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Abstract

We show basic facts about dp-minimal ordered structures. The main results

are : dp-minimal groups are abelian-by-finite-exponent, in a divisible ordered dp-

minimal group, any infinite set has non-empty interior, and any theory of pure tree

is dp-minimal.

Introduction

One of the latest topic of interest in abstract model theory is the study of dependent,
or NIP, theories. The abstract general study, was initiated by Shelah in [Sh715], and
pursued by him in [Sh783], [Sh863] and [Sh900]. One of the questions he addresses is the
definition of super-dependent as an analog of superstable for stable theories. Although,
as he writes, he has not completely succeeded, the notion he defines of strong-dependence
seems promising. In [Sh863] it is studied in details and in particular, ranks are defined.
Those so-called dp-ranks are used to prove existence of an indiscernible sub-sequence
in any long enough sequence. Roughly speaking, a theory is strongly dependent if no
type can fork infinitely many times, each forking being independent from the previous
one. (Stated this way, it is naturally a definition of “strong-NTP2”). Also defined in
that paper are notions of minimality, corresponding to the ranks being equal to 1 on
1-types. In [OnsUsv], Onshuus and Usvyatsov extract from this material the notion of
dp-minimality which seems to be the relevent one. A dp-minimal theory is a theory
where there cannot be two independent witnesses of forking for a 1-type. It is shown
in that paper that a stable theory is dp-minimal if and only if every 1-type has weight
1. In general, unstable, theories, one can link dp-minimality to burden as defined by H.
Adler ([Adl]).

Dp-minimality on ordered structures can be viewed as a generalization of weak-o-
minimality. In that context, there are two main questions to address : what do definable
sets in dimension 1 look like, (i.e. how far is the theory from being o-minimal), and
what theorems about o-minimality go through. J. Goodrick has started to study those
questions in [Goo], focussing on groups. He proves that definable functions are piecewise
locally monotonous extending a similar result from weak-o-minimality.

In the first section of this paper, we recall the definitions and give equivalent formu-
lations. In the second section, we make a few observations on general linearly ordered
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inp-minimal theories showing in particular that, in dimension 1, forking is controlled
by the ordering. The lack of a cell-decomposition theorem makes it unclear how to
generalize results to higher dimensions.

In section 3, we study dp-minimal groups and show that they are abelian-by-finite-
exponent. The linearly ordered ones are abelian. We prove also that an infinite definable
set in a dp-minimal ordered divisible group has non-empty interior, solving a conjecture
of Alf Dolich.

Finally, in section 4, we give examples of dp-minimal theories. We prove that colored
linear orders, orders of finite width and trees are dp-minimal.

1 Preliminaries on dp-minimality

Definition 1.1. (Shelah) An independence (or inp-) pattern of length κ is a sequence
of pairs(φα(x, y), kα)α<κ of formulas such that there exists an array 〈aαi : α < κ, i < λ〉
for some λ ≥ ω such that :

• Rows are kα-inconsistent : for each α < κ, the set {φα(x, aαi ) : i < λ} is kα-
inconsistent,

• paths are consistent : for all η ∈ λκ, the set {φα(x, aαη(α)
) : α < κ} is consistent.

Definition 1.2. • (Goodrick) A theory is inp-minimal if there is no inp-pattern of
length two in a single free variable x.

• (Onshuus and Usvyatsov) A theory is dp-minimal if it is NIP and inp-minimal.

A theory is NTP2 if there is no inp-pattern of size ω for which the formulas φα(x, y)

in the definition above are all equal to some φ(x, y). It is proven in [Che] that a theory
is NTP2 if this holds for formulas φ(x, y) where x is a single variable. As a consequence,
any inp-minimal theory is NTP2.

We now give equivalent definitions (all the ideas are from [Sh863], we merely adapt
the proofs there from the general NIP context to the dp-minimal one).

Definition 1.3. Two sequences (ai)i∈I and (bj)j∈J are mutually indiscernible if each
one is indiscernible over the other.

Lemma 1.4. Consider the following statements :

1. T is inp-minimal.

2. For any two mutually indiscernible sequences A = (ai : i < ω), B = (bj : j < ω)

and any point c, one of the sequences (tp(ai/c) : i < ω), (tp(bi/c) : i < ω) is
constant.

3. Same as above, but change the conclusion to : one the sequences A or B stays
indiscernible over c.

4. For any indiscernible sequence A = (ai : i ∈ I) indexed by a dense linear order
I, and any point c, there is i0 in the completion of I such that the two sequences
(tp(ai/c) : i < i0) and (tp(ai/c) : i > i0) are constant.
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5. Same as above, but change the conclusion to : the two sequences (ai : i < i0) and
(ai : i > i0) are indiscernible over c.

