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PARTIAL IMPREDICATIVITY IN REVERSE MATHEMATICS

HENRY TOWSNER

Abstract. In reverse mathematics, it is possible to have a curiouatsiiu where we know that an implica-
tion does not reverse, but appear to have no information entheveaken the assumption while preserving the
conclusion (other than reducing all the way to the tautolofgssuming the conclusion). A main cause of this
phenomenon is the proof oﬂﬁé sentence from the theoﬂ}-CAo. Using methods based on the functional
interpretation, we introduce a family of weakeningsIBf-C A and use them to give new upper bounds for
the Nash-Williams Theorem of wqo theory and Menger’s Theof@ countable graphs.

§1. Introduction. The strongest of the “big five” systems of Reverse Matheraatic
is the systenil}-C A, whose defining axioni]i comprehension, states that

IXVn[n € X < VY ¢(n,Y)]

whereg is an arithmetic formula (that is, a formula without set gtifeers). This axiom
is impredicative the setX is defined in terms of a quantifier over all sets, particularly
including the sefX itself and sets which may be defined in termskaf

It is impossible for alli sentence to be equivalent Ibl-CA, (see [8, Corollary
1.10] for a proof); this means that any proof ofl3 sentence inl}-CA, can be opti-
mized to go through in some weaker system. Despite IljsCA is the best known
upper bound for severdl} theorems (in particular, the Nash-Williams Theolfkea
bgo theory [8] and Menger’'s Theorem for countable graph [E2her than give the
definitions necessary to state these theorems here, thdisatssed in detail below).

In this paper, we attempt to resolve this situation in a syatec way: using ideas
derived from the functional interpretation, we isolate fiwgtion of I1}-C A, actually
being used in these proofs, giving a family of weaker systeitisIIi axioms, and then
show that the proofs iflj-CA, actually go through, essentially unchanged, in these
weaker systems.

Rather than being based on thié comprehension axiom, we base our systems on
the equivalent leftmost path principle:

Let T be an ill-founded tree. Then there is a leftmost path thrdligh
Our family of weaker systems use thig -relative leftmost path principle:

Let T be an ill-founded tree. Then there is a patithroughT such that no
path through” is bothY, in '@ A and to the left of\.
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We defineX-LPPg to beRCA g extended by th&, -relative leftmost path principle
Yo-LPP, andTLPP, to beRCA( extended by, -relative leftmost path principle
for every well-orderingy. Note that these formulations are still fundamentally iegpr
icative: the path\ promised to exist is still to the left of paths which might befided
in terms ofA itself. However the impredicativity is “partial” in the semthat we have
restricted, in advance, the complexity of the operationekvvill be might be used to
define paths to the left of.
Our main results can be summarized as:

THEOREM1.1.

. Yo-LPPg impliesATR, (Theoreni 412).

. Xo-LPPg proves Kruskal's Theorem (Theoréml5.5).

ATIL-TI, (see [15, Chapter VII.2]) implieX . ,-LPP, (Theoreni 6.22).

TLPP, proves the Nash-Williams Theorem (Corollary 7.12).

TLPP, proves Menger's Theorem for countable graphs (Thedren)7.16

. If ¥412-LPP holds in a model oRCA, then there is anv-model satisfying
11, (113 )-TIo (Theoreni Zl3),

7. In a model satisfyindl,, 2 (11} )-TIo and WO(«) with « a successoi,-LPP

holds (Theorei 811).

Unlike the old upper bounds, we do not know of any theoretitaitacle to having
a reversal of either the Nash-Williams Theorem or Mengetiedrem for countable
graphs tdTLPPg,. However the best known lower bound remaXi§Ry. It is there-
fore natural to ask:

oU A wNE

QUESTION. Does either the Nash-Williams Theorem or Menger’s Thedmrmount-
able graphs impN'LPPg overATR(?

We emphasize that this paper does not give novel proofs obathe mathematical
theorems analyzed; our proof of Kruskal's Theorem is ungkdrirom Nash-Williams’
proof [9], our proof of the Nash-Williams Theorem is takearfr Marcone’s work [8],
and our proof of Menger's Theorem is the one given by Shaf8}. [Dur goal is to
illustrate that the methods here isolate the portiodI§fCA, already being used in
existing proofs, without requiring changes to the proo&siikelves.

We briefly explain the motivation for the relative leftmosttp principle. The leftmost
path principle is 413 sentence. Consider the analogous situation at the aritheeg!,
all) sentence:

o =VeIyVzo(x,y, 2).

If we prove all§ sentence usings, we do not expect to need the full strengthvoih
the proof. The functional interpretation (see [2, 7]) carubed to extract a functiof
from the proof ofo — 7 together with a proof of

Va3y'Vz < F(a,y')p(,y', 2)] — 7.

Informally, a proof ofr — 7 in a reasonable system cannot actually use the fact that the
witnessy(x) to o is a genuine witness for all; the proof only used the fact thatz)

is a witness for finitely many particular choicesofwhere the particular choices may
depend on the value g@f(x)), and therefore it suffices to use an “approximate witness”
1y’ which good enough for this particular proof.
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The relative leftmost path principle follows a similar jifisation. A proof of all}
sentence from the leftmost path principle cannot dependagimb an actual leftmost
path; instead, given a supposed leftmost paththe proof must produce some (now
countable instead of merely finite) list of paths (again,efeting onA), and use the
fact that none of these paths are actually to the lefh ofAn appropriate form of the
relative leftmost path principle then gives us an “appraatienwitness” which is good
enough for a particular proof. (This analogy between setramderic quantifiers is a bit
misleading if taken too seriously; the arguments givenis plaper are actually derived
from a functional interpretation for quantifiers over or@[3].)

We end the introduction with a short discussion of the pitheretic strength of
TLPP,. We wish to avoid the technicalities of ordinal analysidiis fpaper, and noth-
ing else in the paper depends on these comments, so we wilhibevghat informal. The
theoriesll,, (I1})-T1I, are well-suited to ordinal analysis (for instantk, (I1}) formu-
las embed naturally in the framework of ramified set theogdus [10]; alternatively,
an ordinal analysis could be given by a transfinite geneatitim of the analysis in [11]).
The results described above show that the proof-theordtioa of TLPP, is the
smallesty > 0 such that whenever < ~, the proof-theoretic ordinal dfl,, (I3 )-T1,
is also less than.

Since already®,-LPP implies AII}-TI,, whose proof-theoretic ordinal is the
Howard-Bachmann ordinal, the consistency strengtfbP P, lies somewhere above
the Howard-Bachmann ordinal. Recall that the usual ordinghtion for the Howard-
Bachmann ordinal igeq, +1 (this notation is explained in detail in [10], but note that
€q is the a-th ¢ number, where is the proof-theoretic ordinal of Peano arithmetic
andACA,). The theoryll}-CA, , which adds parameter-fréé} comprehension to
ACA,, has the same proof theoretic ordinal. If one instead addEnpeter-fred1}
comprehension tATR, one obtains a theory with proof-theoretic ordindlq, 11,
wherel’,, is the a-th fixed point of the Veblen function; most importantly is the
ordinal of ATR,. (The definition of the collapsing functiap has to be adjusted to ac-
comodate the presence of the Veblen function, so this notagiquires some additional
work to make precise.) Inspection of the embeddindlgfII])-TI, into the frame-
work of [10] shows that the proof-theoretic ordinal BLPPy is at most)I'g, +1. In
particular, while the consistency strengthBE.PP is above the Howard-Bachmann
ordinal, it still requires only one level of impredicatiyjtvheread1}-CAq requiresv
levels of impredicativity.

The author thanks Stephen Simpson, Reed Solomon, and thgranas referees for
many helpful suggestions.

§2. Notation. We briefly recall some notation which will be convenient te ttrough-
out this paper.

We fix, throughout this paper, a computable bijective pagifimction(-,-) : N2 — N.
We routinely view subsetS of N as subsets df? by equatingS with the set of pairs
x,y such tha{z,y) € S.

DEFINITION 2.1. If S C N?, we writefield(S) for {z | Jy (z,y) € Sor(y,z) €
S}. We often writex Sy for (z,y) € S. We write S, for {y | (z,y) € S}.
By apartial order, we mean a sekC N? such that:

1. If x <y andy < z thenz < z,
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2. x £ zforanyz.

We say< is alinear orderingif for every z, y € field(<), eitherz < y, z = y, or
Yy <.
When< is a partial order, we writes for the reflexive closure ok.

We always use< to denote the usual ordering &h We often refer to orderings by
a name for the field of the ordering, leaving the underlyirdpoimplicit. For instance,
we will refer to a linear ordesy, and to the actual relation as,.

DEFINITION 2.2. Asequence fror§ is a function from a (proper or improper) initial
segment ofN to S. A finite sequencé a sequence whose domain is finite while an
infinite sequencés a sequence whose domainNs For anyn, we writeo | n for
o | [0,n]. We write {(qo, ... ,q,) for the sequence withom({qo, ... ,qn)) = [0,7]
and{qo, - .. ,qn) (%) = ¢;- Wheno is a finite sequence, we write| for | dom(c)].

If o, 7 are sequences, we writeC 7 to indicate thatlom (o) C dom(7) and for all
i € dom(o), o(i) = 7(i). If o is a finite sequence, we write™ 7 for the concatenation
of o andr: dom(c™7) = dom(o) U {|o| +n | n € dom(7)}, (67 7)(%) = o(3) if
i <loland(c™7)(i) = 7(i — |o|) if i > |o].

If < is a partial order orf, we extend< to sequences from§ by settingo < 7 if
thereis arv™(n) C 0,0 (m) C 7 wheren < m.

We generally use letters 7 for finite sequences antl for infinite sequences.

DEFINITION 2.3. If<is a partial order, we say is well-foundedsometimes written
W F(=), if there is no infinite sequence such thatA(: + 1) < A(7) for all i. If < is
both well-founded and linearly ordered, we says well-ordered written WO(<). We
generally assume thatis the least element 6f.

If < is not well-foundedx is ill-founded

Any elementy € field(<,) = « induces a new partial order, the restriction-qf to
{6 € field(x) | § <4 7v}. We sometimes usgto refer to both the (number coding the)
element ofx and to the partial order given by the set.

DEFINITION 2.4. Atreea setT of finite sequences such thatdfe T andr C o
thenr € T'. A paththroughT is an infinite sequencé such that foralh, A [n € T.
We sayT is well-foundedf there does not exist a path throug@h

Equivalently,T" is well-founded iff the restriction afi to 7" is a well-founded partial
order.

We make extensive use in this paper of the standard systeRevefse Mathematics,
particularyRC A, ACAg, ATRy, andIl}-CA,. [15] is the standard reference.

DEFINITION 2.5. IfY is a set andK is a partial order, for any € field(<) we write
(V) = {(m.i) €Y |i =< j}and(Y); = {m] (m,j) € Y}. )

If 0(x,Y, Z, Z) is a formula with the displayed free variables, we witg(«, Y, 2, Z)
for the formula which says that for evejye o, (Y); = {z | 0(z, (Y)’, Z, Z)}. When
0 is a universak; formula, we just writeH («, Y, Z), omitting the other parameters.

