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Abstract. In reverse mathematics, it is possible to have a curious situation where we know that an implica-

tion does not reverse, but appear to have no information on how to weaken the assumption while preserving the

conclusion (other than reducing all the way to the tautologyof assuming the conclusion). A main cause of this

phenomenon is the proof of aΠ1

2
sentence from the theoryΠ1

1
-CA0 . Using methods based on the functional

interpretation, we introduce a family of weakenings ofΠ1

1
-CA0 and use them to give new upper bounds for

the Nash-Williams Theorem of wqo theory and Menger’s Theorem for countable graphs.

§1. Introduction. The strongest of the “big five” systems of Reverse Mathematics
is the systemΠ1

1-CA0, whose defining axiom,Π1
1 comprehension, states that

∃X∀n[n ∈ X ↔ ∀Y φ(n, Y )]

whereφ is an arithmetic formula (that is, a formula without set quantifiers). This axiom
is impredicative: the setX is defined in terms of a quantifier over all sets, particularly
including the setX itself and sets which may be defined in terms ofX .

It is impossible for aΠ1
2 sentence to be equivalent toΠ1

1
-CA0 (see [8, Corollary

1.10] for a proof); this means that any proof of aΠ1
2 sentence inΠ1

1
-CA0 can be opti-

mized to go through in some weaker system. Despite this,Π1
1-CA0 is the best known

upper bound for severalΠ1
2 theorems (in particular, the Nash-Williams Theorem∗ of

bqo theory [8] and Menger’s Theorem for countable graphs [13]; rather than give the
definitions necessary to state these theorems here, they arediscussed in detail below).

In this paper, we attempt to resolve this situation in a systematic way: using ideas
derived from the functional interpretation, we isolate theportion ofΠ1

1-CA0 actually
being used in these proofs, giving a family of weaker systemswith Π1

2 axioms, and then
show that the proofs inΠ1

1
-CA0 actually go through, essentially unchanged, in these

weaker systems.
Rather than being based on theΠ1

1 comprehension axiom, we base our systems on
the equivalent leftmost path principle:

Let T be an ill-founded tree. Then there is a leftmost path throughT .

Our family of weaker systems use theΣα-relative leftmost path principle:

Let T be an ill-founded tree. Then there is a pathΛ throughT such that no
path throughT is bothΣα in T ⊕ Λ and to the left ofΛ.

Partially supported by NSF grant DMS-1157580.
∗Actually, the Nash-Williams Theorem is notΠ1

2
, but rather can be deduced inATR0 from aΠ1

2
sentence

provable inΠ1

1
-CA0.
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We defineΣα-LPP0 to beRCA0 extended by theΣα-relative leftmost path principle
Σα-LPP, andTLPP0 to beRCA0 extended byΣα-relative leftmost path principle
for every well-orderingα. Note that these formulations are still fundamentally impred-
icative: the pathΛ promised to exist is still to the left of paths which might be defined
in terms ofΛ itself. However the impredicativity is “partial” in the sense that we have
restricted, in advance, the complexity of the operations which will be might be used to
define paths to the left ofΛ.

Our main results can be summarized as:

THEOREM 1.1.

1. Σ0-LPP0 impliesATR0 (Theorem 4.2).
2. Σ2-LPP0 proves Kruskal’s Theorem (Theorem 5.5).
3. AΠ1

1-TI0 (see [15, Chapter VII.2]) impliesΣ<ω-LPP0 (Theorem 6.22).
4. TLPP0 proves the Nash-Williams Theorem (Corollary 7.12).
5. TLPP0 proves Menger’s Theorem for countable graphs (Theorem 7.16).
6. If Σα+2-LPP holds in a model ofRCA0 then there is anω-model satisfying

Πα(Π
1
1
)-TI0 (Theorem 4.3),

7. In a model satisfyingΠα+2(Π
1
1
)-TI0 andWO(α) with α a successor,Σα-LPP

holds (Theorem 8.1).

Unlike the old upper bounds, we do not know of any theoreticalobstacle to having
a reversal of either the Nash-Williams Theorem or Menger’s Theorem for countable
graphs toTLPP0. However the best known lower bound remainsATR0. It is there-
fore natural to ask:

QUESTION. Does either the Nash-Williams Theorem or Menger’s Theoremfor count-
able graphs implyTLPP0 overATR0?

We emphasize that this paper does not give novel proofs of anyof the mathematical
theorems analyzed; our proof of Kruskal’s Theorem is unchanged from Nash-Williams’
proof [9], our proof of the Nash-Williams Theorem is taken from Marcone’s work [8],
and our proof of Menger’s Theorem is the one given by Shafer [13]. Our goal is to
illustrate that the methods here isolate the portion ofΠ1

1-CA0 already being used in
existing proofs, without requiring changes to the proofs themselves.

We briefly explain the motivation for the relative leftmost path principle. The leftmost
path principle is aΠ1

3 sentence. Consider the analogous situation at the arithmetic level,
aΠ0

3 sentence:

σ = ∀x∃y∀zφ(x, y, z).

If we prove aΠ0
2 sentenceτ usingσ, we do not expect to need the full strength ofσ in

the proof. The functional interpretation (see [2, 7]) can beused to extract a functionF
from the proof ofσ → τ together with a proof of

[∀x∃y′∀z ≤ F (x, y′)φ(x, y′, z)] → τ.

Informally, a proof ofσ → τ in a reasonable system cannot actually use the fact that the
witnessy(x) to σ is a genuine witness for allz; the proof only used the fact thaty(x)
is a witness for finitely many particular choices ofz (where the particular choices may
depend on the value ofy(x)), and therefore it suffices to use an “approximate witness”
y′ which good enough for this particular proof.
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The relative leftmost path principle follows a similar justification. A proof of aΠ1
2

sentence from the leftmost path principle cannot depend on having an actual leftmost
path; instead, given a supposed leftmost pathΛ, the proof must produce some (now
countable instead of merely finite) list of paths (again, depending onΛ), and use the
fact that none of these paths are actually to the left ofΛ. An appropriate form of the
relative leftmost path principle then gives us an “approximate witness” which is good
enough for a particular proof. (This analogy between set andnumeric quantifiers is a bit
misleading if taken too seriously; the arguments given in this paper are actually derived
from a functional interpretation for quantifiers over ordinals [3].)