6. T is dp-minimal.

Then for any theory T , (2), (3), (4), (5), (6) are equivalent and imply (1). If T is NIP,
then they are all equivalent.

Proof. (2) ⇒ (1) : In the definition of independence pattern, one may assume that the
rows are mutually indiscernible. This is enough.

(2) ⇒ (3) : Assume A = 〈ai : i < ω〉, B = 〈bi : i < ω〉 and c are a witness
to ¬(3). Then there are two tuples (i1 < . . . < in), (j1 < . . . < jn) and a for-
mula φ(x;y1, . . . , yn) such that |= φ(c;ai1 , . . . , ain) ∧ ¬φ(c;aj1 , . . . , ajn). Take an
α < ω greater than all the ik and the jk. Then, exchanging the ik and jk if nec-
essary, we may assume that |= φ(c;ai1 , . . . , ain) ∧ ¬φ(c;an.α, . . . , an.α+n−1). Define
A ′ = 〈(ai1 , . . . , ain)〉 ^ 〈(an.k, . . . , an.k+n−1) : k ≥ α〉. Construct the same way a se-
quence B ′. Then A ′, B ′, c give a witness of ¬(2).

(3) ⇒ (2) : Obvious.

(3) ⇒ (5) : Let A = 〈ai : i ∈ I〉 be indiscernible and let c be a point. Then assuming
(3) holds, for every i0 in the completion of I, one of the two sequencesA<i0 = 〈ai : i < i0〉
and A>i0 = 〈ai : i > i0〉 must be indiscernible over c. Take any such i0 such that both
sequences are infinite, and assume for example that A>i0 is indiscernible over c. Let
j0 = inf{i ≤ i0 : A>i is indiscernible over c }. Then A>j0 is indiscernible over c. If there
are no elements in I smaller than j0, we are done. Otherwise, if A<j0 is not indiscernible
over c, then one can find j1 < j0 such that again A<j1 is not indiscernible over c. By
definition of j0, A>j1 is not indiscernible over c either. This contradicts (3).

(5) ⇒ (4) : Obvious.

(4) ⇒ (2) : Assume ¬ (2). Then one can find a witness of it consisting of two
indiscernible sequences A = 〈ai : i ∈ I〉, B = 〈bi : i ∈ I〉 indexed by a dense linear order
I and a point c.

Now, we can find an i0 in the completion of I such that for any i1 < i0 < i2 in I,
there are i, i ′, i1 < i < i0 < i ′ < i2 such that tp(ai/c) 6= tp(ai ′/c). Find a similar
point j0 for the sequence B. Renumbering the sequences if necessary, we may assume that
i0 6= j0. Then the indiscernible sequence of pairs 〈(ai, bi) : i ∈ I〉 gives a witness of ¬ (4).

(6) ⇒ (2) : Let A, B, c be a witness of ¬ (2). Assume for example that there
is φ(x, y) such that |= φ(c, a0) ∧ ¬φ(c, a1). Then set A ′ = 〈(a2k, a2k+1) : k < ω〉
and φ ′(x;y1, y2) = φ(x;y1) ∧ ¬φ(x;y2). Then by NIP, the set {φ ′(x, ȳ) : ȳ ∈ A ′} is
k-inconsistent for some k. Doing the same construction with B we see that we get an
independence pattern of length 2.
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(5) ⇒ (6) : Statement (5) clearly implies NIP (because IP is always witnessed by
a formula φ(x, y) with x a single variable). We have already seen that it implies inp-
minimality.

Standard examples of dp-minimal theories include :

• O-minimal or weakly o-minimal theories (recall that a theory is weakly-o-minimal
if every definable set in dimension 1 is a finite union of convex sets),

• C-minimal theories,

• Th(Z,+,≤).

The reader may check this as an exercise or see [Goo].
More examples are given in section 4 of this paper.

2 Inp-minimal ordered structures

Little study has been made yet on general dp-minimal ordered structures. We believe
however that there are results to be found already at that general level. In fact, we prove
here a few lemmas that turn out to be useful for the study of groups.

We show that, in some sense, forking in dimension 1 is controlled by the order.

We consider (M,<) an inp-minimal linearly ordered structure with no first nor last
element. We denote by T its theory, and let M be a monster model of T .

Lemma 2.1. Let X = Xā be a definable subset of M, cofinal in M. Then X is non-forking
(over ∅).