When we are dealing with armodel andv is a computable well-ordering{ («, Y, Z)
justmeansthat = Z(®). Recall that the main axiom TRy is V2V ZVa(W O(ar) —
Y Hy(a,Y, 2, 7).
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DEFINITION 2.6. If ¢ is a formula,T1(«, ¢) is the formula stating that transfinite
induction for¢ holds alongy:

Vz € field(a) [Vy <o z0(y) — ¢(x)] — Vz € field(a)o(z).
WhenW is a set, we writd'I (o, W) for TI (o, x € W).

§3. Principles and Claims. In this section we introduce the main principles we will
work with through the rest of this paper.

DEFINITION 3.1. LetT be atree and lek be a partial order. A path throughT' is
minimal (with respect to<) if there is no path\’ throughT" such that\’ < A.
MPP, is the theory consisting @ C A together with theminimal path principle

If T'is an ill-founded tree ane is well-founded then there exists a minimal
path through’".
LPPg is RCA, together with the restriction of the minimal path principtethe
case wherex is the usual ordering: on the natural numbers. We call this teétmost
path principle

We will later show that the minimal and leftmost path prifegare equivalent (The-
oren(4.4), and in a computable way, so in all the variants Wwediuce, there will be no
difference between the minimal and leftmost versions.

The following is proved in [8]:

THEOREM3.2 (RCA,). LPPy is equivalenttdI}-CAy.
We introduce a family of restricted forms M PP andLPPy:

DEFINITION 3.3. For anyn, X,-MPPg is RCA, together with thex,,-relative
minimal path principle
WheneverT is an ill-founded tree of finite sequences ardis a well-
founded partial order, there is a paththroughT" such that there is no path
A’ throughT which isX,, in T'® A such that\’ < A.
¥.-LPPg is RCAy together with the restriction of thE,,-relative minimal path
principle to the case where is <.

When we takeATR to be our base theory, we may extend this definition to higher
levels of the jump hierarchy. We will see later that eY@aLPPq implies ATR.

DEFINITION 3.4. Leta be a well ordering. 17 is a set, we sayV is X, in Z if
either:
e =+ lisasuccessoH (5,Y, Z), andIV is computably enumerable i, or
e aisalimit, H(«, Y, Z), andW is computable irt".
We sayW is1l, in Z if the complement ofV is 3, in Z.
If M is a model ofRCA( anda is an ordering inM such thatM F WO(«) then
we sayX,-MPP, ¥, -relative minimal path principlgholds in}1 if:
WheneverT is an ill-founded tree of finite sequences ardis a well-
founded partial order, there is a paththroughT' such that no sef, in
T @ A is a path througHfl’ to the left ofA.

TMPP, is RCA, together with thdransfinite minimal path principle



6 HENRY TOWSNER

WheneveiV O(«) holds,X,-MPP holds.

Yo-LPP andTLPP are the restrictions of ,-MPP andTMPP, respectively to
the case where is <.

Note thatTMPP, andTLPP, are axiomitized byI formulas.
The minimal path principle is inconvenient to analyze, amdthat purpose we will
introduce some convenient theories of transfinite inductio

DEFINITION 3.5. A formula isIIi, which we will also writell,(I13), if it has the
form

VXG(X)

where¢ contains no set quantifiers. A formulalis, . ; (I1}) if it has the formvaze(z)
where¢ is built fromI1,, (T} ) formulas using propositional connectives {/, —, and
).

We writell,, (11} )-T1I, for ACA, together with the scheme:

VB(WF(B) = TI(8,9))

wheneve is all,, (11} ) formula.

Note that a formula istII] (“arithmetic inIIi") exactly if the formulaisII,, (IT1) for
somen. In particular,IT,(I1})-TI, is precisely the theorAIl}-TI,, whose proof-
theoretic strength is precisely the Howard-Bachmann atdi®ther theories with the
same proof-theoretic strength inclutié_-T1I,, the theory extendindhCA, by full
transfinite induction (see [15, VII.2]) anid}-CA,, the theory extendinddCA, by
parameter-freél} comprehension (see [10]). Despite having the same praufrétic
strength AI11-T1, does not imply either of these other theories.

Since the theonATI}-TI, is well understood, we introduce a family of transfinite
generalizations. We will show that these transfinite gdimt@ons are intertwined with
the propertiex,-LPP, providing a tool to calibrate the strength BLPPy.

DEFINITION 3.6. Let M be anw-model of RCAq and leta be a well-ordering.
We sayM satisfiesll, (11} )-TIo if wheneverg(n, X) is an arithmetic formula with
parameters from/, Z = {n | M = VX¢(n, X)}, and whenevex is a relation in the
model M such thatM = WF (<), andW isIl, in Z, TI(<,W) holds.

We do not require that: have any representation i/, and the sets’ andW are
therefore determined externallyAd; similarly, whethefl'I (<, W) holds is determined
externally toM. On the other hand, the relation need only be well-founded in the
sense of\/. Consequently M satisfieslI, (I11)-TIy” is not expressed by a formula
of second order arithmetic insidd. However we can still ask this question of a given
model (takingx to be an actual well-ordering), and whahis a fixed model oATR
such thatN = WO(«) and M is a countably coded-model contained inV, the
statement M satisfiesll,, (I1})-TI," can be expressed iV by a formula of second
order arithmetic. In the latter cas¥, itself might fail to be an (actualy-model, and\/
is anw-sub-model ofN. Importantly, in either casg is absolute in\/, and sincex is
either actually well-founded, or we are working in a modesuch thatV = WO(a),
the collection ofl1,, in Z sets is uniquely determined ;.
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§4. Lower Bounds on the Leftmost Path Principle. We show that even the weak-
est principle we are consideringy-LPPy, is fairly strong. We begin by showing that
it implies ACA,, which will let us use arithmetic comprehension in latergisp and
illustrate our general method.

THEOREM4.1 RCAg). So-LPP impliesACA,|f

PROOF It suffices to proveZ; comprehension. Let(x,y) be a¥, formula (possi-

bly with parameters). We say a finite sequeadsom {0, 1} is valid if for eachi < |o],
o(i) = 0= Vj <|o|=¢(i, j).

Consider the tre& of valid finite sequenceq; is clearly computable from its parame-

ters, and is ill-founded since the function giveniy(i) = 1 for all i is an infinite path

through this tree.

Note that if A is any infinite path througi" and A(i) = 0 thenVy—¢(i,y,.S): if
¢(i, m, S) then we cannot have amyc T with |o| > m ando (i) = 0.

By X,-LPP, we may find a path\ so that no infinite patih’ computable from\ is
to the left of A. Supposdi | A(i) > 0} # {i | Jye(i,y,S)}. SinceA(i) = 0 implies
Yy-¢(i,y, S), it must be that there is sonmisvith A(7) > 0 butvVy—¢(i,y, S). Butthen
the function

iy JOAG) A

AG) = { 0 ifj=i
is also an infinite path through and easily computable froth. But A’ < A, contra-
dicting the fact that\ was relatively leftmost. -

THEOREM4.2 RCAy). Xo-LPP impliesATRy.

PrRoOF It suffices to show transfinite recursion ow&r formulas. Suppost’ O(«)
and letd(x) = Jyo(z,y,Y); we will show that3 X Hy(a, X). Note that since is X,
for anyi, Y such thaBye(i, y, Y) holds, there is am: such that for anyy”’ such that
Xy [m=xy [m,3y <me(i,y,Y').

We will again consider a tree of potential characteristiactions forY. A finite
sequence of natural numbersaid if:

e For anyy € field(«) and anyi such thato((¢,7)) = 0, for everyY such that
Xy | dom(c) = o we havevy < |o|-¢(i,y, (Y)7),
e If o((i,7)) > 1thenforeverny} suchthaly | dom(c) = o we havep(i, o((4,7))—
2,(Y)7),
e If there arej, ¢ such that(j,0) < (i,7), & >4 v, ando((4,6)) # 1 then
o((i,y)) # 1.
Note that, sincep is a computable formula, these conditions are arithmetidg@d,
computable), despite the apparent set quantifier.

The idea is that whea((,v)) = 0, the universal formula should be true, and when
o((i,7)) > 0, the existential should be true. Wheti(i,v)) = 1, the existential
quantifier is “unjustified”: no witness is required. Whe((:,v)) > 1, however, a
witness is required, ang((¢,y)) — 2 should be such a witness.

The final condition in the construction of the tree is perhtigesleast obvious; the
point is that when we set((i,v)) = 0, we might be depending on the fact that

T The simplified construction here was pointed out to us by&rBimpson.
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o((4,9)) = 1 for somed <, ~ butj much larger thar so that(:,v) < (4,6). If
we wanted to fix a potential characteristic function by setti((j,0)) = 0, we would
have to restore((¢,y)) = 1, and since(i,y) appears belowsj, §), we are no longer
moving to the left. Our solution is to require that once werdét, v)) # 1 in a path, we
are supposed to be certain aboyt) whenevew <, ~. This is enforced by requiring
that we actually provide witnesses to existential formolaall lower ranks.

There are no requirements wheftr) = 1, so the functiom\o(xz) = 1 for all z is
an infinite path through this tree. Byy,-LPP, we may find a relatively leftmost path
A. LetY = {i | A(?) > 0}. SinceACA, satisfies arithmetic transfinite induction, we
show by induction ony € field(a) that (Y), = {i | 3y¢(i,y, (Y)”}. Assume that
Hy(~, (Y)7) holds.

Supposélyé(i, y, (Y)7). Then there is some such that whenevery: [ m = xy |
m, Jy < me(i,y, (Y’')7). Then we cannot hav&((i,~)) = 0, soA((¢,7)) > 0 and
therefore; € (Y),.

Supposé&/y—-¢(i,y, (Y)7). If A((¢,v)) > 1, there would be some: such that when-
everyy: | m=xy | m,o(i,A((i,7)) — 2, (Y")Y), contradictingvy—¢(i, y, (Y)7). If
A((Z,7)) = 0,1 & (Y), as desired.

So suppose\((4,v)) = 1. Observe that fov <, v, we have(Y); = {i |
Jyo(i,y, (Y)?}. In particular, ifA((j,0)) = 1 andd <, v then there must be some
such that(i, y, (Y)?), and we may therefore computably (i)?) find such ay; we
name this valug(j, §). We define

Y(j,0) +2 if 6 <a v, A((j,6)) = 1,and(i,y) < (j,9)
A((4,6))  if 6 <4 v and eitherA((4,6)) # 1 or (4,0) < (i,7)

N((F,0)=< 1 if 6 >q7
A((j.8))  ifd=vandj#i
0 if j=diandd =~

Note thatA’ < A: if (4,0) < (i,7) andd <, v thenA’'((4,0)) = A((j,9)) by
definition, while ifé >, ~ then, since\ satisfied the third condition in the definition of
the tree, we must have had(j,9)) = 1 = A'((j,0)).

