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A HIERARCHY OF TREE-AUTOMATIC STRUCTURES

OLIVIER FINKEL AND STEVO TODORČEVIĆ

Abstract. We consider ωn-automatic structures which are relational structures whose

domain and relations are accepted by automata reading ordinal words of length ωn for

some integer n ≥ 1. We show that all these structures are ω-tree-automatic structures

presentable by Muller or Rabin tree automata. We prove that the isomorphism relation

for ω2-automatic (resp. ωn-automatic for n > 2) boolean algebras (respectively, partial

orders, rings, commutative rings, non commutative rings, non commutative groups) is not

determined by the axiomatic system ZFC. We infer from the proof of the above result that

the isomorphism problem for ωn-automatic boolean algebras, n ≥ 2, (respectively, rings,

commutative rings, non commutative rings, non commutative groups) is neither a Σ1
2-set

nor a Π1
2-set. We obtain that there exist infinitely many ωn-automatic, hence also ω-tree-

automatic, atomless boolean algebras Bn, n ≥ 1, which are pairwise isomorphic under

the continuum hypothesis CH and pairwise non isomorphic under an alternate axiom AT,

strengthening a result of [14].

§1. Introduction. An automatic structure is a relational structure whose
domain and relations are recognizable by finite automata reading finite words.
Automatic structures have very nice decidability and definability properties and
have been much studied in the last few years, see [7, 8, 26, 33, 38, 39]. They form
a subclass of the class of (countable) recursive structures where “recursive” is re-
placed by “recognizable by finite automata”. Blumensath considered in [6] more
powerful kinds of automata. If we replace automata by tree automata (respec-
tively, Büchi automata reading infinite words, Muller or Rabin tree automata
reading infinite labelled trees) then we get the notion of tree-automatic (respec-
tively, ω-automatic, ω-tree-automatic) structures. Notice that an ω-automatic
or ω-tree-automatic structure may have uncountable cardinality. All these kinds
of automatic structures have the two following fundamental properties. (1) The
class of automatic (respectively, tree-automatic, ω-automatic, ω-tree-automatic)
structures is closed under first-order interpretations. (2) The first-order theory
of an automatic (respectively, tree-automatic, ω-automatic, ω-tree-automatic)
structure is decidable.
On the other hand, automata reading words of ordinal length had been firstly

considered by Büchi in his investigation of the decidability of the monadic second

Key words and phrases. Automata reading ordinal words; ωn-automatic structures; ω-tree-
automatic structures; boolean algebras; partial orders; rings; groups; isomorphism relation;
models of set theory; independence results.
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order theory of a countable ordinal, see [1, 16] and also [45, 46, 2, 4, 3] for further
references on the subject. We investigate in this paper ωn-automatic structures
which are relational structures whose domain and relations are accepted by au-
tomata reading ordinal words of length ωn for some integer n ≥ 1. All these
structures are ω-tree-automatic structures presentable by Muller or Rabin tree
automata.
A fundamental question about classes of automatic structures is the following:

“what is the complexity of the isomorphism problem for some class of automatic
structures?” The isomorphism problem for the class of automatic structures, or
even for the class of automatic graphs, is Σ1

1-complete, [26]. On the other hand,
the isomorphism problem is decidable for automatic ordinals or for automatic
boolean algebras, see [26, 39]. Some more results about other classes of auto-
matic structures may be found in [30]: in particular, the isomorphism problem
for automatic linear orders is not arithmetical. Hjorth, Khoussainov, Montalbán,
and Nies proved that the isomorphism problem for ω-automatic structures is not
a Σ1

2-set, [17]. More Recently, Kuske, Liu, and Lohrey proved in [29] that the
isomorphism problem for ω-automatic structures (respectively, partial orders,
trees of finite height) is not even analytical, i.e. is not in any class Σ1

n where
n ≥ 1 is an integer. In [14] we recently proved that the isomorphism relation
for ω-tree-automatic structures (respectively, ω-tree-automatic boolean algebras,
partial orders, rings, commutative rings, non commutative rings, non commuta-
tive groups) is not determined by the axiomatic system ZFC. This showed the
importance of different axiomatic systems of Set Theory in the area of ω-tree-
automatic structures.
We prove here that the isomorphism relation for ω2-automatic (resp. ωn-

automatic for n > 2) boolean algebras (respectively, partial orders, rings, com-
mutative rings, non commutative rings, non commutative groups) is not deter-
mined by the axiomatic system ZFC. We infer from the proof of the above result
that the isomorphism problem for ωn-automatic boolean algebras, n ≥ 2, (re-
spectively, rings, commutative rings, non commutative rings, non commutative
groups) is neither a Σ1

2-set nor a Π1
2-set. We obtain that there exist infinitely

many ωn-automatic, hence also ω-tree-automatic, atomless boolean algebras Bn,
n ≥ 1, which are pairwise isomorphic under the continuum hypothesis CH and
pairwise non isomorphic under an alternate axiom AT (for “almost trivial”).
This way we improve our result of [14], where we used the open coloring axiom
OCA instead, in two ways:

(1) by constructing infinitely many structures with independent isomorphism
problem, instead of only two such structures, and

(2) by finding such structures which are much simpler than the ω-tree-automatic
ones, because they are even ωn-automatic.

The paper is organized as follows. In Section 2 we recall definitions and first
properties of automata reading ordinal words and of tree automata. In Section
3 we define ωn-automatic structures and ω-tree-automatic structures and we
prove simple properties of ωn-automatic structures. We introduce in Section 4
some particular ωn-automatic boolean algebras Bn. We recall in Section 5 some
results of Set Theory and recall in particular the Axiom AT (‘almost trivial’) and
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some related notions. We investigate in Section 6 the isomorphism relation for
ωn-automatic structures and for ω-tree-automatic structures. Some concluding
remarks are given in Section 7.

§2. Automata.

