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ON CANONICITY AND COMPLETIONS OF WEAKLY

REPRESENTABLE RELATION ALGEBRAS

IAN HODKINSON AND SZABOLCS MIKULÁS

Abstract. We show that the variety of weakly representable relation algebras is neither canonical nor

closed under Monk completions.

§1. Introduction. The class wRRA of weakly representable relation algebras was
introduced by Jónsson in [19]. It is obtained by dropping the requirement on
classical representations of relation algebras that +,− are respected. It forms a
‘half-way house’ between the class RA of relation algebras and the class RRA of
representable relation algebras, and is part of the currently rather active field of
reducts of relation algebras. Although its notion of representation is weaker, it
appears that in various ways, wRRA is at least as complex as RRA, but it has been
less studied. More work is needed to elucidate its properties, and the current paper
is a contribution to this.
Our aimhere is to show thatwRRA is not closed under taking canonical extensions
or Monk completions. We believe that the arguments and constructions used to
establish these results are at least as interesting as the results themselves, and that
they may add to the currently rather limited stock of useful techniques for dealing
with wRRA.
First we will recall the basic definitions and summarize some of the known results
about wRRA. We refer the reader to [15] for notations of operations and classes of
algebras. We will often identify (notationally) a structure, algebra, or graph with its
domain. In Section 2, we briefly outline some aspects of canonical extensions and
completions pertaining to wRRA. In Sections 3 and 4 we prove our main results
that wRRA is neither a canonical class nor closed under completions. In Section 5
we state some open problems.

1.1. The class wRRA. It will be convenient to define weak representations by a
first-order theory. Our definition is equivalent to the standard ones.
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Definition 1.1. A weak representation of a relation algebra A = (A,+,−, ·,
0, 1, 1

,
, ˘, ;) is a structureM whose signature consists of the elements of A, each a

binary relation symbol, and satisfying, for each r, s ∈ A:

1. ∀xy(r · s(x, y)↔ r(x, y) ∧ s(x, y)),
2. ∀xy(1

,
(x, y)↔ x = y),

3. ∀xy(r̆(x, y)↔ r(y, x)),
4. ∀xy(r ; s(x, y)↔ ∃z(r(x, z) ∧ s(z, y))),
5. ∃xy r(x, y) if r 6= 0,
6. ∀xy ¬0(x, y).

A relation algebra is said to be weakly representable if it has a weak representation.
The class of weakly representable relation algebras is denoted by wRRA.

It is plain that RRA ⊆ wRRA ⊆ RA. There are no conditions in Definition 1.1
concerning + or−, and these operations are not required to be respected in a weak
representation, though they are operations on the algebra and must conform to the
relation algebra axioms (as given in, e.g., [15, Definition 3.8] and [22, §6]).

1.2. Existing results. There is not a great deal of literature about weakly repre-
sentable relation algebras. We summarise some of it now, in order to place the main
topic of our paper in some context.

1. In his original paper [19], Jónsson gave an infinite quasi-equational theory Γ
that defines wRRA in RA. He also showed that not every relation algebra is
weakly representable, by constructing an (infinite) atomic A ∈ RA \ wRRA.

2. In [1], Andréka constructed algebras inwRRA\RRA, an ultraproduct of which
is in RRA. Hence, RRA is not finitely axiomatisable over wRRA.

3. [18] used a so-called ‘rainbow construction’ to show that wRRA is not finitely
axiomatisable.

4. [15, Theorem 18.23] used another rainbow construction to show that, re-
stricted to isomorphism types of finite algebras, RRA and (the complement
of) wRRA are recursively inseparable. It follows [15, Corollary 18.25] that
RAn 6⊆ wRRA for each finite n ≥ 3. (RAn is the class of ‘n-dimensional rela-
tion algebras’: see [21] and [22, §6.24]. The RAn are ‘approximations’ to RRA
in that RA = RA4 ⊃ RA5 ⊃ · · · and

⋂

n≥4 RAn = RRA.)
5. Recently, Pécsi [25] showed that wRRA is closed under homomorphic images
and is consequently a variety, answering a 50-year-old question of [19].

6. [16] constructs a finite weakly representable relation algebra that is not in RAn
for any finite n ≥ 5. (The construction is also rainbow-style and is the basis of
the one in the current paper.) SowRRA 6⊆ RAn, and the converse inclusion also
fails (as mentioned above). For n = 5, this answered a question of Maddux.

There is another class of algebras related to wRRA in [19], namely the class
R(·, 1

,
, ˘, ;) of subreducts of RRA. That is, we take subalgebras of the {·, 1

,
, ˘, ;}-

reducts of representable relation algebras. The behaviour of R(·, 1
,
, ˘, ;) is slightly

different from that of wRRA. For instance, [2] shows that R(·, 1
,
, ˘, ;) is only a

quasi-variety, since it is not closed under homomorphic images. Furthermore, the
equational theory of R(·, 1

,
, ˘, ;) is decidable [2] in contrast to the undecidability of

the equational theory of wRRA, while neither R(·, 1
,
, ˘, ;) nor the variety generated

by it is finitely axiomatisable [12, 13, 18].
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§2. Canonical extensions and completions. Canonical extensions of boolean al-
gebras with additional operators (BAOs) were introduced by Jónsson and Tarski
in [20, §2]. We assume some familiarity with them, but we will quickly reprise some
salient points and establish some notation. For a BAO A , let A+ denote its dual
space. This is the structure whose domain is the set of all ultrafilters of A , and
endowed with relations derived from the operations on A . See [4, Definition 5.40]
or [15, Definition 2.68] for details. With some abuse of terminology, a structure in
this relational signature will be called an atom structure. For an atom structure S ,
we let S+ denote the full complex algebra over S : see [4, Definition 5.21] or [15, Def-
inition 2.65] for details. The canonical extension A ó of A can then be taken as the
full complex algebra over A+: that is, A ó = (A+)+. Up to isomorphism, A is a
subalgebra of A ó [20]. A class of BAOs is said to be canonical if it is closed under
taking canonical extensions.
Canonical extensions are analogous to the ‘canonical models’ used in modal logic
to prove completeness theorems (see, e.g., [4, 11]). However, canonicity frequently
does not easily yield completeness theorems for algebras of relations, because the
canonical extension of an algebra is typically not an algebra of relations of the
desired kind. Nonetheless, it can still be helpful in a number of ways to know that the
canonical extension of a representable algebra is also representable.1 Several kinds
of representable algebra do indeed have this property. For example, Monk proved
that the class RRA of representable relation algebras is canonical (this is reported
in [23] and the first published proof is in [21]), and canonicity of the variety RCAn
of representable n-dimensional cylindric algebras (n < ù) is proved in [14, 3.1.108].
For a variety V of BAOs, a stronger condition than canonicity is thatV is elemen-
tarily generated : that is, generated as a variety by the full complex algebras of the
atom structures in some elementary class. Goldblatt proved in [8, Theorem 3.6.7]
that if V is generated by the full complex algebras of the atom structures in a class
that is closed under ultraproducts, then V is canonical. Hence, every elementarily
generated variety must be canonical. It turns out that many varieties of repre-
sentable algebras of relations are elementarily generated. They include RRA and
RCAn for n < ù; for this and more examples, see [10, 3].
Goldblatt recently asked whether wRRA is elementarily generated. Since a nec-
essary condition for this to be true is that wRRA is canonical, we can resolve it
negatively with Theorem 3.5 in this paper: wRRA is not canonical. This marks a
notable difference between wRRA and many other classes of algebras of relations
studied so far.
Somewhat related to canonical extensions are completions. The completion of an
arbitrary BAO A is a complete BAO B ⊇ A in which A is dense. Monk showed
in [24] that any completely additive BAO A has a completion A that is unique
up to isomorphism. If A is atomic, A is isomorphic to the full complex algebra
over the atom structure of A (see, e.g., [15, Definition 2.62] for atom structures of
atomic BAOs). It was proved in [17] that RRA and RCAn for finite n ≥ 3 are not
closed under completions. Here, we will prove the same for wRRA, in Theorem 3.6
— in fact it follows from [6, Theorem 3.6] and the non-canonicity of wRRA. In this
respect, wRRA is more in line with other classes of algebras of relations.