We check that\’ is an infinite path through™; let Y’ = {i | A’(s) > 0}. Let
o C A’ be a finite initial segment. Supposé(j,d)) = 0; thend <, v and either
A((4,0)) = 0or (i,v) = (4,96), and sincgY’)? = (Y)Y andVy—¢(j,y,(Y)?), also
Vy=¢(j,y, (Y')7).

If o((j. 5)) > 1 then agaim <, vandé(j, A'((j,8)) — 2, (Y)?), s06(j, A'((j, 5)) -
2,(Y")?).

Finally, if there is any(j’,¢") < (4,0) with 6 <, ¢’ ando((j',0")) # 1, we have
0 <4 0" <4 7, and therefore((j,9)) # 1.

So A’ is an infinite path computable frorh and to the left ofA, which contradicts
the choice ofA. -

Finally, we give our main lower bound df,-LPPy. Theoreni 811 shows that this
bound is almost sharp, leaving a small gap between the anobtrainsfinite induction
we need to obtaix,-LPP and the amount we show to be implied By-LPP.

THEOREM4.3. Let N be a model oRCA containing an orderingy such that
N EWO(«a)andN E ¥,12-LPP. Then

N E “there exists a countably coded-model ofAC A, satisfyingll,, (Hi)—TIO” .
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The proof gives a bit more, namely that the same claim wouldifidv E I1,,41-LPP,
and everdl,-LPP if eithera > w or a is odd.

PrRoOOF Working insideN, we will construct a modeM . We will view a sequence
A as coding a modeM by setting(i,n) € M iff A((i,n)) > 0. SinceM will be
viewed as a countable codedmodel, this is saying that; = {n | A((¢,n)) > 0}.

In order to ensure closure under arithmetic comprehengiaill be convenient to
have a name for the saf;. We consider an extension of the language of second order
logic by countably many new set constanis, . ... (For technical reasons, it will be
convenient to assume that this language has existentiatijges and negation, but no
universal quantifier.) We view/ as a model of this extended language by defining
MhneSiiﬁneMi.

We will define our tree so that whemis an arithmetic formula in this language with
a single free variable, the s8f(o 47y = {n | M F ¢(n)}. This will ensure that we
have a model oACA. (When we define conditions below, we fix a variable and only
discussM,, 4 where no other variables occur fregfinthere are no conditions on other
cases.)

The new complication will be ensuring that the model satdfig (11} )-TIo. Sup-
poseM were nota model dfl, (11} )-T1o; then there would be some arithmeticX, z),
somen, and a sequencg, I1, in {j | Vi¢(M;, 7)}, such thaff is an infinite descend-
ing sequence in/,, (where we view)M,, as coding a partial order). (The key point,
of course, will be thafl is 1,11, and S0¥, 2, in M.) We will ensure that if\/5 ,,)
is non-trivial then it is some descending sequenc&fin (We will also useM, ,, to
make the coding easier.)

We will handle the dependencies of one set on another in dagsimianner to the
previous theorem. For this purpose, we define

WI((0, [t € S;])) = Wl(i)+1

Il (( 1)) = 0if ¢ is atomic and not of the forme S;,

vl ((

vl ((

vl ((
((
((

)

0,[¢
0, [=¢1])) = Ll((0, [4])) + 1,

0, [¢ A 1)) = Wl((0, [¢ V ) = max{li((0, [¢1])), 10l((0, [¢]))} + 1,
0, [Fz¢])) = Wi((0, [Va¢])) = Wi((0, [4[0/2]1)) + 1,

Wwi((1,n)) = Wl(n) +1

Wwi((2,n)) = Wl(n) +1

wl((,4)) = 0 in all other cases.

We say a sequeneeis valid if whenevero(((4, j), k)) is defined:

e Ifi=0andj = [t € S, ] thena(((4,7),k)) = o((n, k)),

e lf i = 0andj = [¢] where¢ is atomic and not of the form € S; then
o(((i,7),k)) = 1if ¢ istrue and if ¢ is false,

e If i = 0andj = [—¢] theno(((i,5),k)) = 1if o(((4,[¢]),k)) = 0 and0
otherwise,

o If i =0andj = [¢ A ] theno(((i,5),k)) = 1if both o (((0, [¢]), %)) > 0 and
a(((0,[v1), k)) > 0, and0 otherwise,

o If i =0, = [Jxd], ando(((4,5),k)) = 0 then there is nax < |o| such that
o (((i, [o(u)]), k) >0,

o Ifi=0,j = [3zp], o(((i,]
defined therr (((4, [¢(a(((7

j),k)) > 1, ando(((4, [)¢(U(((i7j)vk)) —2)]),k))is
e ifi=1,k>0,ando(((i,)) '

] ;f) 2)1), k) >

= 0 then

),
0)
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1. o(((4,4), k)) is a sequencéy, . . . , qk),
2 Whenevei < k ando—(( (q1+1,ql))) is definedg (4, (¢i+1,4))) > 0,
LIk > 1theno(((i.5). k — 1) © o (((i, ), k).

it ando(((1,),0)) = 0 thena(((2,), (k,q)) = Lif o(((1,5),k)x = g

and0 otherwise.

It is easy to construct an infinite path through this tree @aquence constantly
will no longer work, because of the conditions for atomiaioitas,A, and—, but these
cases are easily dealt with).

Let A be the path given b¥,,2-LPP. We show that for alh,

1. 1fn=(0,[¢]), Mn ={i | M & (i)},

2. If n = (2,m) and there is any infinite decreasing sequenc¥jpwhich isX, 11

in M thenM,, is such a sequence.

Naturally, we proceed by induction dal(n). The first claim is identical to the argu-
ment in the previous theorem. The second claim is obtained &iynilar argument:
suppose there is an infinite decreasing sequé&hae M,, which is¥,; in M. By
construction, ifM,, is not such a sequence, we haxg(1,m),0)) # 0, so we obtain
a new sequencA’ by settingA’(((1,m),0)) = 0, A’(((1,m),k+ 1)) =T [ k + 2,
andA’(((2,m),k)) = Y(k), and resetting everything of higher level. Note that any
component which depends on the valuesff ,,,) or M ., (for instance, sets defined
by formulas containing the constafif, ,,,) has a higher index them, and therefore
all its indices are greater thdfil,m),0). SinceA’(((1,m),0)) < A(((1,m),0)) and
A'is .11 in M, we obtain a contradiction, s&/,, was already an infinite descending
sequence inV/,,,, concluding the induction.

This immediately gives thal/ is a model of ACA,. To see thatM satisfies
11, (I1})-TTo, observe that i’ = {n | M F VX¢(X,n)} thenY isII{ in M, and
therefore any sefl,, in Y is I1,, in M. In particular, any set defined byT#, (II})
formulaisX, o in M. It follows that M satisfiedI,, (11} )-T1o. -

Before continuing, we note that there is no difference iargjth between the leftmost
and minimal path principle.

THEOREM4.4 (RCAyp). 1. LPPgis equivalent tdMIPPy.
2. For anya, ¥,-LPP is equivalent to=,-MPP.
3. TLPPy is equivalent tcrMPPy.

PROOFE The right to left directions are all trivial. We prove thétl® right direction.
Let < be a well-founded partial order. We define a computablefapm field(<) C
N to N<¥ such that ifr < y thenw(z) < 7 (y) (in the lexicographic ordering). We first
define an auxiliary map’ inductively. 7’ will have the property that its image consists
only of sequences of even numbers followed by a single oddoeamwe definer’
by the following algorithm: lety be given and supposg(z) has been defined for all
x < y. If there is anyr < y such thaty < z, chooser <-least such that this holds, so
7'(z) = 07 (n), and set’'(y) = o~ (n — 1, m) wherem is the smallest odd number
son'(y) # n'(z) for z < y. If there is no such, setn’(y) = (m) wherem is again
the smallest odd number s6(y) # 7'(z) for z < y.

CramM 1. If x < y thenn'(x) < 7' (y).

PROOF We proceed by induction on the maximumwoéndy with respect to<.
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Suppose < z. We proceed by side induction gralong=, so assume that whenever
z < xzandz < z, ©'(z) < 7'(z). First, assume there is no suehsoy is <-least
such thatr < y andy < z. Then for somer, n, 7'(y) = o~ (n) while 7'(z) =
o~ (n— 1, m) for somem, so certainlyr’(z) < 7’(y). Otherwise, there is some< x
such thatr < z < y; then we haver’(z) < 7'(y) by main IH andr’(z) < 7’(z) by
side IH, sor’(z) < 7' (y).

Supposer < y. Suppose there is some< y such thaty < z, and letz be <-
least such that this is the case. Then by ) < 7n'(2) = o~ (n) while 7'(y) =
o~ (n—1,m). If c™(n—1,m'y C «n'(x) for somem’ then we haven’ < m, so
7'(z) < 7'(y). Otherwise, since’(z) < o™ (n), we must haver'(z) < o™ (n — 1),
and thereforer’(x) < 7'(y). If there is no suck, 7’'(y) = (m) while 7’(z) = (n) ™7
wheren < m, so againt’(x) < 7' (y). =

CLAIM 2. Suppose’(xz) = o (n) andn’(y) 3o~ (n —1). Theny < x.

PROOF First, note that by construction < y. We proceed by induction opn— x.
7' (y) must have the form™ (m — 1,m/); if m = n then we havey < z. Otherwise,
there must be somewith z < z < y such that/(z) = 7~ (m) J 0" (n — 1). By
IH we havez < z (sincez —z < y — z andn’(z) O o~ (n — 1)) andy < z (since
y—z<y—zandr’(y) 37 (m — 1)), and since< is a partial ordery < z. -

CLAIM 3. {0 | 3z o C #’(x)} is well-founded.

PROOF. Suppose not, and lety — o; C --- be an infinite descending sequence.
Since odd numbers are always terminal, eachonsists only of even numbers. Each
o; = 7 (n; — 1) for somer;, n;, and by the construction of’, there must be some
x; such thatt'(x;) = 77" (n;). Observe that; = 7’(z;41), and therefore;; 11 < ;.
Therefore ther; form an infinite descending sequence througltontradicting the fact
that< is well-founded. -

Now we definer(z) = «'(x)™ (z). (The purpose of this suffix is to ensure that the
inverse map is computable.) Given a sequenaefiner (o) inductively by (({)) = ()
andn (o™ (n)) = w(o) " m(n). wis clearly injective.

Now let T" be an ill-founded tree of finite sequences and defie= {o | 37 €
T o C 7w(7)}. SinceX,-LPP impliesACA,, T” exists. IfA is an infinite path through
T, 7(A) is an infinite path througf”, so7” is ill-founded.

CLAaIM 4. If A’ is a path throughl™”, there is a unique pati throughT such that
w(A) = A’, andA’ is computable from.