Proof. If Xā divides over ∅, there exists an indiscernible sequence (āi)i<ω, ā0 = ā,
witnessing this. Every Xāi

is cofinal in M. Now pick by induction intervals Ik, k < ω,
with Ik < Ik+1 containing a point in each Xāi

. We obtain an inp-pattern of length 2 by
considering x ∈ Xāi

and x ∈ Ik.
If Xā forks over ∅, it implies a disjunction of formulas that divide, but one of these

formulas must be cofinal : a contradiction.

A few variations are possible here. For example, we assumed that X was cofinal in
the whole structure M, but the proofs also works if X is cofinal in a ∅-definable set Y, or
even contains an ∅-definable point in its closure. This leads to the following results.

For X a definable set, let Conv(X) denote the convex hull of X. It is again a definable
set.

Porism 2.2. Let X be a definable set of M (in dimension 1). Assume Conv(X) is A
definable. Then X is non-forking over A.

Porism 2.3. Let M ≺ N and let p be a complete 1-type over N. If the cut of p over N
is of the form +∞, −∞, a+ or a− for a ∈M, then p is non-forking over M.

Proposition 2.5 generalizes this.
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Lemma 2.4. Let X be an A-definable subset of M. Assume that X divides over some
model M, then :

1. We cannot find (ai)i<ω in M and points (xi)i<ω in X(M) such that a0 < x0 <
a1 < x1 < a2 < . . . .

2. The set X can be written as a finite disjoint union X =
⋃
Xi where the Xi are

definable over M ∪A, and each Conv(Xi) contains no M-point.

Proof. Easy ; (2) follows from (1).

Proposition 2.5. Let A ⊂ M, with M, |A|+-saturated, and let p ∈ S1(M). The
following are equivalent :

1. The type p forks over A,

2. There exist a, b ∈ M such that p ⊢ a < x < b, and a and b have the same type
over A,

3. There exist a, b ∈M such that p ⊢ a < x < b, and the interval Ia,b = {x : a < x <

b} divides over A.

Proof. (3) ⇒ (1) is trivial.

For (2) ⇒ (3), it is enough to show that if a ≡A b, then Ia,b divides over A. Let σ
be an A-automorphism sending a to b. Then the tuple (b = σ(a), σ(b)) has the same
type as (a, b), and a < b < σ(b). By iterating, we obtain a sequence a1 < a2 < . . . such
that (ak, ak+1) has the same type over A as (a, b). Now the sets Ia2k,a2k+1

are pairwise
disjoint and all have the same type over A. Therefore each of them divides over M.

We now prove (1) ⇒ (2)
Assume that (2) fails for p. Let Xā be an M-definable set such that p ⊢ Xā. Let

ā0 = a, ā1, ā2, . . . be an A-indiscernible sequence. Note that the cut of p is invariant
under all A-automorphisms. Therefore each of the Xāi

contains a type with the same
cut over M as p. Now do a similar reasoning as in Lemma 2.1.

Corollary 2.6. Forking equals dividing : for any A ⊂ B, any p ∈ S(B), p forks over A
if and only if p divides over A.

Proof. By results of Chernikov and Kaplan ([CheKap]), it is enough to prove that no
type forks over its base. And it suffices to prove this for one-types (because of the general
fact that if tp(a/B) does not fork over A and tp(b/Ba) does not fork over Aa, then
tp(a, b/B) does not fork over A).

Assume p ∈ S1(A) forks over A. Then by the previous proposition, p implies a finite
disjunction of intervals

⋃
i<n(ai, bi) with ai ≡A bi. Assume n is minimal. Without loss,

assume a0 < a1 < . . .. Now, as a0 ≡A b0 we can find points a ′

i, b
′

i, with (ai, bi) ≡A

(a ′

i, b
′

i) and a
′

0 = b0.
Then p proves

⋃
i<n(a

′

i, b
′

i). But the interval (a0, b0) is disjoint from that union, so
p proves

⋃
0<i<n(ai, bi), contradicting the minimality of n.
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Note that this does not hold without the assumption that the structure is linearly
ordered. In fact the standard example of the circle with a predicate C(x, y, z) saying
that y is between x and z (see for example [Wag], 2.2.4.) is dp-minimal.

Lemma 2.7. Let E be a definable equivalence relation on M, we consider the imaginary
sort S = M/E. Then there is on S a definable equivalence relation ∼ with finite classes
such that there is a definable linear order on S/ ∼.

Proof. Define a partial order on S by a/E ≺ b/E if inf({x : xEa}) < inf({x : xEb}). Let ∼
be the equivalence relation on S defined by x ∼ y if ¬(x ≺ y ∨ y ≺ x). Then ≺ defines
a linear order on S/ ∼. The proof that ∼ has finite classes is another variation on the
proof of 2.1.