1[20, p.892] makes similar points.
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§3. Non-canonicity ofwRRA. Wewill show that theweakly representable relation
algebras donot forma canonical class,by constructing a relation algebraA ∈ wRRA

whose canonical extensionA ó is not inwRRA. ThatwRRA is not closed underMonk
completions follows from its non-canonicity, but we will also show it directly using
an algebra similar to A .
A is a variant of the relation algebra constructed in [16]. To control whether it is
weakly representable or not, we will construct it from a graph. (For other relation
algebras based on graphs, see, e.g., [15, chapter 14].) In the next Section (3.1) we
recall some basic definitions related to graphs Γ, in Section 3.2 we describe how to
construct relation algebrasA (Γ), and in Section 3.3 we establish some relationships
between Γ andA (Γ). Then in Section 3.4 we will be ready to state the main results.
The most technical elements of the proof are presented in Section 4.

3.1. Graphs. Graphs here are undirected and loop-free, so formally a graph is a
structure Γ = (G,E), where G is a non-empty set of nodes and E is an irreflexive
and symmetric binary relation on G . The edges of Γ are the pairs xy of nodes such
that (x, y) ∈ E. We identify (notationally) a graph Γ with its set of nodes.
For a graph Γ, a node x ∈ Γ, and a subset X ⊆ Γ, we write E(x) for the set

{y ∈ Γ : xy is an edge of Γ} of ‘neighbours’ of x, andE(X ) =
⋃

x∈X E(x). (There
will be no need to write EΓ(x), etc., as the ambient graph will always be clear from
the context.) The set X is independent if for each x, y ∈ X , xy is not an edge. Let
÷(Γ) denote the chromatic number of Γ, i.e., the smallest natural number n such that
Γ is the union of n independent sets. If no such n exists, we let ÷(Γ) =∞.
For nodes x, y ∈ Γ, a path from x to y is a sequence (x1, x2, . . . , xn) of nodes
such that x1 = x, xn = y, and x1x2, . . . , xn−1xn are edges. Γ is connected if there is
a path between any two distinct nodes.
For finite n ≥ 3, a cycle of length n in Γ is here taken to be a path (x1, x2, . . . ,
xn , x1) such that x1, . . . , xn ∈ Γ are pairwise distinct. It is well known (see, e.g.,
[5, Proposition 1.6.1]) that

÷(Γ) ≤ 2 iff Γ has no cycles of odd length. (1)

Given graphs Γ,∆, a map í : Γ→ ∆ is said to be a bounded morphism if for each
x ∈ Γ, í maps the set of neighbours of x in Γ surjectively onto the set of neighbours
of í(x) in ∆.

3.2. The rainbow algebraA (Γ). Given any graph Γ, the ‘rainbow’ algebraA (Γ)
is the full complex algebra α(Γ)+ over the following atom structure α(Γ), which is
a variant of one in [16]. The atoms are:

• 1
,
, gi , wi , w̆i (i ∈ {0, 1, 2, 3}), v, yx , rx (x ∈ Γ).

All atoms shown here are distinct. We regard the wi as white, the gi as green, the
yx as yellow, and the rx as red. (1

,
, v, and the w̆i have no special colour.) 1

,
is the

sole identity atom. The converse of wi is w̆i , and vice versa (each i < 4), and all
other atoms are self-converse. Composition can be specified by listing the forbidden
cycles (a, b, c) of atoms — those such that c̆ 6≤ a ; b in A (Γ) — and here they are:

F1. (1
,
, a, b) whenever a 6= b̆,

F2. (gi , gj , gk) for each pairwise distinct i, j, k < 4,
F3. (yx , yy , rz) for each pairwise distinct x, y, z ∈ Γ,
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gk

gi gj
F2

i, j, k < 4 distinct.

rz

yx yy
F3

x, y, z ∈ Γ distinct.

gj + wk + w̆i + v+ yy + rz

gi yx
F4

j 6= i, k = i mod 2, x 6= y, z /∈ E(x).

v

wi wj

F5

i, j < 4 distinct.

Figure 1. The main forbidden cycles of A (Γ).

F4. (yx , gi , b) for each x ∈ Γ, i < 4, and b ∈ Bx,i , where

Bx,i = {gj : j < 4, j 6= i} ∪ {wk : k < 4, k = i mod 2}

∪ {w̆i , v} ∪ {yy : y ∈ Γ \ {x}} ∪ {rz : z ∈ Γ \ E(x)},
(2)

F5. (w̆i ,wj , v) for each distinct i, j < 4.

We will refer to F1–F5 as rules. We stipulate that all Peircean transforms of cycles
forbidden by a rule are also forbidden by the same rule: i.e., if (a, b, c) is forbidden
by a rule then so are (b, c, a) and (c̆ , b̆, ă). Figure 1 illustrates the rules other than
F1. The extra-boolean operators ˘ and ; are now determined for all elements of
A (Γ) using additivity.
It is plain that the algebras A (Γ) are BAOs. In Section 4 we will show that they
are always relation algebras (Lemma 4.7), and give more information about them.
In particular, we show that there is a strong connection between the chromatic
number of Γ and the weak representability of A (Γ): roughly, that

÷(Γ) > 2 if and only if A (Γ) ∈ wRRA.