PrROOF Note that, sincdo | 32 o C w(z)} is well-founded, all subsequences/sf
consisting only of even numbers must be finite. Then we maguely decomposéa’
into a sequence of blocks

A/ = 0'6\<TLQ, m0>’\af<n1,m1> R
whereo; consists only of even numbers angis odd. Then for each we must have
w(m;) = o7 (n;), so setting\ (i) = m;, we haver(A) = A’ !
Let A’ be a path througfi” given byLPPq and letA be the unique path through

such thatr(A) = A’. If A* < A thenm(A*) < A/, contradicting the choice of. The
second and third parts of the claim follow sincifis X, in A, 7(A*)isX, inA’. A
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4.1. Models ofx1-DCy. In this section we show that, in addition to proving the
existence of models dfl,, (113 )-TIo, TLPP, proves the existence of certain models
satisfying©1-DCy. This will be needed in our proof of Theorém 7.16.

We follow almost exactly the notation of [15, Chapter VIII.4

DEFINITION 4.5. We writeO (a, X) to mean that = (e, ) for somee and: and
thate is anX -recursive index of aik -recursive linear ordering X andi € field(<X).
If O4(a,X)andO4 (b, X), we writeb < a to mean that = (e, i), b = (e, ), and
j<Xi.

We writeO(a, X) to mean thatD (a, X') and there is no infinite sequenge) such
thata = ag >g a1 >g§>

THEOREMA4.6 (TLPPy). If T is an ill-founded tree andk is well-founded then
there is a countable codegsmodelM such thatl’ € M, M satisfies:}-DCop, and M
satisfies that there is &-minimal path throughy".

PrROOFE We first carry out the proof of Lemma VI111.4.18 of [15], takjinto account
that we need to also include a path throdgtvhich will become our-minimal path.

Let O (a,T) be aXi formula stating that there is an infinite patithrough7" such
that:

1. O+ (a,T),

2. Thereis a countably codedmodelM of ACAq suchthafl’ € M, A € M, and
M satisfiesO(a,T) A3IY H(a,Y, T ® A) and M satisfies that\ is a<-minimal
path throughr".

If O(a,T) holds then certainly); (a, T'), a = (e, i), and since<I| i is a well-order,
there is a\ such that no path computable iYasatisfyingH (a, Y, T®A) is < A. Since
TLPP, impliesATR,, we have som& such thatd (a,Y,T @ A), and we may take
M to be the set of sets Turing reducible¥o

SinceO4 (a,T) is X1, O1(a,T) cannot be equivalent t6(a, T'), so there is am*
such thatO, (a*,T') A =O(a*,T'), and therefore aw-model M * of ACA, such that
T e M*, A € M*, M* satisfiesD(a*,T), M* satisfiesdY H(a*, T ® A,Y), andM*
satisfies thaf\ is a<-minimal path througi".

The proof of Lemma VI11.4.19 of [15] now shows that there is adalM C M* of
»1-DCy containingl’ andA; it follows that M believesA is a<-minimal path through
T. !

§5. Higman'’s and Kruskal's Theorems.

DEFINITION 5.1. @ is awell-quasi-order (wgo)f @ is a partial order and whenever
AN — @, there aré < j such thatA(i) =g A(j).
A sequence from Q is badif there is noi < j such thav (i) <¢q o(j).

Q is a well-quasi-order iff the tree of bad sequences ft@is well-founded.

DEFINITION 5.2. If Q is a partial order)<¢ is the set of finite sequences frafh
and=<g is given byo < r iff there is an order-preserving: [0, [o| — 1] — [0, 7| — 1]
such thatr(z) < 7(w(¢)) for all i < |o].

Nash-Williams gave the following short proof of Higman'séidrem [9]:

THEOREMS5.3. If Q is awqo then so i§)<¥.
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PROOF Suppose) is a wgo butQ<“ is not. Definec < 7 if |o] < |7|. LetA
be a leftmost path through the tree of bad sequences @om. Clearly A(7) # ()
for any i, since then we would hava(i) = () <5 A(i +1). So we may write
A(7) = N ()" (q(2)) for all i. Definec(i,j) = 0iff ¢q(i) <¢ ¢(j), andc(i,j) =1
otherwise. By Ramsey’s Theorem for Pairs, there is an iefigétS such thatc is
homogeneous o8.

If ¢ were homogeneously, the functiong [ S would give an infinite sequence in
@ contradicting the fact thaf) is a wgo. Soc must be homogeneously If for any
i <j €S, N(i) 25% N'(j) then we would have (i) <5 A(j) sinceq(i) <q q(j)-
This contradicts the construction &f

Let {ip,i1,...} be the increasing enumeration 8f DefineA*(i) = A(i) if i <
iop and A*(i) = A'(i,—,) if ¢ > 4p. Then for anyi < j, eitheri < j < ig, SO
A*(i) = A(i) 25 A(j) = A*(4), ori < ip < j, in which case\* (i) = A(i) A5
A(ij-iy) =5% A*(4), orip < i < j, inwhich case\* (i) = A(ii—i,) A5% Aij—i,) =
A*(j). SoA* is an infinite bad sequence and < A contradicting the fact that is a
leftmost path. -

We may observe that* in the proof is¥;, and therefore that this proof goes through
without change irt;-LPP.

Schitte and Simpson [12, 14] gave a different proof of Higim@heorem inACA,.
In particular, their proof shows that if there is an infinitedksequenca from Q< then
there is an infinite bad sequengéfrom @ such that\” is X5 in A.

We now wish to discuss the proof of Kruskal's Theorem; inaamiently, the theorem
concerns trees in a slightly different sense than we have ligiag. To avoid confusion,
we will call theseK -trees.

DEFINITION 5.4. A K-treeis a finite setl” together with a partial ordex such
that:

e T hasauniqueroote T suchthatforalt € T, r < tandift # r thent £ r,
and
o If t <r sandu <t sthen eithet <y v oru < t.

We writet A7« for the infimum oft anduw, sot Aru <t ¢, t Aru <t u, and if both
v <t tandv <t uthenv <7 t Ar u.

If @ is a quasi-ordering, §-labeled K-treeis a pair (7, f) whereT is a K-tree
andf : T — Q. We define a quasi-orderingx on Q-labeledK-trees by setting
(T, f) 2k (T, f) if there is a functionr : T — T such that for each, v € T,

7(t Ar u) = w(t) Ag w(u) andf(t) Zq 7(f'(¢).

THEOREMS.5 (52-LPPy). If @ is a wgo then so are th@-labeled K -trees under
<K-

PROOF Suppose) is a wgo but the)-labeledK-trees are not. Defing’, to by
setting(7, f) <% (77, f') if |T’| < |T'|. Then the tree of bad sequencespfabeled
K-trees is ill-founded, so leh be a relatively<j.-minimal bad sequence given by
>o-LPP.

Given aQ-labeledK-tree (T, f), let F(T, f) be the finite set of proper subtrees of
(T, f). If T is a tree, writery for the root of 7" and o for the sequence of im-
mediate successors of (in an arbitrary order). We may equaté, f) with the pair
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(frr),ors) € Q x F(T, f)<“. In particular, if f(rr) <o f'(rr/) andor; <%
or,f then(T, f) =k (T/a f).

For eachi, we haveA(i) = (T3, f;). Fori < j, definec(i,j) = 01if fi(rr,) =0
[i(rr;) andc(i, j) = 1 otherwise. By Ramsey’s Theorem for pairs, we may resivict
to a subsequence wherds constant, and sino® is a wqo, it must be thai(i, j) is
constantly0 on this subsequence. In particular, sinfdg) Zx A(j) wheni < j, we
haveaT“ﬂ ﬁK OTy,f;+

LetS = |J,; F(A(é)). ThenA gives an infinite bad sequencedt. By Higman’s
Theorem, there is an infinite bad sequenc¢g) throughS. For each, let k; be least
such thatA’(i) € F(A(k;)). Letk = min; k; and choose least such thak; = k.
Define

) it j <k
A (J>—{ NG—k+i) ifk<j
SinceA* [ k= A [ kandA*(k) = A'(i) € F(A(k)), we haveA* £ A. To see that
A* is bad, letj < j’ be given; ifj’ < k thenA*(]) (') A(j) = A*(4') and if
E<jthenA*(j) =AN({G—-k+1) AN(G —k+1) = ("). If j < k < j then
A*(j) = A(j) 2 Mkj—rr1) and sinced”(j') = N'(j" — k + 1) € F(A(kj —x11)),
we must have\*(5) ﬁ A*(5").

But thenA* is an infinite path to the left of, contradicting the choice of.

To see that the proof goes throughdin-LPPg, we need only observe that we ap-
plied Higman’s Theorem to a path given by Ramsey’s TheorerRé&irs, and since we
may choose the path given by Ramsey’s Theadkem in A (see [4]), it follows that\*
can be choseh, in A. -

A complete analysis of the proof-theoretic strength of KKal's Theorem was given
by Rathjen and Weiermann [11¥;.-LPPy is close to (but not exactly) tight, at least
with respect to proof-theoretic strength.

§6. The Arithmetic Relative Leftmost Path Principle. In this section we prove the
following:

THEOREM®6.1. For everyn > 0, I1,,, o (I13)-T1I, provesy,,-LPP.

Throughout this section, fix a tré@ and a well-ordering<. We write T,, for {7 €
T|oC7}

All definitions in this section are assumed to be giveAG A,.

Before launching into the rather technical proof, we o@tlthe main ideas of the

—+
argument. We will construct a treg, (7') with the property that any path through

this tree computes a leftmost path throdghRoughly speaking, elements er
consist of a distinguished finite sequencelinviewed as a guess at a leftmost path
throughT, together with “guesses” at the truth values of finitely maeptence&,,

in the path througlf’, and also together with explicit withesses showing thatager
33, formulas fail to define a path further to the left. An infinitatp through this tree
will have to correctly predict the value of evely;, sentence, and produce witnesses
showing that nd:,, formula defines a path further to the left; failure to do sd leiad

to the path being cut off.
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—+ —+
If 7.(T) isill-founded, we will have the desired leftmost path7Jf(T) is well-
founded, we will have to show th&t is well-founded as well; the key idea is that

—+
becausd,,(T') is well-founded, we may apply transfinite induction alongtibugh it
will take some work to define the right formula to perform s#nite induction with.

——+
We now set about our constructiafy, (7') will be the last in a tower of trees.

DEFINITION 6.2. LetL be the language of first-order arithmetic, including a pajri
function (-, -) and the corresponding projectiops p2, with a new function symbak’
and a new predicate symb®l We define theank n formulasand thebasic rankn
formulasinductively by:

F(i) = j wherei, j are terms is a basic raikformula,
All other atomic formulas are (non-basic) ramkormulas,
If ¢ is a rankn formula therdz¢ andvz¢ are basic rank + 1 formula,
The rankn formulas contain the basic rank formulas and are closed under
A, V3, =

We write F,, for the collection of basic formulas of rankand writerk(¢) for the
leastn such thatp is a formula of ranka.

Whens is a set oft-formulas, we defing = sU{T'(n) | n € T}U{~T(n) | n & T}.
We taketr- to be the usual deduction relation for first-order logic.

We now define the tre€§, (7). An initial segment of7,,(T) combines a sequence
from T" with a guess at the values of the formulasin a path extending this sequence.

