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Abstract

The truth-table degree of the set of shortest programs remains an out-
standing problem in recursion theory. We examine two related sets,
the set of shortest descriptions and the set of domain-random strings,
and show that the truth-table degrees of these sets depend on the
underlying acceptable numbering. We achieve some additional prop-
erties for the truth-table incomplete versions of these sets, namely re-
traceability and approximability. We give priority-free constructions
of bounded truth-table chains and bounded truth-table antichains in-
side the truth-table complete degree by identifying an acceptable set
of domain-random strings within each degree.

1 Meyer’s Problem

No algorithm can determine, even in the limit, whether two distinct pro-
grams represent the same function. But one can, relative to the set of
shortest programs

MINϕ = {e : (∀j < e) [ϕj 6= ϕe]},
∗This work was supported by NUS grant R252-000-420-112 (F. Stephan) and DFG

grant ME 1806/3-1 (J. Teutsch).
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figure out in the limit whether ϕd = ϕe. Here ϕ denotes any reasonable
programming language or “acceptable numbering” in which one can effec-
tively code any algorithm. Members of MINϕ are not only the most concise
programs in the language ϕ; they must in fact be minimal.

How difficult is it to decide whether a piece of code belongs to the set
of shortest programs? Meyer posed this question in a 1972 paper [20]. He
showed that MINϕ is Turing-equivalent toK ′ for every acceptable numbering
ϕ but left the truth-table degree of this set as an open problem.

Question 1.1. Is MINϕ ≡tt K
′ for every acceptable numbering ϕ?

The truth-table degree of MINϕ remains a mystery even today.
Five years after Meyer introduced his problem, Kinber [13] constructed

acceptable numberings ϕ and ψ such that MINϕ and MINψ have distinct
bounded truth-table degrees. In a follow-on paper, Marandžjan showed that
the conjunctive degree of MINϕ can vary for acceptable numberings as well
[18], [19]. Kinber further mentions the existence of an acceptable numbering
ϕ satisfying MINϕ ≡tt K

′. Two decades after Kinber’s seminal work, Schae-
fer upgraded ϕ to a Kolmogorov numbering satisfying MINϕ ≡tt K

′ [25].
Schaefer also points out that MINϕ ≥wtt K for all acceptable numberings
ϕ but leaves the weak truth-table degree of MINϕ as an important related
problem.

This exposition draws on concepts from both recursion theory and al-
gorithmic randomness. Given the intimate relationship between random-
ness and incompressibility, it is no surprise that minimal indices, as highly
compressed objects themselves, also associate closely with randomness. A
numbering ϕ is a partial-recursive function 〈e, x〉 7→ ϕe(x); a numbering ϕ
is called a (K-)acceptable numbering if for every further numbering ψ there
exists a (K-)recursive function f such that ϕf(e) = ψe for all e. Here K
denotes the halting set. If ϕ is acceptable and in addition for every ψ the
corresponding translation function f is linearly bounded, then ϕ is a Kol-
mogorov numbering. If f is just linear (and not necessarily recursive) we say
that f has the Kolmogorov property. Having a numbering ϕ with the Kol-
mogorov property, one can also define the plain Kolmogorov complexity C
of a number x as C(x) = min{log(e) : ϕe(0) = x} where this value depends
only up to a constant on the underlying numbering.

A left-r.e. set X is a set which has a uniformly recursive approximation
X0, X1, . . . such that Xs ≤lex Xs+1 for all s. Here Xs ≤lex Xs+1 iff either
Xs = Xs+1 or the least element of the symmetric difference is in Xs+1.
There is some correspondence between left-r.e. sets and real numbers which
are approximable from below: for every set X there is the real number
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rX =
∑

n 2−n−1X(n) where rX = rY can only happen for distinct X,Y
when X,Y are finite and cofinite, respectively. Zvonkin and Levin [33] and
later Chaitin [4], [5] constructed a left-r.e. Martin-Löf random set [17] which
we call Ω. Every Martin-Löf random set X satisfies C(X �� n) > n/2 for
all but finitely many n [7]. For the purposes of this paper, the property of
Ω described in the preceding sentence suffices; the actual characterization
of Martin-Löf random is much stronger but also a bit more complicated to
formulate (as one either needs prefix-free Kolmogorov complexity or has to
deal with the fact that the plain complexity is only almost above n but not
exactly above n).

Definition 1.2. A set A is truth-table reducible to B, written A ≤tt B, if
there exist recursive functions f and g such that for all x,

x ∈ A ⇐⇒ f [x,B(0), B(1), . . . , B(g(x))] = 1. (1.1)

Furthermore, A is truth-table complete if A ≡tt K. Intuitively, A ≤tt B if
membership in A can be decided by constructing a Boolean formula and
evaluating it using membership values from B. If the truth-table f can be
chosen so as to depend on only a constant number of membership queries
from B, then a stronger reduction is satisfied, namely A ≤btt B. We say
A ≤wtt B if (1.1) is achieved for correct values B(0), B(1), . . . but f is not
necessarily total. A set A is btt-complete if A ≡btt K and similarly for ≤wtt.

A set is called n-r.e. if it has a recursive approximation (starting from the
empty set) with at most n mind-changes on any given index. Here “r.e.”
stands for recursively enumerable. A set is ω-r.e. if it has a recursive ap-
proximation with a recursive bound on the number of mind-changes for
each index. A co-n-r.e. set is the complement of an n-r.e. set. A set A
satisfies A ≤btt K iff A is n-r.e. for some n, and A ≤tt K iff A is ω-r.e.
[11]. A collection of sets is called a (btt)-antichain if any two members of
the collection are incomparable under (btt)-reductions. A collection of sets
A0, A1, . . . satisfying A0 <btt A1 <btt . . . is a btt-ascending chain and if
A0 >btt A1 >btt . . . then A0, A1, . . . is a descending chain.