2.1. ωn-Automata. When Σ is a finite alphabet, a non-empty finite word
over Σ is any sequence x = a0.a1 . . . ak, where ai ∈ Σ for i = 1, . . . , k , and k is
an integer ≥ 0. The length of x is k + 1. The empty word has no letter and is
denoted by ε; its length is 0. For x = a0.a1 . . . ak, we write x(i) = ai. Σ

⋆ is the
set of finite words (including the empty word) over Σ.
We assume the reader to be familiar with the elementary theory of countable

ordinals. Let Σ be a finite alphabet, and α be an ordinal; a word of length α (or
α-word) over the alphabet Σ is an α-sequence (x(β))β<α (or sequence of length
α) of letters in Σ. The set of α-words over the alphabet Σ is denoted by Σα. The
concatenation of an α-word x = (x(β))β<α and of a γ-word y = (y(β))β<γ is the
(α+γ)-word z = (z(β))β<α+γ such that z(β) = x(β) for β < α and z(β) = y(β′)
for α ≤ β = α+ β′ < α+ γ; it is denoted z = x · y or simply z = xy.
We assume that the reader is familiar with the notion of Büchi automaton

reading infinite words over a finite alphabet which can be found for instance
in [42, 40]. Informally speaking an ω-word x over Σ is accepted by a Büchi
automaton A iff there is an infinite run of A on x enterring infinitely often
in some final state of A. The ω-language L(A) ⊆ Σω accepted by the Büchi
automaton A is the set of ω-words x accepted by A. A Muller automaton is a
finite automaton equipped with a set F of accepting sets of states. An ω-word
x over Σ is accepted by a Muller automaton A iff there is an infinite run of A
on x such that the set of states appearing infinitely often during this run is an
accepting set of states, i.e. belongs to F . It is well known that an ω-language is
accepted by a Büchi automaton iff it is accepted by a Muller automaton.
We shall define ωn-automatic structures as relational structures presentable

by automata reading words of length ωn, for some integer n ≥ 1. In order to
read some words of transfinite length greater than ω, an automaton must have
a transition relation for successor steps defined as usual but also a transition
relation for limit steps. After the reading of a word whose length is a limit
ordinal, the state of the automaton will depend on the set of states which cofinally
appeared during the run of the automaton. These automata have been firstly
considered by Büchi, see [1, 16]. We recall now their definition and behaviour.

Definition 2.1 ([45, 46, 2]). An ordinal Büchi automaton is a sextuple (Σ, Q,
q0,∆, γ, F ), where Σ is a finite alphabet, Q is a finite set of states, q0 ∈ Q is the
initial state, ∆ ⊆ Q × Σ × Q is the transition relation for successor steps, and
γ ⊆ P (Q)×Q is the transition relation for limit steps.

A run of the ordinal Büchi automaton A = (Σ, Q, q0,∆, γ, F ) reading a word σ
of length α, is an (α + 1)-sequence of states x defined by: x(0) = q0 and, for
i < α, (x(i), σ(i), x(i + 1)) ∈ ∆ and, for i a limit ordinal, (Inf(x, i), x(i)) ∈ γ,
where Inf(x, i) is the set of states which cofinally appear during the reading of



4 OLIVIER FINKEL AND STEVO TODORČEVIĆ

the i first letters of σ, i.e.

Inf(x, i) = {q ∈ Q | ∀µ < i, ∃ν < i such that µ < ν and x(ν) = q}

A run x of the automaton A over the word σ of length α is called successful if
x(α) ∈ F . A word σ of length α is accepted by A if there exists a successful run
of A over σ. We denote Lα(A) the set of words of length α which are accepted
by A. An α-language L is a regular α-language if there exists an ordinal Büchi
automaton A such that L = Lα(A).

An ordinal Büchi automaton (Σ, Q, q0,∆, γ, F ) is said to be deterministic iff
∆ ⊆ Q × Σ × Q is in fact the graph of a function from Q × Σ into Q and
γ ⊆ P (Q)×Q is the graph of a function from P (Q) into Q. In that case there
is at most one run of the automaton over a given word σ.

Remark 2.2. When we consider only finite words, the language accepted by
an ordinal Büchi automaton is a rational language. If we consider only ω-words,
the ω-languages acceped by ordinal Büchi automata are the ω-languages accepted
by Muller automata and then also by Büchi automata.

Definition 2.3. An ωn-automaton is an ordinal Büchi automaton reading
only words of length ωn for some integer n ≥ 1.

We can obtain regular ωn-languages from regular ω-languages and regular
ωn−1-languages by the use of the notion of substitution. The following result
appeared in [16] and has been also proved in [13].

Proposition 2.4. Let n ≥ 2 be an integer. An ωn-language L ⊆ Σωn

is
regular iff it is obtained from a regular ω-language R ⊆ Γω by substituting in
every ω-word σ ∈ R a regular ωn−1-language La ⊆ Σω to each letter a ∈ Γ.

We now recall some fundamental properties of regular ωn-languages.

Theorem 2.5 (Büchi-Siefkes, see [1, 16, 2]). Let n ≥ 1 be an integer. One
can effectively decide whether the ωn-language L(A) accepted by a given ωn-
automaton A is empty or not.

Theorem 2.6. [see [2]] Let n ≥ 1 be an integer. The class of regular ωn-
languages is effectively closed under finite union, finite intersection, and com-
plementation, i.e. we can effectively construct, from two ωn-automata A and
B, some ωn-automata C1, C2, and C3, such that L(C1) = L(A) ∪ L(B), L(C2) =
L(A) ∩ L(B), and L(C3) is the complement of L(A).

We assume the reader to be familiar with basic notions of topology that may be
found in [32, 24, 34]. The usual Cantor topology on Σω is the product topology
obtained from the discrete topology on the finite set Σ, for which open subsets
of Σω are in the form W · Σω, where W ⊆ Σ⋆.
Let n ≥ 1 be an integer. Let B : ω → ωn be a recursive bijection. Then we

have a bijection φ from Σωn

onto Σω defined by φ(x)(n) = x(B(n)) for each
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integer n ≥ 0. Then for each ωn-language L ⊆ Σωn

we have the associated ω-
language φ(L) = {φ(x) | x ∈ L}. Consider now a regular ωn-language L ⊆ Σωn

.
It is stated in [9] that φ(L) is Borel (in the class Σ0

2n+1).

2.2. Tree automata. We introduce now languages of infinite binary trees
whose nodes are labelled in a finite alphabet Σ.
A node of an infinite binary tree is represented by a finite word over the

alphabet {l, r} where r means “right” and l means “left”. Then an infinite binary
tree whose nodes are labelled in Σ is identified with a function t : {l, r}⋆ → Σ.
The set of infinite binary trees labelled in Σ will be denoted Tω

Σ . A tree language
is a subset of Tω

Σ , for some alphabet Σ. (Notice that we shall only consider in
the sequel infinite trees so we shall often use the term tree instead of infinite
tree).
Let t be a tree. A branch B of t is a subset of the set of nodes of t which is

linearly ordered by the prefix relation ⊑ and which is closed under this prefix
relation, i.e. if x and y are nodes of t such that y ∈ B and x ⊑ y then x ∈ B.
A branch B of a tree is said to be maximal iff there is not any other branch of t
which strictly contains B.
Let t be an infinite binary tree in Tω

Σ . If B is a maximal branch of t, then
this branch is infinite. Let (ui)i≥0 be the enumeration of the nodes in B which
is strictly increasing for the prefix order. The infinite sequence of labels of the
nodes of such a maximal branch B, i.e. t(u0)t(u1) . . . t(un) . . . is called a path.
It is an ω-word over the alphabet Σ.
For a tree t ∈ Tω

Σ and u ∈ {l, r}⋆, we shall denote tu : {l, r}⋆ → Σ the subtree
defined by tu(v) = t(uv) for all v ∈ {l, r}⋆. It is in fact the subtree of t which is
rooted in u.
We are now going to define tree automata and regular languages of infinite

trees.