We end the introduction with a short discussion of the proof-theoretic strength of
TLPP0. We wish to avoid the technicalities of ordinal analysis in this paper, and noth-
ing else in the paper depends on these comments, so we will be somewhat informal. The
theoriesΠα(Π

1
1
)-TI0 are well-suited to ordinal analysis (for instance,Πα(Π

1
1) formu-

las embed naturally in the framework of ramified set theory used in [10]; alternatively,
an ordinal analysis could be given by a transfinite generalization of the analysis in [11]).
The results described above show that the proof-theoretic ordinal of TLPP0 is the
smallestγ > 0 such that wheneverα < γ, the proof-theoretic ordinal ofΠα(Π

1
1
)-TI0

is also less thanγ.
Since alreadyΣ<ω-LPP implies AΠ1

1-TI0, whose proof-theoretic ordinal is the
Howard-Bachmann ordinal, the consistency strength ofTLPP0 lies somewhere above
the Howard-Bachmann ordinal. Recall that the usual ordinalnotation for the Howard-
Bachmann ordinal isψǫΩ1+1 (this notation is explained in detail in [10], but note that
ǫα is theα-th ǫ number, whereǫ0 is the proof-theoretic ordinal of Peano arithmetic
andACA0). The theoryΠ1

1-CA
−
0

, which adds parameter-freeΠ1
1 comprehension to

ACA0, has the same proof theoretic ordinal. If one instead adds parameter-freeΠ1
1

comprehension toATR0, one obtains a theory with proof-theoretic ordinalψΓΩ1+1,
whereΓα is theα-th fixed point of the Veblen function; most importantly,Γ0 is the
ordinal ofATR0. (The definition of the collapsing functionψ has to be adjusted to ac-
comodate the presence of the Veblen function, so this notation requires some additional
work to make precise.) Inspection of the embedding ofΠα(Π

1
1)-TI0 into the frame-

work of [10] shows that the proof-theoretic ordinal ofTLPP0 is at mostψΓΩ1+1. In
particular, while the consistency strength ofTLPP0 is above the Howard-Bachmann
ordinal, it still requires only one level of impredicativity, whereasΠ1

1
-CA0 requiresω

levels of impredicativity.
The author thanks Stephen Simpson, Reed Solomon, and the anonymous referees for

many helpful suggestions.

§2. Notation. We briefly recall some notation which will be convenient to use through-
out this paper.

We fix, throughout this paper, a computable bijective pairing function(·, ·) : N2 → N.
We routinely view subsetsS of N as subsets ofN2 by equatingS with the set of pairs
x, y such that(x, y) ∈ S.

DEFINITION 2.1. If S ⊆ N2, we writefield(S) for {x | ∃y (x, y) ∈ S or (y, x) ∈
S}. We often writexSy for (x, y) ∈ S. We writeSx for {y | (x, y) ∈ S}.

By a partial order, we mean a set≺⊆ N2 such that:

1. If x ≺ y andy ≺ z thenx ≺ z,
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2. x 6≺ x for anyx.

We say≺ is a linear orderingif for everyx, y ∈ field(≺), eitherx ≺ y, x = y, or
y ≺ x.

When≺ is a partial order, we write� for the reflexive closure of≺.

We always use< to denote the usual ordering onN. We often refer to orderings by
a name for the field of the ordering, leaving the underlying order implicit. For instance,
we will refer to a linear orderα, and to the actual relation as≺α.

DEFINITION 2.2. Asequence fromS is a function from a (proper or improper) initial
segment ofN to S. A finite sequenceis a sequence whose domain is finite while an
infinite sequenceis a sequence whose domain isN. For anyn, we writeσ ↾ n for
σ ↾ [0, n]. We write 〈q0, . . . , qn〉 for the sequence withdom(〈q0, . . . , qn〉) = [0, n]
and〈q0, . . . , qn〉(i) = qi. Whenσ is a finite sequence, we write|σ| for | dom(σ)|.

If σ, τ are sequences, we writeσ ⊑ τ to indicate thatdom(σ) ⊆ dom(τ) and for all
i ∈ dom(σ), σ(i) = τ(i). If σ is a finite sequence, we writeσ⌢τ for the concatenation
of σ andτ : dom(σ⌢τ) = dom(σ) ∪ {|σ| + n | n ∈ dom(τ)}, (σ⌢τ)(i) = σ(i) if
i < |σ| and(σ⌢τ)(i) = τ(i − |σ|) if i ≥ |σ|.

If ≺ is a partial order onS, we extend≺ to sequences fromS by settingσ ≺ τ if
there is anυ⌢〈n〉 ⊏ σ, υ⌢〈m〉 ⊏ τ wheren ≺ m.

We generally use lettersσ, τ for finite sequences andΛ for infinite sequences.

DEFINITION 2.3. If≺ is a partial order, we say≺ is well-founded, sometimes written
WF (≺), if there is no infinite sequenceΛ such thatΛ(i + 1) ≺ Λ(i) for all i. If ≺ is
both well-founded and linearly ordered, we say≺ is well-ordered, writtenWO(≺). We
generally assume that0 is the least element of≺.

If ≺ is not well-founded,≺ is ill-founded.

Any elementγ ∈ field(≺α) = α induces a new partial order, the restriction of≺α to
{δ ∈ field(α) | δ ≺α γ}. We sometimes useγ to refer to both the (number coding the)
element ofα and to the partial order given by the set.

DEFINITION 2.4. A tree a setT of finite sequences such that ifσ ∈ T andτ ⊑ σ
thenτ ∈ T . A paththroughT is an infinite sequenceΛ such that for alln, Λ ↾ n ∈ T .

We sayT is well-foundedif there does not exist a path throughT .

Equivalently,T is well-founded iff the restriction of⊐ to T is a well-founded partial
order.

We make extensive use in this paper of the standard systems ofReverse Mathematics,
particularlyRCA0, ACA0, ATR0, andΠ1

1-CA0. [15] is the standard reference.