An infinite set is called immune if it contains no infinite r.e. subset. A
set which is immune and has a complement which is immune is bi-immune.
Let D0, D1, . . . be a canonical enumeration of the finite sets. A set A is ω-
immune if there is no recursive function f and number k such that {Df(i)}
is a pairwise disjoint collection of sets, each with cardinality k, where each
set has non-trivial intersection with A. If instead of k the cardinality is a
recursive function of the index, then A is hyperimmune.
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We use ′ to denote the jump operator, ≡T to denote Turing equivalence,
≡m to mean many-one equivalence and =∗ to mean equal except for a finite
set. The symbols ψ,ϕ refer to numberings and Wϕ

e is the domain of ϕe.
A �� n denotes A(0)A(1) . . . A(n). The symbol ↓ means converge, and ↑
means diverge. The letter K denotes the halting set and is used in the
full form {〈e, x〉 : x ∈ We} so that the choice of the numbering does not
influence the many-one degree. For further background on minimal indices,
see Schaefer’s survey article [25] or the more recent papers [30], [31]. For
background and notation on recursion theory, see [21] and [27].

2 The set of shortest descriptions

In a formal sense, the set of shortest descriptions,

SDϕ = {e : (∀j < e) [ϕj(0) 6= ϕe(0)]},

is a simpler object than the set of shortest programs. Roughly speaking the
former deals with enumerations of integers whereas the latter pertains to
enumerations of functions. Schaefer invented the set of shortest descriptions
for his Master’s Thesis at University of Chicago [25]. There he proved that
SDϕ ≡wtt K for every acceptable numbering ϕ. Together with Fenner,
Schaefer further proved that SDϕ 6≥btt K for every acceptable numbering ϕ
[8], [25]. Turning to the natural intermediate reduction between ≤btt and
≤wtt, Schaefer [25] then asked whether SDϕ has to be truth-table complete
for all acceptable numberings ϕ. The answer is “no” and now an acceptable
numbering is constructed where SDϕ has the same truth-table degree as
Chaitin’s Ω, a set known to be truth-table incomplete [2]. We note that
there is a further Kolmogorov numbering ψ for which SDψ is truth-table
complete [31], [32].

Definition 2.1. A set A = {a0 < a1 < a2 . . .} is retraceable if there exists
a partial-recursive function f satisfying f(an+1) ↓ = an for all n.

Definition 2.2. A set S is approximable if there exists an n and a recursive
function f such that for any x1 < . . . < xn, the n-bit vector f(x1, . . . , xn)
agrees with the characteristic vector S(x1, . . . , xn) in at least one place. In
particular, we say S is (1, n)-recursive.

The notions of “retraceable” and “approximable” may be thought of as gen-
eralizations of the notion of “recursive”. For background on on retraceable
sets, see Odifreddi’s book [21]. For approximable sets, see [16]. We view the
following theorem as progress towards Meyer’s problem.
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Theorem 2.3. There exists an acceptable numbering ψ such that:

(i) SDψ 6≥tt K,

(ii) SDψ is retraceable and approximable.

Proof. (i). It is known that Chaitin’s Ω satisfies K �tt Ω [2]. Therefore it
suffices to find an acceptable numbering ψ such that SDψ ≤tt Ω. In fact we
shall build ψ in such a way that SDψ ≡tt Ω.

Let Ω0,Ω1, . . . be an uniformly recursive approximation of Ω from the
left. Define for each n the number

an = 2nΩ(0) + 2n−1Ω(1) + . . .+ 21Ω(n− 1) + 20Ω(n) + 1. (2.1)

This sequence satisfies C(an) > n/2 for almost all n, as Chaitin’s Ω is
Martin-Löf random. Furthermore, let I0, I1, I2, . . . be a splitting of the nat-
ural numbers into intervals of natural numbers such that each interval In
consists of 2n+1 subintervals, Jn,2n+1 , . . . , Jn,2, Jn,1 where Jn,k has length k
and the ordering of the intervals is so that min(Jn,k) > max(Jn,k+1) for the
corresponding k. Furthermore, there is a subinterval Hn of length 1 which
sits immediately above all the Jn,k and contains the maximal element en of
In. We can visualize the ordering on these intervals as follows:

J0,2J0,1H0︸ ︷︷ ︸
I0

J1,4J1,3J1,2J1,1H1︸ ︷︷ ︸
I1

J2,8J2,7J2,6J2,5J2,4J2,3J2,2J2,1H2︸ ︷︷ ︸
I2

. . .

Note that this partitioning and the mapping n 7→ en are both recursive.
In order to make ψ an acceptable numbering, we define ψen(k) = ϕn(k)

for all k > 0. We would also like to define ψen(0) = ϕn(0), but for technical
reasons this property will only be satisfied at all but finitely many n. Second,
one defines some ψ-indices i /∈ {e0, e1, e2, . . .} to take constant functions so
as to achieve

SDψ =∗
⋃
n

Jn,an ≡tt Ω. (2.2)

Indeed,
⋃
n Jn,an ≤tt Ω as an can be determined from queries to Ω at its

first n+ 1 values. On the other hand Ω(n) = 1 iff an is even and an can be
determined by querying

⋃
n Jn,an on the interval In. So Ω ≤tt

⋃
n Jn,an .

The precise algorithm for indices lying in coding intervals Jn,k is the
following. At step 0, all functions in Jn,k are undefined for all n and k. In
each step t > 0, compute the values an,t by using Ωt in place of Ω:

an,t = 2nΩt(0) + 2n−1Ωt(1) + . . .+ 21Ωt(n− 1) + 20Ωt(n) + 1.
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Now for n = 0, 1, 2, . . ., if an,t = an,t−1 then the functions in Jn,an,t are
already defined and nothing has to be done. Else do the following: for all c
such that either ϕn,t(0) = c or such that the constant function c∞(x) = c is
one of the functions defined in Jn,an,t−1 , check whether c∞ occurs already in
some interval Jk,` for some k < n and ` ∈ {1, 2, . . . , ak,t}. If it does not, then
take one index in Jn,an,t and define this function to be c∞. Furthermore,
fill the remaining indices in Jn,an,t with new functions c∞ for values c such
that no Jk,` with k < n and ` ∈ {1, 2, . . . , ak,t} contains an index for such a
function.

