SACCHARINITY

JAKOB KELLNER AND SAHARON SHELAH

Abstract

We present a method to iterate finitely splitting lim-sup tree forcings along nonwellfounded linear orders. As an application, we introduce a new method to force (weak) measurability of all definable sets with respect to a certain (non-ccc) ideal.

Introduction

Non-wellfounded iterations. We introduce a method to iterate lim-sup finitely splitting tree forcings along linear, non-wellfounded orders.

There is quite some literature about non-wellfounded iteration. E.g., Jech and Groszek [4] investigated the wellfounded but non-linear iteration of Sacks forcings. Building on this, Kanovei [7] and Groszek [5] develop non-wellfounded iterations of Sacks forcing. In spirit, their construction is close to the construction of this paper, but the implementation is quite different. Zapletal gives an illfounded iteration construction in the framework of "idealized forcing" [15], it seems that his results give some of the properties of our construction (e.g., ω^{ω}-bounding) for a more general class of forcings, cf. his Theorem 5.4.12] Regarding finite support, Brendle [1] developed finite-support non-wellfounded iteration constructions, based on the second author's method of iterations along smooth templates [13]. Brendle's paper also contains the important observation by Hjorth (answering a question of Hechler) that it is impossible to have an illfounded iteration of forcings that all add dominating reals.

Measurability. As an application of our method, we introduce a new way to force measurability of definable sets.

In the seminal paper [14] Solovay proved that in the Levy model (after collapsing an inaccessible) every definable set is measurable and has the Baire property.

In [12] the second author showed that the inaccessible is necessary for measurability, but the Baire property of every definable set can be obtained by a forcing P without the use of an inaccessible (i.e., in ZFC). This forcing P is constructed by amalgamation of universally meager forcings Q. So every Q adds a co-meager set of generics and has many automorphisms, and the forcing P has similar properties to the Levy collapse. The property of Q that implies that Q can be amalgamated is called "sweetness" (a strong version of ccc). One can ask about other ccc ideals than Lebesgue-null and meager (or their defining forcings, random and Cohen), and classify such ideals (respectively forcings) according to whether they behave like Cohen or like randoms see, e.g., Sweet \& Sour [10].

For (non-ccc) ideals corresponding to tree forcings Q, forcing measurability can be much simpler, see Section 6 about the Cohen model. In this model, all definable set are Q measurable (e.g., Marczewski measurable for $Q=$ Sacks forcing). The proof is a simpler

[^0]version of Solovay's: Cohen forcing is homogeneous and adds subtrees $S \in Q \cap V[G]$ to all $T \in Q \cap V$ such that all branches of S are Cohen reals.

In this paper, we introduce a new construction that gives a variant of measurability (weak measurability, as defined in 3.3) for all definable sets: Instead of iterating basic forcings Q that have many automorphisms and add a measure 1 set of generics, we use a Q that adds only a null set of generics (a single one in our case, and this real remains the only generic over V even in the final limit). So Q has to be very non-homogeneous. Instead of having many automorphisms in Q, we assume that the skeleton of the iteration has many automorphisms (so in particular a non-wellfounded iteration has to be used).

We use the word Saccharinity for this concept: a construction that achieves the same effect as (an amalgamation of) sweet forcings, but using entirely different means.

Acknowledgments. We thank the referee for pointing out many typos and unclarities, and for providing section 6 .

Annotated contents.

Section 1 p. 2 We define a class of finitely splitting tree forcings with "lim-sup norm": The forcing conditions are subtrees of a basic finitely splitting tree that satisfy "along every branch, many nodes have many successors".
Section2 p. 7. We introduce a general construction to iterate such lim-sup tree-forcings along non-wellfounded total orders. It turns out that the limit is proper, ω^{ω} bounding and has other nice properties similar to the properties of the lim-sup tree-forcings itself.
Section 3] p . 15. We define (with respect to a lim-sup tree-forcing Q) the ideals \mathbb{I} and \mathbb{I}^{c} (the $<2^{\aleph_{0}}$-closure of \mathbb{I}). These ideals will generally not be ccc. We define what we mean by " X is weakly measurable" and formulate our application: Assuming CH and a Ramsey property for Q (see Section5), we can force that all definable sets are weakly measurable. (This section requires only Section 1)
Section 4 p. 17, Assuming CH, we construct an order I which has many automorphisms and a cofinal sequence $\left(j_{\alpha}\right)_{\alpha \in \omega_{2}}$. We show that the non-wellfounded iteration of Q along the order I forces that $2^{\aleph_{0}}=\aleph_{2}$, that \mathbb{I}^{c} is nontrivial, that for every definable set X "locally" either all or none of the generic reals $\eta_{j_{\delta}}$ are in X and that the set $\left\{\eta_{j_{s}}: \delta \in \omega_{2}\right\}$ is of weak measure 1 in the set $\left\{\eta_{i}: i \tilde{\in} I\right\}$.
Section 5] p. 21. We assume a certain Ramsey property for Q. We show that $\left\{\eta_{i}: i \in I\right\}$ is of weak measure 1. Together with the result of the previous section this proves the application.
Section6 p. 25. We give a brief comparison with the Cohen model. (This section requires only Sections 1 and 3)

1. finitely splitting lim-Sup tree-forcings

We will define a class of finitely splitting tree forcings with "lim-sup norm". The simplest example is Sacks forcing. Such forcings (and generalizations) have been investigated by many authors, e.g. in [9] under the name $\mathbb{Q}_{0}^{\text {tree }}$ (see Definition 1.3.5 there).
1.1. Basics. Let us first introduce some notation:

Definition 1.1. Let $T \subseteq \omega^{<\omega}$ be a tree (i.e., T is closed under initial segments), let $s, t \in$ $\omega^{<\omega}, A \subseteq T$.

- We write sequences as $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ or as $\left(a_{1}, \ldots, a_{n}\right)$. In particular, \rangle denotes the empty sequence.
- $s \leq t$ means that s is a restriction of t (or equivalently that $s \subseteq t$)
- t is immediate successor of s if $t \geq s$ and length $(t)=$ length $(s)+1$.
- $\operatorname{succ}_{T}(t)$ is the set of immediate successors of t in a tree T. If the tree T is clear from the context we will also write $\operatorname{succ}(t)$.

Figure 1. $\quad F^{\prime}$ is stronger than $F, F^{\prime \prime}$ is purely stronger than F.

- Nodes s and t are compatible ($s \| t$), if they are comparable, i.e., if $s \leq t$ or $t \leq s$. Otherwise, s and t are incompatible ($s \perp t$).
- The order in forcing notions is usually chosen such that $q<p$ means that q is stronger than p. We try to stick to Goldstern's alphabetic convention [3, 1.2]: Whenever two conditions are comparable the notation is chosen so that the variable used for the stronger condition comes "lexicographically" later.
- Two forcing conditions p and p^{\prime} are compatible ($p \| p^{\prime}$), if there is a q stronger than both p and p^{\prime}. Otherwise, p and p^{\prime} are incompatible ($p \perp p^{\prime}$).
- $T^{[t]}:=\{s \in T: s \| t\}$. (So $T^{[t]}$ is a tree.) If T is clear, we might also just write $[t]$.
- $T \upharpoonright n:=\{t \in T$: length $(t)<n\}$.
- $A \subseteq T$ is a chain if $s \| t$ for all $s, t \in A$.
- $b \subseteq T$ is a branch if it is a maximal chain. If there exists a $t \in b$ with length n then this t is unique and denoted by $b \upharpoonright n$.
- $A \subseteq T$ is an antichain if $s \perp t$ for all $s \neq t \in A$. Unless noted otherwise, we will assume that antichains are nonempty.
- $A \subseteq T$ is a front if it is an antichain and every branch b meets A (i.e., $|b \cap A|=1$).
- $t \leq A$ stands for: " $t \leq s$ for some $s \in A$ ".
- $T_{\text {cldn }}^{A}:=\left\{t \in \omega^{<\omega}: t \leq A\right\}$.
(We will use this downwards-closure only for finite sets A. Then $T_{\text {cldn }}^{A}$ is a finite tree.)
- If A and A^{\prime} are antichains, then A^{\prime} is stronger than A if for each $t \in A^{\prime}$ there is a $s \in A$ such that $s \leq t$ (cf. Figure 1).
- If A and A^{\prime} are antichains then A^{\prime} is purely stronger than A if it is stronger and for each $s \in A$ there is a $t \in A^{\prime}$ such that $s \leq t$ (cf. Figure 11).
- $\lim (T)$ are the maximal branches of T. We use this notation only for T that are "pruned", i.e., have no finite maximal branches; then $\lim (T) \subseteq \omega^{\omega}$ is the closed set corresponding to T.

We are only interested in finitely splitting trees (i.e., $\operatorname{succ}(t)$ is finite for all $t \in T$). Then all fronts are finite. Note that being a front is stronger than being a maximal antichain. For example, $\left\{0^{n} 1: n \in \omega\right\}$ is a maximal antichain in $2^{<\omega}$, but not a front.

Assumption. Assume $T_{\max }$ and μ satisfy the following:

- $T_{\max }$ is a finitely splitting tree.
- μ assigns a non-negative real to every subset of $\operatorname{succ}_{T_{\max }}(t)$ for every $t \in T_{\max }$.
- μ is monotone, i.e., if $A \subseteq B$ then $\mu(A) \leq \mu(B)$.
- The measure of singletons is smaller than 1, i.e., $\mu(\{s\})<1$.
- For all branches b in $T_{\max }, \lim \sup _{n \rightarrow \infty}(\mu(\operatorname{succ}(b \upharpoonright n)))=\infty$.

Note that such a $T_{\text {max }}$ has to be perfect.
Definition 1.2. (The tree forcing Q.)

- If T is a subtree of $T_{\max }$ and $t \in T$, then $\mu_{T}(t)$ is defined as the measure of the T-successors of t, i.e., $\mu_{T}(t):=\mu\left(\operatorname{succ}_{T}(t)\right)$.
- Q consists of all subtrees T of $T_{\max }$ (ordered by inclusion) such that along every branch b of T

$$
\lim \sup \left(\mu_{T}(b \upharpoonright n)\right)=\infty .
$$

So $T_{\max }$ itself is the weakest element of Q.
For example, Sacks forcing can be defined in this way: Set $T_{\max }:=2^{<\omega}$, and for $t \in T_{\max }$ and $A \subseteq \operatorname{succ}(t)$ set

$$
\mu(A):= \begin{cases}\operatorname{length}(t) & \text { if }|A|=2 \\ 0 & \text { otherwise }\end{cases}
$$

Then a subtree T of $2^{<\omega}$ is in Q iff T is a Sacks tree, i.e., iff along every branch there are infinitely many splitting nodes

Definition 1.3. A (finite or infinite) subtree T of $T_{\max }$ is n-dense if there is a front F in T such that $\mu_{T}(t)>n$ for every $t \in F$.

Lemma 1.4. (1) A subtree T of $T_{\max }$ is in Q iff T is n-dense for every $n \in \mathbb{N}$.
(2) " $T \in Q$ " and " $T \leq_{Q} S$ " are Borel statements, and " $S \perp T$ " is \prod_{\sim}^{1} (in the real parameters $T_{\text {max }}$ and μ).

Proof. (1) \rightarrow : If $D_{n}:=\left\{s \in T: \mu_{T}(s)>n\right\}$ meets every branch, then

$$
F_{n}:=\left\{s \in D_{n}:\left(\forall s^{\prime} \supsetneqq s\right) s^{\prime} \notin D_{n}\right\}
$$

is a front.
$\leftarrow:$ If b is a branch, then b meets every F_{n}, i.e., $\mu_{T}(b \upharpoonright m)>n$ for some m. Since $\mu_{T}(b \upharpoonright m)$ is finite, $\lim \sup \left(\mu_{T}(b \upharpoonright n)\right)$ has to be infinite.
(2) Since $T_{\text {max }}$ is finitely splitting, " F is a front" is equivalent to " F is a finite maximal antichain".

A finite antichain A can be seen as an approximation to a tree: " A approximates T " means that A is a front in T. If A^{\prime} is purely stronger than A, then A^{\prime} gives more information about the tree T that is approximated (i.e., every tree approximated by A^{\prime} is also approximated by A). And, informally, a stronger antichain approximates smaller (i.e., stronger) trees.

We will usually identify a finite antichain F and the corresponding finite tree $T_{\text {cldn }}^{F}$.
Definition 1.5. - A finite antichain F is n-dense if $T_{\text {cldn }}^{F}$ is n-dense.

- $\bar{F}=\left(F_{n}\right)_{n \in \omega}$ is a front-sequence, if F_{n+1} is n-dense and purely stronger than F_{n}.
- A front-sequence \bar{F} and a tree $T \in Q$ correspond to each other if F_{n} is a front in T for all n.

Facts 1.6. - If F is n-dense and F^{\prime} is purely stronger than F, then F^{\prime} is n-dense as well. (This is not true if F^{\prime} is just stronger than F.)

- If $T \in Q$ then there is a front-sequence corresponding to T.
- If \bar{F} is a front-sequence then there exists exactly one $T \in Q$ corresponding to \bar{F}, which we call $\lim (\bar{F})$. It is the tree

$$
\lim (\bar{F}):=\left\{t \in T_{\max }:(\exists i \in \omega) t \leq F_{i}\right\}
$$

or equivalently

$$
\lim (\bar{F}):=\left\{t \in T_{\max }:(\forall i \in \omega)\left(\exists s \in F_{i}\right) t \| s\right\} .
$$

Lemma 1.7. Assume that Q is a finitely splitting lim-sup tree-forcing.

[^1](1) If $T \in Q$ and $t \in T$ then $T^{[t]} \in Q$. (Sometimes this fact is formulated as " Q is strongly arboreal".)
(2) The finite union of elements of Q is in $Q 3^{3}$
(3) The generic filter on Q is determined by a real η_{\sim} defined by $\Vdash_{Q}\{\underset{\sim}{\eta}\}=\bigcap_{T \in G_{Q}} \lim (T)$; or equivalently: η is the union of the stems of the trees in G_{Q}.
It is forced that $\tilde{\eta} \notin V$ and that $T \in G_{Q}$ iff $\eta \in \lim (T)$.
For every $T \in Q$ and $t \in T, t<\underset{\sim}{\eta}$ is compatible with T. (In other words: $T \Vdash t$ 大 $\mathrm{N}_{\text {. }}$)
(4) (Fusion) If $\left(T_{i}\right)_{i \in \omega}$ is a decreasing sequence in Q and \bar{F} is a front-sequence such that F_{i} is a front in T_{i} for all i, then $\lim (\bar{F}) \leq_{Q} T_{i}$.
(5) (Pure decision) If $D \subseteq Q$ is dense, $T \in Q$ and F is a front of T, then there is an $S \leq T$ such that F is a front of S and for every $t \in F, S^{[t]} \in D$.
(6) Q is propet and ω^{ω}-bounding.

Sketch of proof. (1) and (2) and (4) are clear. (1) and (2) imply (5).
(3): Let G be Q-generic over V, and define $X:=\bigcap_{T \in G} \lim (T)$. Since $\lim \left(T_{\max }\right)$ is compact, it satisfies the finite intersection property. So X is nonempty. For every $T \in G$ and $n \in \omega$ there is exactly one $t \in T$ of length n such that $T^{[t]} \in G$. So X has at most one element.

If $r \in V$, then the set of trees $S \in Q^{V}$ such that $r \notin \lim (S)$ is dense: If r is a branch of $T \in Q$ then pick an m such that $\mu_{T}(r \upharpoonright m)>2$. Since singletons have measure less than $1, r \upharpoonright m$ has at least two immediate successors in T, and one of them (we call it t) is not an initial segment of r. So $S:=T^{[t]}$ forces that $\underset{\sim}{ } \neq r$.

Assume towards a contradiction that $\eta \tilde{\in} \lim (T)$ for some $T \in Q^{V} \backslash G$. Then this is forced by some $S \in G$. In particular $S \tilde{c a n}$ not be a subtree of T. So pick an $s \in S \backslash T$. Then $S^{[s]} \leq S$ forces that $\eta \notin \lim (T)$, a contradiction.

If $T \in Q$ and $t \in T$ then $T^{[t]}$ forces that $t<\eta$.
(4) and (5) imply that Q is ω^{ω}-bounding and satisfies a version of Axiom A (with fronts as indices instead of natural numbers) 5 we get properness. (We will prove a more general case in 2.24)

So a front can be seen as a finite set of (pairwise incompatible) possibilities for initial segments of the generic real η. In the next section we will generalize this to finite sequences of generic reals instead of a single one.

1.2. Some additional facts needed later.

Lemma 1.8. If $S \in Q$ and the forcing R adds a new real $\underset{\sim}{r} \in 2^{\omega}$, then R forces that there is a $\underset{\sim}{T} \leq_{Q} S$ such that $\lim (\underset{\sim}{T}) \cap V=\emptyset$, and moreover $\lim (\underset{\sim}{T}) \cap V$ remains empty in every extension of the universe.

Proof. Assume S corresponds to the front-sequence \bar{F}. Without loss of generality we can assume that along every branch in S there is exactly one split between F_{n-1} and F_{n} and this split has measure $>n$.

[^2]

Figure 2. An example for S and its subtree $\underset{\sim}{T}$ (bold) when $\underset{\sim}{r}(0)=0$.

We define an R-name of a sequence of finite antichains $(\underset{\sim}{\underset{n}{\prime}}$) the following way (cf. Figure (2): If n is even, we "take all splits", i.e., $\underset{\sim}{F}$ is the set of nodes in F_{n} that are compatible with $\underset{\sim}{\underset{\sim}{r}}{ }^{\prime}$. If n is odd, then we add no splittings at all: for every $s \in \underset{\sim}{\underset{\sim}{F}}{ }_{n-1}^{\prime}$ we put exactly one successor $t \in F_{n}$ of s into $\underset{\sim}{F}$, namely the one continuing the $\underset{\sim}{r}\left(\frac{n-1}{2}\right)$-th successor of the (unique) splitting node over s. It is clear that the sequence $\left(\underset{\sim}{F}{ }_{n}^{\prime}\right)$ defines a subtree $\underset{\sim}{T}$ of S that is in Q.

Assume V^{\prime} is an arbitrary extension of V containing an R-generic filter G over V. If $\eta \in \lim (\underset{\sim}{T}[G]) \cap V$, then $\underset{\sim}{r}[G]$ can be decoded in V using S and η. This is a contradiction to $\Vdash_{R} \underset{\sim}{r} \notin V$.

We will also need the following family of definable dense subsets of Q :
Definition 1.9. Fix a recursive bijection ψ from ω to $2^{<\omega}$. Assume that $f: \omega \rightarrow \omega$ is strictly increasing and that $A \subseteq \omega$.