DEFINITION 2.5. If Y is a set and≺ is a partial order, for anyj ∈ field(≺) we write
(Y )j = {(m, i) ∈ Y | i ≺ j} and(Y )j = {m | (m, j) ∈ Y }.

If θ(x, Y, ~z, ~Z) is a formula with the displayed free variables, we writeHθ(α, Y, ~z, ~Z)

for the formula which says that for everyj ∈ α, (Y )j = {x | θ(x, (Y )j , ~z, ~Z)}. When
θ is a universalΣ1 formula, we just writeH(α, Y, Z), omitting the other parameters.

When we are dealing with anω-model andα is a computable well-ordering,H(α, Y, Z)

just means thatY = Z(α). Recall that the main axiom ofATR0 is∀~z∀~Z∀α(WO(α) →

∃Y Hθ(α, Y, ~z, ~Z)).
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DEFINITION 2.6. If φ is a formula,TI(α, φ) is the formula stating that transfinite
induction forφ holds alongα:

∀x ∈ field(α) [∀y ≺α xφ(y) → φ(x)] → ∀x ∈ field(α)φ(x).

WhenW is a set, we writeTI(α,W ) for TI(α, x ∈W ).

§3. Principles and Claims. In this section we introduce the main principles we will
work with through the rest of this paper.

DEFINITION 3.1. LetT be a tree and let≺ be a partial order. A pathΛ throughT is
minimal(with respect to≺) if there is no pathΛ′ throughT such thatΛ′ ≺ Λ.
MPP0 is the theory consisting ofRCA0 together with theminimal path principle:

If T is an ill-founded tree and≺ is well-founded then there exists a minimal
path throughT .

LPP0 is RCA0 together with the restriction of the minimal path principleto the
case where≺ is the usual ordering< on the natural numbers. We call this theleftmost
path principle.

We will later show that the minimal and leftmost path principles are equivalent (The-
orem 4.4), and in a computable way, so in all the variants we introduce, there will be no
difference between the minimal and leftmost versions.

The following is proved in [8]:

THEOREM 3.2 (RCA0). LPP0 is equivalent toΠ1
1
-CA0.

We introduce a family of restricted forms ofMPP0 andLPP0:

DEFINITION 3.3. For anyn, Σn-MPP0 is RCA0 together with theΣn-relative
minimal path principle:

WheneverT is an ill-founded tree of finite sequences and≺ is a well-
founded partial order, there is a pathΛ throughT such that there is no path
Λ′ throughT which isΣn in T ⊕ Λ such thatΛ′ ≺ Λ.

Σn-LPP0 is RCA0 together with the restriction of theΣn-relative minimal path
principle to the case where≺ is<.

When we takeATR0 to be our base theory, we may extend this definition to higher
levels of the jump hierarchy. We will see later that evenΣ0-LPP0 impliesATR0.

DEFINITION 3.4. Letα be a well ordering. IfZ is a set, we sayW is Σα in Z if
either:

• α = β + 1 is a successor,H(β, Y, Z), andW is computably enumerable inY , or
• α is a limit,H(α, Y, Z), andW is computable inY .

We sayW isΠα in Z if the complement ofW isΣα in Z.
If M is a model ofRCA0 andα is an ordering inM such thatM � WO(α) then

we sayΣα-MPP, Σα-relative minimal path principle, holds inM if:

WheneverT is an ill-founded tree of finite sequences and≺ is a well-
founded partial order, there is a pathΛ throughT such that no setΣα in
T ⊕ Λ is a path throughT to the left ofΛ.

TMPP0 isRCA0 together with thetransfinite minimal path principle
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WheneverWO(α) holds,Σα-MPP holds.

Σα-LPP andTLPP0 are the restrictions ofΣα-MPP andTMPP0 respectively to
the case where≺ is<.

Note thatTMPP0 andTLPP0 are axiomitized byΠ1
2 formulas.

The minimal path principle is inconvenient to analyze, and for that purpose we will
introduce some convenient theories of transfinite induction.

DEFINITION 3.5. A formula isΠ1
1, which we will also writeΠ0(Π

1
1), if it has the

form

∀Xφ(X)

whereφ contains no set quantifiers. A formula isΠn+1(Π
1
1) if it has the form∀xφ(x)

whereφ is built fromΠn(Π
1
1) formulas using propositional connectives (∧,∨,→, and

¬).
We writeΠn(Π

1
1)-TI0 for ACA0 together with the scheme:

∀β(WF (β) → TI(β, φ))

wheneverφ is aΠn(Π
1
1) formula.

Note that a formula isAΠ1
1 (“arithmetic inΠ1

1”) exactly if the formula isΠn(Π
1
1) for

somen. In particular,Π<ω(Π
1
1
)-TI0 is precisely the theoryAΠ1

1
-TI0, whose proof-

theoretic strength is precisely the Howard-Bachmann ordinal. Other theories with the
same proof-theoretic strength includeΠ1

∞-TI0, the theory extendingACA0 by full
transfinite induction (see [15, VII.2]) andΠ1

1-CA
−
0

, the theory extendingACA0 by
parameter-freeΠ1

1 comprehension (see [10]). Despite having the same proof-theoretic
strength,AΠ1

1
-TI0 does not imply either of these other theories.

Since the theoryAΠ1
1-TI0 is well understood, we introduce a family of transfinite

generalizations. We will show that these transfinite generalizations are intertwined with
the propertiesΣα-LPP, providing a tool to calibrate the strength ofTLPP0.

DEFINITION 3.6. LetM be anω-model ofRCA0 and letα be a well-ordering.
We sayM satisfiesΠα(Π

1
1
)-TI0 if wheneverφ(n,X) is an arithmetic formula with

parameters fromM , Z = {n |M |= ∀Xφ(n,X)}, and whenever≺ is a relation in the
modelM such thatM |=WF (≺), andW isΠα in Z, TI(≺,W ) holds.