Finally, for the remaining indices, define ψen(0) = c iff ϕn(0) = c and
there is some index i < en in a coding interval to which the constant function
c∞ has been assigned. Otherwise ψen(0) remains undefined. We now show
that there are only finitely many en for which ψen(0) is undefined and ϕn(0)
is defined. Thus, up to finitely many errors, the mapping n 7→ en witnesses
that ϕ can be many-one reduced into the numbering ψ, hence the numbering
ψ is acceptable.

Note that whenever ϕn,t(0) converges, the Kolmogorov complexities of
t and an,t are both bounded by log(n) plus some constant. On the other
hand, for almost all n, C(an) > n/2 as an codes the first n bits of the
Martin-Löf random Ω. Hence, if n is sufficiently large, then an,t < an for
all t where ϕn,t(0) is undefined but ϕn(0) later converges. Furthermore
whenever an,t+1 > an,t, the corresponding interval Jn,an,t+1 will be larger
than Jn,an,t , so a new index of the function ϕn can be accommodated in
stage t+1 while the old indices from Jn,an,t can still be taken over. Only for
finitely many n it happens that the value c = ϕn(0) is defined and that c∞

has no index in
⋃
k≤n Jk,ak ; only for these finitely many n it happens that

ψen(0) 6= ϕn(0).
Each time an,t+1 > an,t during the construction, new constant functions

are chosen for indices in Jn,an,t+1 so that each index in this interval belongs
to

SDψ,t = {e : (∀j < e) [ψj,t(0) 6= ψe,t(0)]}.

Fix a stage s and let j ∈ Jn,an,s . If for some ek < j we have that ψek,s(0)
first converges to ψj,s(0) in stage s, then by the Kolmogorov complexity
argument above, ak > ak,s (except for finitely many k). As n > k, this
means that also an > an,s, so Jn,an,s 6= Jn,an , whence we obtain from the
converse SDψ∩In = Jn,an . Therefore SDψ =

⋃
n Jn,an and (2.2) follows.

(ii). A further property of the SDψ constructed is that SDψ is retraceable
by a total function f , defined as follows:
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• If x ∈ Jn,k − {min Jn,k}, then f(x) = x− 1.

• If x ∈ J0,1 ∪ {min(J0,2), e0, e1, e2, . . .}, then f(x) = x.

• Otherwise if x = min Jn+1,k, where

k = 2n+1b0 + 2nb1 + . . .+ 20bn+1 + 1

for some b0, . . . , bn ∈ {0, 1}, then f looks to the next level down. That
is, f(x) is defined to be the greatest member of Jn,k′ , where

k′ = 2nb0 + 2n−1b1 + . . .+ 20bn + 1.

Note that f is everywhere defined. In the case where x ∈ SDψ, then x ∈ Jn,an
for some n. It is vacuous to verify retraceability for n = 0, so assume n > 0.
When x = minJn,an then f(x) = max Jn−1,an−1 , otherwise f(x) = x − 1 ∈
Jn,an . In either case, f(x) points to the next lesser element of SDψ, hence
f is retraceable.

It is known from [16, comment before Theorem 30] that a set which
is retraceable by a total recursive function is also (1, 2)-recursive, that is,
approximable. As the proof of this statement does not appear in the earlier
paper [16], we give it here. We have already shown that SDψ is retraceable
by a total function in part (ii), so approximability follows from this fact.

Suppose A is retraceable by a recursive function g. We define a recursive
function f which witnesses that A is approximable (in fact, (1, 2)-recursive)
as follows. On input (x, y) with x < y, iteratively compute g(y), g◦g(y), g◦
g ◦ g(y), . . . until one of the following conditions holds:

• the next term increases or stays the same;

• the sequence drops below x.

If x is found to be in this sequence then define f(x, y) = (1, 0) else define
f(x, y) = (0, 0). If f(x, y) = (1, 0) and A(y) = 1, then A(x) = 1 because
this sequence retraces down to all members of A below y, including x. On
the other hand, if the sequence did not retrace down to x, then it must have
been the case that either y 6∈ A or else x 6∈ A, so f(x, y) = (0, 0) agrees with
the two-place characteristic function A(x, y) in at least one coordinate.

This concludes the proof.
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Remark. Schaefer showed that MINϕ is not (1, 2)-recursive for any accept-
able numbering ϕ [25, Theorem 2.22]. In contrast, SDϕ can be (1, 2)-
recursive as was shown in part (ii). We note that Kummer independently
found an acceptable numbering ϕ such that SDϕ 6≥tt K using game-theoretic
methods [14].

Figueira, Stephan and Wu [9] showed that there exists an infinite truth-table
antichain of Chaitin’s Ω’s. Since the set SDψ from Theorem 2.3 is truth-table
equivalent to an arbitrarily chosen Ω, we get the following result.

Corollary 2.4. There exist acceptable numberings ψ[0], ψ[1], . . . such that
for all i 6= j, SDψ[i] 6≤tt SDψ[j].

There exist two acceptable numberings ψ,ϕ with SDψ <tt SDϕ: Schaefer
[25], [31] stated that there exists an acceptable numbering ϕ where SDϕ

is in the truth-table degree of K; Theorem 2.3 gives us an example of a
further acceptable numbering ψ where the truth-table degree of the set of
the shortest descriptions is strictly below that of K. There are related open
questions:

• Is there an infinite chain of truth-table degrees belonging to SDψ for
various acceptable numberings ψ?