DEFINITION 6.3. For each, define7,(T) to consist of those finite setsof £-
formulas such that:

If ¢ € stheng is a closed basic formula of rark n,
§ is consistent,
If F(i) =k € sandi’ < i thenthereis @’ such thatF'(i') = j' € s,
If F(i) = j € sthen the sequendd’(0),... ,F(i)) € T,
If 3zg(x) € s then there is somesuch that N F.i ) - ¢(7).
We says decidesF'(¢) = j if there is somej’ such thatF'(i) = j' € s; we says
decidesiz¢ if either3z¢ € s orVa—¢ € s.
If 7 is largest such that for some F'(i) = j € s, we writeo, for (F(0),. .., F(i)).
If m <mn,definer? : To(T) — T (T) by 7l (s) = {¢p € s | rk(¢p) < m}.
If m <n,t € TnT),se T.(T), we writet <T! s if there is a formul&vz¢ € s
with 7k(¢) = n such that + 3z—¢.

Note that the construction of, (T') requires arithmetic comprehension. (We could
probably, at significant additional labor, reduce this tmpatable comprehension, since
we are really only concerned with fairly direct proofs.)

When we writet <*1 s, we are usually interested in the case wherer” 1 (s). In
other words, just looking at”*!(s), we had not yet found a witness to the formuila,
butt is a way of extending”*!(s) so that~¢ must be true. This induces a different
element’ € 7, (T) with 7771 (¢') = t D 7+ (s). We think oft’ as being to the left of
s (as the notationk ! implies); this means that witnessed existential statesiegibng
to the left of universal statements, and therefore thattentest path through, (T') is
exactly a path in which we guess, formulas correctly.
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LEMMA 6.4 (ACAy). If s € Toy1(T), t € To(T), t D 7" F1(s) andt A1 s then
tUs € 7:1+1(T)

PROOF We need only check thatU s is consistent. Suppose not. Sinde consis-
tent, - —¢ for somegp € s of rankn + 1. It cannot be that is universal, since then we
would havet <! s, so¢ must be existential. But if is existential themr ™1 (s) + ¢,
and since is consistent and extena§*'(s), we cannot havé - —¢. =

DEFINITION 6.5. For eachn, we define propertie8/ F;, C 7,(T) andWF,, C
T.(T) inductively as follows.
o WE{(t)holds if:
Suppose that for every < oy, T is well-founded. They, is well-
founded.
e WE)  (t)holdsif:
Suppose that for alb D #72+1(¢) such thats <! ¢, WF,(s); then for
all s D 7 ti(t), WE,(s).
e WF,(t) holds if for everys D tin T, WE!(s).

We have statedV Fj and W F;, to emphasize the similarity with’ F;, and W F,,,
howeverlV F{(t) actually immediately implie§V Fy(¢): if W F{(¢) holds,s 2 t, and
for everyr < o, T is well-founded, then also for every < oy, T’ is well-founded,
and thereford,, is well-founded, which implies th&k,, is well-founded. This means
that Fy is (equivalent to) a Boolean combinationldf (111 ) formulas, and so for each
n > 0, WF, is (equivalent to) dl,, 1 (I1}) formula.

W F§ (and thereforéV Fy) captures the notion of “not being an initial segment of
the leftmost path”W Fy (¢) holds if either the tree aboves well-founded, or if some
path to the left is ill-founded. Thus the only elements fajlil’ Fy(¢) are the initial
segments of the leftmost path itseW/ F, |, extends this to the higher order trees; we
view t € T,(T) as consisting of two components?*!(¢), which is the lower order
content which should be addressed by lower order trees,tentemainderW F;, |
will be defined so that wheil’ F;, () fails to hold, it must be that not only does
W F, (zn*1(¢)) fail, essentially saying that"*1(¢) is an initial segment of a leftmost
path, but thatt is correct about truth values along this leftmost path. &Zajently,
WF_(t) holds if either some <! ¢ belongs to the leftmost path throu@h(T"), or
if no extension ofr” () which is compatible with belongs to such a path.

LEMMA 6.6 (ACAy). If WF,(s) ands C t thenW F,, (¢).
PrROOFE Immediate, since the definition is monotonic. -
LEMMA 6.7 (ACAy). If WF,(rT1(t)) thenW F,, 41 (t).

PROOF. AssumingW F,, (7 *1(t)), for everys D #+1(t), WF,(s). This implies
WFn+1 (t) _|

LEMMA 6.8 (I1; (I1})-T1p). Let ¢ be a basic rank) formula, lets € 7o(T'), and
suppose that for everyD s such that decidesp, W Fy(t). ThenW Fy(s).

PROOF ¢ has the form¥ (i) = j for somej. By main induction orr, we show that
Whenevett D s with |o¢| =i+ 1 — r, WFy(¢).
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If r =0, any sucht decidesF'(i) = j, and therefore by assumptidi, £y (t).

Suppose the claim holds ferand lett O s be given with|oy| = i + 1 — (r +
1) = ¢ —r. If there is ar < o; such thatT; is ill-founded then we immediately
haveW Fy(t). So assume that for every < oy, T is well-founded. For each, let
ty = tU{F(|o¢|) = k}. By side induction ort along<, we will show thatl;,, is well-
founded. Suppose that for &l < &k with t,, € To(T), T5, , is well-founded. Since
lot, | = |ot] +1 =14+ 1—r, we haveW Fy(tx). If 7 < 0y, andr € T, we either have
T < oy, in which case we have assumédis well-founded, orr = o, (k') = oy,
for somek’ < k, in which case we have that is well-founded by side IH. Therefore,
by W Fy (tx), Ts,, is well-founded. Sincd}% = Tor (k) is well-founded whenever
o; (k) € T, it follows thatTy, is well-founded, as desired.

Since|o,| =i + 1 — r for somer, the statement holds in particular far =

LEMMA 6.9 (ACAy). Leto be a basic rank: + 1 formula, lets € T,,4+1(T'), and
suppose that for everyD s such that decidesp, W F,, 1(t). ThenW F,,11(s).

PrRoOOFE Without loss of generality, we may assugés the formuladzip. It suffices
to show that whenever the assumption holds,dfV F, |, (s). If s decidesp we have
W F,11(s) by assumption, so assumedoes not decide. Assumes satisfies the
premise of W F ., (s): whenevet D 77+ (s) andt <T! s, WF,(t).

First, consider any; 2O s such that(sy \ s) N Fn11 = {¢}, sos; decidesp.
Supposé 2 7" 1(s;) andt <! s,.. Thenthereis a formuldzy’ € s, and ak such
thatf - —' (k). We must have/azt’ € s and thereforé <+! s, soW F, (). Since
W F,+1(s+) holds, it follows that wheneverD 771 (s.), WF,(t).

Now lets_ = s U {Vz—¢} and suppose D n"*!(s_) andt <*! s_. As before,
there is a formulavzy’ € s_ and ak such that + ¢'(k). If ¢/ # —, again we
haveW F,,(t) sincet <*! s. Otherwise, set; =t U s U {¢}; thenmT1(s,) = ¢,
and therefordV F,, (t) by the preceding paragraph. So for any> 77 *!(s_) with
t <t s_, WF,(t). Sinces_ decidesy, we havelWW F,,.(s_), and therefore for
allt O 7tl(s_), WF,(t). Sincer?t1(s_) = nn*l(s), it follows that whenever
t D wtl(s), WE,(t), and thereforéV £, (s). -

We wish the previous lemma to hold even whéfi¢) < n. To do this we prove the
following inductive step.

LEMMA 6.10 (ACAy). Let¢ be a basic rankn formula, letn > m, and suppose
that:
Whenevers € 7,(T) and for everyt O s such thatt decidesp, W F,, (),
thenW F,, (s).

Then:

Wheneves € T,,41(T) and for every D s suchthat decidess, W F,,11(¢),
thenW F,, 11 (s).

PROOF Lets € T,41(T) be given, and suppose that for evenp s such that
decidesp, W F, 11 (t). Again, it suffices to show thal’F},  , (s). Suppose that when-
evert O m"tl(s) andt <t s, WF,(t). Lett D nT1(s) be arbitrary; we will show
W F,(t). To do this, it suffices to show that wheneveD ¢ decidesp, W F,,(¢').

So suppose’ D t is given such that’ decidess. If ¢ <*! s thenWE,(t') by
assumption. Otherwise, sét= t'Us. Sinces’ decidesp, W F},1(s’) holds. Whenever
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t” D antl(s’) = ¢ with ¢t <*1 ¢ alsot” <*1 s, and therefordV F,,(¢""). Therefore
foranyt” D antl(s’) =/, WE,(t"), and in particulatV F,, (t').
_|

LEMMA 6.11 (ACAy). If WE,11(0) thenW E,, (D).

PROOF. If WE,1(0) then, in particularV F, , (0). If t D 771 (() then we can-
not havet <*! ), so the premise ofV F), ,(0) is trivially satisfied, and therefore
whenever € 7, (T),t 2 771 (})) = 0, sOW F,,(t). In particular W F,, (()). =

DEFINITION 6.12. Givens € 7,(T) and a formulap(z, y) with only the displayed
free variables, we define a sequemgg, recursively:() C o, 4, and if7 C o, , and
there is exactly onésuch that - ¢(|7|, i) thent™ (i) C o 4.

DEFINITION 6.13. Letn be a succesdtirwe defineﬁ(?) to consist of pairgs, U)
such that:
e 5 € %(T)
e U is a partial functions whose domain is a finite set of basinfdas of rank
< n of the form 3z¢(x, y, z) with only the displayed free variables such that
05,6 < 05, @and whose range i, 1}
o If U(¢) is defined therlU/(¢) = 1 iff one of the followingexcluding conditions
holds:
— There aren, 1, j with i # j such thaBlz¢(m, i, 2) € s andIz¢p(m, j, 2) € s,
— There is anm such thatu—¢(m, p1 (v), p2(u)) € s, or
— 050 &T.
We say(s,U) decidesU(¢) if U(¢) is defined. We says,U) D (t,V)if s D t,
dom(U) 2 dom(V), andU | dom(V) =V.
We definer : 7,(T) — T.(T) by 7 (s,U) = s.
If t € To(T)and(s,U) € T.(T), we sayt <! (s,U) if there is a¢ such that
U(¢) = 0 butt satisfies one of the above excluding conditionsgfor
WE (s,U) holds if
Suppose that for alt O s such that <*! (s,U), WF,(t); then for all
t D @(s,U), WF,(t).

WE,(t, V) holdsif forall (s,U) D (t, V), WE., (s, U) holds.

These definitions are very similar to the+ 1 cases above; in place of existential
formulas, we have “witnesses thatfails to define a path to the left of the official path”.
As above, we have

LEMMA 6.14 (ACAy). If nis a successor,
1. If WF,(t,V) holds and(s, ') 2 (t, V) theniW F,,(s, U) holds.