We do not require thatα have any representation inM , and the setsZ andW are
therefore determined externally toM ; similarly, whetherTI(≺,W ) holds is determined
externally toM . On the other hand, the relation≺ need only be well-founded in the
sense ofM . Consequently “M satisfiesΠα(Π

1
1)-TI0” is not expressed by a formula

of second order arithmetic insideM . However we can still ask this question of a given
model (takingα to be an actual well-ordering), and whenN is a fixed model ofATR0

such thatN |= WO(α) andM is a countably codedω-model contained inN , the
statement “M satisfiesΠα(Π

1
1
)-TI0” can be expressed inN by a formula of second

order arithmetic. In the latter case,N itself might fail to be an (actual)ω-model, andM
is anω-sub-model ofN . Importantly, in either caseZ is absolute inM , and sinceα is
either actually well-founded, or we are working in a modelN such thatN |= WO(α),
the collection ofΠα in Z sets is uniquely determined byZ.
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§4. Lower Bounds on the Leftmost Path Principle. We show that even the weak-
est principle we are considering,Σ0-LPP0, is fairly strong. We begin by showing that
it impliesACA0, which will let us use arithmetic comprehension in later proofs, and
illustrate our general method.

THEOREM 4.1 (RCA0). Σ0-LPP impliesACA0.†

PROOF. It suffices to proveΣ1 comprehension. Letφ(x, y) be aΣ0 formula (possi-
bly with parameters). We say a finite sequenceσ from {0, 1} is valid if for eachi < |σ|,

σ(i) = 0 ⇒ ∀j < |σ|¬φ(i, j).

Consider the treeT of valid finite sequences;T is clearly computable from its parame-
ters, and is ill-founded since the function given byΛ0(i) = 1 for all i is an infinite path
through this tree.

Note that ifΛ is any infinite path throughT andΛ(i) = 0 then∀y¬φ(i, y, S): if
φ(i,m, S) then we cannot have anyσ ∈ T with |σ| > m andσ(i) = 0.

By Σ0-LPP, we may find a pathΛ so that no infinite pathΛ′ computable fromΛ is
to the left ofΛ. Suppose{i | Λ(i) > 0} 6= {i | ∃yφ(i, y, S)}. SinceΛ(i) = 0 implies
∀y¬φ(i, y, S), it must be that there is somei with Λ(i) > 0 but∀y¬φ(i, y, S). But then
the function

Λ′(j) =

{
Λ(j) if j 6= i
0 if j = i

is also an infinite path throughT and easily computable fromΛ. But Λ′ < Λ, contra-
dicting the fact thatΛ was relatively leftmost. ⊣

THEOREM 4.2 (RCA0). Σ0-LPP impliesATR0.

PROOF. It suffices to show transfinite recursion overΣ1 formulas. SupposeWO(α)
and letθ(x) = ∃yφ(x, y, Y ); we will show that∃XHθ(α,X). Note that sinceφ is Σ0,
for any i, Y such that∃yφ(i, y, Y ) holds, there is anm such that for anyY ′ such that
χY ′ ↾ m = χY ↾ m, ∃y < mφ(i, y, Y ′).

We will again consider a tree of potential characteristic functions forY . A finite
sequence of natural numbers isvalid if:

• For anyγ ∈ field(α) and anyi such thatσ((i, γ)) = 0, for everyY such that
χY ↾ dom(σ) = σ we have∀y < |σ|¬φ(i, y, (Y )γ),

• If σ((i, γ)) > 1 then for everyY such thatχY ↾ dom(σ) = σ we haveφ(i, σ((i, γ))−
2, (Y )γ),

• If there arej, δ such that(j, δ) < (i, γ), δ >α γ, and σ((j, δ)) 6= 1 then
σ((i, γ)) 6= 1.

Note that, sinceφ is a computable formula, these conditions are arithmetic (indeed,
computable), despite the apparent set quantifier.

The idea is that whenσ((i, γ)) = 0, the universal formula should be true, and when
σ((i, γ)) > 0, the existential should be true. Whenσ((i, γ)) = 1, the existential
quantifier is “unjustified”: no witness is required. Whenσ((i, γ)) > 1, however, a
witness is required, andσ((i, γ))− 2 should be such a witness.

The final condition in the construction of the tree is perhapsthe least obvious; the
point is that when we setσ((i, γ)) = 0, we might be depending on the fact that

†The simplified construction here was pointed out to us by Stephen Simpson.
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σ((j, δ)) = 1 for someδ <α γ but j much larger thani so that(i, γ) < (j, δ). If
we wanted to fix a potential characteristic function by settingσ((j, δ)) = 0, we would
have to restoreσ((i, γ)) = 1, and since(i, γ) appears below(j, δ), we are no longer
moving to the left. Our solution is to require that once we setσ((i, γ)) 6= 1 in a path, we
are supposed to be certain about(j, δ) wheneverδ <α γ. This is enforced by requiring
that we actually provide witnesses to existential formulasof all lower ranks.

There are no requirements whenσ(x) = 1, so the functionΛ0(x) = 1 for all x is
an infinite path through this tree. ByΣ0-LPP, we may find a relatively leftmost path
Λ. Let Y = {i | Λ(i) > 0}. SinceACA0 satisfies arithmetic transfinite induction, we
show by induction onγ ∈ field(α) that (Y )γ = {i | ∃yφ(i, y, (Y )γ}. Assume that
Hθ(γ, (Y )γ) holds.

Suppose∃yφ(i, y, (Y )γ). Then there is somem such that wheneverχY ′ ↾ m = χY ↾

m, ∃y < mφ(i, y, (Y ′)γ). Then we cannot haveΛ((i, γ)) = 0, soΛ((i, γ)) > 0 and
thereforei ∈ (Y )γ .

Suppose∀y¬φ(i, y, (Y )γ). If Λ((i, γ)) > 1, there would be somem such that when-
everχY ′ ↾ m = χY ↾ m, φ(i,Λ((i, γ))− 2, (Y ′)γ), contradicting∀y¬φ(i, y, (Y )γ). If
Λ((i, γ)) = 0, i 6∈ (Y )γ as desired.