• Are there two different versions of Chaitin’s Ω such that one is strictly
truth-table below the other one? That is, can one construct the ψ,ϕ
with SDψ <tt SDϕ using two different versions of Ω?

In the year 1996, Kummer showed that the set of Kolmogorov non-random
strings, given as {x : C(x) < log x}, is truth-table complete for all Kol-
mogorov numberings ϕ. On the other hand, if one generalizes the definition
of this set to acceptable numberings, there exists an acceptable number-
ing ϕ for which this set is truth-table incomplete [15]. Since there exists
a Kolmogorov numbering ϕ such that SDϕ ≡tt K [31], we are left with an
analogous problem for the set of shortest descriptions:

Question 2.5. Is SDϕ ≥tt K for every Kolmogorov numbering ϕ?

The canonical universal Turing machine is a Kolmogorov numbering, so a
positive answer to this question would identify a uniform property among
the most familiar programming languages.

Proposition 2.6. For any (not necessarily acceptable) numbering ψ of the
partial recursive functions, SDψ is a left-r.e. set. Furthermore, the comple-
ment of SDψ is not immune.
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Proof. Let SDψ,s denote the set of indices which appear to be shortest de-
scriptions after time s. Then for any t > s, SDψ,s <lex SDψ,t. Indeed
an index only ever changes from a shortest description to a non-shortest
description if some smaller index takes over its value.

Note that there is a strictly ascending recursive sequence of indices
e0, e1, . . . such that ψen(0) ↓= 0 and ψen(1) ↓= n; this sequence can be
defined by letting en be the first index found when searching by dovetail-
ing for an index with these two properties. Then {e1, e2, . . .} is an infinite
recursive set which is disjoint to SDψ, hence the complement of SDψ is not
immune.

While SDψ is immune for acceptable numberings [25], somehow immunity
is not guaranteed for all numberings. Let ϕ be any acceptable numbering.
Then the following K-acceptable numbering satisfies that SDψ is recursive:

ψ〈x,e〉(z) =


↑ if x = 0 and z = 0,

x− 1 if x > 0 and z = 0,

ϕe(z) if z > 0.

For this numbering, SDψ = {〈0, 0〉, 〈1, 0〉, 〈2, 0〉, . . .} with an appropriately
defined pairing function. The numbering is K-acceptable as the oracle K
permits to determine which x has to be chosen such that ψ〈x,y〉 = ϕy. In
addition, we also get the following annoying result:

Proposition 2.7. For any r.e. set A, there exists a K-acceptable numbering
ν such that SDν ≡btt A.

Proof. Let ϕe be any acceptable numbering. Let

ψe(x) =


ϕe(x) if x > 0,

ϕe(0) if [x = 0 & ϕe(0) ↓ ≤ e],
↑ otherwise.

Note that ψ is a K-acceptable numbering, as ϕ has arbitrarily large indices
for each function by the Padding Lemma [27]. Now define ν so as to satisfy:

• ν3e(0) =

{
e if e ∈ A,

↑ otherwise,

• ν3e+1(0) = e and

• ν3e+2 = ψe.
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Then 3e+ 2 /∈ SDν for all e and whenever e 6= minA,

3e ∈ SDν ⇐⇒ e ∈ A ⇐⇒ 3e+ 1 /∈ SDν .

Thus SDν ≡btt A and ν inherits the property of being K-acceptable from
ψ.

Hence, the study of SDψ does not generalize in an interesting way to num-
berings which are not acceptable. We summarize the known properties for
the set of shortest descriptions in Corollary 2.8.

Corollary 2.8. There exists an acceptable numbering ψ such that the set
SDψ is:
(i) ω-immune but not hyperimmune or bi-immune,
(ii) wtt-complete but not tt-complete,
(iii) retraceable and approximable,
(iv) 2-r.e. and left-r.e. but not co-2-r.e.

Proof. Similarly to the case for MINϕ [1], [20], Schaefer argued that SDϕ

is ω-immune but not hyperimmune for every acceptable numbering ϕ [25].
Furthermore, SDϕ is 2-r.e. but not co-2-r.e. [31] and wtt-complete [25] for
every acceptable numbering ϕ. Let ψ be the special acceptable numbering
given by Theorem 2.3. Then SDψ is a left-r.e. set satisfying (i)–(iv) by
Proposition 2.6.

If one is not interested in shortest descriptions, one could more directly
construct a set satisfying the four properties above. The set constructed in
Corollary 2.8 is truth-table equivalent to Ω, hence

{σ : σ is a prefix of Ω}

satisfies the properties (i)–(iv) of the corollary. Property (iv) from Corol-
lary 2.8 in fact holds in every acceptable numbering of the set of shortest
descriptions [31] and so for any acceptable ϕ, SDϕ btt-reduces to the halting
set but does not many-one reduce to the halting set. This contrasts with the
set of Kolmogorov random strings and the set of shortest programs which
many-one reduce to K and K ′ respectively.

3 Domain-random strings

In a letter dated February 2002 [10], Friedman introduced the set of domain-
random strings, the complement of

NRWϕ = {x : (∃j < x) [max(Wϕ
j ∪ {0}) = x]},
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which is a variant of the set of Kolmogorov non-random strings. In his let-
ter, Friedman pointed out that the set has some properties similar to the set
of shortest descriptions and asked for the Turing degree of NRWϕ. Three
months later, Davie announced that NRWϕ ≡T K for all Kolmogorov num-
berings ϕ [6] and noted, under advisement from Solovay, that his argument
could be generalized to cover the acceptable numberings with polynomially-
bounded translation function. Stephan independently published a proof of
Davie’s result, based on the Owings Cardinality Theorem, for numberings
satisfying the Kolmogorov property [29]. He adds that NRWϕ is never 2-r.e.
for any acceptable numbering ϕ, but notes that there exists an acceptable
numbering ψ such that NRWψ is the complement of a 2-r.e. set.