—

2. If WF,(s) holds therlV F',, (s, U) holds.
3. fWF,(0,0) thenWE, (D).

By a successor, we mean > 0. In the remainder of this section, we will refer to numbers0
as “successors” in definitions or theorems which will apphghanged when we generalize to infinite well
orderings.
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LEMMA 6.15 (ACA,). Letn be a successor. Letbe a formula and suppose that
whenevelt, V) D (s,U) and(t, V') decided/ (¢), W F,,(t, V). ThenW F,,(s,U).

PrROOF The proofis similar to that of Lemnia®.9. It suffices to shbmv/[/—?;(s, U).

Suppose the premise ﬁﬁ?;(s, U) holds, so that whenevef D s ands’ <*! (s,U),
WF,(s").

First, if s satisfies one of the excluding conditions fothen (s,U U {(¢,1)}) €
To(T), and therefordV 7, (s, U U {(¢,1)}). Sincer(s,U U {(¢,1)}) = (s, U), we
havew//?n(s, U).

Otherwise, let(t, V') extend(s, U) such thatV’(¢) = 1 anddom(V) \ dom(U) =
{¢}, and lett’ D t with ¢ <1 (¢, V). Then there is a) such that’ satisfies one
of the excluding conditions fo» but V() = 0. ThereforeU(¢)) = 0 as well, so
t' <*1 (s,U), and thereforéV F,, (t'). SinceI/I//YTn(t, V) holds, it follows that for all
t' D 7(t, V), we haveW F,, (t').

Now setV = UU{(¢,0)}, so(s, V') decidesp, and lett O swith¢ <! (s, V). Then
there is a such that satisfies one of the excluding conditions fobut V' (¢) = 0.
If ¢ # ¢ thent <T! (s,U), and thereforéV F,,(t). If » = ¢ then(t,U U {(¢,1)})
also decide®, and so we have shown in previous paragraph that dgdi (¢). Since
Vﬁn(s, V), it follows that whenevet O s, W F,,(s), as desired. o

LEMMA 6.16 (ACA,). Let¢ be a formula and suppose that whenever 7,, and
for everyt D s such thatt decidesp, W F,(t), thenW F,,(s). Then wheneves, U) €

m is such that for everyt, V) O (s,U) such that(t, V') decidesy, Vﬁn(t, V),
thenW F,, (s, U).

PrROOF The proofis similar to that of Lemnia®6]10. It will suffice WBNV/V—TT;(S, U).

Suppose the premise ﬂ;(s, U) holds, so wheneverD s andt <*1 s, WF,(t).

Lett D s be given. By assumption, it suffices to show that whené&ver ¢ andt’
decidesp, WE,(t'). Soletsome’ D ¢ be given such that decidesp. If ¢ <T! (s,U)
thenW F,,(¢'). Otherwise(t’,U) 2 (s,U) and decide®, soV/VTTn(t’,U). Moreover,
whenever” D ¢ andt” <+ (¢',U), ¢ <t (s,U), and thereforéV F,,(t""). So we
haveW F,,(t'), as desired. !

By a decision of rank:, we mean either a formula of rankn, or U(¢) where¢
is a basic formula of rankl n in the form3z¢(x, y, z) with only the displayed free
variables. Note that i decidesp or U(¢) andt 2O s thent decidesp or U(¢) as well;
therefore we may say an infinite path decidesr U(¢) if any finite initial segment
does.

The following lemma is a modification of the usual statembat tvhensS is a well-

o —

founded subset df, (T") we can carry out transfinite induction alo&g

LEMMA 6.17 (1,,,(I1})-TT,). Letm be a successor. L&t C m and suppose
that there is no infinite path through deciding every decision of rank Let A be a
formula inIL,, (I1}) and suppose the following principle holds:

For any (s,U) € S, if there is a decision! such that wheneve, V) D
(s,U), (t,V) € S,and(t, V) decidesl, A(t, V') holds, thenA(s, U) holds.
Then for everys,U) € S, A(s,U) holds.
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Despite the complicated statement, this lemma actualtyrgfermulates transfinite
induction in a convenient form. Transfinite induction is alby stated for trees which
are genuinely well-founded; equivalently, there are ndvpaatisfying dI; property
(namely, having elements at every level). Here we restrcselves to those paths
satisfying all, property—deciding every decision. The fact that these quévalent is
essentially a consequence of the well-known fact thatrstates of the forny X JyVvz¢
(for ¢ quantifier-free) are equivalent to statements of the faidy¢’.

PROOF Fix a surjective functiomw from N to the set of decisions, and consider the
treeS’ of increasing sequencesfrom S such that for each, if p(¢) is a decision of
rank < n theno (i) decidesp(i). Clearly any infinite path through’ gives an infinite
path throughsS deciding all formulas, s&”’ is well-founded.

Let A’(o) hold if A(c(Je| — 1)) holds, soA’ is all,,(I1}) formula. We claimA’
is progressive: let be given with(s,U) its final element, and suppose that for all
(t,V) such thato™((t,V)) € &', A'(c™((t,V))). Then wheneve(t,V) 2 (s,U)
and(¢, V) decidesy(|ol), A'(c™{(t,V))), and therefored(¢, V). ThereforeA(s, U),

and sod’ (o).
So by transfinite induction of’, A’ holds of alle, and in particularA(s, U) for all
(s,U) € S. =

DEFINITION 6.18.

7{71(?)Jr ={(s,U) € To(T) | U(¢) = 1 whenevell/ (¢) is defined.

The following lemma is stated with premises we have alredmhyve to be true so
that it can easily be adapted to the case wheigereplaced by an infinite well-ordering
later.

THEOREM6.19 (1,2 (I13)-T1p). Letn be a successor. Suppose that:

o WheneveiV Fy(rf(s)), W Fn(s, U),

o IfWF,(0,0)thenW Fy(0),

e There is no infinite path througﬁ(?) deciding every decision.
ThenT is well-founded.

—

PROOF. We first show thatV F', (s, U) holds for all(s, U) € ’E(?) \ 7Tn(T) . Let
(s,U) be given withU(¢) = 0 for some¢. If T, is ill-founded theno, 4 < o

Os,¢

witnessedV Fy (n) (s)), and thereforéﬁn(s, U). Otherwise, for each € T, ,, let
S ={t, V)2 (s,U) | o1, =T}

We proceed by induction one T, , showing that for everyt, V') € S, V/V?n(u V).

Let (t,V) € S; be given and suppose that for evérysuch thato, 4 (k) € T
and every(t, V') D (s,U) with o ¢ = o147 (k), Vﬁn(t’,v’). Let (¢',V') be
any extension oft, V') deciding3k¢(|o:|, k) (note that, pairing variables and using the
fact thatn is a successor, this has the same rank)asThen sincel’”’ (¢) = V(¢) =
U(¢) = 0, it must be that there is suchkaand therefor¢’ - ¢(|o:|, k) for somek and
ovg €T, sovﬁn(t’,v’). SoI/I//?“n(t’,V’) holds for any(t’, V') 2 (¢, V') deciding
k¢ (|oe, k), and therefordV F,, (t,V) holds.
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By induction, for anyr € T, ,, any(t,V) € S; satisfiesl/[//?“n(t, V). In particular,
WE,(s,U).

Now we show thaﬂ/ﬁ?n(s, U) holds 1‘0r77(?)Jr using the modified induction given
by the previous lemma. Suppose tfiatlU) € 7{71(?)Jr and+ is a decision such that
whenever(t,V) D (s,U), (t,V) € 7?(?)+, and(t, V) decidesy, V/[/Tn(t,v). Then
forany(¢, V) 2 (S,U) decidingy, either(¢, V') € ’Fn(?)+, in which casd/I//?“n(t, V)
by assumption, oft, V) ¢ 77(?)+, in which case we have just shown tmﬁn(t, V).

—t
Therefore, by the previous lemma, for evésyU) € 7,(T) , WF,(s,U).
It follows in particular thatiW F',,((, ), and thereforéV F, (). Since there are no
o € T with o < 0, it follows thatTy = T is well-founded. -

DEFINITION 6.20. Let¢ be a closed formula of. Thenq@(X, Y') is the formula of
second-order arithmetic which interprets the functionlsgh#' by X and the predicate
symbolT by Y.

LEMMA 6.21 ACAy). Let A be a path throughy,,(T") deciding all formulas of
rank < n and leto, be the corresponding sequence throdglgiven byo, (i) = j iff
F(i) = j € A(m) for some (and therefore cofinitely mamny)

Then wheneves is a closed formula of rank’ n, the following are equivalent:

1. There is anm such that\(m) F ¢,
2. ¢(on, T).

PROOFE We proceed by induction on formulas. Whers atomic, the equivalence
follows immediately from the definitions.

Suppose the claim holds fgrandv. The claim for-¢ follows from the equivalence
for ¢ and the fact thad decides all formulas of rank n, including—¢. Similarly for
other propositional combinations g¢fandz).

Suppose that for evey, the claim holds fop (k). If 3z¢ € A(m) then there is some

L

k such that\ (m) - ¢(k), and by IH,¢(k) (o, T), and therefor@azg(on, T). If Vag €
A(m) then there are nev/, k such thatA(m') + —¢(k), and therefore-¢(k) (o, T)
never holds, s¥z¢(oa, T) holds. The other direction follows since eithre (o, T')

or m(aA,T) must hold, and there is some such that eitheBxz¢ € A(m) or
Vr—¢ € A(m). .

THEOREM6.22. For any finiten > 0, I1,,2 (11} )-T1, impliesX:,,-LPP.

PROOF LetT be a tree of finite sequences anddelbe a well-founded partial order.
Suppose that for every path throughT, there is aA’ which is¥,, in T' & A with
A <A -

Suppose there were an infinite paththrough7,,(T) deciding every decision of
rank < n. For eachi, there is a unique, (i) such thatF'(i) = oa(i) € 7(A()))
for somej (and therefore cofinitely manj). The functiono, must be a path through
T. Suppose\’ < o, and there is &,, formula ¢ such that3z¢(i, j, z, T, op) iff
A (i) = j. By the previous lemma, we hav&¢(i,j,z) € A(m) for somem iff
A'(i) = j. Sincel’ is a path throughl’, none of the excluding conditions fgrcan
ever hold, so whenevé(j) = (s,U) andU(¢) is definedU(¢) = 0. But this would
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——+
contradict the fact thal is a path througlv,,(T") . So there is no infinite path
——+
through7,,(T') deciding every decision.
Observe that the first two conditions in Theorem 6.19 all Holdl,, o (11} )-TIo
(sincen is finite), so we obtain the conclusion thais well-founded. -

§7. The Nash-Williams Theorem and Menger’'s Theorem.

7.1. The Nash-Williams Theorem.In what follows, we will use the lette (and
variantsh’ and so on) to represent finite sequences which are intendeit@reasing
(and specifically, members of a barrier). We briefly definekég notions needed to
state and prove the Nash-Williams Theorem; a more carefidgion is found in [8].

DEFINITION 7.1. A sequencegis increasingif wheneveri < j, b(i) < b(j).

Let B be a set of finite increasing sequences. We wiritez( B) for the set of» such
that for somé € B and some € dom(b), b(i) = n.