So supposeΛ((i, γ)) = 1. Observe that forδ <α γ, we have(Y )δ = {i |
∃yφ(i, y, (Y )δ}. In particular, ifΛ((j, δ)) = 1 andδ <α γ then there must be somey
such thatφ(i, y, (Y )δ), and we may therefore computably (in(Y )δ) find such ay; we
name this valuey(j, δ). We define

Λ′((j, δ)) =





y(j, δ) + 2 if δ <α γ, Λ((j, δ)) = 1, and(i, γ) < (j, δ)
Λ((j, δ)) if δ <α γ and eitherΛ((j, δ)) 6= 1 or (j, δ) < (i, γ)
1 if δ >α γ
Λ((j, δ)) if δ = γ andj 6= i
0 if j = i andδ = γ

.

Note thatΛ′ < Λ: if (j, δ) < (i, γ) and δ ≤α γ thenΛ′((j, δ)) = Λ((j, δ)) by
definition, while ifδ >α γ then, sinceΛ satisfied the third condition in the definition of
the tree, we must have hadΛ((j, δ)) = 1 = Λ′((j, δ)).

We check thatΛ′ is an infinite path throughT ; let Y ′ = {i | Λ′(i) > 0}. Let
σ ⊏ Λ′ be a finite initial segment. Supposeσ((j, δ)) = 0; thenδ ≤α γ and either
Λ((j, δ)) = 0 or (i, γ) = (j, δ), and since(Y ′)γ = (Y )γ and∀y¬φ(j, y, (Y )γ), also
∀y¬φ(j, y, (Y ′)γ).

If σ((j, δ)) > 1 then againδ ≤α γ andφ(j,Λ′((j, δ))−2, (Y )δ), soφ(j,Λ′((j, δ))−
2, (Y ′)δ).

Finally, if there is any(j′, δ′) < (j, δ) with δ <α δ′ andσ((j′, δ′)) 6= 1, we have
δ <α δ

′ ≤α γ, and thereforeσ((j, δ)) 6= 1.
SoΛ′ is an infinite path computable fromΛ and to the left ofΛ, which contradicts

the choice ofΛ. ⊣

Finally, we give our main lower bound onΣα-LPP0. Theorem 8.1 shows that this
bound is almost sharp, leaving a small gap between the amountof transfinite induction
we need to obtainΣα-LPP and the amount we show to be implied byΣα-LPP.

THEOREM 4.3. Let N be a model ofRCA0 containing an orderingα such that
N �WO(α) andN � Σα+2-LPP. Then

N � “there exists a countably codedω-model ofACA0 satisfyingΠα(Π
1

1
)-TI0” .
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The proof gives a bit more, namely that the same claim would hold if N � Πα+1-LPP,
and evenΠα-LPP if eitherα ≥ ω orα is odd.

PROOF. Working insideN , we will construct a modelM . We will view a sequence
Λ as coding a modelM by setting(i, n) ∈ M iff Λ((i, n)) > 0. SinceM will be
viewed as a countable codedω-model, this is saying thatMi = {n | Λ((i, n)) > 0}.

In order to ensure closure under arithmetic comprehension,it will be convenient to
have a name for the setMi. We consider an extension of the language of second order
logic by countably many new set constants,S1, . . . . (For technical reasons, it will be
convenient to assume that this language has existential quantifiers and negation, but no
universal quantifier.) We viewM as a model of this extended language by defining
M � n ∈ Si iff n ∈Mi.

We will define our tree so that whenφ is an arithmetic formula in this language with
a single free variable, the setM(0,⌈φ⌉) = {n | M � φ(n)}. This will ensure that we
have a model ofACA0. (When we define conditions below, we fix a variable and only
discussM0,⌈φ⌉ where no other variables occur free inφ; there are no conditions on other
cases.)

The new complication will be ensuring that the model satisfies Πα(Π
1
1)-TI0. Sup-

poseM were not a model ofΠα(Π
1
1
)-TI0; then there would be some arithmeticφ(X, x),

somen, and a sequenceΥ, Πα in {j | ∀iφ(Mi, j)}, such thatΥ is an infinite descend-
ing sequence inMn (where we viewMn as coding a partial order). (The key point,
of course, will be thatΥ is Πα+1, and soΣα+2, in M .) We will ensure that ifM(2,n)

is non-trivial then it is some descending sequence inMn. (We will also useM(1,n) to
make the coding easier.)

We will handle the dependencies of one set on another in a similar manner to the
previous theorem. For this purpose, we define

• lvl((0, ⌈t ∈ Si⌉)) = lvl(i) + 1,
• lvl((0, ⌈φ⌉)) = 0 if φ is atomic and not of the formt ∈ Si,
• lvl((0, ⌈¬φ⌉)) = lvl((0, ⌈φ⌉)) + 1,
• lvl((0, ⌈φ ∧ ψ⌉)) = lvl((0, ⌈φ ∨ ψ⌉)) = max{lvl((0, ⌈φ⌉)), lvl((0, ⌈ψ⌉))}+ 1,
• lvl((0, ⌈∃xφ⌉)) = lvl((0, ⌈∀xφ⌉)) = lvl((0, ⌈φ[0/x]⌉)) + 1,
• lvl((1, n)) = lvl(n) + 1,
• lvl((2, n)) = lvl(n) + 1,
• lvl((i, j)) = 0 in all other cases.

We say a sequenceσ is valid if wheneverσ(((i, j), k)) is defined:

• If i = 0 andj = ⌈t ∈ Sn⌉ thenσ(((i, j), k)) = σ((n, k)),
• If i = 0 and j = ⌈φ⌉ whereφ is atomic and not of the formt ∈ Si then
σ(((i, j), k)) = 1 if φ is true and0 if φ is false,

• If i = 0 and j = ⌈¬φ⌉ thenσ(((i, j), k)) = 1 if σ(((i, ⌈φ⌉), k)) = 0 and0
otherwise,

• If i = 0 andj = ⌈φ ∧ ψ⌉ thenσ(((i, j), k)) = 1 if both σ(((0, ⌈φ⌉), k)) > 0 and
σ(((0, ⌈ψ⌉), k)) > 0, and0 otherwise,

• If i = 0, j = ⌈∃xφ⌉, andσ(((i, j), k)) = 0 then there is nou < |σ| such that
σ(((i, ⌈φ(u)⌉), k)) > 0,

• If i = 0, j = ⌈∃xφ⌉, σ(((i, j), k)) > 1, andσ(((i, ⌈φ(σ(((i, j), k)) − 2)⌉), k)) is
defined thenσ(((i, ⌈φ(σ(((i, j), k)) − 2)⌉), k)) > 0,

• If i = 1, k > 0, andσ(((i, j), 0)) = 0 then
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1. σ(((i, j), k)) is a sequence〈q0, . . . , qk〉,
2. Wheneveri < k andσ((j, (qi+1, qi))) is defined,σ((j, (qi+1 , qi))) > 0,
3. If k > 1 thenσ(((i, j), k − 1)) ⊏ σ(((i, j), k)).