- For $g \in 2^{\omega}$, define $A_{g}^{\psi}:=\{n \in \omega: \psi(n)<g\}$.
- Q_{A}^{f} is the set of all $T \in Q$ such that for all splitting nodes $t \in T$, length (t) is in the interval $[f(n), f(n+1)-1]$ for some $n \in A$.
- $T \in Q$ has full splitting with respect to f if for all $n \in \omega$ and $t \in T$ of length $f(n+1)$ there is an $s \leq t$ of length at least $f(n)$ such that $\mu_{T}(s)>n$.
- $D_{f}^{\text {spl }}$ is the set of all $T \in Q$ such that either $T \in Q_{A_{8}^{\mu}}^{f}$ for some $g \in 2^{\omega}$ or $T \perp_{Q} S$ for all $g \in 2^{\omega}$ and $S \in Q_{A_{8}^{\psi}}^{f}$.

Of course the notions Q_{A}^{f} and $D_{f}^{\text {spl }}$ depend on the forcing Q (i.e., on $T_{\max }$ and μ), so maybe it would be more exact to write $Q_{A}^{f}\left[T_{\max }, \mu\right]$ etc. However, we always assume that the Q is understood. 3.3).

Lemma 1.10. Assume that $f: \omega \rightarrow \omega$ is strictly increasing and $A, B \subseteq \omega$.
(1) If $g \neq g^{\prime}$, then $A_{g}^{\psi} \cap A_{g^{\prime}}^{\psi}$, is finite.
(2) $Q_{\omega}^{f}=Q$. If A is finite then $Q_{A}^{f}=\emptyset$.
(3) $Q_{A}^{f} \cap Q_{B}^{f}=Q_{A \cap B}^{f}$. If $A \subseteq B$, then $Q_{A}^{f} \subseteq Q_{B}^{f}$.
(4) If $T \leq_{Q} S$ and $S \in Q_{A}^{f}$ then $T \in Q_{A}^{f}$.
(5) For every $T \in Q$ there is a strictly increasing f such that T has full splitting with respect to f.
(6) If $T \in Q$ has full splitting with respect to f and $|A|=\boldsymbol{\aleph}_{0}$ then there is an $S \leq_{Q} T$ such that $S \in Q_{A}^{f}$.
(7) $D_{f}^{s p l}$ is an (absolute definition of an) open dense subset of Q (using the parameters $f, T_{\text {max }}$ and μ.
(8) In any extension V^{\prime} of V the following holds: If $r \in 2^{\omega} \backslash V$ and $S \in Q_{A_{r}^{\mu}}^{f}$, then $T \perp_{Q} S$ for all $T \in V \cap D_{f}^{s p l}$.

Proof. (1)-(4) and (6) are clear.
(5): Let T be an element of Q. Assume we already constructed $f(n)$. Let N be the maximum of $\mu_{T}(t)$ for $t \in T \upharpoonright f(n)$. There is an $N+n+1$-dense front F in T. Let $f(n+1)$ be the maximum of $\{$ length $(t): t \in F\}$.
(7): " T is incompatible with all $S \in Q_{A_{g}^{\psi}}^{f}$ " is absolute, since it is equivalent to

$$
\left(\forall g \in 2^{\omega}\right)\left(\forall S \subseteq T_{\max }\right)\left[S \notin Q_{A_{g}^{\psi}}^{f} \vee T \perp_{Q} S\right],
$$

which is a \prod_{\sim}^{1} statement.
(8): Let $r \in 2^{\omega} \backslash V$ and $T \in V \cap D_{f}^{\mathrm{spl}}$. If $T \in Q_{A_{8}^{\psi}}^{f}$ for some $g \in 2^{\omega} \cap V$, then $g \neq r$, so $A_{g}^{\psi} \cap A_{r}^{\psi}$ is finite and $Q_{A_{r}^{\psi}}^{f} \cap Q_{A_{g}^{\psi}}^{f}$ is empty. If on the other hand T is incompatible with all $S \in Q_{A_{g}^{\prime \prime}}^{f}$ in V then this holds in V^{\prime} as well.

Assume $f^{\prime}(n) \geq f(n)$ for all $n \in \omega$. Define $h(n)$ by induction: $h(n+1):=f^{\prime}(h(n)+1)$. If T has full splitting with respect to f, then T has full splitting with respect to h : $h(n) \leq f(h(n))$, since f is strictly increasing. $f(h(n)+1) \leq f^{\prime}(h(n)+1)=h(n+1)$, and there are $h(n)$-dense splits between the levels $f(h(n))$ and $f(h(n)+1)$. So there are n-dense splits between the levels $h(n)$ and $h(n+1)$. So we get:

Lemma 1.11. If V^{\prime} is an ω^{ω}-bounding extension of V and $T \in Q^{V^{\prime}}$, then there is a strictly increasing $h \in V$ such that (in $\left.V^{\prime}\right) T$ has full splitting with respect to h.

2. A non-wellfounded Iteration

In this section we introduce a general construction to iterate lim-sup tree-forcings Q_{i} (as defined in the last section) along non-wellfounded linear orders I. It turns out that the limit P is proper, ω^{ω}-bounding and has other nice properties similar to the properties of Q_{i} itself. If I is wellfounded, then P is equivalent to the usual countable support iteration of (the evaluations of the definitions) Q_{i}.

2.1. Conditions and approximations, the nw-iteration.

Definition 2.1. Let I be a linear order. For $i \in I$ we set $I_{<i}:=\{j \in I: j<i\}$ and analogously we define $I_{\leq i}$ and $I_{>i}$. We also set $I_{<\infty}:=I$.

[^3]

Figure 3. An approximation g: $u=\{i, j\}, T_{\max }^{i}=2^{<\omega}, T_{\max }^{j}=3^{<\omega}$. $\operatorname{Pos}(\mathfrak{g})=\operatorname{Pos}_{\leq j}(\mathfrak{g})=\left\{\left(a_{i}^{1}, b_{j}^{0}\right),\left(a_{i}^{1}, b_{j}^{1}\right),\left(a_{i}^{0}, b_{j}^{2}\right),\left(a_{i}^{0}, b_{j}^{3}\right),\left(a_{i}^{0}, b_{j}^{0}\right)\right\}$.
(a): viewed as function: $\mathfrak{g}(i)\left(\rangle)=\left\{a_{i}^{0}, a_{i}^{1}\right\}, \mathfrak{g}(j)\left(\left\langle a_{i}^{1}\right\rangle\right)=\left\{b_{j}^{0}, b_{j}^{1}\right\}\right.$ etc.
(b): viewed as tree, the heights labeled with $\{\emptyset\} \cup u$.

For every $i \in I$ we fix a finitely splitting lim-sup tree-forcing Q_{i} (to be more exact, we fix a pair $T_{\max }^{i}, \mu^{i}$). In the application of this paper, each Q_{i} will be the same forcing Q.
Definition 2.2. (Pre-condition) We call p a pre-condition, if p is a function, the domain of p is a countable $\sqrt{7}$ subset of I, and for each $i \in \operatorname{dom}(p), p(i)$ consists of the following:

- $\operatorname{Dom}_{i}^{p}$, a countable subset of $\operatorname{dom}(p) \cap I_{<i}$, and
- a (definition of a) Borel function $B_{i}^{p}:\left(\omega^{\omega}\right)^{\text {Dom }_{i}^{p}} \rightarrow Q_{i}$

Remark 2.3. The idea is that we calculate the condition $B_{i}^{p} \in Q_{i}$ using countably many generic reals $\left(\eta_{j}\right)_{j \in \operatorname{Dom}_{i}^{p}}$ that have already been produced at stage i. The forcing conditions p of the non-wellfounded iterations will be pre-conditions that satisfy additional properties, in particular: all B_{i}^{p} are continuous (on a certain Borel set), i.e., if we want to know B_{i}^{p} up to some finite height we only have to know $\left(\eta_{i} \upharpoonright m\right)_{i \in u}$ for some finite u and $m \in \omega$. Moreover, we will assume that we will have "wellfounded continuity parts". This will be explained in the following, here just an example: Assume that $I=\omega^{*}=\{\ldots, 3,2,1,0\}$, and each $T_{\text {max }}^{i}=2^{<\omega}$. Let p be the pre-condition with $\operatorname{Dom}_{n}^{p}=\{n+1\}$, i.e., B_{n}^{p} only depends on the generic real η_{n+1}, and $B_{n}^{p}(x)=[0]$ if $x(0)=0$ and $B_{n}^{p}(x)=[1]$ otherwise. Then p is continuous, but will not be a valid condition, since it is not well founded enough.

We now define finite "approximations" to conditions of the iteration; they will have the same role for the iteration that finite antichains have for Q (see, e.g., Lemma 1.7). The following definition looks rather unpleasant, but really is quite simple, as Figure 3 hopefully demonstrates. (We first define approximations as functions as in (a) of the figure; sometimes it is more useful to think of them as trees as in (b), which will be described in 2.6)
Definition 2.4. (Approximation)

- \mathfrak{g} is an approximation, if \mathfrak{g} is a function with finite domain $u \subseteq I$ of the following form: Let i_{0} be the smallest element of u. We set $\operatorname{Pos}_{<i_{0}}(\mathfrak{g}):=\{\langle \rangle\}$. By induction on $i \in u$, we assume that $\operatorname{Pos}_{<i}(\mathfrak{g})$ is a set of sequences indexed by the set $\{j \in u: j<$ $i\}$, and require the following: $\mathfrak{g}(i)$ is a function from $\operatorname{Pos}_{<i}(\mathfrak{g})$ to finite antichains in $T_{\text {max }}^{i}$, and we set

$$
\operatorname{Pos}_{\leq i}(\mathfrak{g}):=\left\{\bar{a} \curvearrowright b: \bar{a} \in \operatorname{Pos}_{<i}(\mathfrak{g}), b \in \mathfrak{g}(i)(\bar{a})\right\} .
$$

If j is the successor of i in u, we set $\operatorname{Pos}_{<j}(\mathfrak{g})$ to be $\operatorname{Pos}_{\leq i}(\mathrm{~g})$.

[^4]- For any $i \in I \cup\{\infty\}$, we define $\operatorname{Pos}_{<i}(\mathfrak{g})$ as $\operatorname{Pos}_{\leq j}(\mathfrak{g})$, where $j=\max \left(\operatorname{dom}(\mathfrak{g}) \cap I_{<i}\right)$ (or as $\left\{\rangle\rangle\right.$, if $\operatorname{dom}(\mathfrak{g}) \cap I_{<i}$ is empty). We set $\operatorname{Pos}(\mathfrak{g}):=\operatorname{Pos}_{<\infty}(\mathfrak{g})$ and call it the set of possibilities of \mathfrak{g}.
- If $i \notin \operatorname{dom}(\mathfrak{g})$ or $\bar{a} \notin \operatorname{Pos}_{<i}(\mathfrak{g})$ we $\operatorname{set} ~ \mathfrak{g}(i)(\bar{a}):=\{\langle \rangle\}$ (i.e., the front in $T_{\max }^{i}$ consisting only of the root. This corresponds to "no information").
- Let \mathfrak{g} be an approximation, $J \subset I$, and $\bar{\eta}=\left(\eta_{i}\right)_{i \in J}$ a sequence of reals. Then " $\bar{\eta}$ is compatible with \mathfrak{g} ", if there is an $\bar{a} \in \operatorname{Pos}(\mathfrak{g})$ such that $a_{i}<\eta_{i}$ for all $i \in$ $\operatorname{dom}(\mathrm{g}) \cap J$. If in addition $J \supseteq \operatorname{dom}(\mathrm{~g})$, then this \bar{a} is uniquely defined and called $\bar{\eta} \upharpoonright \mathrm{g}$. If $J \supseteq \operatorname{dom}(\mathfrak{g}) \cap I_{<i}$, then $\bar{a} \upharpoonright I_{<i}$ is uniquely defined, and therefore we can set $\mathfrak{g}(i)(\bar{\eta}):=\mathfrak{g}(i)\left(\bar{a} \upharpoonright I_{<i}\right)$.

If $\bar{b}=\left(b_{i}\right)_{i \in J}$ is a sequence of elements of $\omega^{<\omega}$, we define \bar{b} to be compatible with \mathfrak{g} if there is a sequence $\bar{\eta}$ extending \bar{b} and compatible with \mathfrak{g}. If $J \supseteq \operatorname{dom}(\mathfrak{g})$ and additionally each b_{i} is long enough, then such a \bar{b} defines a unique $\bar{a} \in \operatorname{Pos}(\mathfrak{g})$ called $\bar{b} \upharpoonright \mathrm{~g}$; if $J \supseteq \operatorname{dom}(\mathrm{~g}) \cap I_{<i}$ and additionally each b_{i} is long enough, then we can define $\mathfrak{g}(i)(\bar{b})$ as above.

- If \mathfrak{g} and \mathfrak{g}^{\prime} are both approximations, then " \mathfrak{g} ' is stronger than \mathfrak{g} " if $\operatorname{dom}\left(\mathfrak{g}^{\prime}\right) \supseteq$ $\operatorname{dom}(\mathfrak{g})$ and for all $\bar{b} \in \operatorname{Pos}\left(\mathfrak{g}^{\prime}\right)$ there is an $\bar{a} \in \operatorname{Pos}(\mathfrak{g})$ such that $\bar{b} \geq \bar{a}$ (i.e., $b_{i} \geq a_{i}$ for all $i \in \operatorname{dom}(\mathfrak{g}))$. In this case \bar{a} is $\bar{b} \upharpoonright \mathfrak{g}$.

Equivalently, \mathfrak{g}^{\prime} is stronger than \mathfrak{g} iff for all $i \in \operatorname{dom}(\mathfrak{g})$ and all $\bar{b} \in \operatorname{Pos}_{<i}\left(\mathfrak{g}^{\prime}\right)$ there is a (unique) $\bar{a} \in \operatorname{Pos}_{<i}(\mathfrak{g})$ such that $\bar{b} \geq \bar{a}$ and the antichain $\mathfrak{g}^{\prime}(i)(\bar{b})$ is stronger than $\mathfrak{g}(i)(\bar{a})$.

- \mathfrak{g}^{\prime} is purely stronger than \mathfrak{g} if \mathfrak{g}^{\prime} is stronger than \mathfrak{g} and for all $i \in \operatorname{dom}(\mathfrak{g})$ and $\bar{b} \in \operatorname{Pos}_{<i}\left(\mathfrak{g}^{\prime}\right)$ the front $\mathfrak{g}^{\prime}(i)(\bar{b})$ is purely stronger than $\mathfrak{g}(i)(\bar{b} \upharpoonright \mathfrak{g})$.
- For $u \subseteq \operatorname{dom}(\mathfrak{g})$, maxlength ${ }_{u}(\mathrm{~g})$ is $\max \left(\left\{\right.\right.$ length $\left.\left.\left(a_{i}\right): i \in u, \bar{a} \in \operatorname{Pos}(\mathfrak{g})\right\}\right)$. maxlength (g) is maxlength ${ }_{\text {dom }(\mathrm{g})}(\mathrm{g})$. Analogously we define minlength (g).
- \mathfrak{g} is n-dense at $i \in I$, if $i \in \operatorname{dom}(\mathfrak{g})$ and for all $\bar{a} \in \operatorname{Pos}_{<i}(\mathfrak{g}), \mathfrak{g}(i)(\bar{a})$ is n-dense for Q_{i}. (See Definition 1.5)
- For all $\bar{a}=\left(a_{i}\right)_{i \in u}$ such that $a_{i} \in T_{\max }^{i}$ there is a (unique) approximation \mathfrak{g} such that $\operatorname{Pos}(\mathfrak{g})=\{\bar{a}\}$. We will call this approximation \bar{a} as well.

Facts 2.5. - "stronger" is a partial order on the set of approximations; the same holds for "purely stronger".

- If \mathfrak{h} is stronger than \mathfrak{g}, then all $\bar{\eta}$ compatible with \mathfrak{h} are compatible with \mathfrak{g}.

We could equivalently define approximations as trees, cf. Figure 3(b): Given an approximation \mathfrak{g}, we can define an approximation-tree with $u=\operatorname{dom}(\mathfrak{g})$ labeling the heights above the root, and the set of nodes at height $i_{n} \in u$ is $\operatorname{Pos}_{\leq i_{n}}(\mathfrak{g})$; the tree order is just extension of sequences. Every such approximation-tree corresponds to an approximation:

Fact 2.6. Consider a finite tree where the heights above the root are labeled by the increasing sequence $u=\left\{i_{1}, \ldots, i_{n}\right\}$ in I. Assume that each node at height i_{m} is a sequence $\left(a_{j}\right)_{j=i_{1}, \ldots, i_{m}}$ and that the tree order is the extension relation. Then this tree corresponds to an approximation, iff each branch has maximal height and the successors of each node at level i_{n-1} form an antichain in $T_{\max }^{i_{n}}$.

In particular, if we take a subset of the (maximal) branches in the approximation-tree \mathfrak{g}, we get a "sub-approximation" \mathfrak{h}. A single branch \bar{a} is a special case of such a subapproximation.
Definition 2.7. (Approximation to p) Let p be a pre-condition.

- \mathfrak{g} approximates p, or: \mathfrak{g} is a p-approximation, if $\operatorname{dom}(\mathfrak{g}) \subseteq \operatorname{dom}(p)$ and \mathfrak{g} is an approximation with the following property: If $i \in \operatorname{dom}(\mathfrak{g}), \bar{a} \in \operatorname{Pos}_{<i}(\mathfrak{g})$, and $\bar{\eta}=\left(\eta_{j}\right)_{j \in \operatorname{Dom}_{i}^{p}}$ is compatible with \bar{a}, then $\mathfrak{g}(i)(\bar{a})$ is a front in $B_{i}^{p}(\bar{\eta})$.
- \mathfrak{g} is an indirect approximation to p witnessed by \mathfrak{g}^{\prime}, if \mathfrak{g}^{\prime} approximates p and \mathfrak{g}^{\prime} is purely stronger than \mathfrak{g}.

Example 2.8. The following trivial example should demonstrate the difference between approximation and indirect approximation: Assume each $T_{\max }^{i}$ is $2^{<\omega}$, and p is a condition with $\operatorname{dom}(p)=\{i, j\}$ for some $i<j$ in I. Accordingly $\operatorname{Dom}_{i}^{p}$ has to be empty, and B_{i}^{p} is constant; we set it to have constant value [1]. We set $\operatorname{Dom}_{j}^{p}=\{i\}$ and $B_{j}^{p}(x)=[x(0)]$, i.e., if the real x starts with 0 then B_{j}^{p} is [0] and otherwise it is [1]. We define the approximation \mathfrak{g} by $\operatorname{Pos}(\mathfrak{g})=\{(\langle \rangle, 1)\}$ and \mathfrak{h} by $\operatorname{Pos}(\mathfrak{h})=\{(1,1)\}$. Then \mathfrak{g} indirectly approximates p, witnessed by \mathfrak{h}.