While the Kolmogorov property helps us to fix the Turing degree for the
set of domain-random strings, for stronger reductions this property counts
against us. Indeed for any Kolmogorov numbering ϕ, NRWϕ is not n-
r.e. for any n [29]; hence NRWϕ 6≤btt K for Kolmogorov numberings ϕ.
As in the case for the set of shortest descriptions and the set of shortest
programs, K 6≤btt NRWψ for all acceptable numberings ψ (because NRWψ

is ω-immune, see [8], [25]). Since NRWψ ≤tt K for every numbering ψ
(as NRWψ is ω-r.e.), NRWϕ is a natural example of a set which is btt-
incomparable with the halting set and truth-table reducible to it whenever
ϕ is a Kolmogorov numbering.

While for a general acceptable numbering ϕ the Turing degree of NRWϕ

is unresolved, we have the following result for truth-table degrees.

Proposition 3.1. There exist acceptable numberings ψ and ν such that

(i) NRWψ ≡tt K and

(ii) NRWν 6≥tt K.

Proof. (i). Let ϕ be an acceptable numbering. Define the acceptable num-
bering ψ as follows:

• domψ0 = ∅.

• If e = 5x for some x then let ψe = ϕx,

• otherwise e = 5x + k for some x and k ∈ {0, 1, . . . , 4 · 5x − 1}. In this
case define ψe such that

domψe =

{
{e+ 1} if x ∈ K,
∅ if x /∈ K.
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Let
Ax = {5x + 2, 5x + 3, . . . , 5x+1}.

Now it is shown for x > 0 that

x ∈ K ⇐⇒ Ax ⊆ NRWψ.

If x /∈ K, then e /∈ NRWψ for some few e ∈ Ax. Furthermore, there are
5x+1− (5x + 1) = 4 · 5x− 1 indices in Ax, which is more than the number of
lesser indices in {0, 1, . . . , 5x}.

If x ∈ K, then Wψ
e = {e + 1} for e = 5x + 1, 5x + 2, . . . , 5x+1 − 1.

In other words, max(Wψ
e ∪ {0}) = e + 1 for all e with e + 1 ∈ Ax. So

Ax+1 ⊆ NRWψ.

(ii). Our goal here will be to ensure that the domain-random strings have
high Kolmogorov complexity. Fix an acceptable numbering ϕ, let an be as
in (2.1), let

bn = 2n+2 − an, (3.1)

and let {bn,t} be a decreasing approximation to bn. Let

In = {2n+1 + 1, 2n+1 + 2, . . . , 2n+2 − 1}

for all n and note that bn ∈ In for all but finitely many n. We define an
acceptable numbering ψ so as to satisfy the following two conditions:

• for all n, ν2n = ϕn;

• for all but finitely many n, NRWν ∩ In+1 = {bn}.

It is obvious how to achieve the first point: just define ν in the manner
prescribed. To satisfy the second point, we define for all x ∈ In:

W ν
x =

{
{x+ 1, x+ 2} if x+ 1 ≥ bn,

{x+ 1} otherwise.

In more detail, W ν
x,0 = {x+ 1} for all x ∈ In and at each stage t+ 1 where

bn,t+1 < bn,t for some n, we set

W ν
x,t+1 = {x+ 1, x+ 2} for all x ∈ {bn,t+1 − 1, bn,t+1, . . . , 2

n+1 − 1}.

This puts bn,t+1 into the (t+1)st stage of NRWν while the rest of the numbers
in In remain in NRWν forever unless bn,s < bn,t+1 for some s > t+1. Finally,
we assign some arbitrary function to ν0.
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It remains to demonstrate that the indices of the form ν2e do not destroy
the second point above. Since Ω is Martin-Löf random, we have C(bn) > n/2
for all but finitely many n. If some m with 2m < bn satisfies max(W ν

2m ∪
{0}) = bn then

C(bn) ≤ 2 log n+ 2 logm+O(1) ≤ 4 log n+O(1), (3.2)

but this can only happen finitely often. Since Ω does not tt-compute the
halting set [2], we get

NRWν =∗ {b0, b1, b2, . . .} ≡tt Ω 6≥tt K.

This concludes the overall proof.

We note that the truth-table incomplete version of NRWν in Proposition 3.1
inherits properties (i)–(iv) from Corollary 2.8: it is wtt-complete, retrace-
able, approximable, 2-r.e., and non-hyperimmune. The wtt-completeness of
NRWν follows from the fact that Ω is wtt-complete [2]. Stephan [29] showed
for every acceptable numbering ϕ that NRWϕ is not 2-r.e.: the main reason
is that NRWϕ is neither co-r.e. nor properly 2-r.e. as NRWϕ is immune. The
proof that NRWϕ is ω-immune is given below in Proposition 3.5.

Remark. The numbering ψ in Proposition 3.1(i) can be upgraded to a Kol-
mogorov numbering via the construction [25, Theorem 2.17]. It therefore
follows from the comments preceding Proposition 3.1 that NRWψ is truth-
table complete but btt-incomparable to the halting set for this upgraded
ψ.

This observation leads us to the following question:

Question 3.2. Is NRWϕ ≡tt K for every Kolmogorov numbering ϕ?

Stephan [28] showed that every nonrecursive truth-table degree contains
an infinite antichain of btt-degrees. We show that for certain truth-table
degrees such an antichain can be chosen as a set of domain-random strings.
The following corollary subsumes the result from Proposition 3.1 because
K 6≤tt Ω [2].