• If i = 2 andσ(((1, j), 0)) = 0 thenσ(((2, j), (k, q)) = 1 if σ(((1, j), k))k = q
and0 otherwise.

It is easy to construct an infinite path through this tree (thesequence constantly1
will no longer work, because of the conditions for atomic formulas,∧, and¬, but these
cases are easily dealt with).

Let Λ be the path given byΣα+2-LPP. We show that for alln,

1. If n = (0, ⌈φ⌉),Mn = {i |M � φ(i)},
2. If n = (2,m) and there is any infinite decreasing sequence inMm which isΣα+1

in M thenMn is such a sequence.

Naturally, we proceed by induction onlvl(n). The first claim is identical to the argu-
ment in the previous theorem. The second claim is obtained bya similar argument:
suppose there is an infinite decreasing sequenceΥ in Mm which isΣα+1 in M . By
construction, ifMn is not such a sequence, we haveσ(((1,m), 0)) 6= 0, so we obtain
a new sequenceΛ′ by settingΛ′(((1,m), 0)) = 0, Λ′(((1,m), k + 1)) = Υ ↾ k + 2,
andΛ′(((2,m), k)) = Υ(k), and resetting everything of higher level. Note that any
component which depends on the values atM(1,m) orM(2,m) (for instance, sets defined
by formulas containing the constantS(2,m)) has a higher index thenm, and therefore
all its indices are greater than((1,m), 0). SinceΛ′(((1,m), 0)) < Λ(((1,m), 0)) and
Λ′ is Σα+1 in M , we obtain a contradiction, soMn was already an infinite descending
sequence inMm, concluding the induction.

This immediately gives thatM is a model ofACA0. To see thatM satisfies
Πα(Π

1
1
)-TI0, observe that ifY = {n | M � ∀Xφ(X,n)} thenY is Π0

1 in M , and
therefore any setΠα in Y is Πα+1 in M . In particular, any set defined by aΠα(Π

1
1)

formula isΣα+2 in M . It follows thatM satisfiesΠα(Π
1
1)-TI0. ⊣

Before continuing, we note that there is no difference in strength between the leftmost
and minimal path principle.

THEOREM 4.4 (RCA0). 1. LPP0 is equivalent toMPP0.
2. For anyα, Σα-LPP is equivalent toΣα-MPP.
3. TLPP0 is equivalent toTMPP0.

PROOF. The right to left directions are all trivial. We prove the left to right direction.
Let≺ be a well-founded partial order. We define a computable mapπ fromfield(≺) ⊆

N toN<ω such that ifx ≺ y thenπ(x) < π(y) (in the lexicographic ordering). We first
define an auxiliary mapπ′ inductively.π′ will have the property that its image consists
only of sequences of even numbers followed by a single odd number. We defineπ′

by the following algorithm: lety be given and supposeπ′(x) has been defined for all
x < y. If there is anyx < y such thaty ≺ x, choosex ≺-least such that this holds, so
π′(x) = σ⌢〈n〉, and setπ′(y) = σ⌢〈n − 1,m〉 wherem is the smallest odd number
soπ′(y) 6= π′(z) for z < y. If there is no suchx, setπ′(y) = 〈m〉 wherem is again
the smallest odd number soπ′(y) 6= π′(z) for z < y.

CLAIM 1. If x ≺ y thenπ′(x) < π′(y).

PROOF. We proceed by induction on the maximum ofx andy with respect to<.
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Supposey < x. We proceed by side induction ony along≺, so assume that whenever
z < x andx ≺ z, π′(x) < π′(z). First, assume there is no suchz, so y is ≺-least
such thatx ≺ y andy < x. Then for someσ, n, π′(y) = σ⌢〈n〉 while π′(x) =
σ⌢〈n− 1,m〉 for somem, so certainlyπ′(x) < π′(y). Otherwise, there is somez < x
such thatx ≺ z ≺ y; then we haveπ′(z) < π′(y) by main IH andπ′(x) < π′(z) by
side IH, soπ′(x) < π′(y).

Supposex < y. Suppose there is somez < y such thaty ≺ z, and letz be≺-
least such that this is the case. Then by IH,π′(x) < π′(z) = σ⌢〈n〉 while π′(y) =
σ⌢〈n − 1,m〉. If σ⌢〈n − 1,m′〉 ⊏ π′(x) for somem′ then we havem′ < m, so
π′(x) < π′(y). Otherwise, sinceπ′(x) < σ⌢〈n〉, we must haveπ′(x) < σ⌢〈n − 1〉,
and thereforeπ′(x) < π′(y). If there is no suchz, π′(y) = 〈m〉 while π′(x) = 〈n〉⌢τ
wheren < m, so againπ′(x) < π′(y). ⊣

CLAIM 2. Supposeπ′(x) = σ⌢〈n〉 andπ′(y) ⊐ σ⌢〈n− 1〉. Theny ≺ x.

PROOF. First, note that by constructionx < y. We proceed by induction ony − x.
π′(y) must have the formτ⌢〈m − 1,m′〉; if m = n then we havey ≺ x. Otherwise,
there must be somez with x < z < y such thatπ′(z) = τ⌢〈m〉 ⊐ σ⌢〈n − 1〉. By
IH we havez ≺ x (sincez − x < y − x andπ′(z) ⊐ σ⌢〈n − 1〉) andy ≺ z (since
y − z < y − x andπ′(y) ⊐ τ⌢〈m− 1〉), and since≺ is a partial order,y ≺ x. ⊣

CLAIM 3. {σ | ∃x σ ⊑ π′(x)} is well-founded.