See Propositions 4.8 and 4.9 for full details.

3.3. Duality. We now turn to the connection between maps on graphs, atom
structures, and algebras. The following specialises [4, Definition 3.13] to atom
structures α(Γ).

Definition 3.1. Let Γ,∆ be graphs. A map f : α(∆) → α(Γ) is a bounded
morphism if

1. f(1
,
) = 1

,
,

2. f(ă) = f(a)˘ for each a ∈ α(∆),
3. if the cycle (a, b, c) is not forbidden in α(∆) then the cycle (f(a), f(b), f(c))
is not forbidden in α(Γ),
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4. if a ∈ α(∆), b′, c′ ∈ α(Γ), and the cycle (f(a), b′, c′) is not forbidden in α(Γ),
then there are b, c ∈ α(∆) such that f(b) = b′, f(c) = c′, and the cycle (a, b, c) is
not forbidden in α(∆).

Lemma 3.2. Any surjective boundedmorphism í : ∆→ Γ of graphs induces a surjec-
tive boundedmorphismα(í) :α(∆)→α(Γ)and an algebra embeddingα(í)+ : A (Γ)→
A (∆). The functionals α(−), α(−)+ preserve the identity and respect composition of
maps.

Proof. Given a surjective boundedmorphism í : ∆→ Γof graphs, wemaydefine
α(í) : α(∆) → α(Γ) by (α(í))(yx) = yí(x), (α(í))(rx) = rí(x), for each x ∈ ∆, and
(α(í))(a) = a for each a ∈ α(∆) that is neither yellow nor red. It is easy to
verify that α(í) is a surjective bounded morphism in the sense of Definition 3.1.
By general duality (see, e.g., [4, Proposition 5.51]), the map α(í)+ : A (Γ)→ A (∆)
given by α(í)+(S) = {a ∈ α(∆) : (α(í))(a) ∈ S}, for S ⊆ α(Γ), is an algebra
embedding. The last part of the lemma is easy to verify. ⊣

We assume basic familiarity with direct and inverse systems and their limits. To
fix notation, a direct (respectively inverse) system (over (ù,≤)) will be taken to be
a family of the form (Dn , èmn : n ≤ m < ù) (respectively, (In , φmn : n ≤ m < ù)),
where Dn, In are structures of some kind, and for each n ≤ m ≤ k < ù, èmn : Dn →
Dm and φmn : Im → In are maps, ènn is the identity map onDn , φ

n
n is the identity map

on In, èkn = è
k
m ◦ èmn , and φ

k
n = φ

m
n ◦ φkm.

Let D = (An , èmn : n ≤ m < ù) be a direct system of BAOs and embeddings.
Then by standard duality (see, e.g., [4, Theorem 5.47(iii)]),

D+ = ((An)+, (è
m
n )+ : n ≤ m < ù) (3)

is an inverse systemof atomstructures and surjective boundedmorphisms,where the
maps (èmn )+ are defined in the obvious way by (è

m
n )+(ì) = {a ∈ An : èmn (a) ∈ ì}

for an ultrafilter ì ∈ (Am)+. Regarding atom structures as relational structures as
usual, lim←(D+) is a well defined atom structure. We now quote a consequence of
results of Goldblatt [7, Theorems 10.7, 11.2, 11.6]2:

Fact 3.3 (Goldblatt 1976). (lim
→
D )+ ∼= lim

←
(D+).

Weuse this to derive the following proposition. Thekey part is part 4, which in our
main argument (Theorem 3.5) will be applied to the inverse system G in (5) below.

Proposition 3.4. Let G = (Γn , ímn : n ≤ m < ù) be an inverse system of finite
graphs and surjective bounded morphisms. In the notation of Lemma 3.2, define

α(G ) = (α(Γn), α(ímn ) : n ≤ m < ù),

A (G ) = (A (Γn), α(ímn )
+ : n ≤ m < ù).

Then:

1. α(G ) is an inverse system of atom structures and surjective bounded morphisms,
2. A (G ) is a direct system of BAOs and embeddings,
3. (lim

→
A (G ))+ ∼= α(lim

←
G ),

4. (lim
→
A (G ))ó ∼= A (lim

←
G ).

2Goldblatt proved these results in the context of modal algebras. However, they generalise easily to
BAOs.
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Proof. Parts 1 and 2 are immediate from Lemma 3.2. For part 3, first observe
that α(lim← G ) ∼= lim← α(G ): this is easy to show. Now as each α(Γn) is finite,
A (Γn)+ ∼= α(Γn), and this can be extended to show that α(G ) is isomorphic to
the inverse system A (G )+ as defined in (3). By this and Fact 3.3, lim← α(G ) ∼=
lim←(A (G )+) ∼= (lim→A (G ))+. Part 3 now follows, and part 4 is an immediate
consequence. ⊣

3.4. Main results.

Theorem 3.5. wRRA is not a canonical class.

Proof. In Section 3.2, we built a ‘rainbow’ algebra A (Γ) for each graph Γ. We
will prove in Section 4 that

1. if Γ is connected and ÷(Γ) > 2, then A (Γ) ∈ wRRA: see Proposition 4.9,
2. if |Γ| ≥ 2 and ÷(Γ) ≤ 2 then A (Γ) /∈ wRRA: see Proposition 4.8.

For each 0 < n < ù, let Γn be a graph consisting of a cycle of length 3n. Formally,
we may let the nodes of Γn be the integers mod 3n, with edges relating elements
differing by 1:

Γn =
(

Z/3nZ,
{

(3nZ+ k, 3nZ+ k + 1), (3nZ+ k, 3nZ+ k − 1) : k ∈ Z
})

.