From now until the end of this section, we also assume NIP.

Lemma 2.8. (NIP). Let p ∈ S1(M) be a type inducing an M-definable cut, then p is
definable over M.

Proof. We know that p does not fork over M, so by NIP, p is M-invariant. Let M1 be
an |M|+-saturated model containing M. Then the restriction of p to M1 has a unique
global extension inducing the same cut as p. In particular p has a unique heir. Being
M-invariant, p is definable over M.

The next lemma states that members of a uniformly definable family of sets define
only finitely many “germs at +∞”.

Lemma 2.9. (NIP). Let φ(x, y) be a formula with parameters in some model M0, x a
single variable. Then there are b1, . . . , bn such that for every b, there is α ∈ M and k
such that the sets φ(x, b)∧ x > α and φ(x, bk)∧ x > α are equal.

Proof. Let E be the equivalence relation defined on tuples by bEb ′ iff (∃α)(x > α →

(φ(x, b) ↔ φ(x, b ′))). Let b, b ′ having the same type over M0. By NIP, the formula
φ(x, b)△φ(x, b ′) forks over M0. By Lemma 2.1, this formula cannot be cofinal, so b
and b ′ are E-equivalent. This proves that E has finitely many classes.

If the order is dense, then this analysis can be done also locally around a point a
with the same proof :

Lemma 2.10. (NIP + dense order). Let φ(x, y) be a formula with parameters in
some model M0, x a single variable. Then there exists n such that : For any point a,
there are b1, . . . , bn such that for all b, there is α < a < β and k such that the sets
φ(x, b)∧ α < x < β and φ(x, bk)∧ α < x < β are equal.

3 Dp-minimal groups

We study inp-minimal groups. Note that by an example of Simonetta, ([Sim]), not all
such groups are abelian-by-finite. It is proven in [MacSte] that C-minimal groups are
abelian-by-torsion. We generalize the statement here to all inp-minimal theories.
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Proposition 3.1. Let G be an inp-minimal group. Then there is a definable normal
abelian subgroup H such that G/H is of finite exponent.

Proof. Let A,B be two definable subgroups of G. If a ∈ A and b ∈ B, then there is
n > 0 such that either an ∈ B or bn ∈ A. To see this, assume an /∈ B and bn /∈ A for all
n > 0. Then, for n 6= m, the cosets amB and anB are distinct, as are A.bm and A.bn.
Now we obtain an independence pattern of length two by considering the sequences of
formulas φk(x) = ‘‘x ∈ akB” and ψk(x) = ‘‘x ∈ A.bk”.

For x ∈ G, let C(x) be the centralizer of x. By compactness, there is k such that for
x, y ∈ G, for some k ′ ≤ k, either xk

′

∈ C(y) or yk
′

∈ C(x). In particular, letting n = k!,
xn and yn commute.

Let H = C(C(Gn)), the bicommutant of the nth powers of G. It is an abelian
definable subgroup of G and for all x ∈ G, xn ∈ H. Finally, if H contains all n powers
then it is also the case of all conjugates of H, so replacing H by the intersection of its
conjugates, we obtain what we want.

Now we work with ordered groups.

Lemma 3.2. Let G be an inp-minimal ordered group. Let H be a definable sub-group of
G and let C be the convex hull of H. Then H is of finite index in C.

Proof. We may assume that H and C are ∅-definable. So without loss, assume C = G.
If H is not of finite index, there is a coset of H that forks over ∅. All cosets of H are

cofinal in G. This contradicts Lemma 2.1.

Proposition 3.3. Let G be an inp-minimal ordered group, then G is abelian.

Proof. Note that if a, b ∈ G are such that an = bn, then a = b, for if for example
0 < a < b, then an < an−1b < an−2b2 < . . . < bn.

For x ∈ G, let C(x) be the centralizer of x. We let also D(x) be the convex hull of
C(x). By 3.2, C(x) is of finite index in D(x). Now take x ∈ G and y ∈ D(x). Then xy is
in D(x), so there is n such that (xy)n ∈ C(x). Therefore (yx)n = x−1(xy)nx = (xy)n.
So xy = yx and y ∈ C(x). Thus C(x) = D(x) is convex.

Now if 0 < x < y ∈ G, then C(y) is a convex subgroup containing y, so it contains
x, and x and y commute.

This answers a question of Goodrick ([Goo] 1.1).

Now, we assume NIP, so G is a dp-minimal ordered group. We denote by G+ the set
of positive elements of G.