Now we can define the forcing P, the non-wellfounded countable support limit along I :
Definition 2.9. (The nwf-iteration $P=$ nwf- $\left.\lim _{I}\left(Q_{i}\right)\right)$

- $p \in P$ means:
p is a pre-condition, and for all finite $u \subseteq \operatorname{dom}(p), i \in u$ and $n \in \omega$ there is a p approximation \mathfrak{g} such that $\operatorname{dom}(\mathfrak{g}) \supseteq u, \mathfrak{g}$ is n-dense for i, and minlength ${ }_{u}(\mathfrak{g})>n$.
- For $p, q \in P, q \leq p$ means:
for all p-approximations \mathfrak{g} there is a q-approximation \mathfrak{b} which is stronger than \mathfrak{g} (so in particular, $\operatorname{dom}(q) \supseteq \operatorname{dom}(p)$).
- $q \leq_{\mathfrak{g}} p$ if $q \leq p$ and \mathfrak{g} indirectly approximates p and q.

Remark. The definition of $q \leq_{P} p$ is not equivalent to "for all i and $\bar{\eta}, B_{i}^{q}(\bar{\eta})$ is a subtree of $B_{i}^{p}(\bar{\eta})$." (Informally speaking, we are only interested in "the generic $\bar{\eta}$, not in "all $\bar{\eta} "$.) We will see in Lemma2.236 that $q \leq_{P} p$ is equivalent to: for each $i \in I$ it is forced by $q \upharpoonright P_{<i}$ that $B_{i}^{q}(\bar{\eta})$ is a subtree of $B_{i}^{p}(\bar{\eta})$, where $\bar{\eta}$ is the generic sequence up to i.

Facts 2.10. - \leq is transitive, and for a fixed approximation \mathfrak{g} the relation $\leq_{\mathfrak{g}}$ is transitive as well.

- If \mathfrak{b} is purely stronger than \mathfrak{g} then $\leq_{\mathfrak{h}}$ implies $\leq_{\mathfrak{g}}$.
- For every $p \in P$, the approximations of p are directed: If \mathfrak{g} and \mathfrak{g}^{\prime} both (indirectly) approximate p, then there is $a \mathfrak{h}$ approximating p that is (purely) stronger than both \mathfrak{g} and \mathfrak{g}^{\prime}. In fact, every p-approximation \mathfrak{h} has this property if $\operatorname{dom}(\mathfrak{h}) \supseteq$ $\operatorname{dom}(\mathfrak{g}) \cup \operatorname{dom}\left(\mathfrak{g}^{\prime}\right)$ and if minlength ${\operatorname{dom}(\mathfrak{g}) \cup \operatorname{dom}\left(\mathfrak{g}^{\prime}\right)}(\mathfrak{h})$ is large enough.

So in particular for every $p \in P$ there is an approximating sequence:
Definition 2.11. An approximating sequence for $p \in P$ is a sequence $\left(\mathfrak{g}_{n}\right)_{n \in \omega}$ of approximations of p such that \mathfrak{g}_{n+1} is purely stronger than \mathfrak{g}_{n}, and \mathfrak{g}_{n+1} is n-dense for each $i \in \operatorname{dom}\left(\mathfrak{g}_{n}\right)$, and $\operatorname{dom}(p)=\bigcup_{n \in \omega} \operatorname{dom}\left(\mathfrak{g}_{n}\right)$.

An approximating sequence contains all relevant information about p. In particular, \mathfrak{g} is an indirect approximation to p iff there is an n such that \mathfrak{g}_{n} is purely stronger than \mathfrak{g}. So if p and q both have the approximating sequence $\left(g_{n}\right)_{n \in \omega}$, then $p=^{*} q$ (i.e., $p \leq q$ and $q \leq p$), furthermore \mathfrak{g} indirectly approximates p iff it indirectly approximates q.

Approximating sequences provide an equivalent definition for P :
Definition 2.12. (Alternative definition of the nwf-iteration P) Define the p.o. P^{\prime} as follows: $\overline{\mathfrak{g}} \in P^{\prime}$ iff $\overline{\mathfrak{g}}$ is a sequence of approximations $\left(\mathfrak{g}_{n}\right)_{n \in \omega}$ such that \mathfrak{g}_{n+1} is purely stronger than \mathfrak{g}_{n} and n-dense for every $i \in \operatorname{dom}\left(\mathfrak{g}_{n}\right)$. We define $\overline{\mathfrak{h}}<\overline{\mathfrak{g}}$ as: For every n there is an m such that \mathfrak{h}_{m} is stronger than \mathfrak{g}_{n}.
Lemma 2.13. There is a dense embeddind ${ }^{8} \phi: P^{\prime} \rightarrow P$.
Proof. Given a sequence $\overline{\mathfrak{g}} \in P^{\prime}$, define $p=\phi(\overline{\mathfrak{g}})$ the following way: $\operatorname{dom}(p)=\bigcup \operatorname{dom}\left(\mathfrak{g}_{n}\right)$. For $i \in \operatorname{dom}(p)$, set $\operatorname{Dom}_{i}^{p}:=\operatorname{dom}(p) \cap I_{<i}$. Define $T=B_{i}^{p}(\bar{\eta})$ as follows: If $\bar{\eta}$ is compatible with all \mathfrak{g}_{n}, then let T be $\left\{t \in T_{\text {max }}^{i}:(\exists n \in \omega) t \leq \mathfrak{g}_{n}(i)(\bar{\eta})\right\}$. Otherwise, let n be maximal such that $\bar{\eta}$ is compatible with \mathfrak{g}_{n}, and let T be $\left\{t \in T_{\max }^{i}:\left(\exists s \in \mathfrak{g}_{n}(i)(\bar{\eta})\right) t \| s\right\}$. Clearly,

[^5]B_{i}^{p} is a Borel function, $B_{i}^{p}(\bar{\eta}) \in Q_{i}$ and each \mathfrak{g}_{n} approximates p. Therefore $\left(\mathfrak{g}_{n}\right)_{n \in \omega}$ is an approximating sequence for $p \in P$. It is clear that ϕ preserves the order.

Let ψ map $p \in P$ to any approximating sequence for $p . \psi: P \rightarrow P^{\prime}$ preserves order as well and $\phi(\psi(p))={ }^{*} p$. Therefore ϕ is a dense embedding.

Notes 2.14. (1) If \mathfrak{g} indirectly approximates p, then there is a $q={ }^{*} p$ such that \mathfrak{g} approximates q. (Just let q correspond to an approximating sequence of p starting with $\mathfrak{g}_{0}=\mathfrak{g}$.)
(2) It doesn't matter whether the \mathfrak{g}_{n} in an approximating sequence are approximations to p or just indirect approximations.
(3) It doesn't matter whether \mathfrak{g}_{n+1} proves n-density for every $i \in \operatorname{dom}\left(\mathfrak{g}_{n}\right)$ or for just some i_{n}, provided that the sequence $\left(i_{n}\right)_{n \in \omega}$ covers $\cup \operatorname{dom}\left(\mathfrak{g}_{n}\right)$ infinitely often.
(4) In Definition 2.2 of pre-condition, instead of requiring B_{i}^{p} to be a function into Q_{i}, we could have defined B_{i}^{p} to be a function to subtrees of $T_{\max }^{i}$. The additional " n-dense" requirements on a condition guarantee $B_{i}^{p}(\bar{\eta}) \in Q_{i}$ anyway (for generic sequences $\bar{\eta}$).
(5) Every approximation \mathfrak{g} can be interpreted as a condition in P, by

$$
B_{i}^{\mathfrak{g}}(\bar{\eta}):=\{t: t \| \mathfrak{g}(i)(\bar{\eta})\} \text { for } i \in \operatorname{dom}(\mathfrak{g})
$$

(Where we set $\mathfrak{g}(i)(\bar{\eta}):=\{\langle \rangle\}$ if $\bar{\eta}$ is incompatible with \mathfrak{g}.) Then \mathfrak{g} approximates itself.
(6) For any approximation \mathfrak{g} and $u \subseteq I$ finite we can assume $u \subseteq$ dom \mathfrak{g} : Just set $\mathfrak{g}(i)$ to be the constant function with value $\{\rangle\}$ for $i \notin \operatorname{domg}$. (Recall that $\{\rangle\}$ is the "trivial front" corresponding to "no information".)
(7) If \mathfrak{g} and \mathfrak{h} are approximations, we can assume without loss of generality that $\operatorname{dom}(\mathfrak{g})=\operatorname{dom}(\mathfrak{h})$.
(8) For any $U \subseteq I$ countable and $p \in P$ we can assume without loss of generality that $\operatorname{dom}(p) \supseteq U$. This is clear if p is interpreted as a sequence of Borel-functions: just set B_{i}^{p} to be (the constant function with value) $T_{\max }^{i}$ for $i \notin \operatorname{dom}(p)$. If p is interpreted as sequence $\left(\mathfrak{g}_{n}\right)_{n \in \omega}$ of approximations, we have to set $\mathfrak{g}_{n}(i)$ to be (the constant function with value) $T_{\max }^{i} \cap \omega^{k(n)}$ for some sufficiently large $k(n)$. (Using $\{\rangle\}$ does not work here, since it does not satisfy n-density.)
(9) So if $q \leq p$ we can assume $\operatorname{dom}(q)=\operatorname{dom}(p)$, and if p is interpreted as sequence $\left(\mathfrak{g}_{n}\right)_{n \in \omega}$ and q as $\left(\mathfrak{g}_{n}\right)_{n \in \omega}$ then we can assume $\operatorname{dom}(\mathfrak{g})=\operatorname{dom}(\mathfrak{h})$.
2.2. Fusion and pure decision. We have seen: Every $p \in P$ corresponds to a purely increasing sequence $\left(\mathfrak{g}_{n}\right)$ of approximations such that $\cup \operatorname{dom}\left(\mathfrak{g}_{n}\right)=\operatorname{dom}(p)$ and \mathfrak{g}_{n+1} is n-dense for $\operatorname{dom}\left(\mathfrak{g}_{n}\right)$. The approximating sequences immediately prove a version of fusion:
Lemma 2.15. (Fusion) Assume that $\left(p_{n}\right)_{n \in \omega}$ is a sequence of conditions, $\left(g_{n}\right)_{n \in \omega}$ a sequence of approximations, and $i_{n} \in \operatorname{dom}\left(\mathfrak{g}_{n}\right)$ such that:

- $p_{n+1} \leq_{g_{n}} p_{n}$,
- \mathfrak{g}_{n+1} is purely stronger than \mathfrak{g}_{n} and n-dense for i_{n},
- $\left(i_{n}\right)_{n \in \omega}$ covers $\cup \operatorname{dom}\left(p_{n}\right)$ infinitely often.

Then there is a condition p_{ω} such that $p_{\omega} \leq_{g_{n}} p_{n}$ for all n.
Proof. We already know that the sequence $\left(g_{n}\right)_{n \in \omega}$ of approximations defines a condition p_{ω} such that each \mathfrak{g}_{n} approximates p_{ω}. If \mathfrak{h} approximates p_{n}, then some \mathfrak{g}_{m} is stronger than \mathfrak{h}. Then \mathfrak{g}_{m} approximates p_{ω}, so $p_{\omega} \leq p_{n}$.

Definition 2.16. \mathfrak{h} is sub-approximation of \mathfrak{g} if $\operatorname{Pos}(\mathfrak{h}) \subseteq \operatorname{Pos}(\mathfrak{g})$. $($ So in particular dom $(\mathfrak{g})=$ dom(h).)

Obviously any sub-approximation of \mathfrak{g} is stronger than \mathfrak{g}. In the interpretation of approximations as trees, a sub-approximation is just a nonempty subset of the (maximal) branches, see Fact 2.6

Lemma 2.17. (Sub-approximation) Assume that \mathfrak{g} indirectly approximates p and that \mathfrak{h} is a sub-approximation of \mathfrak{g}. Then there is a weakest condition stronger than p and approximated by \mathfrak{h}, which we call $p \upharpoonright \mathfrak{h}$.

Proof. Without loss of generality, we can think of p as an approximation-sequence $\left(\mathfrak{g}_{n}\right)_{n \in \omega}$ with $\mathfrak{g}=\mathfrak{g}_{0}$. We define approximations \mathfrak{b}_{n} as follows: \mathfrak{h}_{n} consists of those nodes in the approximation-tree \mathfrak{g}_{n} that are compatible with an element of \mathfrak{b}. Then $p \upharpoonright \mathfrak{h}$ is the sequence $\left(\mathfrak{h}_{n}\right)_{n \in \omega}$.

A special case of a sub-approximation is a singleton:
Definition 2.18. Assume that \mathfrak{g} (indirectly) approximates p and $\bar{a} \in \operatorname{Pos}(\mathfrak{g})$. We can interpret \bar{a} as an approximation, a sub-approximation of \mathfrak{g}. Instead of $p \upharpoonright \bar{a}$ we also write $p^{[\bar{a}]}$.

Corollary 2.19. (Specialization and pure decision) Assume that \mathfrak{g} indirectly approximates p and that $\bar{a} \in \operatorname{Pos}(\mathrm{~g})$.
(1) $p^{[\bar{a}]} \in P, p^{[\bar{a}]} \leq p$ and \bar{a} indirectly approximates $p^{[\bar{a}]}$. If $q \leq p$ and \bar{a} indirectly approximates q, then $q \leq p^{[\bar{a}]}$.
(2) If $q \leq_{g} p$, then $q^{[\bar{a}]} \leq p^{[\bar{a}]}$.
(3) If $q \leq p^{[\bar{a}]}$ then there is a $r \leq_{\mathfrak{g}} p$ such that $r^{[\bar{a}]}={ }^{*} q$.
(4) The $\operatorname{set}\left\{p^{[\bar{a}]}: \bar{a} \in \operatorname{Pos}(\mathfrak{g})\right\}$ is predense below p.
(5) Abusing notation, we denote with (i, a) the approximation \mathfrak{g} with domain $\{i\}$ such that $\mathfrak{g}(i)(\rangle)=\{a\}$. For all $i \in I, n \in \omega$ the following set is dense:

$$
\left\{p \in P:\left(\exists a \in \omega^{n}\right)(i, a) \text { approximates } p\right\} .
$$

(Or, in the notation introduced later: We can densely determine the generic η_{i} up to n.)
(6) (Pure decision) If $D \subseteq P$ is open dense, and \mathfrak{g} indirectly approximates p, then there is an $r \leq_{\mathfrak{g}} p$ such that $r^{[\bar{a}]} \in D$ for all $\bar{a} \in \operatorname{Pos}(\mathfrak{g})$.

Proof. (1) and (2) follow easily from the definition.
(3) We set r to be q "below \bar{a} " and p otherwise. Let p correspond to $\left(\mathfrak{g}_{n}\right)_{n \in \omega}$ with $\mathfrak{g}_{0}=\mathfrak{g}$, and q corresponds to $\left(\mathfrak{b}_{n}\right)_{n \in \omega}$ with $\mathfrak{h}_{0}=\bar{a}$ such that each \mathfrak{b}_{n} is stronger than \mathfrak{g}_{n}. According to Note 2.14(9), we can assume that $\operatorname{dom}\left(\mathfrak{h}_{n}\right)=\operatorname{dom}\left(\mathfrak{g}_{n}\right)=u_{n}$. We define by induction on n a sub-approximation \mathfrak{f}_{n} of \mathfrak{g}_{n} : Let i_{0} be minimal in u_{n}. So $\operatorname{Pos}_{<i_{0}}\left(\mathfrak{f}_{n}\right)=\{\langle \rangle\}$. By induction on $i \in u_{n}$, define for all $\bar{b} \in \operatorname{Pos}_{<i}\left(\tilde{f}_{n}\right)$

$$
\mathfrak{f}_{n}(i)(\bar{b}):= \begin{cases}\mathfrak{g}_{n}(i)(\bar{b}) & \text { if } \bar{b} \text { is incompatible with } \mathfrak{h}_{n}, \\ \mathfrak{h}_{n}(i)(\bar{b}) \cup\left\{t \in \mathfrak{g}_{n}(i)(\bar{b}): t \perp \mathfrak{h}_{n}(i)(\bar{b})\right\} & \text { otherwise. }\end{cases}
$$

It is clear that the possibilities of \mathfrak{f}_{n} follow \mathfrak{h}_{n} up to some $i \in \operatorname{dom} \mathfrak{g}_{n}$ and from then on become incompatible with \mathfrak{h}_{n} and follow \mathfrak{g}_{n}. To be more exact: $\bar{b} \in \operatorname{Pos}\left(\mathfrak{f}_{n}\right)$ iff $\bar{b} \in \operatorname{Pos}\left(\mathfrak{g}_{n}\right)$ and for some $i \in \operatorname{dom}\left(\mathfrak{g}_{n}\right) \cup\{\infty\}, \bar{a} \upharpoonright I_{<i}$ is in $\operatorname{Pos}\left(\mathfrak{h}_{n}\right)$ and either $i=\infty$ or $a_{i} \perp \mathfrak{h}_{n}(i)(\bar{a})$. From this it follows that \mathfrak{f}_{n} is purely stronger than \mathfrak{g}_{n}, and that the \mathfrak{f}_{n} are an approximating sequence (converging to some $r \leq p$).
(4) If \mathfrak{g} indirectly approximates p and $q \leq p$, then there is a \mathfrak{h} stronger than \mathfrak{g} approximating q. Let $\bar{b} \in \operatorname{Pos}(\mathfrak{h})$ and $\bar{a}=\bar{b} \upharpoonright \mathfrak{g} \in \operatorname{Pos}(\mathfrak{g})$. Then $q^{[\bar{b}]} \leq q, p^{[\bar{a}]}$.
(5) Let \mathfrak{h} approximate p such that minlength $\left\{(\mathfrak{b})>n\right.$. Let $\bar{a} \in \operatorname{Pos}(\mathfrak{h})$. Then $\left(a_{i}\right)$ indirectly approximates $p^{[\bar{a}]} \leq p$. By 2.14 (1) we can find a $q=^{*} p$ such that $\left(a_{i}\right)$ approximates q.
(6) Let $\operatorname{Pos}(\mathfrak{g})=\left\{\bar{a}_{0}, \ldots, \bar{a}_{l}\right\}$. Pick $q_{0} \leq p^{\left[\bar{a}_{0}\right]}$ in D, and $r_{0} \leq_{\mathfrak{g}} p$ as in (3). So $r_{0}^{\left[\bar{a}_{0}\right]} \in D$. Pick $q_{1} \leq r_{0}^{\left[\bar{a}_{1}\right]}$ in D and $r_{1} \leq_{\mathfrak{g}} r_{0}$ as above, etc. Then r_{l} has the required property.
Remark. Similarly, we can define conjunctions of two approximations \mathfrak{g}, \mathfrak{g}^{\prime}. More specifically: let us call \mathfrak{g} and \mathfrak{g}^{\prime} compatible if there is an \mathfrak{h} stronger than both \mathfrak{g} and \mathfrak{g}^{\prime}. Then
for every compatible pair $\mathfrak{g}, \mathfrak{g}^{\prime}$ there is a weakest approximation $\mathfrak{g} \wedge \mathfrak{g}^{\prime}$ stronger than \mathfrak{g} and g^{\prime}. If p and q have incompatible approximations, then they are incompatible (in Q). This can be used to define the conjunction of an approximation and a condition (if the condition p corresponds to the sequence \mathfrak{g}_{n}, let $p \wedge \mathfrak{h}$ correspond to the sequence $\mathfrak{g}_{n} \wedge \mathfrak{h}$; it is the weakest condition stronger than p that is approximated by \mathfrak{b}). Similarly one can define the conjunction of two conditions. However, all of this will not needed in this paper.
2.3. Restrictions. We now list some trivial properties of P regarding restriction:

Definition 2.20. For $i \in I \cup\{\infty\}$ we define $P_{<i}:=\left\{p \in P: \operatorname{dom}(p) \subseteq I_{<i}\right\}$. In particular, $P=P_{<\infty}$. Analogously we define $P_{\leq i}$ for $i \in I$.