Each Γn is connected and has chromatic number 3, so by the first point above,

A (Γn) ∈ wRRA. (4)

For 0 < n ≤ m < ù we define a map ímn : Γm → Γn that ‘wraps’ Γm onto Γn , by
ímn (3

m
Z+ k) = 3nZ+ k (k ∈ Z). Then

G = (Γn , í
m
n : 0 < n ≤ m < ù) (5)

is an inverse system of finite graphs and surjective bounded morphisms. By Propo-
sition 3.4 and (4) above, A (G ) is a direct system of weakly representable relation
algebras and relation algebra embeddings. Let A = lim→A (G ) be its direct limit.
Then A ∈ wRRA, since wRRA is a variety [25] and so closed under direct limits.
Now by Proposition 3.4(4),A ó ∼= A (Γù), where Γù is the inverse limit of G . But
Γù is the graph whose nodes are the 3-adic integers (see, e.g., [26] for information),
with edges consisting of all pairs of 3-adic integers that differ by 1. Because the
ring of 3-adic integers has characteristic zero, it is easy to see that Γù has no cycles.
Alternatively, assuming that (x1, . . . , xk , x1) is a cycle in Γù , pick a finite n ≥ k such
that the xi map to distinct elements under the natural projection from Γù onto Γn.
Then the image of (x1, . . . , xk , x1) is a cycle of length k in Γn — impossible, since
Γn is a cycle of length 3n.
So by (1), ÷(Γù) ≤ 2. Certainly, |Γù| ≥ 2. By the second point above, A (Γù) /∈

wRRA. We conclude that A ó /∈ wRRA while A ∈ wRRA, whence wRRA is not
canonical. ⊣

We remark that A /∈ RRA, because otherwise, by canonicity of RRA we would
have A ó ∈ RRA ⊆ wRRA, contradicting the above. As RRA is a variety and so
closed under direct limits, A (Γn) /∈ RRA for all but at most finitely many n < ù.

Theorem 3.6. wRRA is not closed under Monk completions.

Proof. Given Theorem 3.5, this follows from [6, Theorem 3.6], where it is shown
that any universal class of monotone lattice expansions that is closed under com-
pletions is canonical.
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We can also exhibit a weakly representable relation algebra whose completion
is not weakly representable. Let Γn (1 ≤ n < ù) be as in Theorem 3.5. We will
see in Proposition 4.9 that A (Γn) ∈ wRRA for each n. Let D be a non-principal
ultrafilter over {1, 2, . . . }, and let A be the ultraproduct

∏

D A (Γn). As wRRA is
an elementary class, A ∈ wRRA.
Let Γ =

∏

D Γn . It is easily seen thatA is atomicwith atomstructure
∏

D α(Γn)
∼=

α(Γ). Hence the Monk completion A of A [24] is isomorphic to A (Γ). Since the
property of having a cycle of a given length k is expressible by a first-order sentence,
it follows by Łoś’s theorem that Γ has no cycles, and so by (1) we have ÷(Γ) ≤ 2.
By Proposition 4.8, A (Γ) /∈ wRRA. ⊣

§4. Weak representability. In this, the most technical section, we establish the
two results on weak representability, Propositions 4.8 and 4.9, referred to in the
proofs of Theorems 3.5 and 3.6.

4.1. Networks and games. Let A be a relation algebra. We will give a sufficient
condition for A to be weakly representable, involving a game played on networks.

Definition 4.1. A network (over A ) is a pair N = (N1, N2), where N1 6= ∅ is a
set of ‘nodes’, and N2 : N1 × N1 → A is a ‘labelling function’ satisfying, for all
x, y, z ∈ N1,

1. N2(x, y) ≤ 1
,
iff x = y,

2. N2(x, y) = N2(y, x)˘,
3. 0 < N2(x, y) ≤ N2(x, z) ;N2(z, y).

For networks N = (N1, N2), N ′ = (N ′1, N
′
2), we write N ⊆ N ′ if N1 ⊆ N ′1 and

N ′2 ↾ (N1 × N1) = N2. For a network N = (N1, N2), we will usually drop the
suffixes and write N for any of N,N1, N2, distinguishing the meaning by context.

Definition 4.2. Players ∀, ∃ play a game G(A ) of length ù as follows. In an
initial un-numbered round, ∀ chooses a nonzero element a ∈ A , and ∃ responds
with a network N0 containing nodes x, y with N0(x, y) ≤ a. In round l < ù, if the
current network (at the start of the round) isNl , then ∀ chooses nodes x, y ∈ Nl and
elements a, b ∈ A with a ; b ≥ Nl (x, y). ∃must respond with a networkNl+1 ⊇ Nl
containing a node z with Nl+1(x, z) ≤ a and Nl+1(z, y) ≤ b. ∃ wins the game if
she always responds to ∀ with such a network.

The following lemma was proved for finite relation algebras in [16, Proposi-
tion 10], in which case the converse is also true. This would suffice for our purposes
(recall that eachA (Γn) from Section 3.4 is finite), but we prove it now for arbitrary
relation algebras for completeness.

Lemma 4.3. Let A be a relation algebra. If ∃ has a winning strategy in G(A ) then
A is weakly representable.

Proof. Suppose that ∃ has a winning strategy in G(A ). First consider the case
where A is countable. For each nonzero a ∈ A , consider a play N0 ⊆ N1 ⊆ · · · of
the game in which ∀ plays a initially and arranges to play subsequently every move
that ever becomes possible during play (he can do this because A is countable),
and in which ∃ uses her winning strategy. Let N a be the set of nodes occurring in
networks in this play. For x, y ∈ N a and b ∈ A , define N a |= b(x, y) iff there is
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n < ù with x, y ∈ Nn and Nn(x, y) ≤ b. Then the disjoint union of the N a , taken
over all nonzero elements a ∈ A , is a weak representation of A .
Now let A have arbitrary cardinality. We may fix a winning strategy ó for ∃
in G(A ) that provides a unique finite network (i.e., with finitely many nodes) for
her to play in any situation. We build a chain A0 � A1 � · · · � A of countable
elementary subalgebras ofA . To begin, letA0 be an arbitrary countable elementary
subalgebra ofA . Given An, let An+1 be any countable elementary subalgebra ofA
containingAn and such that for any play ofG(A ) in which ∀ only chooses elements
of An and in which ∃ uses ó, all networks played are networks over An+1. Let
Aù =

⋃

n<ù An. Then Aù � A , and ∃ has a winning strategy in G(Aù). As Aù
is countable, Aù ∈ wRRA, and as wRRA is elementary we obtain A ∈ wRRA as
required. ⊣

4.2. Basic properties of A (Γ). Next we state some properties of A (Γ) that will
be useful later on. First we define the following elements of A (Γ):

• 0
,
= −1

,
(as usual in relation algebras),

• G =
∑

i<4 gi ,
• W =

∑

i<4 wi ,
• rX =

∑

{rx : x ∈ X} and yX =
∑

{yx : x ∈ X}, for any X ⊆ Γ.3

Lemma 4.4. If a, b ∈ A (Γ) satisfy 0 < a, b ≤ 0
,
, then (a ; b) ·W > 0.

Proof. It is clear that none of F2–F5 alone can block all the white atoms. So
(a ; b) ·W > 0 for any atoms a, b ≤ 0

,
. The result for arbitrary elements follows by

additivity of composition. ⊣

Lemma 4.5. If Γ is connected and has at least two nodes, and a, b ∈ A (Γ) satisfy
0 < a, b ≤ 0

,
, then (a ; b) · rΓ > 0.