Definition 2.7. A (nondeterministic) tree automaton is a quadruple A =
(Q,Σ,∆, q0), where Q is a finite set of states, Σ is a finite input alphabet, q0 ∈ Q
is the initial state and ∆ ⊆ Q × Σ×Q ×Q is the transition relation. A run of
the tree automaton A on an infinite binary tree t ∈ Tω

Σ is an infinite binary tree
ρ ∈ Tω

Q such that:

(a) ρ(ε) = q0 and (b) for each u ∈ {l, r}⋆, (ρ(u), t(u), ρ(ul), ρ(ur)) ∈ ∆.

A Muller (nondeterministic) tree automaton is a 5-tuple A = (Q,Σ,∆, q0,F),
where (Q,Σ,∆, q0) is a tree automaton and F ⊆ 2Q is the collection of designated
state sets. A run ρ of the Muller tree automaton A on an infinite binary tree
t ∈ Tω

Σ is said to be accepting if for each path p of ρ, the set of states appearing
infinitely often on this path is in F . The tree language L(A) accepted by the
Muller tree automaton A is the set of infinite binary trees t ∈ Tω

Σ such that there
is (at least) one accepting run of A on t. A tree language L ⊆ Tω

Σ is regular iff
there exists a Muller automaton A such that L = L(A).

We now recall some fundamental closure properties of regular tree languages.

Theorem 2.8 (Rabin, see [36, 42, 15, 34]). The class of regular tree languages
is effectively closed under finite union, finite intersection, and complementa-
tion, i.e. we can effectively construct, from two Muller tree automata A and
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B, some Muller tree automata C1, C2, and C3, such that L(C1) = L(A) ∪ L(B),
L(C2) = L(A) ∩ L(B), and L(C3) is the complement of L(A).

§3. Automatic structures. Notice that one can consider a relation R ⊆
Σωn

1 × Σωn

2 × . . . × Σωn

k , where Σ1,Σ2, . . .Σk, are finite alphabets, as an ωn-
language over the product alphabet Σ1 × Σ2 × . . . × Σk. In a similar way, we
can consider a relation R ⊆ Tω

Σ1
× Tω

Σ2
× . . . × Tω

Σk
, as a tree language over the

product alphabet Σ1 × Σ2 × . . .× Σk.
Let now M = (M, (RM

i )1≤i≤k) be a relational structure, where M is the
domain, and for each i ∈ [1, k] RM

i is a relation of finite arity ni on the domain
M . The structure is said to be ωn-automatic (respectively, ω-tree-automatic) if
there is a presentation of the structure where the domain and the relations on the
domain are accepted by ωn-automata (respectively, by Muller tree automata),
in the following sense.

Definition 3.1 (see [6]). Let M = (M, (RM
i )1≤i≤k) be a relational structure,

where k ≥ 1 is an integer, and each relation Ri is of finite arity ni.
An ω-tree-automatic presentation of the structure M is formed by a tuple of
Muller tree automata (A,A=, (Ai)1≤i≤k), and a mapping h from L(A) onto M ,
such that:

1. The automaton A= accepts an equivalence relation E≡ on L(A), and
2. For each i ∈ [1, k], the automaton Ai accepts an ni-ary relation R′

i on L(A)
such that E≡ is compatible with R′

i, and
3. The mapping h is an isomorphism from the quotient structure

(L(A), (R′
i)1≤i≤k)/E≡ onto M.

The ω-tree-automatic presentation is said to be injective if the equivalence re-
lation E≡ is just the equality relation on L(A). In this case A= and E≡ can
be omitted and h is simply an isomorphism from (L(A), (R′

i)1≤i≤k) onto M.
A relational structure is said to be (injectively) ω-tree-automatic if it has an
(injective) ω-tree-automatic presentation.

Notice that sometimes an ω-tree-automatic presentation is only given by a
tuple of Muller tree automata (A,A=, (Ai)1≤i≤k), i.e. without the mapping h.
In that case we still get the ω-tree-automatic structure (L(A), (R′

i)1≤i≤k)/E≡

which is in fact equal to M up to isomorphism.
We get the definition of ωn-automatic (injective) presentation of a structure

and of ωn-automatic structure by simply replacing Muller tree automata by ωn-
automata in the above definition.
Notice that, due to the good decidability properties of Muller tree automata

and of ωn-automata, we can decide whether a given automaton A= accepts an
equivalence relation E≡ on L(A) and whether, for each i ∈ [1, k], the automaton
Ai accepts an ni-ary relation R′

i on L(A) such that E≡ is compatible with R′
i.

We denote ωn-AUT the class of ωn-automatic structures and ω-tree-AUT the
class of ω-tree-automatic structures.

We state now two important properties of automatic structures.
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Theorem 3.2 (see [6]). The class of ω-tree-automatic (respectively, ωn-automa
-tic) structures is closed under first-order interpretations. In other words if M
is an ω-tree-automatic (respectively, ωn-automatic) structure and M′ is a rela-
tional structure which is first-order interpretable in the structure M, then the
structure M′ is also ω-tree-automatic (respectively, ωn-automatic).

Theorem 3.3 (see [18, 6]). The first-order theory of an ω-tree-automatic (re-
spectively, ωn-automatic) structure is decidable.

Notice that ω-tree-automatic (respectively, ωn-automatic) structures are al-
ways relational structures. However we can also consider structures equipped
with functional operations like groups, by replacing as usually a p-ary function
by its graph which is a (p+ 1)-ary relation. This will always be the case in the
sequel where all structures are viewed as relational structures.
Some examples of ω-automatic structures can be found in [38, 33, 26, 27, 8,

31, 17, 29].
A first one is the boolean algebra P(ω) of subsets of ω.
The additive group (R,+) is ω-automatic, as is the product (R,+)× (R,+).
Assume that a finite alphabet Σ is linearly ordered. Then the set (Σωn

,≤lex)
of ωn-words over the alphabet Σ, equipped with the lexicographic ordering, is
ωn-automatic.
Is is easy to see that every (injectively) ω-automatic structure is also (injec-

tively) ω-tree-automatic. Indeed a Muller tree automaton can easily simulate a
Büchi automaton on the leftmost branch of an infinite tree.
The inclusions ωn-AUT ⊆ ωn+1-AUT, n ≥ 1, are straightforward to prove.

Proposition 3.4. For each integer n ≥ 1, ωn-AUT ⊆ ω-tree-AUT.

