

Theorem 12. Let E be aΠ11 equivalence relation onù
ù and (An)n∈ù a sequence of

uniformly Σ11 subsets ofù
ù . If lim supn∈K An meets uncountablymanyE-equivalence

classes for every K ∈ [ù]ù , then there exists a K ∈ [ù]ù such that
⋂

n∈K An contains
a perfect set of pairwise E-inequivalent elements.

Proof. Let (V,H ) be the completely good pair given by Proposition 11. Since E
is meager onV×V in theGandy-Harrington topology ôGH, we can fix an increasing
sequence (Fn)n∈ù of ôGH-closed nowhere dense sets such thatE ⊆

⋃

n∈ù Fn. Wemay
assume that the diagonal {(x, x) : x ∈ V } is contained in F0. We will recursively
define a strictly increasing sequence j0 < j1 < . . . of natural numbers and a Cantor
scheme (Xs )s∈2<ù of nonempty Σ11 subsets of V such that for all s, t ∈ 2

<ù ,

1. X sa0, X sa1 ⊆ Xs , X sa0 ∩ X sa1 = ∅, and diam(Xs ) ≤ 2
− lh(s),

2. if s 6= t ∈ 2n+1, then Xs × Xt ∩ Fn = ∅, and
3. if s ∈ 2n, then Xs ⊆ Aj0 ∩ · · · ∩Ajn .
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Note that in (1), the closures and diameter are relative to (V, ôGH). Once this
construction is completed, let K = {j0, j1, . . . } and

P =
⋃

ó∈2ù

⋂

n∈ù

Xó↾n.

It is easy to see thatP ⊆
⋂

n∈K An is nonempty perfect set of pairwiseE-inequivalent
elements.
Without loss of generality we may assume that A0 = ùù . Start the construction
with j0 = 0 andX∅ = ù

ù. Suppose we have defined natural numbers j0 < · · · < jn
and nonempty Σ11 sets Xs ⊆ Aj0 ∩ · · · ∩ Ajn for s ∈ 2

n satisfying the requirements
above. By intersectingwith sufficiently small basic open neighborhoods, we can split
each Xs into disjoint nonempty Σ11 sets Xsa0 and Xsa1 satisfying requirement (1).
Since Fn is closed nowhere dense, given any pair s 6= t ∈ 2n+1 we can shrink Xs
and Xt so that Xs ×Xt ∩ Fn = ∅. After finitely many iterations, we have defined Xs
for s ∈ 2n+1 satisfying requirements (1) and (2).

Claim. There is a j > jn such that Xs ∩ Aj 6= ∅ for all s ∈ 2n+1.

Proof. Suppose towards a contradiction that for every j > jn there is an s ∈ 2n+1

such that Xs ∩ Aj = ∅. Define a binary relation R ⊆ ù × 2n+1 by R(j, s) ⇔
Xs ∩ Aj = ∅. Since R is Π11, there is a ∆

1
1 uniformizing function f : ù → 2n+1. By

the pigeonhole principle, there is an s ∈ 2n+1 such that {j ∈ ù : f(j) = s} ∩H is
infinite. Pick such an s ∈ 2n+1. Then K = {j ∈ ù : j ∈ H and f(j) = s} is ∆11,
K ∈ [H ]ù , and Xs ∩

⋃

n∈K An = ∅. This implies that Xs ∩ lim supn∈K An = ∅,
contradicting the fact that (V,H ) is a completely good pair. ⊣

To complete this step in the construction, let jn+1 = j and intersect each Xs with
Ajn+1 . This finishes the proof of Theorem 12. ⊣

The following parametric version of the Laczkovich–Komjáth property was also
considered by Balcerzak and Gła̧b.

Definition. An equivalence relation E on a Polish space Y has the parametric
Laczkovich–Komjáth property if for every uncountable Polish space X and every
sequence (An)n∈ù of analytic subsets ofX ×Y , if lim supn∈K An(x) meets uncount-
ably many E-equivalence classes for every x ∈ X and K ∈ [ù]ù , then there exists
a K ∈ [ù]ù and a perfect set P ⊆ X such that

⋂

n∈K An(x) meets perfectly many
E-equivalence classes for each x ∈ P.

Theorem 13 (Balcerzak–Gła̧b [1]). If E has the Laczkovich–Komjáth property
and for every analytic set A ⊆ X × X , the set

{x ∈ X : Ax meets uncountably many E-equivalence classes}

is analytic, then E has the parametric Lackovich–Komjáth property. ⊣

Proposition 14. Every coanalytic equivalence relation on a Polish space has the
parametric Laczkovich–Komjáth property.

Proof. Let E be a coanalytic equivalence relation on a Polish space X and
A ⊆ X × X an analytic subset. Without loss of generality we may assume E is a
Π11 equivalence relation on X = ù

ù and A ⊆ ùù × ùù is Σ11. Since A is Σ
1
1, each

section Ax is Σ11 as well. Hence, Ax meets uncountably many E-equivalence classes
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iff Ax ∩W 6= ∅. Thus,

{x ∈ ùù : Ax meets uncountably many E-equivalence classes}

is Σ11. Hence, E has the parametric Laczkovich–Komjáth property by Theorem 1
and Theorem 13. ⊣
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