PROOF. Suppose not, and letσ0 ⊏ σ1 ⊏ · · · be an infinite descending sequence.
Since odd numbers are always terminal, eachσi consists only of even numbers. Each
σi = τ⌢i 〈ni − 1〉 for someτi, ni, and by the construction ofπ′, there must be some
xi such thatπ′(xi) = τ⌢i 〈ni〉. Observe thatσi ⊏ π′(xi+1), and thereforexi+1 ≺ xi.
Therefore thexi form an infinite descending sequence through≺, contradicting the fact
that≺ is well-founded. ⊣

Now we defineπ(x) = π′(x)⌢〈x〉. (The purpose of this suffix is to ensure that the
inverse map is computable.) Given a sequenceσ, defineπ(σ) inductively byπ(〈〉) = 〈〉
andπ(σ⌢〈n〉) = π(σ)⌢π(n). π is clearly injective.

Now let T be an ill-founded tree of finite sequences and defineT ′ = {σ | ∃τ ∈
T σ ⊑ π(τ)}. SinceΣ0-LPP impliesACA0, T ′ exists. IfΛ is an infinite path through
T , π(Λ) is an infinite path throughT ′, soT ′ is ill-founded.

CLAIM 4. If Λ′ is a path throughT ′, there is a unique pathΛ throughT such that
π(Λ) = Λ′, andΛ′ is computable fromΛ.

PROOF. Note that, since{σ | ∃x σ ⊑ π(x)} is well-founded, all subsequences ofΛ′

consisting only of even numbers must be finite. Then we may uniquely decomposeΛ′

into a sequence of blocks

Λ′ = σ⌢
0 〈n0,m0〉

⌢σ⌢
1 〈n1,m1〉 · · ·

whereσi consists only of even numbers andni is odd. Then for eachi, we must have
π(mi) = σ⌢

i 〈ni〉, so settingΛ(i) = mi, we haveπ(Λ) = Λ′. ⊣

Let Λ′ be a path throughT ′ given byLPP0 and letΛ be the unique path throughT
such thatπ(Λ) = Λ′. If Λ∗ ≺ Λ thenπ(Λ∗) < Λ′, contradicting the choice ofΛ. The
second and third parts of the claim follow since ifΛ∗ isΣα in Λ, π(Λ∗) isΣα in Λ′. ⊣
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4.1. Models ofΣ1
1
-DC0. In this section we show that, in addition to proving the

existence of models ofΠα(Π
1
1
)-TI0, TLPP0 proves the existence of certain models

satisfyingΣ1
1-DC0. This will be needed in our proof of Theorem 7.16.

We follow almost exactly the notation of [15, Chapter VIII.4]

DEFINITION 4.5. We writeO+(a,X) to mean thata = (e, i) for somee andi and
thate is anX-recursive index of anX-recursive linear ordering≤X

e andi ∈ field(<X
e ).

If O+(a,X) andO+(b,X), we writeb <X
O a to mean thata = (e, i), b = (e, j), and

j <X
e i.

We writeO(a,X) to mean thatO+(a,X) and there is no infinite sequence(ai) such
thata = a0 >

X
O a1 >

X
O> · · · .

THEOREM 4.6 (TLPP0). If T is an ill-founded tree and≺ is well-founded then
there is a countable codedω-modelM such thatT ∈M ,M satisfiesΣ1

1
-DC0, andM

satisfies that there is a≺-minimal path throughT .

PROOF. We first carry out the proof of Lemma VIII.4.18 of [15], taking into account
that we need to also include a path throughT which will become our≺-minimal path.

Let O1(a, T ) be aΣ1
1 formula stating that there is an infinite pathΛ throughT such

that:

1. O+(a, T ),
2. There is a countably codedω-modelM of ACA0 such thatT ∈M , Λ ∈M , and
M satisfiesO(a, T ) ∧ ∃Y H(a, Y, T ⊕ Λ) andM satisfies thatΛ is a≺-minimal
path throughT .

If O(a, T ) holds then certainlyO1(a, T ), a = (e, i), and since<T
e ↾ i is a well-order,

there is aΛ such that no path computable in aY satisfyingH(a, Y, T⊕Λ) is≺ Λ. Since
TLPP0 impliesATR0, we have someY such thatH(a, Y, T ⊕ Λ), and we may take
M to be the set of sets Turing reducible toY .

SinceO1(a, T ) is Σ1
1, O1(a, T ) cannot be equivalent toO(a, T ), so there is ana∗

such thatO1(a
∗, T ) ∧ ¬O(a∗, T ), and therefore anω-modelM∗ of ACA0 such that

T ∈M∗, Λ ∈M∗,M∗ satisfiesO(a∗, T ),M∗ satisfies∃Y H(a∗, T ⊕ Λ, Y ), andM∗

satisfies thatΛ is a≺-minimal path throughT .
The proof of Lemma VIII.4.19 of [15] now shows that there is a modelM ⊆ M∗ of

Σ1
1-DC0 containingT andΛ; it follows thatM believesΛ is a≺-minimal path through

T . ⊣

§5. Higman’s and Kruskal’s Theorems.

DEFINITION 5.1. Q is awell-quasi-order (wqo)if Q is a partial order and whenever
Λ : N → Q, there arei < j such thatΛ(i) �Q Λ(j).

A sequenceσ fromQ is bad if there is noi < j such thatσ(i) �Q σ(j).

Q is a well-quasi-order iff the tree of bad sequences fromQ is well-founded.

DEFINITION 5.2. If Q is a partial order,Q<ω is the set of finite sequences fromQ
and≺ω

Q is given byσ � τ iff there is an order-preservingπ : [0, |σ| − 1] → [0, |τ | − 1]

such thatσ(i) � τ(π(i)) for all i < |σ|.