Proof. We are first going to associate a tree tx to each ωn-word x in such a
way that if L ⊆ Σωn

is a regular ωn-language then the tree language {tx ∈ Tω
Σ |

x ∈ L} will be also regular. We make this by induction on the integer n. Let
then Σ be a finite alphabet and a ∈ Σ be a distinguished letter in Σ. We begin
with the case n = 1. If x ∈ Σω is an ω-word over the alphabet Σ then tx is the
tree in Tω

Σ such that tx(lk) = x(k) for every integer k ≥ 0 and tx(u) = a for every
word u ∈ {l, r}⋆ such that u /∈ {lk | k ≥ 0}. It is clear that if L ⊆ Σω is a regular
ω-language then the tree language {tx ∈ Tω

Σ | x ∈ L} is a regular set of trees.
Assume now that we have associated, for a given integer n ≥ 1, a tree tx to each
ωn-word x ∈ Σωn

in such a way that if L ⊆ Σωn

is a regular ωn-language then
the tree language {tx ∈ Tω

Σ | x ∈ L} is also regular. Consider now an ωn+1-word
x over Σ. It can be divided into ω subwords xj , 0 ≤ j < ω, of length ωn. By
induction hypothesis to each ωn-word xj is associated a tree txj ∈ Tω

Σ . Recall
that we denote by tu the subtree of t which is rooted in u. We can now associate
to the ωn+1-word x the tree tx which is defined by: tx

lk·r
= txk for every integer

k ≥ 0, and tx(lk) = a for every integer k ≥ 0. Let then now L ⊆ Σωn+1

be
a regular ωn+1-language. By Proposition 2.4 the language L is obtained from
a regular ω-language R ⊆ Γω by substituting in every ω-word σ ∈ R a regular
ωn-language Lb ⊆ Σω to each letter b ∈ Γ. By induction hypothesis for each
letter b ∈ Γ there is a tree automaton Ab such that L(Ab) = {tx ∈ Tω

Σ | x ∈ Lb}.
This implies easily that one can construct, from a Büchi automaton accepting
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the regular ω-language R and from the tree automata Ab, b ∈ Γ, another tree
automaton A such that L(A) = {tx ∈ Tω

Σ | x ∈ L}.
The inclusion ωn-AUT ⊆ ω-tree-AUT holds because any element of the do-

main of an ωn-automatic structure, represented by an ωn-word x, can also be
represented by a tree tx. The relations of the structure are then also presentable
by tree automata. ⊣

Notice that the strictness of the inclusion
⋃

n≥1 ω
n-AUT ( ω-tree-AUT fol-

lows easily from the existence of an ω-tree-automatic structrure without Borel
presentation, proved in [17], and the fact that every ωn-automatic structrure has
a Borel presentation (see the end of Section 2.1).
On the other hand we can easily see that the inclusion ω-AUT ( ω2-AUT

is strict by considering ordinals. Firstly, Kuske recently proved in [28] that the
ω-automatic ordinals are the ordinals smaller than ωω. Secondly, it is easy to
see that the ordinal ωω is ω2-automatic. The ordinal ωω is the order-type of
finite sequences of integers ordered by (1) increasing length of sequences and (2)
lexicographical order for sequences of integers of the same length n. A finite
sequence of integers x = (n1, n2, . . . , np) can be represented by the following
ω2-word αx over the alphabet {a, b}:

αx = (an1+1 · bω) · (an2+1 · bω) · · · (anp+1 · bω) · (bω) · (bω) · · ·

it is then easy to see that there is an ω2-automaton accepting exactly the ω2-
words of the form αx for a finite sequence of integers x. Moreover there is an
ω2-automaton recognizing the pairs (αx, αx′) such that x < x′.

§4. Some ωn-automatic boolean algebras. We have seen that the boolean
algebra P(ω) of subsets of ω is ω-automatic. Another known example of ω-
automatic boolean algebra is the boolean algebra P(ω)/Fin of subsets of ω mod-
ulo finite sets. The set Fin of finite subsets of ω is an ideal of P(ω), i.e. a subset
of the powerset of ω such that:

1. ∅ ∈ Fin and ω /∈ Fin.
2. For all B,B′ ∈ Fin, it holds that B ∪B′ ∈ Fin.
3. For all B,B′ ∈ P(ω), if B ⊆ B′ and B′ ∈ Fin then B ∈ Fin.

For any two subsets A and B of ω we denote A∆B their symmetric difference.
Then the relation ≈ defined by: “A ≈ B iff the symmetric difference A∆B
is finite” is an equivalence relation on P(ω). The quotient P(ω)/ ≈ denoted
P(ω)/Fin is a boolean algebra. It is easy to see that this boolean algebra is
ω-automatic, see for example [31, 17, 14].
More generally we now consider the boolean algebras P(ωn)/Iωn for integers

n ≥ 1. We first give the definition of the sets Iωn ⊆ P(ωn). For P ⊆ ωn we
denote o.t.(P ) the order type of (P,<) as a suborder of the order (ωn, <). The
set Iωn is defined by:

Iωn = {P ⊆ ωn | o.t.(P ) < ωn}.

For each integer n ≥ 1 the set Iωn is an ideal of P(ωn).
For any two subsets A and B of ωn we denote A∆B their symmetric difference.

Then the relation ≈n defined by: “A ≈n B iff the symmetric difference A∆B
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is in Iωn” is an equivalence relation on P(ωn). The quotient P(ωn)/ ≈n, also
denoted P(ωn)/Iωn , is a boolean algebra.
We are going to show that this boolean algebra P(ωn)/Iωn is ωn-automatic.
We first notice that each set P ⊆ ωn can be represented by an ωn-word xP

over the alphabet {0, 1} by setting xP (α) = 1 if and only if α ∈ P for every
ordinal α < ωn. Let then

Ln = {xP ∈ {0, 1}ω
n

| P ∈ Iωn}.

Theorem 4.1. Let n ≥ 1 be an integer. Then the set Ln ⊆ {0, 1}ω
n

is a
regular ωn-language.

Proof. We reason by induction on the integer n. Firstly it is easy to see that
L1 is the set of ω-words over the alphabet {0, 1} having only finitely many letters
1. It is a well known example of a regular ω-language, see [34, 42]. Notice that
its complement L−

1 = {0, 1}ω \ L1 is then also regular since the class of regular
ω-languages is closed under complementation.
We now assume that we have proved that for each integer k ≤ n the set

Lk ⊆ {0, 1}ω
k

is a regular ωk-language. In particular the language Ln is a
regular ωn-language. Moreover its complement L−

n = {0, 1}ω
n

\ Ln is then also
regular since the class of regular ωn-languages is closed under complementation.
Consider now a set P ⊆ ωn+1. It is easy to see that P belongs to Iωn+1 if and

only if there are only finitely many integers k ≥ 0 such that P ∩ [ωn.k;ωn.(k+1)[
has order type ωn.
Thus the ωn+1-language Ln+1 is obtained from the regular ω-language L1 =

{0, 1}⋆ · 0ω by substituting the ωn-language L−
n to the letter 1 and the ωn-

language Ln to the letter 0. We can conclude, using Proposition 2.4, that the
ωn+1-language Ln+1 is regular. ⊣

We can now state the following result.