Facts 2.21. (Restriction) Assume $p, q \in P$ and $i, j \in I \cup\{\infty\}$.

- If $\operatorname{dom}(q) \supseteq \operatorname{dom}(p), q \upharpoonright \operatorname{dom}(p)=p$ and \mathfrak{g} approximates p, then $q \leq_{\mathfrak{g}} p$.
- $p \upharpoonright I_{<i} \in P_{<i}$ and $p \leq p \upharpoonright I_{<i}$.
- If $p^{\prime} \leq p$ then $p^{\prime} \upharpoonright I_{<i} \leq p \upharpoonright I_{<i}$. If $p \in P_{<i}$ then $p \upharpoonright I_{<i}=p$.
- Let $q \in P_{<i}, q \leq p \upharpoonright I_{<i}$. Define $q \wedge p:=q \cup p \upharpoonright I_{\geq i}$. Then $q \wedge p \in P$ is the weakest condition stronger than both q and p.
- $p \upharpoonright I_{<i}$ is a reduction of p (i.e., $r^{\prime} \in P_{<i}$ and $r^{\prime} \leq p \upharpoonright I_{<i}$ implies $r^{\prime} \| p$).
- In particular, $P_{<i}<\cdot P_{<j}$ (i.e., $P_{<i}$ is a complete subforcing of $P_{<j}$) for $i \leq j$.
- If $p \upharpoonright I_{<i} \| q \upharpoonright I_{<i}$ and $\operatorname{dom}(p) \cap \operatorname{dom}(q) \subseteq I_{<i}$, then $p \| q$.
- Similar facts hold for $P_{\leq i}$. E.g., if $i<j$, then $P_{\leq i}<\cdot P_{<j}$.

Definition 2.22. Assume that $j \in I \cup\{\infty\}$ and $i<j$, and that $G_{<j}$ is a $P_{<j}$-generic filter over V.

- Since $P_{<i}$ is a complete subforcing of $P_{<j}$, the filter $G_{<j} \cap P_{<i}=: G_{<i}$ is $P_{<i}$-generic over V. We set $V_{<i}:=V\left[G_{<i}\right]$. The canonical Q_{i}-generic filter over $V_{<i}$ is called $G(i)$. Analogously we can define $V_{\leq i}$ and $G_{\leq i}$ (which turns out to be $V_{<i}[G(i)]$ and $G_{<i} * G(i)$, respectively).
- In $V_{<j}$ or $V_{\leq i}$ we define η_{i} to be the union of all $t \in \omega^{<\omega}$ such that (i, t) is an approximation of p for some $p \in G_{<j}$ (or $\left.G_{\leq i}\right)$.
Lemma 2.23. Let $i, j, G_{<j}$ be as above, $p \in G_{<j}$, and set $\bar{\eta}=\left(\eta_{l}\right)_{l<j}$.
(1) η_{i} is a well-defined real. In particular we can calculate $B_{i}^{q}\left(\bar{\eta} \upharpoonright\right.$ Dom $\left._{i}^{q}\right)$ for all $q \in P$; abusing notation, we will just write $B_{i}^{q}(\bar{\eta})$.
(2) If \mathfrak{g} indirectly approximates p, then $\bar{\eta}$ is compatible with \mathfrak{g}.
(3) $\left\{\eta_{i}\right\}=\bigcap\left\{\lim B_{i}^{q}(\bar{\eta}): q \in G_{<j}, i \in \operatorname{dom}(q)\right\}$.
(4) $q \in G_{<j}$ iff $\eta_{i} \in \lim \left(B_{i}^{q}(\bar{\eta})\right)$ for all $i \in \operatorname{dom}(q)$.
(5) (in $V): q \leq_{P} p$ iff $\operatorname{dom}(q) \supseteq \operatorname{dom}(p)$ and $q \Vdash \eta_{i} \in \lim \left(B_{i}^{p}(\bar{\eta})\right.$) for all $i \in \operatorname{dom}(p)$.
(6) (in $V): q \leq_{P} p$ iff $\operatorname{dom}(q) \supseteq \operatorname{dom}(p)$ and $q \upharpoonright I_{<i} \Vdash B_{i}^{q}(\bar{\eta}) \subseteq \tilde{B}_{i}^{p}(\bar{\eta})$ for all $i \in \operatorname{dom}(p)$.

Proof. (1) By 2.19,5, the set of conditions q such that for some t of length n the approximation (i, t) approximates q is dense. Therefore η_{i} is infinite. Also, if $s \perp t$, if (i, t) is an approximation of q, and if (i, s) is an approximation of q^{\prime}, then q and q^{\prime} are incompatible. This shows that η_{i} is indeed a real.
(2) According to 2.19]4], the set $\left\{p^{[\bar{a}]}: \bar{a} \in \operatorname{Pos}(\mathfrak{g})\right\}$ is predense below p. Let \bar{a} be such that $p^{[\bar{a}]} \in G$. Any $q \in G$ that is stronger than $p^{[\bar{a}]}$ and decides η_{i} up to the length of a_{i} forces that $\eta_{i} \supset a_{i}$. So $\bar{\eta}$ is compatible with \bar{a} and therefore with \mathfrak{g}.
(3) Let $\tilde{n} \in \omega$. We have to show that $\eta_{i} \upharpoonright n \in B_{i}^{q}(\bar{\eta})$. First pick an approximation \mathfrak{g} of q with minlength ${ }_{\{i j}(\mathfrak{g}) \geq n$. We already know that $\bar{\eta}$ is compatible with \mathfrak{g}, in particular η_{i} is compatible with $\mathfrak{g}(i)(\bar{\eta})$. And $\mathfrak{g}(i)(\bar{\eta})$ is a front in $B_{i}^{q}(\bar{\eta})$, since \mathfrak{g} approximates q. It remains to be seen that the intersection on the right-hand side is a singleton; this is clear by genericity.

[^6](5) One direction follows immediately from the definition of the order in P : Assume that $q \leq p$ and that $i \in \operatorname{dom}(p)$. Assume towards a contradiction that $r \leq q$ forces that $\underset{\sim}{\eta_{i}} \notin \lim \left(B_{i}^{p}(\underset{\sim}{\eta})\right)$, more specifically that ${\underset{\sim}{i}}_{i} \upharpoonright M \notin B_{i}^{p}(\underset{\sim}{\eta})$ for some M (already determined by r). Pick a p-approximation \mathfrak{g} that has minimal height greater than M at position i; and an r-approximation \mathfrak{h} stronger than \mathfrak{g}. Pick $\bar{b} \in \operatorname{Pos}(\mathfrak{h})$ and let $\bar{a} \in \operatorname{Pos}(\mathfrak{g})$ be the restriction. Then $r^{[\bar{b}]}$ forces that $\eta_{i} \upharpoonright M<a_{i}<b_{i}$ for any $\bar{b} \in \operatorname{Pos}(\mathfrak{h})$, but $a_{i} \in \mathfrak{g}(i)(\bar{a})$ which is a front in $B_{i}^{p}(\bar{\eta})$, a contradiction.

For the other direction, let \mathfrak{g} approximate p and \mathfrak{h} approximate q such that dom($\mathfrak{h}) \supseteq$ $\operatorname{dom}(\mathfrak{g})$ and the length of \mathfrak{b} is sufficiently large on $\operatorname{dom}(\mathfrak{g})$. Then \mathfrak{h} must be stronger than \mathfrak{g}, which shows that $q \leq p$.
(4) follows from (3) and (5); (6) follows from (5) (see also the proof of Lemma 2.25].
2.4. Properness, bounding, continuous reading. As immediate consequence of fusion and pure decision we get:

Theorem 2.24. (1) P is ω^{ω}-bounding. For every p and P-name τ for an ω-sequence of ordinals there is a $q \leq p$ such that q reads τ continuously $\sqrt{10}$
(2) Assume that the cofinality of I is $\geq \boldsymbol{\aleph}_{1}$, that G is P-generic over V and that $r \in \mathbb{R}^{V[G]}$. Then there is an $i \in I$ such that $r \in \mathbb{R}^{V_{<i}}$.
(3) P is propen ${ }^{12}$
(4) P forces that η_{i} is a Q_{i}-generic real over $V_{<i}$.
(5) If $I=I_{1}+I_{2}$, then $\operatorname{nwf}-\lim _{I}\left(Q_{i}\right) \cong$ nwf- $\lim _{I_{1}}\left(Q_{i}\right) *$ nwf- $\lim _{I_{2}}\left(Q_{i}\right)$, the forcingcomposition of nwf-lim $I_{I_{1}}\left(Q_{i}\right)$ and (the nwf- $\lim _{I_{1}}\left(Q_{i}\right)$-name for) nwf- $\lim _{I_{2}}\left(Q_{i}\right)$.
(6) If $I=\Sigma_{\beta \epsilon \epsilon} J_{\beta}$ is the concatenation of the orders J_{β} along the ordinal ϵ, then nwf- $\lim _{I}\left(Q_{i}\right)$ is equivalent to the countable support limit $\left(P_{\beta},{\underset{\sim}{\beta}}_{\prime}^{\prime}\right)_{\beta \in \epsilon}$, where ${\underset{\sim}{\alpha}}_{\beta}^{\prime}$ is (the P_{β}-name for) nwf- $\lim _{J_{\beta}}\left(Q_{i}\right)$.
(7) If I is well-founded, then nwf- $^{\lim }{ }_{I}\left(Q_{i}\right)$ is the countable support limit of the Q_{i}.

Proof. (1) Fix for every countable subset J of I an enumeration $\left\{j_{m}: m \in \omega\right\}$, and denote $\left\{j_{m}: m \in n\right\}$ by first (n, J).

Assume $\underset{\sim}{\tau}$ is a name of a real and $p \in P$. We have to show that there is a $p_{\omega} \leq p$ and an $f \in \omega^{\omega}$ such that $p_{\omega} \Vdash \underset{\sim}{\tau}(n)<f(n)$. Let $p_{0} \leq p, f(0) \in \omega$ be such that $p_{0} \Vdash$ $\underset{\sim}{\tau}(0)=f(0)$, and let \mathfrak{g}_{0} approximate p_{0}. Assume that \mathfrak{g}_{n} and p_{n} are already defined. We define $p_{n+1} \leq_{\mathfrak{g}_{n}} p_{n}, f(n)$ and \mathfrak{g}_{n+1} the following way: Let $p_{n+1} \leq_{\mathfrak{g}_{n}} p_{n}$ be such that $p_{n+1}^{[\bar{a}]}$ decides $\underset{\sim}{\tau}(n)$ for every $\bar{a} \in \operatorname{Pos}\left(\mathfrak{g}_{n}\right)$, see 2.19.6). Let $f(n)$ be the maximum of the possible values for $\mathfrak{\tau}(n)$. Let \mathfrak{g}_{n+1} be a p_{n+1}-approximation stronger than \mathfrak{g}_{n} which is n-dense at every $i \in \operatorname{first}\left(n, \operatorname{dom}\left(p_{1}\right)\right) \cup \cdots \cup \operatorname{first}\left(n, \operatorname{dom}\left(p_{n}\right)\right)$. Then the sequence $\left(p_{n}\right)_{n \in \omega}$ satisfies the conditions for fusion 2.15 so there is a $p_{\omega} \leq p_{n}$. Clearly, $p_{\omega} \Vdash \underset{\sim}{\tau}(n) \leq f(n)$.

The same argument shows continuous reading of ω-sequences: Now we do not require $\underset{\sim}{\tau}(n)$ to be a natural number, and we do not care about the maximum possible value; the rest is the same.
(2) The p_{ω} above completely determines $\underset{\sim}{\tau}$, so if $p_{\omega} \in P_{<i}$, then $p_{\omega} \Vdash_{P} \underset{\sim}{\tau} \in V_{<i}$.
(3) is very similar to the above: Assume that $N<H(\chi)$ and $p_{0} \in N$. Let $\left\{D_{m}: m \in \omega\right\}$ enumerate the dense sets in N. Assume $p_{n}, \mathfrak{g}_{n} \in N$ are already defined. Find (in N) $p_{n+1} \leq_{g_{n}} p_{n}$ such that $p_{n+1}^{[\bar{a}]} \in D_{n}$ for all $\bar{a} \in \operatorname{Pos}\left(\mathfrak{g}_{n}\right)$, and pick $\mathfrak{g}_{n+1} \in N$ big enough. Then

[^7]we can (in V) fuse this sequence into a $p_{\omega} \in P$. Note that $\operatorname{dom}\left(p_{\omega}\right) \subseteq N \cap I$. If G is P-generic over V and $p_{\omega} \in G$, then $p_{n} \in G$ and $\left\{p_{n}^{[\bar{a}]}: \bar{a} \in \operatorname{Pos}\left(\mathfrak{g}_{n}\right)\right\}$ is predense below p_{n}, so some $p_{n}^{[\bar{a}]} \in G$, and $p_{n}^{[\bar{a}]} \in D_{n} \cap N$.
(4) is a special case of (5): Set $I_{1}:=I_{<i}$ and $I_{2}:=\{i\}$. So η_{i} is $V_{<i}$-generic in $V_{\leq i}$ and therefore in $V_{<\infty}$ as well.
(5) Set $P:=$ nwf- $\lim _{I}\left(Q_{i}\right), P_{1}:=$ nwf- $\lim _{I_{1}}\left(Q_{i}\right)$, and ${\underset{\sim}{P}}_{2}$ (the P_{1}-name of) nwf- $\lim _{I_{2}}\left(Q_{i}\right)$.

There is a natural map $\phi: p \mapsto\left(p_{1}, \underset{\sim}{p}\right)$ from P to $P_{1} * \underset{\sim}{P} 2: p_{1}:=p \upharpoonright I_{1}$, and $\underset{\sim}{p}$ is defined by $\operatorname{dom}\left({\underset{\sim}{p}}_{2}\right):=\operatorname{dom}(p) \backslash I_{1}$ and $B_{i}^{p_{2}}(\bar{\eta}):=B_{i}^{p}\left(\left(\eta_{i}\right)_{\left(i \in I_{1}\right)} \bar{\eta}\right)$.

It is clear that ϕ preserves \leq. We claim that it is dense and preserves \perp. Assume $\phi(p)=\left(p_{1},{\underset{\sim}{r}}_{2}\right), \phi(q)=\left(q_{1},{\underset{\sim}{2}}_{2}\right)$, and $\left(r_{1},{\underset{\sim}{2}}_{2}\right) \leq\left(p_{1},{\underset{\sim}{2}}_{2}\right),\left(q_{1},{\underset{\sim}{2}}_{2}\right)$. We have to find a $r^{\prime} \leq_{p} p, q$ such that $\phi\left(\tilde{r}^{\prime}\right) \leq\left(r_{1}, r_{2}\right)$.
r_{1} forces that $\underset{\sim}{p},{\underset{\sim}{q}}_{2}$ and ${\underset{\sim}{r}}_{2}$ correspond to approximating sequences $\left({\underset{\sim}{g}}_{n}^{p}\right),\left(\mathfrak{g}_{n}^{q}\right)$ and $\left(\mathfrak{g}_{n}^{r}\right)$. As in (1) we can find an $r_{1}^{\prime} \leq r_{1}$ with an approximating sequence $\left(\mathfrak{b}_{n}\right)$ such that \mathfrak{b}_{n} decides ${\underset{\sim}{g}}_{n}^{i}$ (for $\left.i \in\{p, q, r\}\right)$ in a way such that ${\underset{\sim}{g}}_{n}^{r}$ is stronger than both ${\underset{\sim}{g}}_{n}^{p}$ and \mathfrak{g}_{n}^{q}. Then we can $\tilde{c o n c a t e n a t e}\left(\mathfrak{h}_{n}\right)$ with the $\left(\mathfrak{g}_{n}^{r}\right)$ to an approximating sequence to some $r^{\prime} \in \tilde{P}$. Then $r^{\prime} \leq p, q$ and $\phi\left(r^{\prime}\right) \leq\left(r_{1}, r_{2}\right)$.
(6) By induction on ϵ. The successor step follows from (5). Let $\operatorname{cf}(\epsilon)>\omega$. Then the nwf-limit as well as the cs-limit are just the unions of the smaller limits, and therefore equal by induction. If $\operatorname{cf}(\epsilon)=\omega$, then the nwf-limit as well as the cs-limit are the full inverse limits of the iteration system, and therefore again equal by induction.
(7) follows from (6).

We will also use the following fact:
Lemma 2.25. Assume that $\underset{\sim}{S}$ is a $P_{<i}$-name for an element of Q_{i}, that $q \upharpoonright I_{<i}$ reads $\underset{\sim}{S}$ continuously and that $q \Vdash \underset{\sim}{\eta_{i}} \in \underset{\sim}{S}$. Then $q \upharpoonright I_{<i}$ forces that $B_{i}^{q}(\underset{\sim}{\eta}) \leq Q_{i} \underset{\sim}{S}$.
Proof. Assume otherwise. Then there is an approximation \mathfrak{g} of $p:=q \upharpoonright I_{<i}$, an $\bar{a} \in \operatorname{Pos}(\mathfrak{g})$ and a $t \in T_{\max }^{i}$ such that $p^{[\bar{a}]}$ forces t to be in $B_{i}^{q}(\underset{\eta}{\eta})$ but not in $\underset{\sim}{S}$. Let \bar{a}^{+}be $\bar{a}^{\vee} t$. Then \bar{a}^{+}is a possible value of some approximation of q, and $q^{\left[a^{+}\right]}$forces that $\eta_{i} \notin \underset{\sim}{S}$, a contradiction.
Remark. The iteration technique defined here also works for larger classes of forcings, e.g., for the tree forcings $\mathbb{Q}_{0}^{\text {tree }}$ of [9] mentioned already. If we assume additional properties such as bigness and halving, we could also use lim-inf forcings. It is also possible to extend the construction to non-total orders, or to allow $T_{\max }^{i}, \mu^{i}$ to be $P_{<i}$-names.

3. The ideal Ic

To every tree forcing such as Q defined in Section 1 (and many other tree forcings as well) there is an associated ideal \mathbb{I} and a notion of measurability. We will also use \mathbb{I}^{c}, the $<2^{N_{0}}$-closure of \mathbb{I}, and the associated notion of weak measurability. The application in this paper of a nw-iteration will be: for certain Q we can force weak measurability for all definable sets.

Definition 3.1. - The ideal \mathbb{I} on the reals is defined by: $X \in \mathbb{I}$ if for all $S \in Q$ there is a $T \leq S$ such that $X \cap \lim (T)=\emptyset$.