A barrier is a setB of finite increasing sequences such that:

e base(B) is infinite,

e If A is an infinite increasing sequence frédaxse(B), there is & € B such that

b A,

o If 0,0 € Bandb # b’ thenrng(b) Z rng(b’)

If bis a non-empty sequence, we write for the sequence wittb—| = |b| — 1 given
by b~ (i) = b(i + 1) (andb~(7) is undefined ib(i + 1) is).

If b,b’ are sequences, we write1 b’ if there is ab* such thab = b* andd’ C (b*)~.

Let Q be a partial order. 1B is a barrier B’ C B (whereB’ is finite or infinite), and
f B — Q, fisgoodif for someb, ' € B’ with b<b¥/, f(b) =g f(b). If fis not
good,f is bad If for everyb, b’ € B’ withb<b’, f(b) <¢ f(b') thenf is perfect

If Bis abarrier(Q is a B-better-quasi-orde(B-bqo) if for every barrie3’ C B and
everyf : B’ — Q, f is good.Q is abetter-quasi-orde(bqo) if for every barriel3,
is a B-bgo.

Bis a barrieriff{b | vo/ € B v’ [Z b} is well-founded as a tree frobmse(B).

DEFINITION 7.2. Given®, Q is the class of all pair&y, f) wherea is a well-order
andf : o = Q. If (o, f),(B,9) € Q, we say(a, f)=o(B,g) if there is a strictly
increasing functionr : « — § such that for ally € «, f(v) =g g(7(v)).

NEYVT, the Nash-Williams Theorem, is the statement that f6} i a bqo therq) is
bgol

GHT, the Generalized Higman’s Theorem, is the statement tidatsfa B-bqo then
Q<v is aB-bqoll

Marcone [8] has shown:

THEOREM7.3. 1.In ATRo, NWT is equivalenttaGHT.
2. II}-CA, impliesGHT.

§Note that even thougt) is not a set, we can still formulate the statement tas bgo in second order
arithmetic.

9T0ur statement o H'T differs slightly from Marcone’s: Marcone tak€3HT to be the statement that
if Q is a B-bqo for all barriersB then Q<% is a B-bqo for all barriersB, which is al'[é statement, and
mentions this version d&HT as an intermediate step.
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SinceGHT is all} sentence, it is not possible fGFHT be equivalent taIi-CAy.
We will now show that Marcone’s proof goes through essdgtiaichanged ITMPP, [

DEFINITION 7.4, If B is a barrier andX C N, we write B [ X for {b € B |
mg(b) C X}

LEMMA 7.5 RCAy). If X is an infinite subset dfuse(B) thenB | X is a barrier.

PrROOF Clearlybase(B | X) C X. Suppose\ is an infinite increasing sequence
from X. Then sinceX C base(B), there is & € B such that C A, and therefore
b € B | X. Thereforebase(B | X) = X and every infinite sequence throughhas
an initial segment i3 | X. The other two conditions are immediate sirige X C
B. -

LEMMA 7.6 RCAy). If B’ C Bis abarrierthenB’ = B | base(B’).

PROOF Supposé € B | base(B’). Let A be an infinite increasing sequence from
base(B’) such thab C A. Thenthereis & € B’ C B suchthat/ C A. If b/ # bthen
we have eitherng(b) C rng(b’) orrng(b’) C rng(b), contradicting the fact thads is a
barrier. -

DEFINITION 7.7. A sequence from B x @, o = {(bo, q0), - - - , (bx, qx)) is abad
partial array if:

e Wheni < j, maxb; < maxb;,

o |f bl <1bj, q; ﬁQ qj,

o If b e B[ base({by,...,bx}) andmaxb < max by, then there is am < k such

thatb = b;.

If o is a bad partial array, we define a partial functipfh : B — @ by setting
f9(b) = q iff there is ani such thatz (i) = (b, ¢). If A is an infinite path through the
tree of bad partial arrays, we defifié similarly.

LEMMA 7.8 RCA,). fis a bad function from a barrieB’ C B to ( iff there is
an infinite pathA through the tree of bad partial arrays such that= 2.

PROOF SupposeB’ C B is a barrier andf : B’ — Q is bad. Fix an enumeration
of B', B" = {bo,b1,...} such that ifi < j thenmaxb;, < maxb,. DefineA(i) =
(bs, f(b;)). Clearly f = f*. We must check that i C A theno is a bad partial array;
the first two conditions are immediate from the enumeratioB’cand the fact thaf is
bad. Ifb € B | base({bo, ... ,br}) andmax b < max by, thenb € B | base(B’) = B,
so there is an < k such thab = b;.

Supposeé\ is an infinite path through the tree of bad partial arrays. rilfieis clearly
bad, and we must check thasm(f*) is a barrier. Ifb € B | base(dom(f*)) then
there must be somesuch thab € base(dom(f*1™)) andmax b < base(dom(fA!")),
which implies thab € dom(fA™). .

IMarcone’s proof uses the “locally minimal bad array lemnvetijch is a principle similar, and equivalent,
to the minimal path principle. This lemma is essentially anagsulation of the particular application of the
minimal path principle we use below. Another family of rélatprinciples—the relatively locally minimal
bad array lemma and so on—could be defined, but since theydvb@uiminor combinatorial variants on the
principles we have given, we do not do so.
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We use the following uniformly effective version of the clspRamsey Theorem (the
proof of the clopen Ramsey TheoremAT R is carried out in [6], with another proof
given in [1]; the effective bounds for the complexity areagivin [5]).

THEOREM7.9 (ATR,). For each barrierB, there is an ordinakx such that when-
everB’ C B is a barrier andc : B’ — {0, 1}, there is an infiniteS C base(B) such
thatSis X, in c® B’ andcis constantorB | S.

We may adapt colorings d8 to colorings of pairs fron3:

LEMMA 7.10 (ATR,). Foreach barrierB, there is an ordinaty such that whenever
B’ C B is a barrier andc : {b,’ € B’ | bal'} — {0,1}, there is an infinite
S C base(B) such thatS is ¥, in ¢ @ B’ andcis constantor{b,b’ € B | S | b«b'}.

PROOF Wheneveb, b’ € B with b<b’, write bUb’ for the unique increasing sequence
suchrng(b U b') = rng(b) Urng(b'). DefineB* = {bU b’ | b,b’ € B andb<b'}. Note
that B* is a barrier orbase(B): if A is an infinite increasing sequence fréase(B),
we may find somé € B such thaty — A. We may also find som& € B such that
b © A~. Then we have < ¥/, and thereforé Ub T A~ andbU b € B*. Leta
be such that given any coloring of a subbarrie35f there is an infinite homogeneous
subbarrie,, in ¢ ® B*.

Now let B’ C B be given and let be a coloring of{b,b’ € B’ | b<t'}. We may
define a coloring:* on (B’)* C B* by ¢*(bUb') = ¢(b,V'). LetS C base(B’) be
given such that* restricted to(B’)* | S is constant. Them restricted toB’ | S is
constant. -

THEOREM7.11 (TLPPy). GHT holds.

PROOF Let B be a barrier, and supposgis a B-bqo. We setb, o) < (V/,0') if
|o] < |o’|; clearly< is a well-order onB x Q<. Suppos&)<“ is not aB-bqo; then let
A be a relatively minimal infinite sequence through the trebauf partial arrays from
BtoQ<~.

Clearly fA(b) # () for all b, so we may writef*(b) = g(b)~(q(b)) for all b €
dom(f%). Forb <V, definec(b,b') = 0iff q(b) <o ¢(b') ande(b,b’) = 1 otherwise.
By the previous lemma, there is an infinéeC dom(f*) C B such that is constant
on B | S—that is,q restricted taS is either bad or perfect. Sineg is a B-bqo,c must
be constantly), soq | (B | S) is perfect.

For eachn, write A(n) = (b,, 0,,). Letn be least such thdt, € B [ S, and define
B* = B | (SUbase({b;j}i<n)). If by € B | S, defineAy(i) = (b;, g(b;)), and
if b, € B*\ (B | S), defineAy(i) = (bs, f(b;)); if neither of these applyAy(7) is
undefined. Let\’ be the infinite sequence defined recursivelyWyi) = A{(j) where
j is least such thakj,(j) is defined and there is n6 < i with A’ (i) = A ().

Observe that foi < n, A’(¢) = A(i) (since by construction, for < n, b; €
B*\ (B | 9)), and thatA’(n) < A(n) (sinceA’'(n) = (by, g(b,)) while A(n) =
(b g(b) ™ (a(bn)))).

We now show that\’ is an infinite path through the tree of bad sequences. Since
dom(fA') = B* is a barrier, we need only show th&t’ is bad. Supposa’(i) =
(b,o), A'(j) = (V/,0’), andb < V.

We consider three cases. fe B | Sandb € B [ Stheno = g(b), o/ =
g(t'). Sinceq | (B | S) is perfect,q(b) <q ¢(B'), and sinceg(b) ™ (q(b)) 25"
g(b')™ (q(v)), we must have(b) 25~ g(V').
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Ifoe B*\ (B ] S)andt € B*\ (B | S)theno = f(b), o’ = f(V'), and we have
f0) 25% f(V).

Observe that for any € B [ S, max(base(B*) \ S) < maxb. In particular, this
means that it is not possible to have B | S butd’ € B*\ (B [ S). The remaining
case is thab € B* \ (B | S) whileb’ € B | S. In this case we have = f(b) while
o' = g(b'). Sinceg(b') =<5 f(V') andf(b) A5 f(b'), we havef (b) £5 g(V').

Therefore\’ is an infinite sequence through the tree of bad partial aaagid’ < A.

It remains to check that the proof just given goes througlf PP . It suffices to
show that for eactB, there is amx such thatA’ is X, in A. SinceA’ is computable
from the setS, this follows from the fact that the coloringis computable from\ and
there is any such thatS is alwaysX:,, in c. -

COROLLARY 7.12. NWT holds inTLPPy.

7.2. Menger’'s Theorem.In this subsection, we discuss a theorem about graphs.
WhengG is a graph, we writd” (G) for the set of vertices anll(G) for the set of edges.

DEFINITION 7.13. If G is a graph andd C V(G),B C V(G), an A-B pathis a
finite sequences of vertices, ... , v, such thaty, € A, v,, € B, and for eachi < n,
(vi,vi+1) S E(G)

An A-B separatoris a setC C V(G) such that everyd-B path inG contains an
element ofC.

Menger’'s Theorem for countable graphs is:

THEOREM7.14. For anyG and anyA, B C V(G), there is a sef/ of disjoint A-B
paths and anA-B separatorC' such thatC' consists of exactly one vertex from each
pathinM.

The proof uses the following notions:

DEFINITION 7.15. Awarpin (G, A, B) is a subgrap®V of G such that:

o ACV(WW),

e W is a union of disjoint paths beginning .

If Wis awarpin(G, A, B), ter(W) is the set of vertices i (1) which are the
terminal elements of paths beginningAn

A warpW is awaveif ter(1W) is anA-B separator.
We order waves byl <Y if W is a subgraph oY".

It will be convenient to assume that our warps and waves doartiin elements of
A except as the first element of a path.