Theorem 3.3. Let A be any r.e. set satisfying Ω ≤tt A ≤tt K. There exist
acceptable numberings ψ[0], ψ[1], ψ[2], . . . such that for all recursive Wd and
We,

(i) NRWψ[d] ≤btt NRWψ[e] ⇐⇒ Wd ⊆∗ We and

(ii) NRWψ[e] ≡tt A.
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Here W0,W1, . . . is any acceptable numbering of the r.e. sets.

Proof. (i). We shall construct a set whose members are spread out suffi-
ciently sparse and randomly that any self-membership query cannot obtain
non-trivial information by querying larger indices of the set. Randomness
will also prevent smaller indices from being useful for membership queries.
For readability, let NRWe denote NRWψ[e] . For each e, NRWe will look
sufficiently similar to both this set and We so as to satisfy (i).

Define a recursive function h by

h(0) = 0,

h(n+ 1) = 22h(n)+3n+2 + 1

and let
g(n) = b4h(n)+5n

where bn is defined in (3.1). This pair of functions satisfies

h(0) < g(0) < h(1) < g(1) < h(2) < g(2) . . . (3.3)

so that the values of g and h alternate. Let ϕ be any acceptable numbering.
We shall define uniformly in e a numbering ψ[e] in such a way that

NRWe =∗ {g(3n) : n ∈ N} ∪ {g(3n+ 1) : n ∈Wϕ
e } ∪ {g(3n+ 2) : n ∈ A}.

(3.4)
This can be done as follows. Define ψh(3e) = ϕe for all e. Since h is recursive,
this ensures acceptability. The remaining ψ-indices are defined so as to
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satisfy:

Wψ[e]

x =



{x+ 1} if h(3n) < x < g(3n)− 1,

{x+ 1, x+ 2} if g(3n)− 1 ≤ x < g(3n+ 1)− 2,

{x+ 1, x+ 2} if g(3n+ 1)− 2 ≤ x < g(3n+ 2)− 2

and x /∈Wϕ
e ,

{x+ 1, x+ 2, x+ 3} if g(3n+ 1)− 2 ≤ x < g(3n+ 2)− 3

and x ∈Wϕ
e ,

{x+ 1, x+ 2, x+ 3} if g(3n+ 2)− 3 ≤ x < h(3n+ 3),

and x /∈ A and x ∈Wϕ
e ,

{x+ 1, x+ 2, x+ 3, x+ 4} if g(3n+ 2)− 3 ≤ x < h(3n+ 3),

and x ∈ A and x ∈Wϕ
e ,

{x+ 1, x+ 2} if g(3n+ 2)− 2 ≤ x < h(3n+ 3),

and x /∈ A and x /∈Wϕ
e ,

{x+ 1, x+ 2, x+ 3} if g(3n+ 2)− 2 ≤ x < h(3n+ 3),

and x ∈ A and x /∈Wϕ
e .

Since g is approximable from above, the functions ψ
[e]
0 , ψ

[e]
1 , . . . are indeed

partial recursive. Similar to (3.2) we have that for all but finitely many n,

max(Wψ[e]

h(k) ∪ {0}) 6= g(n)

whenever k ≤ n, and therefore (3.4) holds. ψ-indices h(3n+1) and h(3n+2)
have no special purpose in this construction beyond satisfying (3.3).

The reverse direction of Theorem 3.3(i) is now immediate. If Wϕ
d ⊆

∗

Wϕ
e and these sets are recursive, then NRWd = NRWe, except possibly on

intervals In of the form

In = {h(3n+ 1), h(3n+ 1) + 1, . . . , h(3n+ 2)}.

Let a ∈ NRWe and define a recursive function f by

f(x) =


x if x /∈ In for some n,

a if x ∈ In and x /∈Wϕ
d ,

x if x ∈ In and x ∈Wϕ
d .

Then x ∈ NRWd iff f(x) ∈ NRWe for all but finitely many x. So in fact we
get NRWd ≤m NRWe.
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For the forward direction, assume for a contradiction that there exist
infinitely many n such that n ∈Wϕ

d −W
ϕ
e . First we show that if there is a

btt-reduction F witnessing NRWd ≤btt NRWe, then there is a further btt-
reduction R which determines membership in In ∩ NRWd without querying
ψ[e]-indices larger than max In. The reason for this is that all queries from F
to NRWe ∩ {x : x ≥ max In} return the answer “1,” and therefore all such
replies can be hard-coded into the recursive function of R. Indeed the only
non-zero places in the characteristic function of NRWe occur in the range
of g, and by choice of g we have

C[g(n)] ≥ 2h(n) +
5

2
n (3.5)

for all n. Since the queries for F are a recursive function of their input,
we have that any F -query with input in In has Kolmogorov complexity at
most log h(3n + 2) + O(1) and therefore cannot query among {g(3n + 2),
g(3n+3), . . .} except finitely often. Thus our btt-reduction R does not query
above max In to decide membership in NRWd ∩ In for sufficiently large n,
say n > N .

We now argue that the ψ[e]-indices below max In do not contain sufficient
information for R to determine membership in NRWd ∩ In whenever n ∈
Wϕ
d −W

ϕ
e and n > N . For all such n, the set NRWd ∩ {x : x ≤ max In} can

be computed given d, e, R, n, A �� n, and g(3n) because In ∩ NRWe = ∅. In
particular, g(3n + 1) can be computed using these components as it is the
unique nonmember of NRWd ∩ In. It follows that

C[g(3n+ 1)] ≤ 2[n+ g(3n)] +O(1) ≤ 2h(3n+ 1) + 2n+O(1),

contradicting (3.5) for all but finitely many n. Therefore no such reduction
R exists, and we conclude NRWd 6≤btt NRWe.

(ii). Since

n ∈ A ⇐⇒ NRWe ∩ {h(3n+ 2), h(3n+ 2) + 1, . . . , h(3n+ 3)} 6= ∅,

we have A ≤tt NRWe. On the other hand, since We is recursive, we get
NRWe ≤tt A ⊕ Ω ≡tt A.