- \mathbb{I}^{c} is the $<2^{\aleph_{0}}$-closure of \mathbb{I}.
- X has weak measure 1 if $\mathbb{R} \backslash X \in \mathbb{I}^{c}$. X has strong measure 1 , if $\mathbb{R} \backslash X \in \mathbb{I}$.

Notes. - Of course these notions depend on the forcing Q, so it might be more exact to use notation such as \mathbb{I}_{Q} or $\mathbb{I}_{\left(T_{\text {max }}, \mu\right)}$ etc. In this paper this is not necessary, since we will always use a fixed Q.

- We use the phrase "measure 1 " although the ideals \mathbb{I} and \mathbb{I}^{c} are not related to a measure (they are not even ccc).
- Of course, if CH holds, then $\mathbb{I}^{\mathfrak{c}}=\mathbb{I}$.
- \mathbb{I} is always nontrivial (i.e., $\lim \left(T_{\max }\right) \notin \mathbb{I}$), but this is not clear for \mathbb{I}^{c}.
$F: Q \rightarrow Q$ is a witness for $X \in \mathbb{I}$ if $F(S) \leq S$ and $X \cap \lim (F(S))=\emptyset$ for all $S \in Q$.
So every $X \in \mathbb{I}$ is contained in a set $\bigcap\left\{\omega^{\omega} \backslash \lim (F(S)): S \in Q\right\}{ }^{13}$
Lemma 3.2. \mathbb{I} is a non-trivial σ-ideal.
Proof. This follows from fusion: Assume $X_{i} \in \mathbb{I}(i \in \omega)$ and $S=S_{0} \in Q$. Pick any front $F_{0} \in S_{0}$, so $S_{0}=\bigcup_{t \in F_{0}} S_{0}^{[t]}$. For each $t \in F_{0}$ pick an $S_{1, t} \leq S_{0}^{[t]}$ such that $\lim \left(S_{1, t}\right) \cap X_{1}=\emptyset$. Set $S_{1}:=\bigcup_{t \in F_{0}} S_{1, t}$. So $S_{1} \in Q$, and F_{0} is a front in S_{1}. Pick a 1-dense front F_{1} in S_{1} (purely) stronger than F_{0}. Iterate the construction. Fusion produces a $T<S$ such that $\lim (T) \cap X_{i}=\emptyset$ for all $i \in \mathbb{N}$.

For example, if Q is Sacks forcing, then \mathbb{I} is called Marczewski ideal. $X \in \mathbb{I}$ iff in every perfect set A there is a perfect subset A^{\prime} of A such that $A^{\prime} \cap X=\emptyset$. So if X is Borel (or if X has the perfect set property, e.g., X is \sum_{\sim}^{1}), then $X \in \mathbb{I}$ iff X is countable. \mathbb{I} is not a ccc ideal: For $A \subseteq \omega$, set

$$
X_{A}:=\left\{f \in 2^{\omega}:(\forall n \notin A) f(n)=0\right\} .
$$

Clearly $X_{A} \cap X_{B}=X_{A \cap B}$, and $\left|X_{A}\right|=2^{|A|}$. So if $\left\{A_{i}: i \in 2^{\aleph_{0}}\right\}$ is an almost disjoint family, then $\left\{X_{A_{i}}\right\}$ is a family of closed sets not in \mathbb{I} such that $X_{A_{i}} \cap X_{A_{j}}$ is finite for $i \neq j$.

For a Borel ccc ideal I, " $X \subseteq \mathbb{R}$ is measurable" can be defined by "there is a Borel set A such that $A \Delta X \in I "$. (Usually the basis of the ideal is simpler, e.g., one can use open sets instead of Borel sets for meager, or G_{δ} sets for Lebesgue-null.) Equivalently, X is measurable iff for every I-positive Borel set A there is an I-positive Borel set $B \subseteq A$ such that either $B \cap X \in I$ or $B \backslash X \in I$. For non-ccc ideals that do not live on the Borel sets, this second notion is usually the one used to define measurability:

Definition 3.3. $\quad X \subseteq \mathbb{R}$ is measurable if for every $T \in Q$ there is an $S \leq_{Q} T$ such that either $\lim (S) \cap X \in \mathbb{I}$ or $\lim (S) \backslash X \in \mathbb{I}$.

- $X \subseteq \mathbb{R}$ is weakly measurable if for every $T \in Q$ there is an $S \leq_{Q} T$ such that either $\lim (S) \cap X \in \mathbb{I}^{c}$ or $\lim (S) \backslash X \in \mathbb{I}^{c}$.

Since \mathbb{I}^{c} is the bigger ideal, measurability implies weak measurability.
In the rest of the paper, we will construct a specific Q and a nwf-iteration P and show that P forces all definable sets to be weakly measurable:

Theorem 3.4. Assume CH and that Q satisfies the Ramsey property 5.4. Then there is a proper, $\mathbb{\aleph}_{2}-c c, \omega^{\omega}$-bounding p.o. P forcing that every set of reals which is (first-order) definable using a parameter in $L(\mathbb{R})$ is weakly measurable.

We will see in Lemma 5.5 that there is such a Q, and the Theorem will be proven by 4.8, 4.10 and 5.8

Remark 3.5. It is natural to ask whether in our forcing extension every definable set is measurable (and not just weakly measurable, as stated in the theorem). This seems unlikely, but it is not clear how to prove it. It is not even clear how to prove that in our forcing model $\mathbb{I} \neq \mathbb{I}^{c}$ (i.e., that add $(\mathbb{I})<2^{\aleph_{0}}$). (Of course, $\mathbb{I}=\mathbb{I}^{c}$ would trivially imply that measurable sets and weakly measurable sets are the same, so in particular that all definable sets are measurable.)

Let us first list some facts about (weak) measurability:
Lemma 3.6. Every Borel set is measurable. The family of measurable sets is closed under complements and countable unions; the same holds for weakly measurable sets.
Proof. Closure under complement is trivial.
Every closed set is measurable: Let $X=\lim \left(T^{\prime}\right)$ be closed and $T \in Q$. If there is a $t \in T \backslash T^{\prime}$ then $S:=T^{[t]}$ satisfies $\lim (S) \cap X=\emptyset$. Otherwise $T \subseteq T^{\prime}$ and $S:=T$ satisfies $\lim (S) \backslash X=\emptyset$.

[^8]Assume that $\left(X_{i}\right)_{i \in \omega}$ is a sequence of weakly measurable sets and that $T \in Q$. If for some $i \in \omega$ there is an $S \leq T$ such that $\lim (S) \backslash X_{i} \in \mathbb{I}^{c}$ then the same obviously holds for $\bigcup_{i \in \omega} X_{i}$. So assume that for all $i \in \omega$ and $T^{\prime} \leq T$ there is an $S \leq T^{\prime}$ such that $\lim (S) \cap X_{i} \in \mathbb{I}^{\text {c }}$. Now repeat the proof of 3.2 .

The same proof also shows that the measurable sets are closed under countable unions.
\mathbb{I}^{c} could be trivial (i.e., $\operatorname{cov}(\mathbb{I})$ could be less than $2^{\aleph_{0}}$). If \mathbb{I}^{c} is "everywhere nontrivial", then \mathbb{I}^{c} and \mathbb{I} are the same on measurable (in particular, Borel) sets:
Lemma 3.7. Assume that $\lim (S) \notin \mathbb{I}^{c}$ for all $S \in Q$. Then \mathbb{I}^{c} and \mathbb{I} agree on measurable sets. I.e., if X is measurable and $X \in \mathbb{I}^{c}$, then $X \in \mathbb{I}$.

Proof. For every $T \in Q$ there is an $S \leq_{Q} T$ such that $\lim (S) \cap X \in \mathbb{I}$: Otherwise $\lim (S) \backslash X \in$ $\mathbb{I} \subseteq \mathbb{I}^{c}$, a contradiction to $X \in \mathbb{I}^{c}$ and $\lim (S) \notin \mathbb{I}^{c}$. So by the definition of \mathbb{I} there is a $S^{\prime} \leq_{Q} S \leq_{Q} T$ such that $\lim \left(S^{\prime}\right) \cap X=\emptyset$. So $X \in \mathbb{I}$.

Since any Borel set B is measurable, $B \in \mathbb{I}$ iff $(\forall S \in Q) \lim (S) \nsubseteq B$, so we get:
Fact 3.8. For a Borel code B, the statement " $B \in \mathbb{\mathbb { } "}$ is \prod_{\sim}^{1} and therefore invariant under forcing.

On the other hand, since \mathbb{I} is not a Borel ideal (i.e., not every $X \in \mathbb{I}$ is contained in a Borel set $B \in \mathbb{I}$), there is no reason why $X \in \mathbb{I}$ should be upwards absolute between universes.

For later reference, we will reformulate the definition of \mathbb{I} : If $S \in Q, X \subseteq Q, T \in X$ and $T^{\prime} \leq_{Q} S, T$, then $\lim \left(T^{\prime}\right) \cap\left(2^{\omega} \backslash \bigcup_{R \in X} \lim (R)\right) \subseteq \lim \left(T^{\prime}\right) \backslash \lim (T)=\emptyset$. So we get:

Lemma 3.9. If $X \subseteq Q$ is predense then $\bigcup_{T \in X} \lim (T)$ is of strong measure 1.

4. An order with many automorphisms

In this section we assume CH . We will construct an order I and define P to be the
 automorphisms. We show that these properties imply that P forces the following:

- $2^{\aleph_{0}}=\aleph_{2}$,
- \mathbb{I}^{c} is nontrivial (and moreover $\lim (S) \notin \mathbb{I}^{c}$ for all $S \in Q$),
- for every definable set X, "locally" either all or no $\eta_{j_{\delta}}$ are in X and
- $\left\{\eta_{j_{\delta}}: \delta \in \omega_{2}\right\}$ is of weak measure 1 in $\left\{\eta_{i}: i \in I\right\}$.

In the next section it will be shown that the set $\left\{\eta_{i}: i \in I\right\}$ is of weak measure 1 , which will finish the proof Theorem 3.4

First note that for any I with uncountable cofinality, P makes the old reals null:
Lemma 4.1. If I has cofinality $\geq \boldsymbol{\aleph}_{1}$ and $i \in I$ then $\Vdash_{P} V_{<i} \cap \lim \left(T_{\text {max }}\right) \in \mathbb{I}$.
Proof. Let G_{P} be P-generic over V. If $T \in V\left[G_{P}\right]$ then $T \in V_{<j}$ for some $i<j<\infty$ because of 2.24(2). So in $V_{\leq j}$ there is an $S<T$ such that $\lim (S) \cap V_{<i}=\emptyset$ (in $V_{\leq j}$ and $V\left[G_{P}\right]$ as well, according to 1.8).

Lemma 4.2. Assume that CH holds and that I is ω_{2}-like. Then
(1) P has the $\aleph_{2}-c c$ (and therefore preserves all cofinalities).
(2) $P_{<i} \Vdash C H$ for each $i \in I$ and $P \Vdash 2^{\aleph_{0}}=\aleph_{2}$.

Proof. (1) If $\left|I_{<i}\right| \leq 2^{\aleph_{0}}$ then $\left|P_{<i}\right| \leq 2^{\aleph_{0}}$: There are at most $\left|I_{<i}\right|^{\aleph_{0}} \leq 2^{\aleph_{0}}$ may countable subsets of $\left|I_{<i}\right|$. For each $p \in P_{<i}$ with a fixed domain and each $j \in \operatorname{dom}(p)$ there are $2^{\aleph_{0}}$ many possibilities for $\operatorname{Dom}_{j}^{p}$ and $2^{\aleph_{0}}$ many possibilities for the Borel definition B_{j}^{p}.

[^9]If CH holds, then the usual delta system lemma applies: If $A \subseteq P$ is a maximal antichain of size $\boldsymbol{\aleph}_{2}$ then without loss of generality the domains of $p \in A$ form a delta system (i.e., there is a countable $x \subseteq I$ such that $\operatorname{dom}\left(p_{1}\right) \cap \operatorname{dom}\left(p_{2}\right)=x$ for all $p_{1} \neq p_{2} \in A$). Since I is ω_{2}-like, x cannot be cofinal. Let i be an upper bound of x. Without loss of generality $p_{1} \upharpoonright I_{<i}=p_{2} \upharpoonright I_{<i}$ for $p_{1} \neq p_{2} \in A$ (since there are only $\boldsymbol{\aleph}_{1}$ many elements of $P_{<i}$). But then $p_{1} \| p_{2}$ by Fact 2.21 .

Proper and $\boldsymbol{\aleph}_{2}$-cc imply preservation of all cofinalities and cardinalities.
(2) Let G be P-generic over V. Then the reals in $V[G]$ are the union of the reals in $V_{<i}$. Every real in $V_{<i}$ is read continuously from a condition $p \in G_{<i}$. There are only $\left|P_{<i}\right|=\left(2^{\aleph_{0}}\right)^{V}=\boldsymbol{\aleph}_{1}$ many conditions, and given a condition there are only $\left(2^{\aleph_{0}}\right)^{V}=\boldsymbol{\aleph}_{1}$ many possibilities to continuously read a real from the condition. So there are at most \aleph_{1} many reals in $V_{<i}$. And $\eta_{i} \notin V_{<i}$, so in particular $\eta_{i_{1}} \neq \eta_{i_{2}}$ for $i_{1} \neq i_{2}$.

The following is well known:
Lemma 4.3. If CH holds, then there is an $\boldsymbol{\aleph}_{1}$ saturated $\sqrt{13}$ linear order Ĩ of size $\boldsymbol{\aleph}_{1}$, and all such orders are isomorphic.

Proof. Induction of length ω_{1} : Assume at stage α we have a linear order L_{α} of size $\omega_{1}=$ $2^{\aleph_{0}}$. List all the (ω_{1} many) countable gaps and add points to fill these gaps. At limits, take the union. Then at stage ω_{1} we get a saturated order.

Uniqueness is proven by the standard back and forth argument.
Definition 4.4. Let \mathfrak{G} be the set of $0<\alpha<\omega_{2}$ such that $\operatorname{cf}(\alpha) \in\left\{1, \omega_{1}\right\}$. Note that $\mathfrak{S} \subseteq \omega_{2}$ is stationary.

We will now define the order I along which we iterate. (We do this assuming CH.)
Given \tilde{I} as above, let I be the following order:

$$
\underbrace{\tilde{I}}_{0}+\underbrace{\left\{j_{1}\right\}+\tilde{I}}_{1}+\cdots+\underbrace{\tilde{I}}_{\omega}+\underbrace{\left\{j_{\omega+1}\right\}+\tilde{I}}_{\omega+1}+\cdots+\underbrace{\left\{j_{\omega_{1}}\right\}+\tilde{I}}_{\omega_{1}}+\cdots
$$

So at stages $\alpha \in \mathbb{S}$, we add an order of the type $\{c\}+\tilde{I}$, in other stages we add just \tilde{I}.
Facts 4.5. - I is ω_{2}-like,

- $\left(j_{\alpha}\right)_{\alpha \in \subseteq}$ is an increasing (and therefore cofinal) continuous sequence in I, and
- every j_{α} has cofinality $\boldsymbol{\aleph}_{1}$ in I.

Continuous means that $j_{\delta}=\sup \left(j_{\alpha}: \alpha \in \mathbb{G}, \alpha<\delta\right)$ whenever $\delta=\sup (\mathbb{G} \cap \delta) \in \mathbb{G}$ (which is equivalent to $\operatorname{cf}(\delta)=\omega_{1}$).

Note. We could just as well define j_{α} for α with cofinality ω_{1} only, or for all $\alpha \in \omega_{2}$ (and require continuity for points of cofinality ω_{1} only). All these versions are equivalent by simple relabeling, cf. the beginning of the proof of 4.8

Definition 4.6. We set $Q_{i}=Q$ for all $i \in I$ and let P be the nwf-iteration of Q_{i} along I. We will use the notation $I_{\alpha}, P_{\alpha}, V_{\alpha}$ and η_{α} for $I_{<j_{\alpha}}, P_{<j_{\alpha}}, V_{<j_{\alpha}}$ and $\eta_{j_{\alpha}}$. We set $G_{\omega_{2}}$ to be (the name for) the P-generic (in previous notation, $G_{<\infty}$) and $V_{\omega_{2}}$ the generic extension $V\left[G_{\omega_{2}}\right]$ (in previous notation, $V_{<\infty}$).

[^10]Lemma 4.7. (CH) Let $S_{0} \subseteq \subseteq$ be stationary. P forces the following:
(1) $\left\{\eta_{\delta}: \delta \in S\right\} \notin \mathbb{I}^{c}$ for every stationary $S \subseteq \subseteq$, and
(2) $\left\{\eta_{\delta}: \delta \in S_{0}\right\} \cap \lim \left(T_{0}\right) \notin \mathbb{I}^{c}$ for every $T_{0} \in Q$.

This lemma implies that in $V_{\omega_{2}}$ the assumption of Lemma 3.7 is satisfied (i.e., that \mathbb{I}^{c} is "everywhere nontrivial"). This lemma holds for all I satisfying4.5

Proof. (1) Assume otherwise, i.e., there are P-names $\underset{\sim}{F}\left(\zeta \in \omega_{1}\right)$ for functions from Q to Q and $\underset{\sim}{S}$ for a stationary set such that $p_{0} \in P$ forces

$$
\underset{\sim}{\underset{F}{\zeta}}(T) \leq T \text { and }(\forall \delta \in \underset{\sim}{S})\left(\exists \zeta \in \omega_{1}\right)(\forall T \in Q) \eta_{\delta} \notin \lim (\underset{\sim}{F}(T)) .
$$

P forces that for each $\alpha \in \mathfrak{S}$ there is a $\beta \in \mathfrak{S}$ such that ${\underset{\sim}{\zeta}}^{(}(T) \in Q^{V_{\beta}}$ for all $T \in Q^{V_{\alpha}}$ and $\zeta \in \omega_{1}$. We need something slightly stronger: For every name $\underset{\sim}{T}$ for an element of $Q^{V_{\alpha}}$ and $\zeta \in \omega_{1}$ there is a maximal antichain $A \subset P$ such that for every $q \in A$ there is a P-name ${\underset{\sim}{q}}_{q}^{\prime}$ such that q forces $\underset{\sim}{\underset{\zeta}{\zeta}}(\underset{\sim}{T})={\underset{\sim}{q}}_{\prime}^{\prime}$ and q continuously reads ${\underset{\sim}{q}}_{q}^{\prime}$. So if $q \in G_{\omega_{2}}$ and β is bigger than $\operatorname{dom}(q){ }^{16}$ then V_{β} not only contains $T_{q}^{\prime}=F_{\zeta}(T)$, but also knows that T_{q}^{\prime} will be $F_{\zeta}(T)$ in $V_{\omega_{2}}$.