Theorem 4.2. For every integer n ≥ 1 the boolean algebra P(ωn)/Iωn is ωn-
automatic.

Proof. Let n ≥ 1 be an integer. We denote [A]Iωn , or simply [A] when there
is no confusion from the context, the equivalence class of a set A ⊆ ωn for the
equivalence relation ≈n. Let Σ = {0, 1} and L(A) = Σωn

and for any x ∈ Σωn

,
h(x) = [{α < ωn | x(α) = 1}]. Then it follows easily from the preceding Theorem
4.1 that {(u, v) ∈ (Σωn

)2 | h(u) = h(v)} is accepted by an ωn-automaton.
The operations ∩,∪,¬, of intersection, union, and complementation, on P(ωn)/Iωn

are defined by: [B]∩ [B′] = [B ∩B′], [B]∪ [B′] = [B ∪B′], and ¬[B] = [¬B], see
[20].
Thus the operations of intersection, union, (respectively, complementation),

considered as ternary relations (respectively, binary relation) are also given by
regular ωn-languages. On the other hand, 0 = [∅] is the equivalence class of the
empty set and 1 = [ωn] is the class of ωn.
This proves that the structure (P(ωn)/Iωn ,∩,∪,¬,0,1) is ωn-automatic. ⊣
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Notice that, as in the above proof, we can see that the relation {(u, v) ∈
(Σωn

)2 | h(u) ⊆n h(v)} is a regular ωn-language because the “almost inclusion”
relation ⊆n is defined by: h(u) ⊆n h(v) iff {α < ωn | u(α) > v(α)} ∈ Iωn . Thus
we can also state the following result.

Theorem 4.3. For each integer n ≥ 1 the structure (P(ωn)/Iωn ,⊆n) is ωn-
automatic.

From now on we shall denote Bn = (P(ωn)/Iωn ,∩,∪,¬,0,1). The boolean
algebra Bn is ωn-automatic hence also ω-tree-automatic.

Recall now the definition of an atomless boolean algebra.

Definition 4.4. Let B = (B,∩,∪,¬,0,1) be a boolean algebra and ⊆ be the
inclusion relation on B defined by x ⊆ y iff x∩ y = x for all x, y ∈ B. Then the
boolean algebra B is said to be an atomless boolean algebra iff for every x ∈ B
such that x 6= 0 there exists an element z ∈ B such that 0 ⊂ z ⊂ x.

We can now recall the following known result.

Proposition 4.5. For each integer n ≥ 1 the boolean algebra Bn is an atom-
less boolean algebra.

Proof. Let n ≥ 1 be an integer. Consider the boolean algebra Bn = (P(ωn)/Iωn ,
∩,∪,¬,0,1). Let A ⊆ ωn be such that the equivalence class [A] is different from
the element 0 in Bn. Then the set A has order type ωn and it can be splitted in
two sets A1 and A2 such that A = A1 ∪A2 and both A1 and A2 have still order
type ωn. The element [A1] is different from the element 0 in Bn because A1 has
order type ωn, and [A1] ⊂ [A] because A − A1 = A2 has order type ωn. Thus
the following strict inclusions hold in Bn: 0 ⊂ [A1] ⊂ [A]. This proves that the
boolean algebra Bn is atomless. ⊣

The following result is also well known but we give a proof for completeness.

Proposition 4.6. For each integer n ≥ 1 the boolean algebra Bn has the
cardinality 2ℵ0 of the continuum.

Proof. By recursion on n ≥ 1 we define a partition of ωn into a sequence Fn
k

(k < ω) of nonempty finite sets such that for every infinite X ⊆ ω, the union
Φn(X) =

⋃
k∈X Fn

k does not belong to the ideal Iωn . For n = 1, let F 1
k = {k}.

For n > 1, set Fn
k =

⋃
ℓ<k F

n−1
k (ℓ), where for each ℓ < ω we have fixed a

decomposition Fn−1
k (ℓ) (k < ω) of the interval [ℓωn−1, (ℓ + 1)ωn−1) of ordinals

into a sequence of finite nonempty pairwise disjoint sets with the property that⋃
k∈X Fn−1

k (ℓ) has order type ωn−1 for every infinite X ⊆ ω.
Clearly Φn : P(ω) → P(ωn) is a complete Boolean algebra embedding which

induces also an embedding of P(ω)/Fin into P(ωn)/Iωn . Since P(ω)/Fin has
cardinality continuum the conclusion follows. ⊣

In the sequel we shall often identify the powerset P(A) of a countable set
A with the Cantor space 2ω = {0, 1}ω. Then P(A) can be equipped with the
standard metric topology obained from this identification, and the topological
notions like open, closed, Σ0

2, Borel, analytic, can be applied to families of subsets
of A.
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Remark 4.7. In fact a similar result holds for an arbitrary Σ1
1-ideal of subsets

of ω. More precisely, by a well-known result of Talagrand ( [41] ; Théorème
21), for every proper Σ1

1-ideal I of subsets of ω there is a partition of ω into a
sequence Fn (n < ω) of nonempty finite sets such that for every infinite X ⊆ ω,
the union

⋃
n∈X Fn does not belong to the ideal I. Therefore, as above, there is

an embedding of P(ω)/Fin into P(ωn)/I.

Remark 4.8. Recall that two subsetsX and Y are said to be almost disjoint if
their intersection is finite. Recall that while a countable index set does not admit
an uncountable family of pairwise disjoint subsets it does admit an uncountable
family of subsets that are pairwise almost disjoint. So fix an uncountable family
F of pairwise almost disjoint infinite subsets of ω. For n ≥ 1 fix a sequence Fn

k

(k < ω) of nonempty finite subsets of ωn such that for every infinite X ⊂ ω,
the union Φn(X) =

⋃
k∈X Fn

k does not belong to the ideal Iωn (see the proof
of Proposition 4.6). For X ∈ F let AX =

⋃
k∈X Fn

k . Then AX (X ∈ F) is an
uncountable family of infinite subsets of ωn which is also almost disjoint (i.e.,
AX∩AY ∈ Fin forX 6= Y in F) but it has the additional property that AX 6∈ Iωn

for all X ∈ F .