Let φ(x) be a definable set (with parameters). For α ∈ G, define Xα = {g ∈ G+ :

(∀x > α)(φ(x) ↔ φ(x+g))}. Let Hα be equal to Xα∪−Xα∪ {0}. Then Hα is a definable
subgroup of G and if α < β, Hα is contained in Hβ. Finally, let H be the union of the
Hα for α ∈ G, it is the subgroup of eventual periods of φ(x).

Now apply Lemma 2.9 to the formula ψ(x, y) = φ(x−y). It gives n points b1, . . . , bn
such that for all b ∈ G, there is k such that b − bk is in H. This implies that H has
finite index in G.
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If furthermore G is densely ordered, then we can do the same analysis locally. This
yields a proof of a conjecture of Alf Dolich : in a dp-minimal divisible ordered group, any
infinite set has non empty interior. As a consequence, a dp-minimal divisible definably
complete ordered group is o-minimal.

As before, Ia,b denotes the open interval (a, b), and τb is the translation by −b. We
will make use of two lemmas from [Goo] that we recall here for convenience.

Lemma 3.4 ([Goo], 3.3). Let G be a divisible ordered inp-minimal group, then any
infinite definable set is dense in some non trivial interval.

In the following lemma, M stands for the completion of M. By a definable function
f into M, we mean a function of the form a 7→ inf φ(a;M) where φ(x;y) is a definable
function. So one can viewM as a collection of imaginary sorts (in which case it naturally
contains only definable cuts of M), or understand f :M→M simply as a notation.

Lemma 3.5 ([Goo], 3.19). Let f : M → M be a definable partial function such that
f(x) > 0 for all x in the domain of f. Then for every interval I, there is a sub-interval
J ⊆ I and ǫ > 0 such that for x ∈ J ∩ dom(f), |f(x)| ≥ ǫ.

Theorem 3.6. Let G be a divisible ordered dp-minimal group. Let X be an infinite
definable set, then X has non-empty interior.

Proof. Let φ(x) be a formula defining X.
By Lemma 3.4, there is an interval I such that X is dense in I. By Lemma 2.10

applied to ψ(x;y) = φ(y + x) at 0, there are b1, . . . , bn ∈ M such that for all b ∈ M,
there is α > 0 and k such that |x| < α→ (φ(b + x) ↔ φ(bk + x)).

Taking a smaller I and X, if necessary, assume that for all b ∈ I ∩ X, we may take
k = 1.

Define f : x 7→ sup{y : I−y,y ∩ τb1
X = I−y,y ∩ τxX}, it is a function into M, the

completion of M. By Lemma 3.5, there is J ⊂ I such that, for all b ∈ J, we have
|f(b)| ≥ ǫ.

Fix ν < ǫ
2
and b ∈ J such that Ib−2ǫ,b+2ǫ ⊆ J (taking smaller ǫ if necessary). Set

L = Ib−ν,b+ν and Z = L ∩ X. Assume for simplicity b = 0. Easily, if g1, g2 ∈ Z,
then g1 + g2 ∈ Z ∪ Lc and −g1 ∈ Z (because any two points of Z have isomorphic
neighborhoods of size ǫ). So Z is a group interval : it is the intersection with Ib−ν,b+ν

of some subgroup H of G. Now if x, y ∈ L satisfy that there is α > 0 such that
I−α,α ∩ τxX = I−α,α ∩ τyX, then x ≡ y modulo H. It follows that points of L lie in
finitely many cosets modulo H. Assume Z is not convex, and take g ∈ L \ Z. Then for
each n ∈ N, the point g/n is in L and the points g/n define infinitely many different
cosets; a contradiction.

Therefore Z is convex and X contains a non trivial interval.

Corollary 3.7. Let G be a dp-minimal ordered group. Assume G is divisible and defin-
ably complete, then G is o-minimal.

Proof. Let X be a definable subset of G. By 3.6, the (topological) border Y of X is finite.
Let a ∈ X, then the largest convex set in X containing a is definable. By definable

completeness, it is an interval and its end-points must lie in Y.
This shows that G is o-minimal.
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4 Examples of dp-minimal theories

We give examples of dp-minimal theories, namely : linear orders, order of finite width
and trees.

We first look at linear orders. We consider structures of the form (M,≤, Ci, Rj) where
≤ defines a linear order onM, the Ci are unary predicates (“colors”), the Rj are binary
monotone relations (that is x1 ≤ xRjy ≤ y1 implies x1Rjy1).

The following is a (weak) generalization of Rubin’s theorem on linear orders (see
[Poi]).

Proposition 4.1. Let (M,≤, Ci, Rj)be a colored linear order with monotone relations.
Assume that all ∅-definable sets in dimension 1 are coded by a color and all monotone ∅-
definable binary relations are represented by one of the Rj. Then the structure eliminates
quantifiers.