This completes the proof.

We leave open the question of whether such btt-chains and antichains can
be constructed using Kolmogorov numberings in place of acceptable ones
and whether similar btt properties can be achieved using the set of shortest
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descriptions or even the set of shortest programs. We note that Kinber’s
construction [13] which gives a pair of acceptable numberings with distinct
bounded truth-table degrees for the set of shortest programs does not make
use of Kolmogorov complexity.

Corollary 3.4. Every r.e. truth-table degree between the degree of Ω and the
degree of K contains infinite ascending chains, infinite descending chains,
and infinite antichains of btt-degrees.

Proof. Let
Pn = {pn, p2n, p3n, . . .}

be the set powers of the nth prime number. Then applying Theorem 3.3
to the sequence of recursive sets P1, P2, P3, . . . yields an antichain of btt-
degrees. Let

Un =
⋃
k≤n

Pn.

Then U1, U2, . . . gives rise to an ascending chain, and U1, U2, . . . gives rise to
a descending chain.

As was the case in Corollary 2.4, it is also possible to construct a collection
of acceptably-numbered NRW’s which form a truth-table degree antichain.

For comparison with the set of shortest descriptions, we now discuss
immunity for the set of domain-random strings. We referenced the following
fact earlier, and for completeness we now give a proof.

Proposition 3.5. For every acceptable numbering ϕ, NRWϕ is ω-immune.

Proof. Suppose NRWϕ is not ω-immune. Let f be a recursive function such
that Df(i) ∩ NRWϕ 6= ∅ for all i where Df(i) is a uniform collection of pair-
wise disjoint sets each with cardinality k. Using the s-m-n Theorem, define
recursive functions gi by letting ϕgi(x1,...,xk)(z) be the ith member of Df(z)

if z is the least index satisfying minDf(z) > max{x1, . . . , xk}; otherwise
ϕgi(x1,...,xk)(z) is undefined.

By the Recursion Theorem, there exist indices e1, . . . , ek such that ϕei =
ϕgi(e1,...,ek) for all i. Let yi be the unique element in the range of ϕei . For

at least one i, yi is a member of NRWϕ by assumption on f . On the other
hand, yi ∈ NRWϕ by definition of gi, a contradiction.

A set which is ω-immune avoids the btt-cone above the halting set [8] and
therefore:

Corollary 3.6. NRWϕ 6≥btt K for all acceptable numberings ϕ.
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A set is called Π1-immune if it contains no infinite co-r.e. subset. In contrast
to the set of shortest descriptions, where Π1-immunity depends on the un-
derlying acceptable numbering, NRWϕ is Π1-immune for every acceptable
numbering ϕ. Π1-immunity for the set of shortest descriptions varies for the
same reason as for the set of shortest programs [30].

Theorem 3.7. For every acceptable numbering ϕ, NRWϕ is Π1-immune.

Proof. Let
f(x) = max

e≤x
ϕe(x) + 1

where this maximum is taken over all functions which converge. Now f ≤T

K, hence there exists a recursive approximation f0, f1, . . . which converges
to f . Using the s-m-n Theorem, define a recursive function g by

x ∈Wϕ
g(e) ⇐⇒ (∃s) (∀y < x) [x ≤ fs(e) ∨ y ∈Wϕ

e,s].

Now for almost all e, g(e) ≤ f(e). It follows that for almost all e where Wϕ
e

is coinfinite that the maximum of Wϕ
g(e) exists, is larger than g(e), and is

a nonmember of the set Wϕ
e . Therefore every infinite co-r.e. set intersects

NRWϕ.

On the other hand, NRWϕ itself is not immune for any Kolmogorov num-
bering ϕ.

Theorem 3.8. Let ψ be a numbering of the partial-recursive functions. If
ψ has the Kolmogorov property or ψ is acceptable, then NRWψ contains an
infinite recursive subset.

Proof. First let us consider the case where ψ has the Kolmogorov property.
For each n let An denote the singleton set {n2}, and let f be a translation
function from an enumeration A0, A1, . . . into ψ with linear bound c. Then
for all but finitely many n,

f(n) ≤ cn+ c < n2

and
max(Wψ

f(n) ∪ {0}) = n2,

hence n2 ∈ NRWψ for all but finitely many n.
Now suppose that ψ is an acceptable numbering. Using the s-m-n The-

orem, define a recursive function f satisfying Wψ
f(x,c) = {x + c}. By the
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Recursion Theorem with Parameters [27], there exists a recursive function
n such that

Wψ
n(c) = Wψ

f [n(c),c] = {n(c) + c},

and therefore n(c) + c ∈ NRWψ for all c. Moreover, {n(c) + c : c ∈ N}
is an infinite r.e. set and thus must contain an infinite recursive subset of
NRWψ.

An analogous argument shows that both MINϕ and SDϕ both contain in-
finite recursive subsets in any numbering ϕ with the Kolmogorov property.
Since every acceptable numbering contains infinitely many indices for each
function, it follows immediately that MINψ and SDϕ contain infinite recur-
sive subsets in every acceptable numbering ψ.

Finally we remark that the following holds for every acceptable num-
bering ϕ: although NRWϕ is both immune and Π1-immune, NRWϕ does
contain an infinite left-r.e. subset.

Theorem 3.9. For every acceptable numbering ϕ, NRWϕ has an infinite
left-r.e. subset.

Proof. Using the Padding Lemma [27], define an increasing recursive func-
tion f so that f(0) = 0 and at least f(e)+1 ϕ-indices for the empty function
exist below f(e + 1) for all e ≥ 1. At Stage 0 we define our left-r.e. set to
have the characteristic function

0f(0)−110f(1)−110f(2)−11 . . .