§5. Axioms of set theory. We now recall some basic notions of set theory
which will be useful in the sequel, and which are exposed in any textbook on set
theory, like [20].
The usual axiomatic system ZFC is Zermelo-Fraenkel system ZF plus the

axiom of choice AC. A model (V, ∈) of the axiomatic system ZFC is a collection
V of sets, equipped with the membership relation ∈, where “x ∈ y” means that
the set x is an element of the set y, which satisfies the axioms of ZFC. We shall
often say “ the model V” instead of “the model (V, ∈)”.
The axioms of ZFC express some natural facts that we consider to hold in the

universe of sets.
The infinite cardinals are usually denoted by ℵ0,ℵ1,ℵ2, . . . ,ℵα, . . .
We recall that Cantor’s Continuum Hypothesis CH states that the cardinality

of the continuum 2ℵ0 is equal to the first uncountable cardinal ℵ1. Gödel and
Cohen have proved that the continuum hypothesis CH is independent from the
axiomatic system ZFC. This means that, assuming ZFC is consistent, there are
some models of ZFC + CH and also some models of ZFC + ¬ CH, where ¬ CH
denotes the negation of the continuum hypothesis, [20].
If V is a model of ZF and L is the class of constructible sets of V, then the

class L forms a model of ZFC + CH.
Recall also that OCA denotes the Open Coloring Axiom (or Todorcevic’s axiom

as it is called in the more recent literature; see, for example, [10]), a natural
alternative to CH that has been first considered by the second author in [43].
It is known that if the theory ZFC is consistent, then so are the theories (ZFC
+ CH) and (ZFC + OCA), see [20, pages 176 and 577]. In particular, if V is a
model of (ZFC +OCA) and if L is the class of constructible sets of V, then the
class L forms a model of (ZFC + CH).
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The axiom OCA was used in our previous paper [14] on tree-automatic struc-
tures but here we shall use another related axiom first considered by Just [21].
To introduce this axiom we need some definitions.
Let A and B be two infinite countable sets, a function H : P(A) → P(B) and

an ideal I of P(B) containing all finite subsets of B but not the whole set B.
Then the function H is said to preserve intersections modulo I whenever

(i) H(X) △ H(Y ) ∈ I for every X,Y ⊆ A such that X △ Y ∈ Fin, and
(ii) H(X ∩ Y ) △ (H(X) ∩H(Y )) ∈ I for every X,Y ⊆ A

Recall that one can identify the powerset P(B), where B is a countable set,
with the set 2B equipped with the Cantor topology which is the product topology
of the discrete topology on B. Thus one can also use notions like open, closed,
Borel, analytic, for ideals of P(B), where n ≥ 1 is an integer.

Then Just’s axiom AT (where the shorthand stands for ‘Almost Trivial’) states
that for every Σ1

1
-ideal I of subsets of ω, for every H : P(ω) → P(ω) which

preserves intersections modulo I, and for every uncountable family A of pairwise
almost disjoint infinite subsets of ω there exist A ∈ A and a finite decomposition
A =

⋃
i<n Ai such that for every i < n there is a continuous function1 Fi :

P(Ai) → P(ω) such that Fi(X) △ H(X) ∈ I for every X ⊆ Ai.

The axiom AT implies also the following form which will be used in the sequel:
For every Σ1

1
-ideal I of subsets of ωn, for every H : P(ωm) → P(ωn) which pre-

serves intersections modulo I, and for every uncountable family A of pairwise
almost disjoint infinite subsets of ωm there exist A ∈ A and a finite decompo-
sition A =

⋃
i<k Ai such that for every i < k there is a continuous function

Fi : P(Ai) → P(ωn) such that Fi(X) △ H(X) ∈ I for every X ⊆ Ai.

In [21], Just showed that every model V of ZFC admits a forcing extension
satisfying ZFC + AT. In another paper ([22]) he showed that OCA implies many
instances of AT. In particular, it is shown in [22] that OCA implies AT restricted
to the class of all Σ0

2-ideals of subsets of ω. This was later extended by Farah
[12] to a larger class of Σ1

1-ideals of subsets of ω, however it is still not known
if OCA implies the full AT. The motivation behind the axiom AT came from
the theory of quotient Boolean algebras of the form P(ω)/I where I is a proper
(i.e., ω 6∈ I) ideal on ω which we always assume to include the ideal Fin of all
finite subsets of ω. Let πI : P(ω) → P(ω)/I denotes the natural quotient map,
i.e. πI(X) = πI(Y ) whenever X △ Y ∈ I. A homomorphism

Φ : P(ω)/I → P(ω)/J

between two such quotient Boolean algebras is usually given by its lifting H :
P(ω) → P(ω) i.e., a map for which the following diagram

1Continuity here is interpreted when we make the standard identification of P(Ai) and P(ω)
with the Cantor cubes 2Ai and 2ω , respectively.



A HIERARCHY OF TREE-AUTOMATIC STRUCTURES 13

P(ω)
H
−→ P(ω)

↓ πI ↓ πJ

P(ω)/ I
Φ

−→ P(ω)/J

commutes. Note that any such lifting H preserves intersections modulo the range
ideal J. Note also that in generalH : P(ω) → P(ω) does not need to be a Boolean
algebra homomorphism. It is therefore quite natural to ask for conditions on the
given ideals I and J on ω and the homomorphism Φ : P(ω)/I → P(ω)/J that
would guarantee the existence of liftings H : P(ω) → P(ω) that preserve the
Boolean algebra operations of the algebra P(ω), even the infinitary ones. Such
liftings H : P(ω) → P(ω) are called completely additive liftings. Note that such
completely additive liftings are always given by maps h : ω → ω in such a way
that

H({n}) = h−1(n) for all n < ω.

It follows that H(X) = h−1(X) for all X ⊆ ω and so from this we can conclude
that every completely additive lifting H : P(ω) → P(ω) is a continuous map
when we make the natural identification of P(ω) with the Cantor set 2ω. Thus
AT asserts the seemingly weak form of this, the local continuity of liftings be-
tween quotient algebras over Σ1

1
-ideals I of subsets of ω. While local continuity

of liftings is a matter of additional axioms of set theory, the second author (see,
for example, [44], Problem 1) has posed a problem about the natural mathemat-
ical counterpart of this asking under which conditions continuous liftings can
be turned into completely additive ones. In subsequent work of Farah [11] and
Kanovei-Reeken [23] this conjecture has been verified for a very wide class of
ideals I of subsets of ω. We shall use the following particular result from this
work, which is a reformulation of [23, Theorem 2], using the fact that a contin-
uous homomorphism H : P(ω) → P(ωξ) is actually completely additive. Notice
that below the boolean algebras P(ωξ)/Iωξ are a direct generalization of the
boolean algebras P(ωn)/Iωn and that we shall in fact only use in the sequel the
case where the ordinal ξ ≥ 1 is an integer.

Theorem 5.1. (see [23, Theorem 2]) For every countable ordinal ξ ≥ 1, if a
homomorphism

Φ : P(ω) → P(ωξ)/Iωξ

has a continuous lifting H : P(ω) → P(ωξ) then it also has a completely additive
lifting, or in other words, there is a map h : ωξ → ω such that

Φ(X) = [h−1(X)]I
ωξ

for all X ⊆ ω.