Define $f^{-}(\alpha)$ to be the smallest β which is bigger than $\operatorname{dom}(q)$ for every $q \in A$, where A is an antichain for some $\underset{\sim}{T}$ and $\zeta \in \omega_{1}$ as above. P is $\boldsymbol{\aleph}_{2}$-cc, every $q \in A$ has countable domain, and there are only $\tilde{\boldsymbol{\aleph}}_{1}$ many reals in V_{α}. So $f^{-}(\alpha)<\omega_{2}$, and we can define $f(\alpha)$ to be the smallest $\beta \in \mathfrak{S}$ that is larger or equal to $\max \left(\alpha, f^{-}(\alpha)\right)$.

If $\operatorname{cf}(\alpha)=\omega_{1}$, then $f(\alpha)$ is the supremum of $\{f(\gamma): \gamma \in \mathbb{S} \cap \alpha\}$, since the reals in V_{α} are the union of the reals in V_{γ}. So f is continuous.

Then P forces the following: Since $\underset{\sim}{S}$ is stationary, there is a $\beta \in \underset{\sim}{S}$ such that $f(\beta)=\beta$. V_{β} can calculate every F_{ζ}, and $\underset{\sim}{F_{\zeta}^{\prime \prime} Q}$ is dense in Q. Since η_{β} is a Q-generic real over V_{β}, there is (for every $\left.\zeta \in \omega_{1}\right)$ a $T \in Q^{V_{\beta}}$ such that $\eta_{\beta} \in \lim (\underset{\sim}{F}(T))$, a contradiction.
(2): We can assume that $T_{0} \in V$. Again, choose names F_{ζ} as above, and assume that $p_{0} \in P$ forces that

$$
\underset{\sim}{F}(T) \leq T \text { and }\left(\forall \delta \in S_{0}\right)\left(\exists \zeta \in \omega_{1}\right)(\forall T \in Q) \eta_{\delta} \notin \lim (\underset{\sim}{F}(T)) \cap \lim \left(T_{0}\right) .
$$

Define f as above, so there is a $\beta>\operatorname{dom}(p)$ such that $\beta \in S_{0}$ and $f(\beta)=\beta$. So the same argument proves that p_{0} forces that $\eta_{\beta} \notin \lim \left(T_{0}\right)$, a contradiction.

We also get the following:
Lemma 4.8. (CH) For every $C \subseteq \omega_{2}$ club, P forces the following:

$$
\left\{{\underset{\sim}{\eta}}_{i}: i \in I\right\} \backslash\left\{\underset{\sim}{\eta_{\alpha}}: \alpha \in \mathbb{S} \cap C\right\} \in \mathbb{T}^{c} .
$$

Again, this lemma applies to all I satisfying 4.5
Proof. We can assume that $C=\omega_{2}$, since we can just relabel the sequence $\left\{j_{\alpha}: \alpha \in \mathbb{G} \cap C\right\}$: Set $j_{\alpha}^{\prime}:=j_{\beta}$, where β is the α-th element of $C \cap \mathfrak{G}$. Then $\left(j_{\alpha}^{\prime}\right)_{\alpha \in \subseteq}$ satisfies 4.5 as well.

Recall Definition 1.9 of $Q_{A_{r}^{u}}^{f}$ and $D_{f}^{\text {spl }}$ (for $f: \omega \rightarrow \omega$ increasing and $r \in 2^{\omega}$). Enumerate all increasing $f: \omega \rightarrow \omega$ in V as $f_{\zeta}\left(\zeta \in \omega_{1}\right)$. (CH holds in V.)

Claim: In V, we can find P_{α}-names $T_{\alpha}^{\zeta}\left(\zeta \in \omega_{1}, \alpha<\omega_{2}\right.$ successor) for elements of Q such that the following is forced by $P_{\omega_{2}}$:
(1) The set $\left\{T_{\alpha}^{\zeta}: \alpha<\omega_{2}\right.$ successor $\} \subseteq Q$ is dense for all $\zeta \in \omega_{1}$.
(2) $T_{\alpha}^{\zeta} \in D_{f_{\zeta}}^{\mathrm{spl}}\left(\right.$ in V_{α} or equivalently in $\left.V_{\omega_{2}}\right){ }^{17}$
(3) If $\beta<\alpha$ is a successor, then ${\underset{\sim}{\alpha}}_{\zeta}^{\zeta}$ has no branch in V_{β}, and for all $i<j_{\alpha}$ there is a ζ_{0} such that T_{α}^{ζ} has no branch in $V_{<i}$ for all $\zeta \geq \zeta_{0}$.

[^11]

Figure 4. An automorphism f.

Proof of the claim: Pick for all $\alpha+1$ a function $\phi_{\alpha+1}: \omega_{1} \rightarrow I_{<j_{\alpha+1}} \backslash I_{<j_{\alpha}}$ which is increasing and cofinal. Also pick an enumeration $\left({\underset{\sim}{\alpha+1}}^{)_{\alpha \in \omega_{2}}}\right.$ such that ${\underset{\sim}{\alpha}}_{\alpha}$ is an P_{α}-name and P forces that $Q=\left\{{\underset{\sim}{\alpha+1}}^{\alpha}: \alpha \in \omega_{2}\right\}$. (This is possible since P forces that $Q^{V_{\omega_{2}}}=\bigcup Q^{V_{\alpha}}$, cf. 2.24|[2].)

To find T_{α}^{ζ} (α successor) note that P_{α} forces that we can perform the following construction in V_{α} : First pick an $S^{\prime} \leq{\underset{\sim}{\alpha}}_{\alpha}$ such that $S^{\prime} \in D_{f_{z}}^{\text {spl }}$ (cf.10.7). $\operatorname{cf}\left(j_{\alpha}\right)=\aleph_{1}$, so $S^{\prime} \in V_{<i}$ for some $i<j_{\alpha}$. Pick some i^{\prime} bigger than $\max \left(i, \phi_{\alpha}(\zeta)\right)$ and smaller than j_{α}. There is a real $r \in V_{\alpha} \backslash V_{<i^{\prime}}$ (e.g., $\eta_{i^{\prime}}$). Therefore there is a $T_{\alpha}^{\zeta}<S^{\prime}$ such that $\lim \left(T_{\alpha}^{\zeta}\right) \cap V_{<i^{\prime}}=\emptyset$ (in V_{α} and $V_{\omega_{2}}$ as well, cf. (1.8). Let T_{\sim}^{ζ} be a P_{α}-name for T_{α}^{ζ}.

The ${\underset{\sim}{\alpha}}_{\zeta}^{\zeta}$ constructed this way satisfy the claim: (1): $T_{\alpha}^{\zeta} \leq{\underset{\sim}{\alpha}}_{\alpha}$, (2): $D_{f_{\zeta}}^{\text {spl }}$ is open dense and absolute, (3): pick ζ_{0} such that $\phi_{\alpha}\left(\zeta_{0}\right)>i$. This ends the proof of the claim.

From now on assume G is P-generic over V. We work in $V_{\omega_{2}}$ and set $T_{\alpha}^{\zeta}:=T_{\alpha}^{\zeta}[G]$. So if $i \in I$ then the sequence $\left(T_{\alpha+1}^{\zeta}\right)_{j_{\alpha+1}<i, \zeta \epsilon \omega_{1}}$ is in $V_{<i}$.

For all $\zeta \in \omega_{1}, X_{\zeta}:=\bigcup_{\alpha+1<\omega_{2}} \lim \left(T_{\alpha+1}^{\zeta}\right)$ is of strong measure 1 (cf. 3.9). So the set $Y:=\bigcap_{\zeta \epsilon \omega_{1}} X_{\zeta}$ is of weak measure 1. It is enough to show that

$$
\left(\left\{\eta_{i}: i \in I\right\} \backslash\left\{\eta_{\alpha}: \alpha \in \subseteq\right\}\right) \cap Y=\emptyset .
$$

Assume towards a contradiction that some η_{i} is in Y and $\eta_{i} \neq \eta_{\alpha}$ for all $\alpha \in \mathbb{S}$.
Let $\alpha \in \mathbb{S}$ be minimal such that $\eta_{i} \in V_{\alpha}$ (i.e., $i<j_{\alpha}$). So α is a successor (but not necessarily a successor of a $\beta \in \mathbb{S}$), and $i>j_{\beta}$ for all $\beta \in \mathbb{S} \cap \alpha$. So according to (3) there is a ζ_{0} such that $\eta_{i} \notin \lim \left(T_{\gamma+1}^{\zeta}\right)$ for all $\zeta>\zeta_{0}$ and all $\gamma+1 \geq \alpha$.

So we know the following: $\eta_{i} \in Y$, i.e.,

$$
\eta_{i} \in \bigcup_{\gamma+1<\omega_{2}} \lim \left(T_{\gamma+1}^{\zeta}\right) \quad \text { for all } \zeta \in \omega_{1}
$$

But

$$
\eta_{i} \notin \bigcup_{\alpha \leq \gamma+1<\omega_{2}} \lim \left(T_{\gamma+1}^{\zeta}\right) \quad \text { for all } \zeta \geq \zeta_{0}
$$

Therefore

$$
\eta_{i} \in \bigcup_{\gamma+1<\alpha} \lim \left(T_{\gamma+1}^{\zeta}\right) \quad \text { for all } \zeta \geq \zeta_{0}
$$

Recall that $V_{<i}$ sees the sequence $\left(T_{\gamma+1}^{\zeta}\right)_{\gamma+1<\alpha, \zeta \epsilon \omega_{1}}$. So in $V_{<i}$, some $T \in Q$ forces that for all $\zeta>\zeta_{0}$ there is a successor $\beta(\zeta)<\alpha$ such that $\eta_{i} \in \lim \left(T_{\beta(\zeta)}^{\zeta}\right)$. In $V_{<i}, T$ has full splitting for some $f_{\zeta} \in V, \zeta>\zeta_{0}$ (see 1.10]5), 1.11 and 2.24(1)).

Let r be a real in $V_{<i} \backslash \bigcup_{\gamma+1<\alpha} V_{\gamma+1}$. Pick in $V_{<i}$ a $T^{\prime} \leq T$ such that $T^{\prime} \in Q_{A_{r}^{\mu}}^{f_{\zeta}}$ (cf. 1.10.6) and T^{\prime} decides $\beta(\zeta)$. Then T^{\prime} forces that ${\underset{\sim}{i}}^{\eta_{i}} \lim \left(T^{\prime} \cap T_{\beta(\zeta)}^{\zeta}\right)$, a contradiction to $T^{\prime} \perp$ $T_{\beta(\zeta)}^{\zeta} \in V_{<i}$ (because of (2), either $T_{\beta(\zeta)}^{\zeta}$ is in $Q_{A_{s}^{\zeta}}^{f_{\zeta}}$ for some old real s, or incompatible to all $Q_{A_{s}^{\psi}}^{f_{\xi}}$.

We call f an automorphism if it is a <-preserving bijection from I to I.

If $f: I \rightarrow I$ is an automorphism, then f defines an automorphism of P in a natural way as well (provided of course that $f(i)=j$ implies $Q_{i}=Q_{j}$, but in our case all the Q_{i} are the same). Also, f defines a map on all P-names, and we have: $p \Vdash \varphi(\tau)$ iff $f(p) \Vdash \varphi(f \tau)$.

If $\Vdash_{P} \underset{\sim}{x} \in V_{<i}$, then there is a $V_{<i}$-name $\underset{\sim}{\tau}$ such that $\Vdash_{P} \underset{\sim}{x}=\tau$. If $f \upharpoonright I_{<i}$ is the identity, then $f(\tau)=\underset{\sim}{\tau}$. So in this case $p \Vdash \phi(\tau)$ iff $f(p) \Vdash \phi(\tau)$. Also, if $\tilde{f} \upharpoonright \operatorname{dom}(p) \cap I_{<i}$ is the identity then $B_{i}^{p}(\bar{\eta})=B_{f(i)}^{f(p)}(\bar{\eta})$.
Lemma 4.9. The following holds for I (see Figure 4): If $\alpha<\beta<\gamma<\delta$ are in \mathfrak{G}, and if $A \subseteq I_{\beta}$ and $B \subseteq I \backslash I_{\beta}$ are countable, then there is an automorphism f of I such that $f \upharpoonright\left(I_{\alpha} \cup A\right)$ is the identity, $f\left(j_{\beta}\right)=j_{\gamma}$ and $f^{\prime \prime} B>j_{\delta}$.
Proof. For every $i<j \in I, I_{<i}$ and $\{k: i<k<j\}$ are isomorphic and also isomorphic to \tilde{I} (since they are all \aleph_{1} saturated linear orders of size \aleph_{1}). If $A \subset I$ is countable, then there are $i<A<j$, and for all such i, j the sets $\{k: i<k<A\}$ and $\{k: A<k<j\}$ are again isomorphic to \tilde{I}. Also, $I_{>i}$ is isomorphic to I (since $\omega_{2} \backslash \alpha$ is isomorphic to ω_{2}).

So assume $\alpha<\beta<\gamma \in \mathbb{G}, A<i<j_{\beta}$ countable, $i>j_{\alpha}$. Then $I_{<j_{\beta}} \backslash I_{\leq i} \cong I_{<j_{\gamma}} \backslash I_{\leq i} \cong \tilde{I}$. Also, if $B \subset I$ is countable, $\delta \in \mathbb{S}$ and $B>j_{\beta}$, then there is an $j_{\beta}<i<B$, and $I_{<i} \cong I_{<j_{\delta}} \cong \tilde{I}$, $I \backslash I_{\leq i} \cong I \backslash I_{\leq j_{\delta}} \cong I$. Now combine these automorphisms.
Lemma 4.10. For $\beta \in \omega_{2}$ set $Y_{\beta}:=\{\underset{\sim}{\eta}: \gamma \in \mathbb{\Im}, \gamma>\beta\}$. P forces the following: If X is a set of reals defined with a parameter $x \in \bigcup_{i \in I} V_{<i}$, and if $T \in Q$, then there is an $S \leq T$ and a $\beta \in \omega_{2}$ such that either $\lim (S) \cap X \cap Y_{\beta}=\emptyset$ or $(\lim (S) \backslash X) \cap Y_{\beta}=\emptyset$.

This lemma holds for all I satisfying 4.5 and 4.9
Note that every real in $V_{\omega_{2}}$ is in $\bigcup_{i \in I} V_{<i}$.
We will see in the next section that (using additional assumptions) Y_{β} is a weak measure 1 set. Then this lemma implies that X is weakly measurable, i.e., Theorem3.4 Because of 4.8 it will be enough to show that the set $\left\{\eta_{i}: i \in I\right\}$ is of weak measure 1 .

Proof. Assume $\underset{\sim}{X}=\{r: \varphi(r, \underset{\sim}{x})\}$ and fix some $\underset{\sim}{T}$. Some p_{0} forces that $\underset{\sim}{x}$ and $\underset{\sim}{T}$ are in V_{α}, so without loss of generality $\underset{\sim}{x}, \underset{\sim}{T}$ are P_{α} names and $\operatorname{dom}\left(p_{0}\right) \subset I_{\alpha}$. Pick a $p_{1} \leq p_{0}, p_{1} \in P_{\alpha}$ such that p_{1} continuously reads $\underset{\sim}{T}$. Fix some $\beta>\alpha$. Then $p_{2}:=p_{1} \cup\left\{\left(j_{\beta}, \underset{\sim}{T}\right)\right\}$ is an element of $P_{\leq j_{\beta}}$ (since $\underset{\sim}{T}$ is read continuously).

Let $p \leq p_{2}$ decide $\varphi\left(\eta_{\beta}, \underset{\sim}{x}\right)$. Without loss of generality $p \Vdash \varphi\left(\eta_{\beta}, \underset{\sim}{x}\right)$. $p \upharpoonright I_{\beta}$ forces that $\underset{\sim}{S}:=B_{j_{\beta}}^{p}(\underset{\sim}{\eta}) \leq_{Q} \underset{\sim}{T}\left(\right.$ since $\left.\tilde{p} \leq p_{2}\right)$.

Assume towards a contradiction that for some $q \leq p, \gamma \in \mathbb{S}$ and $\gamma>\beta$

$$
q \Vdash{\underset{\sim}{\gamma}}_{\gamma} \in \lim (\underset{\sim}{S}) \& \neg \varphi\left({\underset{\sim}{\gamma}}_{\gamma}, \underset{\sim}{x}\right) .
$$

Note that $q \upharpoonright I_{\gamma}$ reads $\underset{\sim}{S}$ continuously and forces that $B_{j_{\gamma}}^{q}(\bar{\sim}) \leq_{Q} \underset{\sim}{S}$ (cf. 2.25).
Set $A:=\operatorname{dom}(p) \cap I_{\beta}$ and $B:=\operatorname{dom}(p) \cap I_{>j_{\beta}}$. Let j_{δ} be bigger than $\operatorname{dom}(q)$, and let f be an automorphism of I such that $f \upharpoonright\left(I_{\alpha} \cup A\right)$ is the identity, $f\left(j_{\beta}\right)=j_{\gamma}$ and $f^{\prime \prime} B>\operatorname{dom}(q)$ (cf. 4.9 or Figure 4).
$\operatorname{dom}(f(p)) \cap \operatorname{dom}(q) \subseteq A \cup\left\{j_{\gamma}\right\} . f(p) \upharpoonright A=p \upharpoonright A \geq q \upharpoonright A$, and $q \upharpoonright I_{\gamma}$ forces that

$$
B_{j_{\gamma}}^{f(p)}(\underset{\sim}{\bar{\eta}})=B_{j_{\beta}}^{p}(\underset{\sim}{\bar{\eta}})=\underset{\sim}{S} \geq_{Q} B_{j_{\gamma}}^{q}(\bar{\eta}) .
$$

So $f(p)$ and q are compatible, a contradiction to $f(p) \Vdash \varphi\left({\underset{\sim}{\gamma}}_{\gamma}^{\gamma}, \underset{\sim}{x}\right)$.

5. A very non-homogeneous tree

For the proof of Theorem 3.4 it remains to be shown that $\left\{\eta_{i}: i \in I\right\}$ is of weak measure 1. For this we will need a certain Ramsey property for Q.

Definition 5.1. A subtree T of $T_{\max }$ is called (n, r)-meager if $\mu_{T}(t)<r$ for all $t \in T$ with length at least n.

Lemma 5.2. If T is meager for some (n, r), then $\lim (T) \in \mathbb{I}$.

Proof. For any $S \in Q$ there is an $s \in S$ of length at least n such that $\mu_{S}(s)>r$. So there is an immediate successor t of s in S such that $t \notin T$. Then $\lim \left(S^{[t]}\right) \cap \lim (T)=\emptyset$.

Definition 5.3. Let M, N be natural numbers. $N \rightarrow M$ means: If

- $r_{1}, \ldots, r_{M} \in T_{\text {max }}$ such that length $\left(r_{i}\right)>N$,
- $t \in T_{\text {max }}$ such that $r_{i} \perp t$ for $1 \leq i \leq M$,
- $A \subseteq \operatorname{succ}(t)$ such that $\mu(A)>N$,
- $f_{i}: A \rightarrow T_{\max }^{\left[r_{i}\right]}$ for $1 \leq i \leq M$,
then there is a $B \subseteq A$ such that
- $\mu(B)>M$ and
- $\left\{s \in T_{\max }:(\exists i \leq M)(\exists t \in B) s \leq f_{i}(t)\right\}$ is $(N, 1 / M)$-meager.