Proof. The result is obvious ifM is finite, so we may assume (for convenience) that this
is not the case.

We prove the theorem by back-and-forth. Assume that M is ω-saturated and take
two tuples x̄ = (x1, . . . , xn) and ȳ = (y1, . . . , yn) from M having the same quantifier
free type.

Take x0 ∈ M; we look for a corresponding y0. Notice that ≤ is itself a monotone
relation, a finite boolean combinations of colors is again a color, a positive combination of
monotone relations is again a monotone relation, and if xRy is monotone φ(x, y) = ¬yRx

is monotone. By compactness, it is enough to find a y0 satisfying some finite part of the
quantifier-free type of x0; that is, we are given

• One color C such that M |= C(x0),

• For each k, monotone relations Rk and Sk such that M |= x0Rkxk ∧ xkSkx0.

Define Uk(x) = {t : tRkxk} and Vk(x) = {t : xSkt}. The Uk(x) are initial segments of M
and the Vk(x) final segments. For each k, k ′, either Uk(xk) ⊆ Uk ′(xk ′) or Uk ′(xk ′) ⊆
Uk(xk). Assume for example Uk(xk) ⊆ Uk ′(xk ′), then this translates into a relation
φ(xk, xk ′), where φ(x, y) = (∀t)(tRkx → tRk ′y). Now φ(x, y) is a monotone relation
itself. The assumptions on x̄ and ȳ therefore imply that also Uk(yk) ⊆ Uk ′(yk ′).

The same remarks hold for the final segments Vk.
Now, we may assume that U1(x1) is minimal in the Uk(xk) and Vl(xl) is minimal

in the Vk(xk). We only need to find a point y0 satisfying C(x) in the intersection
U1(y1) ∩ Vl(yl).

Let ψ(x, y) be the relation (∃t)(C(t) ∧ tR1y ∧ xRlt). This is a monotone relation.
As it holds for (x0, xl), it must also hold for (y0, yl), and we are done.

The following result was suggested, in the case of pure linear orders, by John Goodrick.

Proposition 4.2. Let M = (M,≤, Ci, Rj) be a linearly ordered infinite structure with
colors and monotone relations. Then Th(M) is dp-minimal.

Proof. By the previous result, we may assume that T = Th(M) eliminates quantifiers.
Let (xi)i∈I, (yi)i∈I be mutually indiscernible sequences of n-tuples, and let α ∈M be a
point. We want to show that one of the following holds :
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• For all i, i ′ ∈ I, xi and xi ′ have the same type over α, or

• for all i, i ′ ∈ I, yi and yi ′ have the same type over α.

Assume that I is dense without end points.
By quantifier elimination, we may assume that n = 1, that is the xi and yi are

points of M. Without loss, the (xi) and (yi) form increasing sequences. Assume there
exists i < j ∈ I and R a monotone definable relation such that M |= ¬αRxi ∧ αRxj. By
monotonicity of R, there is a point iR of the completion of I such that i < iR → ¬αRxi
and i > iR → αRxi.

Assume there is also a monotone relation S and an iS such that i < iS → ¬αSyi and
i > iS → αSyi.

For points x, y define I(x, y) as the set of t ∈M such that M |= ¬tRx∧ tRy. This is
an interval ofM. Furthermore, if i1 < i2 < i3 < i4 are in I, then the intervals I(xi1 , xi2)
and I(xi3 , xi4) are disjoint. Define J(x, y) the same way using S instead of R.

Take i0 < iR < i1 < i2 < . . . and j0 < iS < j1 < j2 < . . . . For k < ω, define
Ik = I(xi2k

, xi2k+1
) and Jk = J(yj2k

, yj2k+1
). The two sequences (Ik) and (Jk) are mu-

tually indiscernible sequences of disjoint intervals. Furthermore, we have α ∈ I0 ∧ J0.
By mutual indiscernibility, Ii ∧ Jj 6= ∅ for all indices i and j, which is impossible.

We treated the case when α was to the left of the increasing relations R and S. The
other cases are similar.

An ordered set (M,≤) is of finite width, if there is n such that M has no antichain
of size n.

Corollary 4.3. Let M = (M,≤) be an infinite ordered set of finite width, then Th(M)

is dp-minimal.

Proof. We can define such a structure in a linear order with monotone relations : see
[Shm]. More precisely, there exists a structure P = (P,≺, Rj) in which ≺ is a linear order
and the Rj are monotone relations. There is a definable relation O(x, y) such that the
structure (P,O) is isomorphic to (M,≤).