§6. The isomorphism relation. We had proved in [14] that there exist two
ω-tree automatic boolean algebras B and B′ such that: (1) (ZFC + CH) B and
B′ are isomorphic. (2) (ZFC + OCA) B and B′ are not isomorphic. We are
going to prove a similar result for the class of ωn-automatic structures, for any
integer n ≥ 2 using AT in place of OCA.
We first recall the following folklore result (see, for example, [11]).
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Theorem 6.1. (ZFC + CH) The boolean algebras Bn, n ≥ 1, are pairwise
isomorphic.

Notice that this result is an immediate consequence of the simple fact that
each of the Boolean algebras Bn, n ≥ 1, is ℵ1-saturated. Therefore assuming
CH, as the boolean algebras Bn, n ≥ 1, are all of cardinality ℵ1, a well-known
Cantor’s back and forth argument will give us the isomorphisms. (The reader
may find these notions in a textbook on Model Theory, like [35]).

Note that if 1 ≤ m ≤ n the equality ωpωm = ωn for p = n−m transfers easily
to the existence of a map f : ωn → ωm with the property that for every subset
X ⊆ ωm, X ∈ Iωm if and only if f−1(X) ∈ Iωn . It follows that the corresponding
map X 7→ f−1(X) is a lifting of an isomorphic embedding Φ : P(ωm)/Iωm →
P(ωn)/Iωn and therefore we have the following fact.

Proposition 6.2. (ZFC) The algebra Bm is isomorphic to a subalgebra of Bn

whenever m and n are positive integers such that m ≤ n.

We shall see that such an isomorphic embedding is not always possible if we
have the inequality m > n. We shall use the following consequence of a well-
known result of Rotman [37] which one can prove by an easy induction on n ≥ 1.

Lemma 6.3. Suppose that n is an integer ≥ 1 and that β is some ordinal.
Then for every mapping f : ωn → β there is Y ⊆ ωn of order type ωn such that
the image f(Y ) is a subset of β of order type at most ωn.

Proof. Consider firstly a mapping f : ω → β where β is some ordinal. If
the order-type of f(ω) is strictly greater than ω then there is a subset Z of f(ω)
which has order-type ω. But then Y = f−1(Z) is a subset of ω which has also
order-type ω and f(Y ) = Z has order-type ω. Assume now that the result is
proved for every integer 1 ≤ p < n and let f : ωn → β be a mapping where β
is some ordinal. The ordinal ωn can be decomposed into ω successive intervals
(Ik)k≥1 of length ωn−1. We can now consider the restriction fk of f to the
interval Ik. By induction hypothesis, for each integer k ≥ 1 there is a subset Yk

of Ik which has order-type ωn−1 and such that fk(Yk) has order type at most
ωn−1. The set Y =

⋃
1≤k Yk ⊆ ωn has order type ωn and its image f(Y ) is a

subset of β of order type at most ωn.
⊣

We are now ready to state the following result.

Theorem 6.4. (ZFC + AT) The ωn-automatic boolean algebras Bn, n ≥ 1,
are pairwise non isomorphic and in fact Bm is not isomorphic to a subalgebra of
Bn whenever m > n ≥ 1.

Proof. Suppose that for some m > n ≥ 1 there is an isomorphic embedding

Φ : P(ωm)/Iωm → P(ωn)/Iωn .
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Choose a lifting H : P(ωm) → P(ωn) for the isomorphic embedding, i.e., a
map for which the following diagram commutes

P(ωm)
H
−→ P(ωn)

↓ πIωm ↓ πIωn

P(ωm)/ Iωm
Φ

−→ P(ωn)/Iωn

It follows that for every X,Y ⊆ ωm,

(1) X △ Y ∈ Iωm if and only if H(X) △ H(Y ) ∈ Iωn ,
(2) H(X) ∈ Φ([X ]Iωm ).

So, in particular, H preserves intersections modulo Iωn . Using the argument
appearing in Remark 4.8 above, there is an uncountable family A of pairwise
almost disjoint (i.e., A∩B ∈ Fin for all A 6= B fromA) infinite subsets of ωm such
that A 6∈ Iωm for all A ∈ A. By AT there is A ∈ A and a finite decomposition
A =

⋃
i<k Ai and for every i < k a continuous function2 Fi : P(Ai) → P(ωn)

forming a lifting of Φ when restricted to P(Ai)/Iωm , or in other words a function
for which the restricted diagram

P(Ai)
Fi−→ P(ωn)

↓ πIωm ↓ πIωn

P(Ai)/ Iωm
Φ

−→ P(ωn)/Iωn

commutes. In particular, for X ⊆ Ai, we have that Fi(X) ∈ Iωn if and only if
X ∈ Iωm . Since A 6∈ Iωm and the decomposition A =

⋃
i<k Ai is finite there is

some i < k such that Ai 6∈ Iωm . Fix i < k such that Ai 6∈ Iωm . Let B = H(Ai).
By Theorem 5.1, there is a function fi : B → Ai which induces the completely
additive lifting X 7→ f−1

i (X) of the restriction of Φ to P(Ai)/ Iωm . Since Fi is
also a lifting of this isomorphic embedding, we have that

Fi(X) △ f−1
i (X) ∈ Iωn for every X ⊆ Ai.

It follows in particular that for X ⊆ Ai,

X ∈ Iωm if and only if f−1
i (X) ∈ Iωn .

By Lemma 6.3, we can find a set Y ⊆ B of order type ωn whose imageX = fi(Y )
is a subset of Ai of order type at most ωn < ωm. But then, we have a subset X of
Ai of order type < ωm whose preimage f−1

i (X) has order type ωn as it contains

the set Y, i.e. X ∈ Iωm and f−1
i (X) /∈ Iωn , a contradiction. This completes the

proof. ⊣

We can now state the following consequence of the above theorems.

Corollary 6.5. The isomorphism relation for ω2-automatic (respectively,
ωn-automatic for n > 2) boolean algebras (respectively, partial orders) is not
determined by the axiomatic system ZFC.

2Recall the identifications P(Ai) = 2Ai and P(ωn) = 2ω
n
which are giving us the topologies

to which the continuity refers to.
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Proof. The result for ωn-automatic boolean algebras, n ≥ 2, follows directly
from Theorems 6.1 and 6.4 and the fact that the boolean algebras B1 and B2 are
ω2-automatic, hence also ωn-automatic for n > 2. For partial orders, we consider
the ω2-automatic structures (P(ω)/Fin,⊆1) and (P(ω2)/Iω2 ,⊆2). These two
structures are isomorphic if and only if the two boolean algebras B1 and B2 are
isomorphic, see [20, page 79]. Then the result for partial orders follows from the
case of boolean algebras. ⊣

Reasoning as in [14] for ω-tree-automatic structures, we can now get similar
results for other classes of ωn-automatic structures.