Proof. This is because no rule other than F1 can bar all red atoms. We give a
little more detail. By additivity of composition, we can assume that a, b are atoms.
Let z ∈ Γ. If rz ≤ a ; b, we are done. If not, it is because of rule F3 or F4. If the
former, we have a = yx and b = yy for some distinct x, y 6= z. But then rx ≤ a ; b.
If the latter, we have a = gi and b = yx (or vice versa) for some i < 4 and x ∈ Γ
with z /∈ E(x). But Γ is connected with at least two nodes, so E(x) 6= ∅. Then
ry ≤ a ; b for any y ∈ E(x). ⊣

Lemma 4.6. If a, b ∈ A (Γ) satisfy 0 < a, b ≤ 0
,
, then a ; b ≥ a + b.

Proof. Again, we may assume that a, b are atoms. Observe that no cycle forbid-
den by a rule other than F1 involves an atom and its converse.4 Consequently, the
cycles (a, b, ă) and (a, b, b̆) are not forbidden, and so a ; b ≥ a + b as required. ⊣

Lemma 4.7. A (Γ) is a relation algebra.

Proof. By (the proof of) [15, Lemma 3.24], it is enough to prove that the atom
structure α(Γ) of A (Γ) has the following three properties:

1. For all x, y ∈ α(Γ) we have x = y iff the cycle (1
,
, x, y̆) is not forbidden,

2. all Peircean transforms of a forbidden cycle are forbidden,

3To ensure that this is well defined, we suppose Γ ∩ ℘(Γ) = ∅.
4F1 does forbid some such cycles: e.g., (1

,
, 1̆
,
, v).
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Figure 2. The atoms a, b, c, d, e.

3. for all a, b, c, d, e ∈ α(Γ), if (b, c, a) and (d, e, a) are not forbidden cycles,
then there is some atom f such that the cycles (b,f, d̆ ) and (f, e, c̆) are not
forbidden either. See figure 2.

The first property follows from F1 and the second is immediate from the definition.
The third property is easily proved if 1

,
∈ {b, c, d, e}. Consider for example the case

where b = 1
,
. Let f = d . Then obviously (b,f, d̆ ) = (1

,
, d, d̆ ) is not forbidden.

Moreover, as (b, c, a) is not forbidden, by F1 we have a = c̆, so (f, e, c̆) = (d, e, a),
which is assumed not to be forbidden. The other cases are proved similarly.
If 1
,
/∈ {b, c, d, e} then inspection of F2–F5 shows that there can be at most

three atoms x ≤ W + W̆ such that (b, x, d̆ ) is forbidden, and at most three atoms
y ≤ W + W̆ such that (y, e, c̆) is forbidden. There are eight atoms f ≤ W + W̆, so
for at least two of them, (b,f, d̆ ) and (f, e, c̆) are not forbidden. ⊣

4.3. Weak representability of A (Γ). We are ready to establish the main repre-
sentability results about A (Γ).

Proposition 4.8. Suppose that Γ is a graph with ÷(Γ) ≤ 2 and |Γ| ≥ 2. Then
A (Γ) /∈ wRRA.

Proof. Assume for contradiction that M is a weak representation of A (Γ).
Take a, b ∈ M with M |= v(a, b). Since v ≤ gi ; gj for all i, j < 4, there exist
c, d ∈ M with M |= g0(a, c) ∧ g2(c, b) and M |= g1(a, d ) ∧ g3(d, b). Then
M |= (g0 ; g1) · (g2 ; g3)(c, d ). Note that

(g0 ; g1) · (g2 ; g3) = 0
,
− (G+ yΓ).

Now take non-empty independent sets P,Q ⊆ Γ with P ∪ Q = Γ and P ∩ Q = ∅.
These exist because ÷(Γ) ≤ 2 and |Γ| ≥ 2. We have

yP ; yQ = 0
,
− G.

(E.g., if x ∈ P and y ∈ Q then rx + ry ≤ yx ; yy , and it follows that rΓ ≤ yP ; yQ .)
Therefore, (g0 ; g1) · (g2 ; g3) ≤ yP ; yQ , soM |= yP ; yQ(c, d ) and there must be some
e ∈M withM |= yP(c, e) ∧ yQ(e, d ). See figure 3.
Clearly,M |= (g0 ; yP) · (g1 ; yQ)(a, e). What sum of atoms is (g0 ; yP) · (g1 ; yQ)?
Each atom in the sum lies beneath g0 ; yP , so by F1, 1

,
is ruled out, and by F4, so

are g1, g2, g3,w0,w2, w̆0, v, yy for all y /∈ P, and rz for all z /∈ E(P). It also lies
beneath g1 ; yQ, and by F4 this additionally rules out g0,w1,w3, w̆1, yy for all y /∈ Q,
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Figure 3. Points a, b, c, d, e ∈M .

and rz for all z /∈ E(Q). Since P ∩ Q = ∅, all yy are ruled out. Since P,Q are
independent and P ∪ Q = Γ, we see that E(P) ∩ E(Q) = ∅ and so all rz are ruled
out. All that remain are w̆2 and w̆3. So (g0 ; yP) · (g1 ; yQ) = w̆2 + w̆3 and we have
M |= (w̆2 + w̆3)(a, e). Similarly,M |= (w0 + w1)(e, b). But now, by F5,

((w̆2 + w̆3) ;(w0 + w1)) · v = 0,

soM |= 0(a, b), contradicting the last axiom defining weak representations. ⊣

Proposition 4.9. If Γ is a connected graph with ÷(Γ) > 2, then A (Γ) ∈ wRRA.

Proof. WriteA forA (Γ) in the proof. ByProposition 4.7,A is a relation algebra.
It remains to show that A is weakly representable, and for this, by Lemma 4.3 it
suffices to show that ∃ has a winning strategy in G(A ).
∃ will maintain two conditions during the game. To explain them, let N be any
network over A . An edge of N is a pair (x, y) of nodes of N . Such an edge is said
to be a critical edge of N if x 6= y and there are nodes z, t ∈ N , necessarily distinct
from each other and from x, y, such that

• N(z, t) ≥ v,
• N(x, z) · G 6= 0, N(x, t) · G 6= 0, N(y, z) · G 6= 0, and N(y, t) · G 6= 0.

∃ will ensure that each network played satisfies the following inductive conditions:

I1. N(x, y) ≤ 0
,
for each distinct x, y ∈ N ,

I2. N(x, y) ≥ rΓ for each critical edge (x, y) of N .