The result therefore follows from the previous one.

We now move to trees. A tree is a structure (T,≤) such that ≤ defines a partial order
on T , and for all x ∈ T , the set of points smaller than x is linearly ordered by ≤. We will
also assume that given x, y ∈ T , the set of points smaller than x and y has a maximal
element x ∧ y (and set x ∧ x = x). This is not actually a restriction, since we could
always work in an imaginary sort to ensure this.

Given a, b ∈ T , we define the open ball B(a;b) of center a containing b as the set
{x ∈ T : x∧ b > a}, and the closed ball of center a as {x ∈ T : x ≥ a}.

Notice that two balls are either disjoint or one is included in the other.

Lemma 4.4. Let (T,≤) be a tree, a ∈ T , and let D denote the closed ball of center a.
Let x̄ = (x1, . . . , xn) ∈ (T \D)n and ȳ = (y1, . . . , ym) ∈ Dm. Then tp(x̄/a)∪ tp(ȳ/a) ⊢
tp(x̄ ∪ ȳ/a).
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Proof. A straightforward back-and-forth, noticing that tp(x̄/a)∪tp(ȳ/a) ⊢ tpqf(x̄∪ȳ/a)
(quantifier-free type).

We now work in the language {≤,∧}, so a sub-structure is a subset closed under ∧.

Proposition 4.5. Let A = (a1, . . . , an), B = (b1, . . . , bn) be two sub-structures from
T . Assume :

1. A and B are isomorphic as sub-structures,

2. for all i, j such that ai ≥ aj, tp(ai, aj) = tp(bi, bj).

Then tp(A) = tp(B).

Proof. We do a back-and-forth. Assume T is ω-saturated and A, B satisfy the hypothe-
sis. We want to add a point a to A. We may assume that A∪ {a} forms a sub-structure
(otherwise, if some ai ∧ a is not in A ∪ {a}, add first this element).

We consider different cases :

1. The point a is below all points of A. Without loss a0 is the minimal element of A
(which exists because A is closed under ∧). Then find a b such that tp(a0, a) =
tp(b0, b). For any index i, we have : tp(ai, a0) = tp(bi, b0) and tp(a, a0) =

tp(b, b0). By Lemma 4.4, tp(ai, a) = tp(bi, b).

2. The point a is greater than some point in A, say a1, and the open ball a := B(a1;a)
contains no point of A.

Let A be the set of all open balls B(a1;ai) for ai > a1. Let n be the number of
balls in A that have the same type p as a. Then tp(a1) proves that there are at
least n + 1 open balls of type p of center a1. Therefore, tp(b1) proves the same
thing. We can therefore find an open ball b of center b1 of type p that contains no
point from B. That ball contains a point b such that tp(b1, b) = tp(a1, a). Now,
if ai is smaller than a1, we have tp(ai, a1) = tp(bi, b1) and tp(a1, a) = tp(b1, b),
therefore by Lemma 4.4, tp(a, ai) = tp(b, bi).

The fact that we have taken b in a new open ball of center b1 ensures that B∪{b} is
again a sub-structure and that the two structures A∪{a} and B∪{b} are isomorphic.

3. The point a is between two points of A, say a0 and a1 (a0 < a1), and there are
no points of A between a0 and a1.

Find a point b such that tp(a0, a1, a) = tp(b0, b1, b). Then if i is such that
ai > a, we have ai ≥ a1 and again by Lemma 4.4, tp(ai, a) = tp(bi, b). And
same if ai < a.

Corollary 4.6. Let A ⊂ T be any subset. Then
⋃

(a,b,c)∈A3 tp(a, b, c) ⊢ tp(A).

Proof. Let A0 be the substructure generated by A. By the previous theorem the follow-
ing set of formulas implies the type of A0 :

• the quantifier-free type of A0,
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• the set of 2-types tp(a, b) for (a, b) ∈ A2
0, a < b.

We need to show that those formulas are implied by the set of 3-types of elements of A.
We may assume A is finite.

First, the knowledge of all the 3-types is enough to construct the structure A0. To
see this, start of example with a point a ∈ A maximal. Knowing the 3-types, one knows
in what order the b ∧ a, b ∈ A are placed. Doing this for all such a, enables one to
reconstruct the tree A0.

Now take m1 = a∧ b, m2 = c∧ d for a, b, c, d ∈ A such that m1 ≤m2. The points
m1 and m2 are both definable using only 3 of the points a, b, c, d, say a, b, c. Then
tp(a, b, c) ⊢ tp(m1,m2).

The previous results are also true, with the same proofs, for colored trees.