Definition 5.4. A lim-sup tree-forcing Q is strongly non-homogeneous if μ is sub-additive $\sqrt{18}$ and for all M there is an N such that $N \rightarrow M$.

There are many similar notions of bigness, see e.g., [9, 2.2].
Lemma 5.5. There is a forcing Q that is strongly non-homogeneous.
Proof. First note that it is enough to show that for each M there is an N such that $N \rightarrow^{-} M$, where $N \rightarrow^{-} M$ is defined as above but with just one r and f instead of M many. To see this, just set $K_{0}:=M^{2}$ and find K_{i} such that $K_{i+1} \rightarrow^{-} K_{i}$. Then $K_{M} \rightarrow M$. (Here we use that μ is sub-additive, since we need that the union of m many (n, x)-meager trees is ($n, x \cdot m$)-meager.)

We will construct $T_{\max }$ and μ by induction. We define $s \triangleleft t$ by: length $(s)<$ length (t) or length $(s)=$ length (t) and s is lexicographically smaller than t.

Fix some $t \in \omega^{<\omega}$. Assume that we already decided which $s \triangleleft t$ will be elements of $T_{\max }$ and that we already defined the set of successors of all these s as well as the measure of their subsets. Assume that we have decided to put t into $T_{\max }$. So we have to define $\operatorname{succ}(t)$ and the measure on it.

Let m_{t} be the number of nodes $s \triangleleft t$ already defined, including the already defined successors of s for $s \triangleleft t$. Set $M_{t}:=\left(2 m_{t}\right)^{m_{t}}$. Then we define succ (t) to be of size $M_{t}{ }^{m_{t}}{ }^{19}$ For $A \subseteq \operatorname{succ}(t)$ we set $\mu(A):=\log _{M_{t}}\left(\left(|A| / M_{t}\right)+1\right)$.

Then $0 \leq \mu(A)<m_{t}, \mu(A)=0$ iff $A=\emptyset$, and μ is strictly monotonous and sub-additive ${ }^{2 \square}$ If $A, B \subseteq \operatorname{succ}(t)$ and $|B| \geq|A| / M_{t}$, then $\mu(B)>\mu(A)-1$. If $|B| \leq m_{t}$ then $\mu(B)<1 / m_{t}$. If $\mu(\operatorname{succ}(t))>M$, then $m_{t}>M$.

Now fix an arbitrary $M \in \omega$. There is an N_{0} such that $\mu(A)<1 / M$ for all s with length $(s)>N_{0}$ and all $A \subseteq \operatorname{succ}(s)$ with $|A|<m_{s}$. (Just note that m_{s} strictly increases with length (s).) Let N be larger than $M+1$ and N_{0}.

So assume that $r \perp t \in T_{\max }$, length $(r)>N \geq N_{0}, A \subseteq \operatorname{succ}(t), \mu(A)>N \geq M+1$ (in particular $\left.m_{t}>M\right)$, and $f: A \rightarrow T_{\max }^{[r]}$.

Set $X:=\left\{s^{\prime} \geq r: s^{\prime} \triangleleft t\right.$, length $\left.\left(s^{\prime}\right) \geq N\right\}$. Enumerate X as $\left\{s_{0}, \ldots, s_{l-1}\right\}$ (for some $l \geq 0$). Set $A_{0}:=A$. Assume that A_{n} is already defined, and define

$$
S_{n}:=\left\{s^{\prime} \in T_{\max }:\left(\exists t^{\prime} \in A_{n}\right) s^{\prime} \leq f\left(t^{\prime}\right)\right\} .
$$

If $n>0$ assume that $\left|\operatorname{succ}_{S_{n}}\left(s_{n-1}\right)\right| \leq 1$ and that $\left|A_{n}\right|>\left|A_{n-1}\right| /\left(2 m_{t}\right)$.
Then we define A_{n+1} as follows: Since $s_{n} \in X,\left|\operatorname{succ}\left(s_{n}\right)\right|<m_{t}$. By a simple pigeon-hole argument, there is an $A_{n+1} \subseteq A_{n}$ such that $\left|A_{n+1}\right|>\left|A_{n}\right| /\left(2 m_{t}\right)$ and $\left|\operatorname{succ}_{S_{n+1}}\left(s_{n}\right)\right| \leq 1$. So in the end we get a $B:=A_{l}$ with cardinality at least $|A| /\left(2 m_{t}\right)^{m_{t}}=|A| / M_{t}$, i.e., $\mu(B)>\mu(A)-1 \geq M$. Also, $\left|\operatorname{succ}_{S_{l}}\left(s^{\prime}\right)\right| \leq 1$ for every $s^{\prime} \in X$, so $\mu_{S_{l}}\left(s^{\prime}\right) \leq 1 / M$ (since length $\left(s^{\prime}\right)$ was sufficiently large).

[^12]We claim that B is as required. We have to show that S_{l} is $(N, 1 / M)$-meager. Pick an $s^{\prime} \in S_{l}$ of length $\geq N$. We already dealt with the case $s^{\prime} \in X$. Otherwise $s^{\prime} \triangleright t$ (note that $s^{\prime} \neq t$ since $s^{\prime} \perp t$. In this case $\left|\operatorname{succ}_{S_{l}}\left(s^{\prime}\right)\right| \leq\left|\operatorname{succ}_{T_{\text {max }}}(t)\right| \leq m_{s^{\prime}}$. So $\mu\left(\operatorname{succ}_{S_{l}}\left(s^{\prime}\right)\right) \leq 1 / M$, since length $\left(s^{\prime}\right)>N_{0}$.

Lemma 5.6. If Q is strongly non-homogeneous, then P forces the following: If $r \in$ $\lim \left(T_{\max }\right) \backslash\left\{\eta_{i}: i \in I\right\}$ then there is a $T \in V$ such that $r \in \lim (T)$ and T is $(1,1)$-meager.

If additionally the assumptions of Lemma4.2 hold, then there are only $\boldsymbol{\aleph}_{1}$ many $T \in V$, and $\aleph_{1}<\left(2^{\aleph_{0}}\right)^{V_{\omega_{2}}}$. This implies that the set $\left\{\eta_{i}: i \in I\right\}$ is of weak measure 1: If $r \in \lim \left(T_{\max }\right) \backslash\left\{\eta_{i}: i \in I\right\}$, then $r \in \bigcup_{T \in V \text { meager }} \lim (T) \in \mathbb{I}^{c}$.
Proof. Fix a P-name $\underset{\sim}{r}$ for a real and a $p \in P$ such that $p \Vdash \underset{\sim}{r} \notin\{\underset{\sim}{i}: i \in I\}$. We will show that there is a $p_{\omega} \leq p$ and a $(1,1)$-meager tree T such that $p_{\omega} \Vdash \underset{\sim}{r} \in \lim (T)$.

We will by induction construct $p_{n} \in P$, approximations $\mathfrak{g}_{n}, k_{n} \in \omega$ and $i_{n} \in u_{n}=\operatorname{dom}\left(\mathfrak{g}_{n}\right)$ such that
(1) $p_{n+1} \leq_{\mathfrak{g}_{n}} p_{n}, \mathfrak{g}_{n+1}$ is purely stronger than \mathfrak{g}_{n}.
(2) \mathfrak{g}_{n} is n-dense at i_{n}.
(3) the sequence $\left(i_{n}\right)_{n \in \omega}$ covers $\cup \operatorname{dom}\left(p_{n}\right)$ infinitely often.
(4) $k_{n} \rightarrow \max \left(n+1,\left|\operatorname{Pos}\left(\mathfrak{g}_{n}\right)\right|\right)$.
(5) If $n>0$, then for each $\bar{a} \in \operatorname{Pos}\left(\mathfrak{g}_{n}\right), p_{n}^{[\bar{a}]}$ forces a value to $\underset{\sim}{r} \upharpoonright k_{n}$, and the tree $\left\{r_{n}^{\bar{a}}: \bar{a} \in \operatorname{Pos}\left(\mathfrak{g}_{n}\right)\right\} \subseteq T_{\max } \upharpoonright k_{n}$ is $\left(k_{n-1}, 1\right)$-meager.
(1)-(3) allow us to fuse the $\left(p_{n}\right)_{n \in \omega}$ into a $p_{\omega} \leq p$ (cf. 2.15), and (5) implies that the tree of all initial segments of r compatible with p_{ω} is meager.

We start by picking any $i_{0} \in \operatorname{dom}(p)$, some p-approximation g_{0} that is 0 -dense at i_{0}, a k_{0} satisfying (4). So assume by induction we have found p_{n}, \mathfrak{g}_{n} and k_{n} satisfying (1,2,4).
(a) Set $p:=p_{n}, \mathfrak{g}:=\mathfrak{g}_{n}, M:=\left|\operatorname{Pos}\left(\mathfrak{g}_{n}\right)\right|$ and $N:=k_{n}$. So we have $N \rightarrow M$.
(b) Choose the position $i_{n+1} \in \operatorname{dom}\left(p_{n}\right)$ according to some simple bookkeeping. This takes care of (3). Set $j:=i_{n+1}$.
(c) Find a $p_{1} \leq_{\mathfrak{g}} p$ and $m>N$ such that $p_{1} \Vdash\left(\eta_{j} \upharpoonright m \neq \underset{\sim}{r} \upharpoonright m\right)$ and for all $\bar{a} \in \operatorname{Pos}(\mathfrak{g})$ the condition $p_{1}^{[\bar{a}]}$ determines $\eta_{j} \upharpoonright m$ and $\underset{\sim}{r} \upharpoonright m$.
(How to do this? First apply pure decision 2.196 to get a $p^{\prime} \leq_{\mathfrak{g}} p$ such that for all $\bar{a} \in \operatorname{Pos}(\mathfrak{g})$ there is an $m^{\bar{a}}>N$ and $\eta^{*} \neq r^{*}$ such that $p^{\prime[\bar{a}]} \Vdash\left(r^{*}=\underset{\sim}{r} \upharpoonright m^{\bar{a}}, \eta^{*}=\right.$ ${\underset{\sim}{j}}_{j} \upharpoonright m^{\bar{a}}$). Then we apply pure decision again to get $p_{1} \leq_{\mathfrak{g}} p^{\prime}$ determining $\underset{\sim}{r}$ and η_{j} up to $\max \left\{m^{\bar{a}}: \bar{a} \in \operatorname{Pos}(\mathrm{~g})\right\}$.)
(d) Pick a p_{1}-approximation \mathfrak{h}_{1} which is $\max (n, N)$-dense at j and (purely) stronger than g .
(e) Pick a $k_{n+1}>m$ such that $k_{n+1} \rightarrow \max \left(n+2,\left|\operatorname{Pos}\left(\mathfrak{h}_{1}\right)\right|\right)$.
(f) Pick a $q \leq_{\mathfrak{h}_{1}} p_{1}$ such that $q^{[b]}$ determines $\left.\underset{\sim}{r}\right\rceil k_{n+1}$ up to k_{n+1} for all $\bar{b} \in \operatorname{Pos}\left(\mathfrak{h}_{1}\right)$.

So far we have taken care of (1-4): $q \leq_{\mathfrak{g}} p, \mathfrak{h}_{1}$ approximates q and witnesses N-density (at j). However, the tree of possible values for $\underset{\sim}{r}$ could be very thick in the levels between k_{n} and k_{n+1}. We will thin out the approximation \mathfrak{h}_{1} so that we still have $(n+1)$-density, and the tree of possible values for $\underset{\sim}{r}$ gets sufficiently thin. We do this in two steps:
(g) Find a sub-approximation \mathfrak{h}_{2} of \mathfrak{h}_{1} that is still purely stronger than \mathfrak{g} and has only as many splittings as \mathfrak{g}, apart from one additional split (for each possibility) that witnesses N-density at j (see Figure 5).

In more detail: we construct \mathfrak{h}_{2} the following way: Given $\bar{b} \in \operatorname{Pos}_{<i}\left(\mathfrak{h}_{2}\right)$, set $\bar{a}=\bar{b} \upharpoonright \mathfrak{g}$. We have to define $\mathfrak{h}_{2}(i)(\bar{b})$. If $i \neq j$, pick for each $t \in \mathfrak{g}(i)(\bar{a})$ exactly one successor $s \in \mathfrak{h}_{1}(i)(\bar{b})$. So \mathfrak{h}_{2} makes the branches of \mathfrak{g} longer, but does not add any splittings. At j, we have the front $F:=\mathfrak{g}(j)(\bar{a})$ and the purely stronger n^{\prime}-dense front $F^{\prime}:=\mathfrak{h}_{1}(j)(\bar{b})$. Recall that $T:=T_{\text {cldn }}^{F^{\prime}}=\left\{s: s \leq F^{\prime}\right\}$ is the finite tree corresponding to the front F^{\prime}. We continue each $t \in F$ in T uniquely (without splits) until we reach a node t with many (i.e., n^{\prime}-dense) splittings. We call t

Figure 5. \mathfrak{h}_{2} (bold) is a subapprox. of \mathfrak{h}_{1} and still purely stronger than \mathfrak{g}. Here, we assume $\operatorname{dom}\left(\mathfrak{h}_{1}\right)=\left\{u_{0}, \ldots, u_{3}\right\}, j=u_{2}, \bar{b} \in \operatorname{Pos}\left(\mathfrak{h}_{2}\right)$ and $\bar{a}=$ $\bar{b} \upharpoonright \mathrm{~g}$.
"splitting node". We take all the immediate successors of the splitting node and continue them uniquely in T until we reach a leaf of T, i.e., an element of F^{\prime}. This process leads to a subset $F^{\prime \prime}$ of F^{\prime}. Set $\mathfrak{h}_{2}(j)(\bar{b}):=F^{\prime \prime}$.
(h) So we get: There are $\left|\operatorname{Pos}_{\leq j}(\mathfrak{g})\right| \leq M$ many pairs (\bar{b}, t), where $\bar{b} \in \operatorname{Pos}_{<j}\left(\mathfrak{h}_{2}\right)$ and t is a splitting node.

Also, for $\bar{b} \in \operatorname{Pos}_{\leq j}\left(\mathrm{~h}_{2}\right)$, there are at most M continuations of \bar{b} to some $\bar{b}^{\prime} \in$ $\operatorname{Pos}\left(\mathfrak{h}_{2}\right)$.

Such a $\bar{b} \in \operatorname{Pos}_{\leq j}\left(\mathfrak{h}_{2}\right)$ corresponds to a pair (\bar{a}, t) as above together with a choice of an (immediate) successor of t.
(i) Now we are ready to apply the Ramsey property. First fix a $\bar{b} \in \operatorname{Pos}_{<j}\left(\mathfrak{h}_{2}\right)$ and a splitting node t. (There are at most M many such pairs.)

This pair corresponds to a unique $\bar{a} \in \operatorname{Pos}_{\leq j}(\mathfrak{g})$. There are at most M many continuations of \bar{a} to some $\bar{c} \in \operatorname{Pos}(\mathfrak{g})$. Fix an enumeration $\bar{c}_{1} \ldots \bar{c}_{M}$ of these possible continuations. According to (c), each \bar{c}_{l} forces a value to $\underset{\sim}{r}\lceil$, call this value r_{l}.

Back to \mathfrak{h}_{2}. Set $A:=\operatorname{succ}(t)$ in the tree $T_{\text {cldn }}^{\mathfrak{b}_{2}(j)(\bar{b})}$ (or equivalently $T_{\text {cldn }}^{\mathfrak{b}_{1}(j)(\bar{b})}$). So $\mu(A) \geq n^{\prime}>N$. For every $s \in A$ there is a unique $s^{\prime} \geq s$ such that $\bar{a} \cup\left\{\left(j, s^{\prime}\right)\right\} \in$ $\operatorname{Pos}_{\leq j}\left(\mathfrak{h}_{2}\right)$, and for every $s \in A, l \in M$ there is a unique $\bar{d} \in \operatorname{Pos}\left(\mathfrak{h}_{2}\right)$ continuing $\bar{c}_{l} \in \operatorname{Pos}(\mathfrak{g})$ and $\bar{a} \cup\left\{\left(j, s^{\prime}\right)\right\}$. Each such \bar{d} decides $\underset{\sim}{r}$ up to k_{n+1}. We call this value $r^{s, l}$. So $r^{s, l} \upharpoonright m=r_{l}$. According to (d) we know that length $(t)>m$, so in particular $t \perp r_{l}$, according to (c).

So for every $l \in M$ we define a function $f_{l}: A \rightarrow T_{\max }^{\left[r^{l}\right]} \upharpoonright k_{n+1}$ by mapping s to $r^{s, l}$. So we can apply the Ramsey property and get a $B \subseteq A$ such that $\mu(B)>M \geq n+1$, and the tree of possibilities for $\underset{\sim}{r}$ induced by \bar{a}, B is $\left(k_{n}, 1 / M\right)$-meager. We repeat that for all pairs (\bar{a}, t) where $\bar{a} \in \operatorname{Pos}_{<j}\left(\mathrm{~h}_{2}\right)$ and t is a splitting node, and get a subapproximation \mathfrak{g}_{n+1} of \mathfrak{g}_{2} such that the tree of possibilities for $\underset{\sim}{r}$ induced by \mathfrak{g}_{n+1} is $\left(k_{n}, 1\right)$-meager (here we again use the sub-additivity of μ).
This results in a sub-approximation \mathfrak{g}_{n+1} of \mathfrak{h}_{2} (and therefore \mathfrak{h}_{1}) which is still purely stronger than $\mathfrak{g}=\mathfrak{g}_{n}$. Since \mathfrak{g}_{n+1} is a sub-approximation of $\mathfrak{h}_{1},\left|\operatorname{Pos}\left(\mathfrak{g}_{n+1}\right)\right| \leq\left|\operatorname{Pos}\left(\mathfrak{h}_{1}\right)\right|$, and therefore $k_{n+1}, \mathfrak{g}_{n+1}$ satisfy (4).

Note that we did not use the j_{α} or automorphisms of I, the proof works for all I. In particular, for $I=\{i\}$ we get: If G is Q-generic over V, and if $r \neq \eta$ in $V[G]$, then there is a (1,1)-meager T in V such that $r \in \lim (T)$. In particular, such an r cannot be Q-generic over V. So we get:

Corollary 5.7. If Q is strongly non-homogeneous then Q forces that η is the only Q-generic real over V in $V\left[G_{Q}\right]$.
Remark. A similar forcing Q^{JeSh} (finitely splitting, rapidly increasing number of successors) was used in [6] to construct a complete Boolean algebra without proper atomless complete subalgebra. Q^{JSSh} can also be written as lim-sup forcing. However, the difference is that the norm in $Q^{\text {JeSh }}$ is "binary" (as e.g., Sacks): either s has a minimum number of successors, then the norm is large, or the norm is 0 . Such a norm cannot satisfy a Ramsey property as the one above. For $Q^{\text {JeSh }}$ we can only prove Corollary 5.7 for the "single step iteration", but not Lemma 5.6 for the iteration.