In the initial round of G(A ), ∀ chooses a nonzero α ∈ A . ∃ chooses an atom
a ≤ α, and responds with a network N0 consisting of nodes x, y, say, where x = y
iff a = 1

,
, and with N0(x, y) = a. This information is sufficient to determine N0

completely, and it is clearly a network satisfying the inductive conditions I1 and I2.
Suppose that at the start of some later round of the game, the current network
is N , and assume inductively that it satisfies I1 and I2. Let ∀ play the round by
choosing nodes m, n ∈ N , say, and elements ì, í ∈ A with ì ; í ≥ N(m, n). Since
N is a network, N(m, n) > 0, so ì, í > 0 as well. ∃ must come up with a network
N ′ ⊇ N satisfying conditions I1 and I2 and containing a node p withN ′(m,p) ≤ ì
and N ′(p, n) ≤ í. So we are free to replace ì, í by smaller elements ì′ ≤ ì and
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í′ ≤ í, so long as we keep the condition that ì′ ; í′ ≥ N(m, n). We will do this in
the claims below.
First, suppose that m = n and 1

,
≤ ì · í. Then taking p = m, we have

N(m,p) ≤ 1
,
≤ ì andN(p, n) ≤ 1

,
≤ í. ∃may now simply respond withN ′ = N ,

completing this round of the game. So from now on, we assume that this is not the
case.

Claim 1. We may assume that ì, í ≤ 0
,
.

Proof of Claim. First, consider the case whenm = n. AsN is a network and 1
,

is an atom, N(m, n) = 1
,
, whence 1

,
≤ ì ; í. So there must be an atom a ≤ ì with

ă ≤ í. By our recent assumption, a 6= 1
,
. Since N(m, n) ≤ a ; ă, we may replace ì

by a and í by ă. Then ì, í ≤ 0
,
as required. Hence in this case we can assume that

ì, í are atoms and í = ì̆.
Now consider the case whenm 6= n. Let ì = ì0+ì1 where ì0 ≤ 0

,
and ì1 ≤ 1

,
.

Let í = í0 + í1 similarly. Then

N(m, n) ≤ ì ; í
= (ì0 + ì1) ;(í0 + í1)
= ì0 ; í0 + ì0 ; í1 + ì1 ; í0 + ì1 ; í1
≤ ì0 ; í0 + ì0 + í0 + 1

,
as ì1, í1 ≤ 1

,

= ì0 ; í0 + 1
,

by Lemma 4.6.

By inductive assumption I1,N(m, n) ≤ 0
,
, so in factN(m, n) ≤ ì0 ; í0. So we may

replace ì by ì0 and í by í0. This proves the claim. ⊣

Claim 2. We may further assume that ì ≤ N(m, n) ; í̆ and í ≤ ì̆ ;N(m, n).

Proof of Claim. Let C be the set of atoms c of A (Γ) with c ≤ N(m, n). For
each c ∈ C , select atoms ac ≤ ì and bc ≤ í with ac ; bc ≥ c. Let ì′ =

∑

c∈C ac
and í′ =

∑

c∈C bc. Clearly, ì
′ ≤ ì, í′ ≤ í, and N(m, n) =

∑

C ≤
∑

c∈C ac ; bc ≤

ì′ ; í′. Also, for each c ∈ C we have ac ≤ c ; b̆c ≤ N(m, n) ; í̆
′, so ì′ ≤ N(m, n) ; í̆′.

Similarly, í′ ≤ ì̆′ ;N(m, n). So we may replace ì by ì′ and í by í′. This proves the
claim. Note that if m = n then ì, í are unchanged, as they are atoms. ⊣

∃ now defines N ′ by adding a single new node to N — say, p, with p /∈ N . She
defines the labelling of N ′ as follows. We must have N ′ ⊇ N , so we only need
specify labels N ′(x, y) where p ∈ {x, y}. We also must have N ′(y, x) = N ′(x, y)˘,
so we only need specify one of N ′(x, y), N ′(y, x).
First, ∃ defines N ′(m,p) = ì, N ′(p, p) = 1

,
, and N ′(p, n) = í. This is well

defined, for if m = n then í = ì̆: see the proofs of the claims. Thus, our
specifications of N ′(p, n) = í and N ′(p, n) = N ′(n, p)˘ = N ′(m,p)˘ = ì̆ do not
conflict.
Next, for each q ∈ N \ {m, n}, she defines N ′(q, p) as follows, where we write
α = N(q,m) and â = N(q, n):

N ′(q, p) =

{

(α ;ì) · (â ; í̆) · (rΓ +W + W̆), if α · G > 0 and â · G > 0,

(α ;ì) · (â ; í̆) · (rΓ +W), otherwise.
(6)

Our job is to show that this defines a bona fide network satisfying the inductive
conditions. It will occupy us for the rest of the section.
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By Claim 1 and the aboveDefinition (6), inductive condition I1 clearly holds. We
check that condition I2 holds too. Let (x, y) be a critical edge of N ′. So there are
z, t ∈ N ′ with N ′(z, t) ≥ v and such that N ′(x, z), N ′(x, t), N ′(y, z), and N ′(y, t)
all contain green atoms. First suppose that x, y ∈ N . Then z, t ∈ N as well because
of the following. If, say, z = p, then there must be some q ∈ {x, y, t}∩(N \{m, n}),
since x, y, z, t are distinct. The label on (q, z) = (q, p) is above either v or a green
atom. But ∃’s strategy in (6) never defines such a label on edges of this form. The
argument if t = p is similar. Since x, y, z, t ∈ N , (x, y) is a critical edge of N , and
we conclude by inductive hypothesis I2 thatN ′(x, y) = N(x, y) ≥ rΓ.
Now suppose that (x, y) involves the new node p: say without loss of generality
that x = p. Again, as N ′(p, z), N ′(p, t) are both above green atoms and ∃’s
strategy (6) only uses sums of atoms rx ,wi , w̆i to label edges (p, q) for q 6= m, n,
we must have {z, t} = {m, n}. Hence, y ∈ N \ {m, n}. Inspection of (6) shows
that ∃ would label N ′(x, y) = N ′(y, x)˘ by a sum of atoms including all rw such
that rw ≤ (N(y,m) ;ì) · (N(y, n) ; í̆). Since N(y,m), ì,N(y, n), í all contain
green atoms, and there are no forbidden cycles of the form (gi , gj , rw), we see that
all rw satisfy this condition. Hence rΓ ≤ N ′(x, y), which establishes inductive
condition I2.
It remains to show thatN ′ is a network. Conditions 1 and 2 of Definition 4.1 are
easy to confirm, using the definitions and Claim 1 and remembering that N ⊆ N ′

and N is a network. Next we check that all labels on edges of N ′ are nonzero.
This is true for edges of N since N is a network. We have N ′(m,p) = ì and
N ′(p, n) = í, and ì, í > 0 because ì ; í ≥ N(m, n) > 0. Also, N ′(p, p) = 1

,
6= 0.