It is proven in [Par] that theories of trees are NIP. We give a more precise result.

Proposition 4.7. Let T = (T,≤, Ci) be a colored tree. Then Th(T) is dp-minimal.

Proof. We will use criterium (5) of 1.4 : if (ai)i∈I and (bj)j∈J are mutually indiscernible
sequences and α ∈ T is a point, then one of the sequences (ai) and (bj) is indiscernible
over α.

We will always assume that the index sets (I and J) are dense linear orders without
end points.

1) We start by showing the result assuming the ai and bj are points (not tuples).
We classify the indiscernible sequence (ai) in 4 classes depending on its quantifier-free

type.

I The sequence (ai) is monotonous (increasing or decreasing).

II The ai are pairwise incomparable and ai ∧ aj is constant equal to some point β.

III The ai are incomparable and ai∧aj, i < j depends only on i. Then let a ′

i = ai∧aj
(for some i < j). The a ′

i form an increasing indiscernible sequence.

IV The ai are incomparable and ai∧aj, i < j depends only on j. Then the a ′

j = ai∧aj
(i < j) form a decreasing indiscernible sequence.

Assume (ai) lands in case I. Consider the set {x : x < α}. If that set contains
a non-trivial subset of the sequence (ai), we say that α cuts the sequence. If this is
not the case, then the sequence (ai) stays indiscernible over α. To see this, assume
for example that (ai) is increasing and that α is greater that all the ai. Take two
sets of indices i1 < . . . < in and j1 < . . . < jn and a k ∈ I greater that all those
indices. Then tp(ai1 , . . . , ain/ak) = tp(aj1 , . . . , ajn/ak). Therefore by Lemma 4.4,
tp(ai1 , . . . , ain/α) = tp(aj1 , . . . , ajn/α).

In case II, note that if (ai) is not α-indiscernible, then there is i ∈ I such that α lies
in the open ball B(β;ai) (we will also say that α cuts the sequence (ai)). This follows
easily from Proposition 4.5.
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In the last two cases, if (ai) is α-indiscernible, then it is also the case for (a ′

i). Con-
versely, if (a ′

i) is α-indiscernible, then α does not cut the sequence (a ′

i). From 4.5, it
follows easily that (ai) is also α-indiscernible. We can therefore replace the sequence
(ai) by (a ′

i) which belongs to case I.

Going back to the initial data, we may assume that (ai) and (bj) are in case I or
II. It is then straightforward to check that α cannot cut both sequences. For example,
assume (ai) is increasing and (bj) is in case II. Then define β as bi ∧ bj (any i, j). If
α cuts (bj), then α > β. But (ai) is β-indiscernible. So β does not cut (ai). The only
possibility for α to cut (ai) is that β is smaller that all the ai and the ai lie in the same
open ball of center β as α. But then the ai lie in the same open ball of center β as one
of the bj. This contradicts mutual indiscernability.

2) Reduction to the previous case. We show that if (ai)i∈I is an indiscernible se-
quence of n-tuples and α ∈ T such that (ai) is not α-indiscernible, then there is an indis-
cernible sequence (di)i∈I of points of T in dcl((ai)) such that (di) is not α-indiscernible.

First, by 4.6, we may assume that n = 2. Write ai = (bi, ci) and define mi = bi∧ci.
We again study different cases :

1. The mi are all equal to some m.

As (ai) is not α-indiscernible, necessarily, α > m and the ball B(m;α) contains
one bi (resp. ci). Then take di = bi (resp. di = ci) for all i.

2. The mi are linearly ordered by < and no bi nor ci is greater then all the mi.

Then the balls B(mi ;bi) and B(mi; ci) contain no other point from (bi, ci,mi)i∈I.
Then, α must cut the sequence (mi) and one can take di = mi for all i.

3. The mi are linearly ordered by < and, say, each bi is greater than all the mi.

Then each ball B(mi;ai) contains no other point from (bi, ci,mi)i∈I. If α cuts the
sequence mi, than again one can take di = mi. Otherwise, take a point γ larger
than all the mi but smaller than all the di. Applying 4.4 with a there replaced by
γ, we see that (bi) cannot be α-indiscernible. Then take di = bi for all i.

4. The mi are pairwise incomparable.

The the sequence (mi) lies in case II, III or IV. The open balls B(mi;bi) and
B(mi; ci) cannot contain any other point from (bi, ci,mi)i∈I. Considering the
different cases, one sees easily that taking di = mi will work.

This finishes the proof.

Remark 4.8. If we define dp-minimal+ analogously to strongly+-dependent (see [Sh863]),
all theories studied in this section are dp-minimal+.
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