We have already mentioned another corollary:
Corollary 5.8. If Q is strongly non-homogeneous, then P forces that $\left\{\eta_{i}: i \in I\right\}$ is of weak measure 1.

This, together with 4.8 and 4.10 proves Theorem 3.4
Remark. There are various ways to extend the constructions in this paper. As already mentioned, we could use non-total orders I or allow Q_{i} to be a $P_{<i}$-name. A more difficult change would be to use lim-inf trees instead of lim-sup trees. In this case we need additional assumptions such as bigness and halving. This could allow us to apply Saccharinity to a ccc ideal \mathbb{I}, i.e., to force (without inaccessible or amalgamation) weak measurability of all definable sets.

6. The Cohen model

We thank the referee for providing this section.
There is a well known and much simpler way to force that every definable set is even measurable (not just weakly measurable) with respect to many tree forcings: Just add many Cohen reals.

Let \mathbb{C}^{κ} be the forcing notion adding κ many Cohen reals (in a finite support product, or, equivalently, a finite support iteration). Any κ with uncountable cofinality will work. We call the forcing extension the "Cohen model". If in the ground model $\kappa^{\aleph_{0}}=\kappa$, then the continuum has size κ in the Cohen model.
Lemma 6.1. In the Cohen model, every definable (e.g., projective) set is Q-measurable.
This works for all Q as in Section in particular for Sacks forcing, and also many other tree forcings, such as Silver forcing (as was shown in [2]). So in particular, in the Cohen model all definable sets are Marczewski measurable (corresponding to $Q=$ Sacks) and have the doughnut property (corresponding to $Q=$ Silver).

Proof. This is similar to, but simpler than, Solovay's argument that all definable sets are Lebesgue measurable in the Solovay model.

Assume that in the Cohen model the parameter p is in the union of the intermediate extensions (i.e., already added by the first α Cohen reals for some $\alpha<\kappa$) and that

$$
X=\{x: \varphi(x, p)\} .
$$

for some first order formula φ. Pick $T \in Q$. We can assume without loss of generality (by factoring \mathbb{C}^{K}) that p and T are in V.

Work in V and consider the (countable) forcing notion T (ordered by \leq_{T}, the standard tree order). This forcing (which is obviously equivalent to a single Cohen forcing) adds a real $\underset{\sim}{c}$ that is Cohen over V in the natural topology of $\lim (T)$ (we call such a real T-Cohen, for short). In the same way as for "standard Cohen" forcing, one can see that $\underset{\sim}{c}$ determines the T-generic filter, and c^{*} is T-Cohen iff c^{*} is $\underset{\sim}{c}[G]$ for some T-generic G over V.

In particular, whenever R is some forcing notion, G_{R} is R-generic over V and $c^{*} \in V\left[G_{R}\right]$ is T-Cohen (over V), then we can factor the extension by first adding the T-generic c^{*} and
then forcing with some quotient forcing to extend $V\left[c^{*}\right]$. If R is \mathbb{C}^{κ}, then the quotient forcing is again equivalent to \mathbb{C}^{κ}.

Let c^{*} be T-Cohen (i.e., T-generic) over V. In $V\left[c^{*}\right]$ consider the forcing notion \mathbb{C}^{κ}. Since this forcing is homogeneous, either $\Vdash_{\mathbb{C}^{\kappa}} \varphi\left(c^{*}, p\right)$ or $\Vdash_{\mathbb{C}^{k}} \neg \varphi\left(c^{*}, p\right)$. Without loss of generality assume the former. So in V we can pick some condition $t^{*} \in T$ such that

$$
t^{*} \Vdash_{T} \Vdash_{\mathbb{C}^{\kappa}} \varphi(\underset{\sim}{c}, p) .
$$

Let c^{*} in a \mathbb{C}^{κ}-extension V^{\prime} of V be any T-Cohen real extending t^{*}. As described above, we can get V^{\prime} by first extending V with the T-generic c^{*} and then some \mathbb{C}^{κ}-extension of $V\left[c^{*}\right]$. In particular, $\varphi\left(c^{*}, p\right)$ holds in V^{\prime}. To summarize:
(1) In the Cohen model V^{\prime}, all T-Cohen reals c^{*} that extend t^{*} satisfy $\varphi\left(c^{*}, p\right)$.

Back in V, let T^{\prime} be the tree $T^{\left[t^{*}\right]}$. So $T^{\prime} \in Q^{V}$. Set

$$
P=\left\{(t, n): n \geq \text { length }\left(t^{*}\right), t \text { is a subtree of } T^{\prime}, \text { each maximal branch has height } n\right\}
$$

ordered by end-extension (more exactly: (t, n) is stronger than (s, m) iff $n \geq m$ and t endextends s). Obviously P is equivalent to Cohen forcing as well, and P adds a generic subtree S of T^{\prime} (and S determines the generic filter). By density, the lim-sup condition will be satisfied, so S is in $Q^{V[S]}$. In any forcing extension V^{\prime} of $V[S]$, we get:

$$
\begin{equation*}
\text { Every branch } v \in \lim (S) \text { is } T \text {-Cohen over } V \text { and extends } t^{*} \text {. } \tag{2}
\end{equation*}
$$

To see this, fix some nowhere dense set N in V. Without loss of generality N is closed, i.e., corresponds to a nowhere dense subtree N^{\prime} of T. Then (by a simple density argument) there is some (t, n) in the P-generic such that each maximal branch of t is not in N^{\prime}. So any $v \in \lim (S)$ extends one of the maximal branches of t, and therefore is not in N.

Now we can finally fix a \mathbb{C}^{k}-extension V^{\prime} of V. We can use the equivalence of \mathbb{C}^{k} and $P * \mathbb{C}^{K}$ to get in V^{\prime} some $S \leq_{Q} T$ such that (2) holds. Then by (11) we get that each $c^{*} \in \lim (S)$ satisfies $\varphi\left(c^{*}, p\right)$, i.e., that $\lim (S) \subseteq X$.

What is the difference between the Cohen model and the model obtained in the nonwellfounded iteration (let us call it nw-model, for short)? Note that in our nw-model, the continuum has size $\boldsymbol{\aleph}_{2}$ (of course we can get larger continuum as well). One obvious difference is that in the nw-model \mathbb{I}^{c} (the $<\boldsymbol{\aleph}_{2}$-closure of \mathbb{I}) is non-trivial (or, in the language of cardinal characteristics, $\operatorname{cov}(\mathbb{I})=\boldsymbol{\aleph}_{2}$), which is not the case in the Cohen model for $\kappa \geq \boldsymbol{K}_{2}$:

Lemma 6.2. In the Cohen model, $\operatorname{cov}(\mathbb{I})=\omega_{1}$.
Proof. The Cohen model is obtained by a finite support product of κ many Cohen reals. We can write κ as the strictly increasing union $\bigcup_{\alpha \in \omega_{1}} A_{\alpha}$ (each A_{α} of size κ). Let \mathbb{C}_{α} be the complete subforcing of \mathbb{C}^{κ} consisting of the conditions that only use coordinates in A_{α}. Let G be \mathbb{C}^{κ}-generic over V, and let G_{α} be the induced \mathbb{C}_{α}-generic filters over V. Then we get:
(1) $V\left[G_{\alpha}\right] \cap \omega^{\omega}$ is a proper subset of $V\left[G_{\alpha+1}\right] \cap \omega^{\omega}$.
(2) $V[G] \cap \omega^{\omega}=\bigcup_{\alpha \in \omega_{1}} V\left[G_{\alpha}\right] \cap \omega^{\omega}$.

From (1) and Lemma 1.8 we know that each $V\left[G_{\alpha}\right] \cap \omega^{\omega}$ is Q-null in the final Cohen extension; so by (2) ω^{ω} is the union of $\boldsymbol{\aleph}_{1}$ many Q-null sets.
(This argument works not only for the Cohen extension, but also for the random model and similarly for finite support iteration of Suslin ccc forcings of length $\boldsymbol{\aleph}_{2}$; also, it works for other ideals than the ones defined by lim-sup tree forcings.)

References

1. Jörg Brendle, Mad families and iteration theory, Logic and algebra, Contemp. Math., vol. 302, Amer. Math. Soc., Providence, RI, 2002, pp. 1-31. MR MR1928381 (2003j:03062)
2. Jörg Brendle, Lorenz Halbeisen, and Benedikt Löwe, Silver measurability and its relation to other regularity properties, Math. Proc. Cambridge Philos. Soc. 138 (2005), no. 1, 135-149. MR 2127234 (2006b:03062)
3. Martin Goldstern, A taste of proper forcing, Set theory (Curaçao, 1995; Barcelona, 1996), Kluwer Acad. Publ., Dordrecht, 1998, pp. 71-82. MR MR1601976 (99f:03069)
4. M. Groszek and T. Jech, Generalized iteration of forcing, Trans. Amer. Math. Soc. 324 (1991), no. 1, 1-26. MR MR946221 (91f:03107)
5. Marcia Groszek, ω_{1}^{*} as an initial segment of the c-degrees, J. Symbolic Logic 59 (1994), no. 3, 956-976. MR MR1295981 (95i:03113)
6. Thomas Jech and Saharon Shelah, A complete Boolean algebra that has no proper atomless complete subalgebra, J. Algebra 182 (1996), no. 3, 748-755. MR MR1398120 (97j:03109)
7. Vladimir Kanovei, On non-wellfounded iterations of the perfect set forcing, J. Symbolic Logic 64 (1999), no. 2, 551-574. MR MR1777770 (2001f:03101)
8. J. Kellner, Non elementary proper forcing, preprint, http://arxiv.org/abs/0910.2132
9. Andrzej Rosłanowski and Saharon Shelah, Norms on possibilities. I. Forcing with trees and creatures, Mem. Amer. Math. Soc. 141 (1999), no. 671, xii+167. MR MR1613600 (2000c:03036)
10. \qquad , Sweet \mathcal{E} sour and other flavours of ccc forcing notions, Arch. Math. Logic 43 (2004), no. 5, 583663. MR MR2076408 (2005e:03112)
11. S. Shelah, Properness without elementaricity, J. Appl. Anal. 10 (2004), no. 2, 169-289. MR MR2115943 (2005m:03097)
12. Saharon Shelah, Can you take Solovay's inaccessible away?, Israel J. Math. 48 (1984), no. 1, 1-47. MR MR768264 (86g:03082a)
13. \qquad , Two cardinal invariants of the continuum $(\mathrm{D}<\mathfrak{a})$ and FS linearly ordered iterated forcing, Acta Math. 192 (2004), no. 2, 187-223. MR MR2096454 (2005f:03074)
14. Robert M. Solovay, A model of set-theory in which every set of reals is Lebesgue measurable, Ann. of Math. (2) 92 (1970), 1-56. MR MR0265151 (42 \#64)
15. Jindřich Zapletal, Forcing idealized, Cambridge Tracts in Mathematics, vol. 174, Cambridge University Press, Cambridge, 2008. MR MR2391923 (2009b:03002)

Kurt Gödel Research Center for Mathematical Logic, Universität Wien, Währinger Strasse 25, 1090 Wien, Austria

E-mail address: kellner@fsmat.at
URL: http://www.logic.univie.ac.at/~kellner
Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel, and Department of Mathematics, Rutgers University, New Brunswick, NJ 08854, USA

URL: http://shelah.logic.at/

[^0]: Date: November 2004.
 1991 Mathematics Subject Classification. 03E35,03E40.
 This paper is dedicated to the memory of Greg Hjorth. Both authors gratefully acknowledge partial support by the National Science Foundation Grant No. 0600940. The first author is partially supported by by European Union FP7 grant PERG02-GA-2207-224747 and the FWF Austrian Science Fund project P21651-N13. The second author is supported by the United States-Israel Binational Science Foundation (Grant no. 2006108), publication 859 .
 ${ }^{1}$ note that Zapletal's basic construction can be applied to countable orders only, for longer orders additional work is required, see Section 5.5 there.

[^1]: ${ }^{2}$ This example is "atomic" in the following sense: For a node $s \in T$ there is an $A \subset \operatorname{succ}(s)$ such that $\mu(A)$ is large but $\mu(B)<1$ for every $B \subsetneq A$. In this paper, we will be interested in "finer" norms. In particular we will require the Ramsey property defined in 5.4

[^2]: ${ }^{3} Q$ is generally not closed under countable unions.
 ${ }^{4}$ there even are generic conditions for arbitrary countable transitive ZFC models M, similarly to Suslin proper. Sometimes this is called "totally proper".
 ${ }^{5}$ In the formulation of fusion and pure decision we could use the classical Axiom A version as well: Define F_{n}^{T} to be the minimal n-dense front, i.e.,

 $$
 F_{n}^{T}:=\left\{t \in T: \mu_{T}(t)>n \&(\forall s \supsetneqq t) \mu_{T}(s) \leq n\right\},
 $$

 and define $T \leq_{n} S$ by $T \leq S$ and $F_{n}^{T}=F_{n}^{S}$. It should be clear how to formulate fusion and pure decision for this notion, and that this proves Axiom A for Q. But in 1.7 we do not use this notion, instead we (implicitly) use the following one: $T \leq_{A} S$ means that $T \leq S$ and A that is a front in both T and S. The reason is that this is the notion that will be generalized for the non-wellfounded iteration.

[^3]: ${ }^{6} X_{0}:=\left\{A_{g}^{\psi}: g \in 2^{\omega}\right\}$ is an almost disjoint family, but not maximal. So of course $Q\left(X_{0}\right):=\bigcup_{A \in X_{0}} Q_{A}^{f} \subset Q$ is not dense. We add the incompatible conditions to get the dense set D_{f}^{spl}. One could ask whether $Q(X)$ is dense for a m.a.d. family X. The following holds:
 (a) For every f there is a m.a.d. family X such that $Q(X)$ is not dense.
 (b) (CH) For every f there is a m.a.d. family X such that $Q(X)$ is dense.

 Proof: Fix f. A node $s \in T_{\text {max }}$ has level m if $f(m) \leq$ length $(s)<f(m+1) . S \in Q$ has unique splitting if S has at most one splitting point of level n for all $n \in \omega$. For every $T \in Q$ there is an $S \leq_{Q} T$ with unique splitting.

 For (a), fix a $T \in Q$ with unique splitting. Set $Y:=\left\{A \in[\omega]^{\aleph_{0}}:\left(\forall S \leq_{Q} T\right) S \notin Q_{A}^{f}\right\}$. Y is open dense in $\left([\omega]^{\aleph_{0}}, \subseteq\right)$, therefore there is a m.a.d. $X \subseteq Y$.

 For (b), list Q as $\left(T_{\alpha}\right)_{\alpha \in \omega_{1}}$, and build $B_{\alpha} \in[\omega]^{\aleph_{0}}$ by induction on $\alpha \in \omega_{1}$: Find an $S \leq_{Q} T_{\alpha}$ with unique splitting. If some $S^{\prime} \leq_{Q} S$ is in $Q_{B_{\beta}}^{f}(\beta<\alpha)$ (or equivalently in $Q_{\bigcup_{i \in l} B_{\beta_{i}}}^{f}$ for some $l \in \omega, \beta_{0}, \ldots, \beta_{l-1}<\alpha$), then just pick any almost disjoint B_{α}. Otherwise enumerate $\left(B_{\beta}\right)_{\beta \in \alpha}$ as $\left(C_{n}\right)_{n \in \omega}$, and construct B_{α} and $S^{\prime} \leq_{Q} S$ inductively: At stage n, add a split of S to S^{\prime} whose level is not in $\bigcup_{m \leq n} C_{m}$, and use some bookkeeping to guarantee that $S^{\prime} \in Q$. Let B_{α} be the set of splitting-levels of S^{\prime}.

[^4]: ${ }^{7}$ this includes finite and empty.

[^5]: ${ }^{8} \phi$ is even an isomorphism modulo $=^{*}$, where $p={ }^{*} q$ if $q \leq p$ and $q \leq p$.

[^6]: ${ }^{9}$ as in Corollary 2.1915

[^7]: ${ }^{10}$ In more detail: Let $(\tau(n))_{n \in \omega}$ be a sequence of P-names for ordinals and $p \in P$. Then there is a $q \leq p$ corresponding to a sequence $\left(\mathfrak{g}_{n}\right)_{n \in \omega}$ of approximations, and there are functions f_{n} from $\operatorname{Pos}\left(\mathfrak{g}_{n}\right)$ into the ordinals such that $q^{[\bar{a}]}$ forces $\tau(n)=f_{n}(\bar{a})$ for all $\bar{a} \in \operatorname{Pos}\left(\mathfrak{g}_{n}\right)$. If each $\tau(n)$ is a natural number then this defines (in V) a continuous function F from $\left(\omega^{\omega}\right)^{\operatorname{dom}(q)}$ into ω^{ω} such that q forces that $F(\bar{\eta} \upharpoonright \operatorname{dom}(q))=\bar{\tau}$.
 ${ }^{11}$ We always mean the "upwards cofinality", i.e., the minimal size of an upwards cofinal subset. $A \subset I$ is upwards cofinal if for every $i \in I$ there is an $a \in A$ such that $a \geq i$.
 ${ }^{12} P$ even is non-elementary-proper (nep), i.e., there are generic conditions for all (non-transitive, nonelementary, but ord-transitive) countable ZFC models; cf. [11] or [8].

[^8]: ${ }^{13}$ Note that this is not a countable intersection.

[^9]: ${ }^{14} I$ is ω_{2}-like if $\left|I_{<i}\right|<\boldsymbol{\aleph}_{2}$ for all $i \in I$ and $|I|=\boldsymbol{\aleph}_{2}$.

[^10]: ${ }^{15}$ A linear order \tilde{I} is \aleph_{1} saturated if "there are no countable gaps", more exactly:

 - I has neither a smallest or a largest element, i.e., no $(-\infty, 1)$ and no $(1, \infty)$ gaps.
 - I does not have a cofinal sequence of order type ω nor a coinitial one of order type ω^{*}, i.e., no (ω, ∞) and no $\left(-\infty, \omega^{*}\right)$ gaps.
 - If $A \subset I$ has order type ω and $c>a$ for all $a \in A(c>A$ in short) then there is a $b<c$ such that $b>A$. I.e., there are no $(\omega, 1)$ gaps.
 - Analogously for B of order type ω^{*} and $c<B$. I.e., no $\left(1, \omega^{*}\right)$ gaps.
 - If A has order type ω and B has order type ω^{*} and $A<B$, then there is an $x \in I$ such that $A<x<B$. I.e., there are no $\left(\omega, \omega^{*}\right)$ gaps.

[^11]: ${ }^{16}$ More formally: if $j_{\beta}>i$ for all $i \in \operatorname{dom}(q)$.
 ${ }^{17}$ Recall 1.9 and 1.10

[^12]: ${ }^{18} \mu(A \cup B) \leq \mu(A)+\mu(B)$.
 ${ }^{19}$ We can e.g., set $\operatorname{succ}(t):=\left\{t \curvearrowright k: 0 \leq k<M_{t}^{m_{t}}\right\}$.
 ${ }^{20}$ Since the function $g(x):=\log _{M_{t}}(x+1)$ is concave and satisfies $g(0)=0$.