Let q ∈ N \ {m, n}. Denote α = N(q,m) and â = N(q, n), and also write ε for
N ′(q, p). See figure 4.

m

p

n

q

ε

α â

ì í

Figure 4. Points m, n, p, q ∈ N ′.

We show that ε > 0. ∃’s strategy in (6) always includes in ε all atoms rx ,wi that
can be consistently added. If ε ·W > 0, we are done. Suppose that ε ·W = 0. Only
three rules can block white atoms, namely F1, F4, and F5. Rule F1 is not involved,
since by I1 and Claim 1, α, â, ì, í ≤ 0

,
. If F5 is involved, we must have wj ≤ α

for some j, and v ≤ ì— or alternatively, wj ≤ â for some j, and v ≤ í. Assume
the latter; the former case is similar. But then rΓ ≤ wj ; v ≤ â ; í̆. By Lemma 4.5,
rΓ · (α ;ì) > 0, so by (6), ε = N ′(q, p) ≥ rΓ · (α ;ì) · (â ; í̆) > 0 as required. If
instead only F4 is involved, in order to block all four wi we must certainly have
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yx ≤ ì, yy ≤ í, gi ≤ α, and gj ≤ â , for some x, y ∈ Γ and i, j < 4. But then
w̆k ≤ (gi ; yx) · (gj ; yy) ≤ (α ;ì) · (â ; í̆) for each k < 4 with k 6= i, j, and ∃’s
strategy as defined in (6) would ensure that all such w̆k are included in the label
N ′(q, p), which is consequently nonzero as required.
Labels on converse edges are the converses of the labels on the original edges,
and so are also nonzero. This completes the check that all labels inN ′ are nonzero.
Our main work is to check thatN ′(x, y) ≤ N ′(x, z) ;N ′(z, y) for every x, y, z ∈
N ′. Since N is a network, this is true if x, y, z ∈ N , so we may assume that
p ∈ {x, y, z}. We also assume that x, y, z are pairwise distinct, since otherwise, the
statement is easy to prove using properties already established. We divide into cases
according as |{x, y, z} ∩ {m, n}| = 2, 1, or 0.
First suppose that {x, y, z} = {m, n, p}. This case is an easy consequence of
Claim 2 and the properties of converse.
Next, assume that {x, y, z} = {p,m, q} for some q ∈ N \ {m, n}. Again let
α = N(q,m), â = N(q, n), and ε = N ′(q, p). It is clear by∃’s strategy that ε ≤ α ;ì
— that is, N ′(q, p) ≤ N ′(q,m) ;N ′(m,p). That N ′(p, q) ≤ N ′(p,m) ;N ′(m, q)
follows by taking converses. It remains to show that

α ≤ ε ; ì̆ and ì ≤ ᾰ ; ε. (7)

That is, N ′(q,m) ≤ N ′(q, p) ;N ′(p,m) and N ′(m,p) ≤ N ′(m, q) ;N ′(q, p). By
taking converses we obtain N ′(m, q) ≤ N ′(m,p) ;N ′(p, q) and also N ′(p,m) ≤
N ′(p, q) ;N ′(q,m), completing the proof for this case.
Since α,ì, ε > 0, to prove (7) it suffices to take arbitrary atoms a ≤ α and
b ≤ ì, and find an atom c ≤ ε such that the cycle (a, b, c̆) is not forbidden. Then,
a ≤ c ; b̆ ≤ ε ; ì̆ and b ≤ ă ; c ≤ ᾰ ; ε, and since a, b were arbitrary, (7) follows.
The proof is a tedious but not difficult case analysis. Take any atom c ≤ ε. If
(a, b, c̆) is not forbidden, we are done. Suppose then that it is forbidden. This is
because one of F1–F5 applies to (a, b, c̆). We have already established I1 for N ′,
so α,ì, ε ≤ 0

,
and F1 does not apply. F2 does not apply either, because ∃ does

not include green atoms under ε, so c is not green. Therefore one of F3–F5 forbids
(a, b, c̆). We consider each of these rules in turn.
Suppose F3 forbids (a, b, c̆). By ∃’s strategy (6), c is not yellow, so we must have
a = yx , b = yy , and c = rz for somedistinctx, y, z ∈ Γ. But then,W ≤ a ; b ≤ α ;ì.
By I1 forN ′, â, í̆ ≤ 0

,
, so byLemma 4.4, (â ; í̆)·W > 0. So by ∃’s strategy, ε ·W > 0.

Let wi ≤ ε. Then (a, b, w̆i) = (yx , yy , w̆i) is not forbidden, as required.
The other possibilities are handled in a similar way. If (a, b, c̆) is forbidden by F4,
then again, as ∃ does not include gi , yx atoms in ε, we must have a = yx and b = gi ,
for some i < 4 and x ∈ Γ, and c̆ ∈ Bx,i (see (2) above for Bx,i), or, since green and
yellow atoms are self-converse, a = gi , b = yx and c ∈ Bx,i . So there are two cases:

Case a = gi and b = yx : let j, k < 4 be the numbers of opposite parity to i .
Then wj + wk ≤ gi ; yx ≤ α ;ì. Take arbitrary atoms d ≤ â , e ≤ í̆: see figure 5.
If wj ≤ d ; e, then by ∃’s strategy (6), wj ≤ ε. As (a, b, w̆j) = (gi , yx , w̆j) is not
forbidden, we are done. A similar argument can be made if wk ≤ d ; e.
So suppose wj ,wk 6≤ d ; e. Only rules F4 and F5 can block white atoms (recall
that F1 is not involved). Suppose that wj ,wk 6≤ d ; e because of F5, so d = ws
for some s 6= j, k, and e = v. As in Lemma 4.5, pick y ∈ E(x) (using that Γ is
connected and has at least two nodes because its chromatic number is at least 3, so
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b = yx ≤ ì í̆ ≥ e

Figure 5. Atoms a, b, c, d, e.

that E(x) 6= ∅). Then ry ≤ gi ; yx ≤ α ;ì and also ry ≤ ws ; v ≤ â ; í̆. Therefore,
∃’s strategy (6) ensured that ry ≤ ε, and (a, b, r̆y) = (gi , yx , ry) is not forbidden, as
required.
Suppose instead that wj ,wk 6≤ d ; e because of F4. This can only be because
d ∈ {gj , gk} and e = yy for some y ∈ Γ. Suppose without loss of generality that
d = gj . But now, k 6= i, j, so we see (cf. F4) that w̆k ≤ (gi ; yx) · (gj ; yy) = (a ; b) ·
(d ; e) ≤ (α ;ì) · (â ; í̆). Because a = gi ≤ α and d = gj ≤ â , we have α · G > 0
and â · G > 0. So ∃ would include w̆k in ε (see (6)), and (a, b,wk) = (gi , yx ,wk) is
not forbidden, as required.