We denote the current positions of the 1’s at each stage by a0, a1, a2 with
a0 < a1 < a2 < . . . so that initially an = f(n) for all n. If at some stage an
appears to be in NRWϕ, then we update our left-r.e. set with an = an − 1.
This can only happen f(n + 1) − f(n) − 1 times for any n by choice of f .
Hence f(n) < an ≤ f(n+ 1) for all stages and an ∈ NRWϕ in the limit.

4 Turing-minimal indices

In spring 1990 (according to the best recollection of the author), Case [3]
introduced a variant of the set of shortest programs within a homework
assignment:

MIN∗ϕ = {e : (∀j < e) [Wϕ
j 6=

∗ Wϕ
e ]}.

Schaefer [25] investigated this variant and showed that there exists a Kol-
mogorov numbering ϕ such that MIN∗ϕ is truth-table equivalent to K ′′.
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Teutsch [31] [32] added that a Kolmogorov numbering ψ can simultaneously
satisfy MIN∗ψ ≡tt K

′′ and

MINm
ψ = {e : (∀j < e) [Wψ

j 6≡m Wψ
e ]} ≡tt K

′′.

Definition 4.1. Define the set

MINT(n)

ϕ =
{
e : (∀j < e)

[
(Wϕ

j )(n) 6≡T (Wϕ
e )(n)

]}
where (n) denotes the nth iteration of the jump operator.

It is known that MIN∗ϕ ≡T MINm
ϕ ≡T K ′′ and MINT

ϕ ≡T K ′′′ whenever
ϕ is a Kolmogorov numbering [12], yet the truth-table degrees for these
sets under Kolmogorov numberings is not known in general. For the more
general case of acceptable numberings ϕ, even the Turing degrees of MIN∗ϕ,

MINm
ϕ , and MINT

ϕ are unknown [31]. By the familiar result of Fenner and
Schaefer [8], [25], each of these sets avoids the btt-cone above the halting
set. The following answers a question left from [31].

Theorem 4.2. There exists a Kolmogorov numbering ψ such that for all n,

MINT(n)

ψ ≡tt ∅(n+4).

It is interesting to note that Theorem 4.2 uses infinite injury in the case n = 0
whereas the equivalent result for Turing degrees, MINT ≡T K ′′′, requires
only finite injury [31]. Below are the results used to prove Theorem 4.2.
The Sack Density Theorem, the Robinson Interpolation Theorem, and the
Sacks Jump Theorem are all used. It is worth noting that Schwarz’s proof
of Proposition 4.7 also makes use of infinite injury by applying the Yates
Index Set Theorem.

Theorem 4.3 (Sacks Density Theorem [24]). Let B and C be r.e. sets with
B <T C. Then there exists a r.e. set D such that B <T D <T C.

The following theorem appears as “Corollary 4” in [22]:

Theorem 4.4 (Robinson [22]). Let B and C be r.e. sets with B ≤T C, and
let A0, A1, . . . be a sequence of r.e. sets satisfying Ai ≤T C and C 6≤T Ai 6≤T
B for all i. Then there exists a r.e. set D such that B ≤T D ≤T C and
D |T Ai for all i. Furthermore, D can be found uniformly from indices for
B, C and {Ai}.

Theorem 4.5 (Sacks Jump Theorem [23]). Let B be any set, and let S be
r.e. in B′ with B′ ≤T S. Then there exists a B-r.e. set A with A′ ≡T S.
Furthermore, an index for A can be found uniformly from an index for S.
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Definition 4.6. HIGHn = {e : W
(n)
e ≡T K

(n)}.
Theorem 4.7 (Schwarz [26]). HIGHn is Σn+4-complete.

Corollary 4.8. For any acceptable numbering ϕ, there exists a recursive
function f such that

• e ∈ HIGHn
ϕ =⇒ (∀k)

[
f(e, k) ∈ HIGHn

ϕ

]
• e /∈ HIGHn

ϕ =⇒ (∀i 6= j)
[
Wϕ
f(e,i) |T W

ϕ
f(e,j)

]
Furthermore, Wϕ

f(e,k) ≥T(n) W
ϕ
e for all k.

Proof. For simplicity of notation, we shall use We in place of Wϕ
e in this

proof. We first consider the case n = 0. Define f(e, 0) to be the index of
a set obtained from Theorem 4.3 with We being the lower bound and K
being the upper bound. An inspection of the algorithm from the proof of
Theorem 4.3 reveals that Wf(e,0) ≥T We even if We ≡T K. Thus

• We <T K =⇒ We <T Wf(e,0) <T K and

• We ≡T K =⇒ Wf(e,0) ≡T K.

We now apply Theorem 4.4 with We playing the role of B, K starring as C,
Wf(e,0) as A0, and Wf(e,1) as D. By uniformity of the construction,

• We <T K =⇒
· We <T Wf(e,1) <T K and

· Wf(e,0) |T Wf(e,1),whereas

• We ≡T K =⇒ Wf(e,1) ≡T K.

Iterating Theorem 4.4 with A1 = Wf(e,1), A2 = Wf(e,2) and so on yields the
desired result in the case n = 0.

For the case n ≥ 1, the construction can be relativized, and then the
corollary follows from n applications of Theorem 4.5.

For a proof sketch of Theorem 4.2, we refer back to [31, Corollary 3.8],

the weaker result that MINT(n)

ϕ is Turing equivalent to ∅(n+4) for some Kol-
mogorov numbering ϕ. The lower bound of Theorem 4.2 is obtained by
replacing “LOWn” in [31, Lemma 3.3(ii)] with “HIGHn,” and then using
the corresponding function f from Corollary 4.8, which deals with high sets,
in place of the so-called function “a” which deals with low ones. Combined

with Theorem 4.7, this method gives MINT(n)

ψ ≥tt ∅(n+4). The reverse bound

follows from the fact that MINT(n)

ψ ∈ Σn+4.
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