Shafer [13] shows that Menger’s Theorem for countable gsépprovable inl}-C Ao,
and our treatment of Menger's Theorem follows his paper. Westhow

THEOREM7.16 (TLPPy). Menger’'s Theorem for countable graphs holds.
His proof is split into two parts:

LEMMA 7.17 [1}-CA,). Forany graphG and sets4, B C V(G), there is a count-
ably codedv-modelM of X1-DC, containingG, A, B such thatM believes there is a
maximal (with respect t&’) wavelV.
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LEMMA 7.18 (ACAy). If M is a countably coded-model of©:}-DCy containing
G, A, B and M believes there is a maximal waVE then the conclusion of Menger's
Theorem holds fo€, A, B.

It suffices to show that the first lemma can be proveMiaPPy; by[4.8, we need
only show the following:

LEMMA 7.19 (ACAy). LetG, A, B be given. There is an ill-founded tr&g a well-
ordering~, and a computable bijection between waves and paths throuflsuch that
wheneveWV < W/, n(W') <X m(W).

PROOF Fix an enumeratio’ (G) = {go, 91, - - - } and an enumeratiofpy, p1, . . . }
of all A-B pathsinG. We defin€eT” to consist of sequencésy, . .. , d,,) such that:

e If £ = 2i then either, = (0,0) ordx, = (1, ¢;) whereg; is a path beginning with

A and ending withy;,

o If k =2k + 1thend, = (i + 2,.5;) whereS; is a non-empty subset &f(p;),

If ¢; intersectsy; then eithew; is an end-extension @f; or ¢; is an end-extension
of gi,

If g; appears iny; thendy; # (0,0),

If g; € A then&zi 75 (0, O),

If g; € Sj thend,; 75 (O, O),

There is some; € .S; such that no path;, is a proper end-extension gf.

Given an infinite path\, we define a warpl’ = 7=1(A) = U, @ If gi € Atheng;
witnesses thag; € V(W). W is, by definition, a union of paths beginning4n and the
third condition ensures that distinct paths are disjointsé&e thaiV’ is a wave, observe
that for anyA- B pathp;, some element i¥; must be the final element of a path.

Conversely, given a wavid’, we define a path (17) through this tree as follows:

o If g, € V(W) thenn(W)(2i) = (1,¢;) whereg; is the (unique) path iV

beginning inA and ending withy;,

o If g, & V(W) thenn(W)(2¢) = (0,0),

o T(W)(2i+1) = (i +2,V(p;) NV (W)).

SinceW is a waver(W) is a path through".

We define< by:

e (1,¢) < (0,0),

o (i4+2,5)=<(i+295)ifs"CS.

To see that this is well-founded, note(int+ 2, .5), |S| < |V (p;)| is finite.

We must check that itV < W’ thenm(W’') < n(W). SinceW < W', there
must be some; € V(W) \ V(W’); we may assume; is the least such. Clearly
7(W')(2i) < =(W)(27), so we need only check that fgr< i, 7(W')(j) < 7(W)(4).
For j even, by construction and the fact thatas chosen least,(W)(j) = #(W’)(5).
Forj odd, since’ (W’) C V(W), we must haver(W)(j) < m(W')(j) as desired.

To see thaf is ill-founded, observe that there is a wa¥e(specifically,V (W) = A
andE (W) = 0), and thereforer(1V) is an infinite path througf'. !

§8. The Relative Leftmost Path Principle. In this section we prove:

THEOREMS8.1 (ATR,). If ais well-ordered and a successor then arynodel sat-
isfyingIl,. 2 (11} )-TT, also satisfies,,-LPP.
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We have covered the case wherés finite above, and in the case where> w, we
actually only needl,, . 1 (I1})-TI,.

Fix o and assum&’ O(«), and fix a modelM satisfyingll, . ; (I1})-TIo. The argu-
ments below are carried out in the external modelAdfR ) concerning the internal
model. We write), v for arbitrary elements dield(«) and for limits in field(«). We
also fix a tre€l” and an ordering< belonging toM such that\l = W F(<). We will
import as many definitions as possible from Seclibn 6, sincesficcessor levels our
definitions are unchanged.

DEFINITION 8.2. We defineC* to be the languagg from above, together with, for
each limitA € field(a + 1), a new predicat®,. For eachy € field(« + 1), we define
therank~ formulasand thebasic ranky formulasinductively by:

e F'(i) = j wherei, j are terms is a basic rafikformula,
All other atomic formulas are rartkformulas,
If ¢ is a ranky formula therdz¢ andVz¢ are basic rank + 1 formula,
For any limitA € field(a + 1) and anyn, V,(n) is a basic rank formula,
The rank~ formulas contain the basic rank formulas and are closed under
AV, —, =

We write 7, for the collection of basic formulas of rank 7, for ;.. Fs, and
write rk(¢) for the leasty such that is a formula of ranky.

Fix a Gddel coding-] of £*. We defing- on L* by adding two additional clauses
to usual deduction relation for first-order logic:

o st Vi([¢]) iff rk(¢) < Xands F ¢.
o If rk(¢) > Athens - =V ([¢]).

DEFINITION 8.3. Leta be a well-ordering. For eache field(a + 1), defineT,, (")
to be the set of consistent, finite setsf closed basic formulas of rank + such that:

e If F(i) = k € sandi’ < i then thereis g’ such thatF'(i") = j' € s,

e Leti be largest such that for somiethe formulaF'(i) = j € s; then the sequence

(F(0),...,F(i)) eT,

e If Jzp(x) € s then there is somesuch thats N Fj,4) - ¢(i),

o If Vi([¢]) € sthenrk(¢) < Xands N Fepp(g) - ¢

If s € Fa, wewriterk(s) = max{rk(¢) | ¢ € sN Fcr}.

We says decidesVy ([¢]) if Va([¢]) € s, Va([—¢]) € s, orrk(¢p) > A.

If § <+, definer] : T,(T) — T5(T) by ) (s) = {¢ € s | rk(¢) < d}.

If 6 <\ teTs5(T),seTaT), wewritet <*! sif there is a formuld/y ([¢]) € s
such that - —¢.

DEFINITION 8.4. We extend the definition 6% £, C T, (T") by adding a definition
for limits:

e WF{(t) holds ifWFT’k(t)(w;\k(t) (t)).
Note that, as above, eatli F) is all, (I11) formula.
LEMMA 8.5. If WF,(s) ands C ¢ thenWW F, (¢).

LEMMA 8.6. Letd < v < «. Then:

1. If WF5(m{(s)) thenW F, (s), and
2. Ift € T,(T) N T5(T) and W F, (t) thenW F5(t).
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PROOFE We prove these by simultaneous inductiondon. (This is necessarily an
aboutM carried out externally td/. Note that the statements of these two parts are of
the formvz(¢(z) — (x)) whereg, v arell, (I1}) or I (I1}) with § < v < «, so the
statement of the theorem1s, (17 ), and so at worsfl, 1 (II}).) Suppose the claim
holds for all pairs)’ < +' with eitherd’ < § or+" < ~.

If v =9, this is immediate. Suppoge< v andy = g + 1. If WFg(wg'H(s)) then
by IH, WFs(r5 ! (s)), and therefore by Lemnia . Fs.(s).

If t € Ts+1(T) N Ts(T) = T5(T) andW Fz4(t) thent contains no formula of rank
B8 + 1, and so there are no D wg“(t) = t such thats <*! ¢, so we must have
W Fs(t), and therefore by IHW Fis(t).

Supposey = M is a limit. If W Es(72(s)), we consider two cases. #f(s) > & then
we havelV F. 5 (wjk(s) (s)) by applying the first part of IH t@, 7k (s), and therefore
W E(s). If k(s) < d then we havers (s) = 7)), (s), S0 by applying the second part
of IHto rk(s), d, we havelW F, (5 (s).

Supposé € T\(T) N Ts(T) andW Fy(t). Then sincerk(t) < ¢, we may apply the
first part of IH tork(t), ¢ to obtainWV F(t). =

LEMMA 8.7. Letd < v < «, let ¢ be a basic rank formula, lets € 7,(7T"), and
suppose that for evetyD s such that decidesp, W F, (t). ThenW F,(s).

PrROOFE By main induction ony and side induction ory. (Note that for a giveny
the statement il 1 (I11 ), so the statement 8,11 (I11).) The case wheré =~ =0
is handled by Lemmia8.8. The case whére- v and~ is a successor is handled by
Lemmd®6.9. The case whefe< v and~ is a successor is handled by Lemma 6.10.

So suppose is a limit. It suffices to show that if for everyD s such that decides
o, WE,(t), thenW F. (s). If 6 = v theng = V, ([¢']); in this case, we sat = Fxy
for some variabler not appearing in); otherwised < ~ and we set) = +’. Set
B = max{rk(s),rk(y)} <.

Supposé 2 7 (s) andt decides). Set

tUs if 0 <~
t'=<q tusu{V([y'])} ifd=~andttvy

tusU{V([-w')} ifd=~andt+ ¢
Then for anyp, t' F piiff t = p, sot’ is consistent. Alsot’ O s andt’ decidesp, so
WE,(t). Sincerk(t') = 8 andm(t') = t, we havelV Fs(t). SinceW Fg(t) holds
forall ¢ > m}(s) decidingy, it follows from IH thatW Fjs (7} (s)) holds. Therefore
W E,(s) holds. 4

LEMMA 8.8. If WE, (0) thenW E,(0).

PrROOFE By induction omy. If v is a successor, this follows immediately from IH and
Lemmd&.11L. Ify is a limit then since'k(0) = 0, we immediately havéV F, (0). A

The definition ofﬁ; given above fory a successor is unchanged. In particular, we
obtain:

THEOREM8.9. Assumex is a successor. Suppose there is no infinite path\{in
— +
through7,(T) deciding all decisions of rank «. ThenT is well-founded (in\f).
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PrROOF We apply Theorerh 6.19. The first two assumptions are givebhdmymas
and8J7. Note that Lemrha 6117 is identicallipr, ; (I1} ) formulas. —|

DEFINITION 8.10. Let¢ be a closed formula of“. Thend?(X, Y') is the formula
of second-order arithmetic which interprets the functipmbol F' by X, the predicate
symbolT by Y, andV,([¢]) by VY (He(\,Y) — ([¢],7k(¢)) € Y) for a suitable
formulad.

LEMMA 8.11. Let A be a path (inM) through7,,(T") deciding all formulas of rank
< aand leto be the corresponding path throu@hgiven byo s (i) = jiff F(i) = j €
A(m) for some (and therefore cofinitely many)

Then whenevep is a closed formula of rank «, the following are equivalent:

1. There is anm such thatp € A(m),

2. §(oa,T).
PROOFE We proceed by induction on formulas. The only new case isnwhe-=
V([+]); this is easily covered by the inductive hypothesis. !

The proof of Theorerh 6.22 goes through unchanged, showiatgtile modell/
satisfyingIl, 1 (I1})-TTIo contains a path satisfying,-LPP, which completes the
proof of Theoremi 811.
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