Case a = yx and b = gi : then wj ≤ a ; b ≤ α ;ì for all three j 6= i . If
there is such a j with wj ≤ â ; í̆, we are done, since ∃ would include wj in ε, and
(a, b, w̆j) = (yx , gi , w̆j) is not forbidden, as required. So assume not. Only F5 can
block three white atoms, so in fact wi ≤ â and v ≤ í. As before, if y ∈ E(x) then
ry ≤ yx ; gi = a ; b ≤ α ;ì and also ry ≤ wi ; v ≤ â ; í̆. Therefore, ∃ would ensure
that ry ≤ ε, and (a, b, ry) is not forbidden, as required.

Finally suppose that (a, b, c̆) is forbidden by F5. ∃ never includes v in ε, so there
are only two possibilities:

• a = wi , b = v, and c = wj for distinct i, j < 4, or
• a = v, b = w̆i , and c = w̆j , for distinct i, j < 4.

So rΓ ≤ a ; b ≤ α ;ì. By Lemma 4.5, rΓ · (â ; í̆) > 0. By ∃’s strategy, there is some
rx ≤ ε. Then (a, b, rx) is not forbidden, as required.
So (7) is proved, andwe have the result when {x, y, z} = {p,m, q}. The case when

{x, y, z} = {p, n, q} for some q ∈ N \ {m, n} is handled analogously or follows by
symmetry.
Finally suppose that {x, y, z} = {p, q, q′} for distinct q, q′ ∈ N \{m, n}. We check
thatN ′(x, y) ≤ N ′(x, z) ;N ′(z, y), and this is themost interesting part of the proof.
Write ε = N ′(q, p), ε′ = N ′(q′, p), α = N(q,m), α′ = N(q′, m), â = N(q, n),
and â ′ = N(q′, n). We saw above that ε, ε′ > 0, and N ′(q, q′) > 0 by inductive
hypothesis I1. Take arbitrary atoms a ≤ N(q, q′), b ≤ ε, and c ≤ ε′ (see figure 6).
It is enough if we show that

a ≤ ε ; ε̆′, b ≤ a ; ε′, and c ≤ ă ; ε. (8)
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Figure 6. Points m, n, p, q, q′ ∈ N ′.

This is immediate if the cycle (a, c, b̆) is not forbidden, so suppose that it is
forbidden. We know by ∃’s strategy that b, c ≤ rΓ+W+W̆, and a 6= 1

,
by inductive

condition I1. Under these circumstances, only rule F5 can forbid the cycle (a, c, b̆).
So we must have

a = v, b = w̆i , c = w̆j ,

for some distinct i, j < 4. As ∃ has included atoms w̆i , w̆j in ε, ε′, we deduce
from (6) that α,α′, â, â ′ all contain green atoms.
Now there are essentially two cases. Suppose first that ì 6≤ yΓ. Since α · G > 0,
we see that rΓ ≤ α ;ì. By Lemma 4.5, rΓ · (â ; í̆) > 0, and so there is some rx ≤ ε.
Similarly, there is some ry ≤ ε′. But now we have a = v ≤ rx ; ry ≤ ε ; ε̆′, as well as
b = w̆i ≤ v ; ry ≤ a ; ε′ and c = w̆j ≤ v ; rx ≤ ă ; ε, proving (8). The proof if í 6≤ yΓ
is similar: again, red atoms creep into ε, ε′.
So we pass to the other case, when ì, í ≤ yΓ. Say, ì = yP and í = yQ for
P,Q ⊆ Γ.

Claim 3. E(P) ∩ E(Q) 6= ∅.

Proof of Claim. First, if there is some y ∈ P ∩ Q, then as before, ∅ 6= E(y) ⊆
E(P) ∩ E(Q) and we are done.
So suppose that P ∩Q = ∅. We know that ì, í > 0, so P,Q 6= ∅. Now the edge
(m, n) is plainly critical in N , and so by inductive assumption I2, rΓ ≤ N(m, n) ≤
ì ; í = yP ; yQ . By rule F3 and because P ∩Q = ∅, we obtain P ∪Q = Γ.
Our assumption that ÷(Γ) > 2 has not been used yet. We use it now. Since
÷(Γ) > 2, not both of P,Q are independent. So one of them, say P, contains nodes
x, y such that xy is an edge of Γ. Since Q 6= ∅, we can pick t ∈ Q. Since Γ is
connected, there is a path x = x1, x2, . . . , xn = t from x to t in Γ, where n > 1. Let
i < n be maximal such that x1, . . . , xi ∈ P, and write z = xi . Then zxi+1 is an edge
of Γ, and xi+1 ∈ Q, so z ∈ E(Q). Also, letting x0 = y, clearly xi−1z is also an edge
and xi−1 ∈ P, so z ∈ E(P) as well. This proves the claim. ⊣

So take z ∈ E(P)∩E(Q). We know α ·G, â ·G > 0, so we may take green atoms
gk ≤ α and gl ≤ â . By (inapplicability of) rule F4, we have rz ≤ (gk ; yP) ;(gl ; yQ) ≤



WEAKLY REPRESENTABLE RELATION ALGEBRAS 261

(α ;ì) · (â ; í̆), and so by ∃’s strategy, rz ≤ ε. Similarly, rz ≤ ε′. But now,
a = v ≤ rz ; rz ≤ ε ; ε̆′, b = w̆i ≤ v ; rz ≤ a ; ε′, and c = w̆j ≤ v ; rz ≤ ă ; ε,
proving (8) again.
We have shown that N ′ is a network satisfying the inductive hypotheses. So we
have provided a winning strategy for ∃ in the gameG(A ). This completes the proof
of Proposition 4.9. ⊣

§5. Conclusion. We proved that wRRA is not closed under completions and is
not canonical. It follows [8] that wRRA is not generated as a variety by (the full
complex algebras over) any elementary class of structures. We mention two open
problems. First, is wRRA generated as a variety by any class of structures at
all? In standard notation and terminology, this asks whether wRRA is a complete
variety: whether there is a class K of atom structures such that wRRA = HSPCmK.
Second, Goldblatt has asked whether wRRA is a complex variety: whether there is
a class K of atom structures such that wRRA = SCmK. Obviously, all canonical
varieties are complex and all complex varieties are complete. Examples are known
of complex non-canonical varieties [27] and of complete non-complex varieties [8,
Theorem 3.7.1].
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