First a boolean algebra (B,∩,∪,¬,0,1) can be seen as a commutative ring
with unit element (B,∆,∩,1), where ∆ is the symmetric difference operation.
The operations of union and complementation can be defined from the sym-
metric difference and intersection operations. Moreover two boolean algebras
(B,∩,∪,¬,0,1) and (B′,∩,∪,¬,0,1) are isomorphic if and only if the rings
(B,∆,∩,1) and (B′,∆,∩,1) are isomorphic. For each integer n ≥ 1, we denote
Rn = (P(ωn)/Iωn ,∆,∩,1) the commutative ring associated with the boolean
algebra Bn.

Theorem 6.6.

1. (ZFC + CH) The ωn-automatic commutative rings Rn, n ≥ 1, are pairwise
isomorphic.

2. (ZFC + AT) The ωn-automatic commutative rings Rn, n ≥ 1, are pairwise
non isomorphic.

Recall that Mk(R) is the set of square matrices with k columns and k rows
and coefficients in a given ring R. If k ≥ 2 then the set Mk(R), equipped with
addition and multiplication of matrices, is a non commutative ring. The ring
Mk(R) is first-order interpretable in the ring R; each matrixM being represented
by a unique k2-tuple of elements of R, the addition and multiplication of matrices
are first order definable in R.
On the other hand, for each integer n ≥ 1, the class of ωn-automatic structures

is closed under first order interpretations. Thus if R is an ωn-automatic ring
then the ring of matrices Mk(R) is also ωn-automatic. It is well known that two
rings R and R′ are isomorphic if and only if the rings Mk(R) and Mk(R

′) are
isomorphic, (this is proved for instance in [14]). We now denote, for each integer
n ≥ 1, Mn = Mk(Rn), where k ≥ 2 is a fixed integer. So we can state the
following result.

Theorem 6.7.

1. (ZFC + CH) The ωn-automatic non commutative rings Mn, n ≥ 1, are
pairwise isomorphic.

2. (ZFC + AT) The ωn-automatic non commutative rings Mn, n ≥ 1, are
pairwise non isomorphic.

Consider now the unitriangular group UTk(R) for some integer k ≥ 3 and R a
unitary ring. A matrix M ∈ Mk(R) is in the group UTk(R) if and only if it is an
upper triangular matrix which has only coefficients 1 on the diagonal, where 1 is
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the multiplicative unit of R. The group UTk(R) is also first order interpretable
in the ring R. (It is actually a classical example of nilpotent group of class k−1,
for more details, see [5, 14]).
We denote Un,k = UTk(Rn) for each n ≥ 1. The groups Un,k are first order

interpretable in the ring Rn. Thus the groups Un,k are ωn-automatic. We can
now state the following result.

Theorem 6.8. Let k ≥ 3 be an integer.

1. (ZFC + CH) The ωn-automatic groups Un,k, n ≥ 1, are pairwise isomor-
phic.

2. (ZFC + AT) The ωn-automatic groups Un,k, n ≥ 1, are pairwise non
isomorphic.

Proof. The result follows from Theorem 6.6, from the fact that if R and S are
two isomorphic commutative rings then UTk(R) and UTk(S) are also isomorphic,
and from a result of Belegradek who proved in [5] that if UTk(R) and UTk(S)
are isomorphic, for some integer k ≥ 3 and some commutative rings R and S,
then the rings R and S are also isomorphic. ⊣

Then we can now state the following result.

Corollary 6.9. The isomorphism relation for ω2-automatic (respectively,
ωn-automatic for n > 2) commutative rings (respectively, non-commutative rings,
groups, nilpotent groups of class p ≥ 2) is not determined by the axiomatic system
ZFC.

An ωn-automatic presentation of a structure is given by a tuple of ωn-automata
(A,A=, (Ai)1≤i≤k). The tuple of ω

n-automata can be coded by a finite sequence
of symbols, hence by a unique integer N . If N is the code of the tuple of ωn-
automata (A,A=, (Ai)1≤i≤k) we shall denote SN the ωn-automatic structure
(L(A), (Ri)1≤i≤k))/E≡.

The isomorphism problem for ωn-automatic structures is:

{(p,m) ∈ ω2 | Sp is isomorphic to Sm}.

We can now infer from above independence results the following one.

Theorem 6.10. The isomorphism problem for ω2-automatic (respectively, ωn-
automatic for n > 2) boolean algebras (respectively, rings, commutative rings,
non commutative rings, non commutative groups, nilpotent groups of class p ≥ 2)
is neither a Σ1

2-set nor a Π1
2-set.

Proof. We prove first the result for ωn-automatic boolean algebras. By
Theorem 6.4 we know that if ZFC is consistent then there is a model V of (ZFC
+ AT) in which the two ω2-automatic boolean algebras B1 and B2 are not
isomorphic. But the inner model L of constructible sets in V is a model of (ZFC
+ CH) so in this model the two boolean algebras B1 and B2 are isomorphic by
Theorem 6.1.
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On the other hand, Schoenfield’s Absoluteness Theorem implies that every Σ1
2-

set (respectively, Π1
2-set) is absolute for all inner models of ZFC, see [20, page

490].
In particular, if the isomorphism problem for ωn-automatic boolean algebras,

n ≥ 2, was a Σ1
2-set (respectively, a Π

1
2-set), then it could not be a different subset

of ω2 in the models V and L considered above. Thus the isomorphism problem
for ω2-automatic (respectively, ωn-automatic for n > 2) boolean algebras is
neither a Σ1

2-set nor a Π1
2-set.

The other cases of rings, commutative rings, non commutative rings, non
commutative groups, nilpotent groups of class p ≥ 2, follow in the same way
from Theorems 6.6, 6.7, and 6.8. ⊣

Remark 6.11. We had proved in [14] that there exist two ω-tree-automatic
atomless boolean algebras which are isomorphic under OCA but not under CH.
But all the ωn-automatic atomless boolean algebras Bn, n ≥ 1, we have consid-
ered in this paper are also ω-tree-automatic. Thus we have also in some sense
improved our previous result by showing the following one.

Theorem 6.12. There exist infinitely many ω-tree-automatic atomless boolean
algebras Bn, n ≥ 1, which are pairwise isomorphic under CH and pairwise non
isomorphic under AT.

Notice that we have also a similar result for partial orders, rings, commutative
rings, non commutative rings, non commutative groups, nilpotent groups of class
p ≥ 2.

§7. Concluding remarks. Khoussainov, Nies, Rubin, and Stephan proved
in [26] that the automatic infinite boolean algebras are the finite productsBn

fin−cof

of the boolean algebra Bfin−cof of finite or cofinite subsets of the set of positive
integers ω. An open problem is to characterize completely the ωn-automatic
(respectively, ω-tree-automatic) boolean algebras. A similar problem naturally
arises for other classes of ωn-automatic (respectively, ω-tree-automatic) struc-
tures, like groups, rings, linear orders, and so on.
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[18] B. R. Hodgson, Décidabilité par automate fini, Annales Scientifiques de
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