Nash-Williams gave the following short proof of Higman’s Theorem [9]:

THEOREM 5.3. If Q is a wqo then so isQ<ω.
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PROOF. SupposeQ is a wqo butQ<ω is not. Defineσ ≤ τ if |σ| ≤ |τ |. Let Λ
be a leftmost path through the tree of bad sequences fromQ<ω. ClearlyΛ(i) 6= 〈〉
for any i, since then we would haveΛ(i) = 〈〉 �<ω

Q Λ(i + 1). So we may write
Λ(i) = Λ′(i)⌢〈q(i)〉 for all i. Definec(i, j) = 0 iff q(i) �Q q(j), andc(i, j) = 1
otherwise. By Ramsey’s Theorem for Pairs, there is an infinite setS such thatc is
homogeneous onS.

If c were homogeneously1, the functionq ↾ S would give an infinite sequence in
Q contradicting the fact thatQ is a wqo. Soc must be homogeneously0. If for any
i < j ∈ S, Λ′(i) �<ω

Q Λ′(j) then we would haveΛ(i) �<ω
Q Λ(j) sinceq(i) �Q q(j).

This contradicts the construction ofΛ.
Let {i0, i1, . . . } be the increasing enumeration ofS. DefineΛ∗(i) = Λ(i) if i <

i0 andΛ∗(i) = Λ′(ii−i0) if i ≥ i0. Then for anyi < j, either i < j < i0, so
Λ∗(i) = Λ(i) 6�<ω

Q Λ(j) = Λ∗(j), or i < i0 ≤ j, in which caseΛ∗(i) = Λ(i) 6�<ω
Q

Λ(ij−i0 ) �
<ω
Q Λ∗(j), or i0 ≤ i < j, in which caseΛ∗(i) = Λ(ii−i0) 6�

<ω
Q Λ(ij−i0) =

Λ∗(j). SoΛ∗ is an infinite bad sequence andΛ∗ < Λ contradicting the fact thatΛ is a
leftmost path. ⊣

We may observe thatΛ∗ in the proof isΣ1, and therefore that this proof goes through
without change inΣ1-LPP.

Schütte and Simpson [12, 14] gave a different proof of Higman’s Theorem inACA0.
In particular, their proof shows that if there is an infinite bad sequenceΛ fromQ<ω then
there is an infinite bad sequenceΛ′ fromQ such thatΛ′ isΣ2 in Λ.

We now wish to discuss the proof of Kruskal’s Theorem; inconveniently, the theorem
concerns trees in a slightly different sense than we have been using. To avoid confusion,
we will call theseK-trees.

DEFINITION 5.4. AK-tree is a finite setT together with a partial order≤T such
that:

• T has a unique rootr ∈ T such that for allt ∈ T , r ≤T t and ift 6= r thent 6≤T r,
and

• If t ≤T s andu ≤T s then eithert ≤T u or u ≤T t.

We writet∧T u for the infimum oft andu, sot∧T u ≤T t, t∧T u ≤T u, and if both
v ≤T t andv ≤T u thenv ≤T t ∧T u.

If Q is a quasi-ordering, aQ-labeledK-tree is a pair(T, f) whereT is aK-tree
andf : T → Q. We define a quasi-ordering≺K on Q-labeledK-trees by setting
(T, f) �K (T ′, f ′) if there is a functionπ : T → T ′ such that for eacht, u ∈ T ,
π(t ∧T u) = π(t) ∧T ′ π(u) andf(t) �Q π(f ′(t)).

THEOREM 5.5 (Σ2-LPP0). If Q is a wqo then so are theQ-labeledK-trees under
≺K .

PROOF. SupposeQ is a wqo but theQ-labeledK-trees are not. Define≺∗
K to by

setting(T, f) ≺∗
K (T ′, f ′) if |T ′| < |T |. Then the tree of bad sequences ofQ-labeled

K-trees is ill-founded, so letΛ be a relatively≺∗
K-minimal bad sequence given by

Σ2-LPP.
Given aQ-labeledK-tree(T, f), let F(T, f) be the finite set of proper subtrees of

(T, f). If T is a tree, writerT for the root ofT andσT,f for the sequence of im-
mediate successors ofrT (in an arbitrary order). We may equate(T, f) with the pair
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(f(rT ), σT,f ) ∈ Q × F(T, f)<ω. In particular, iff(rT ) �Q f ′(rT ′ ) andσT,f �<ω
K

σT ′,f ′ then(T, f) �K (T ′, f ′).
For eachi, we haveΛ(i) = (Ti, fi). For i < j, definec(i, j) = 0 if fi(rTi

) �Q

fj(rTj
) andc(i, j) = 1 otherwise. By Ramsey’s Theorem for pairs, we may restrictΛ

to a subsequence wherec is constant, and sinceQ is a wqo, it must be thatc(i, j) is
constantly0 on this subsequence. In particular, sinceΛ(i) 6�K Λ(j) wheni < j, we
haveσTi,fi 6�

<ω
K σTj ,fj .

Let S =
⋃

i F(Λ(i)). ThenΛ gives an infinite bad sequence inS<ω. By Higman’s
Theorem, there is an infinite bad sequenceΛ′(i) throughS. For eachi, let ki be least
such thatΛ′(i) ∈ F(Λ(ki)). Let k = mini ki and choosei least such thatki = k.
Define

Λ∗(j) =

{
Λ(j) if j < k
Λ′(j − k + i) if k ≤ j

SinceΛ∗ ↾ k = Λ ↾ k andΛ∗(k) = Λ′(i) ∈ F(Λ(k)), we haveΛ∗ 6� Λ. To see that
Λ∗ is bad, letj < j′ be given; ifj′ < k thenΛ∗(j) = Λ(j) 6� Λ(j′) = Λ∗(j′) and if
k ≤ j thenΛ∗(j) = Λ′(j − k + 1) 6� Λ′(j′ − k + 1) = Λ∗(j′). If j < k ≤ j′ then
Λ∗(j) = Λ(j) 6� Λ(kj′−k+1) and sinceΛ∗(j′) = Λ′(j′ − k + 1) ∈ F(Λ(kj′−k+1)),
we must haveΛ∗(j) 6� Λ∗(j′).

But thenΛ∗ is an infinite path to the left ofΛ, contradicting the choice ofΛ.
To see that the proof goes through inΣ2-LPP0, we need only observe that we ap-

plied Higman’s Theorem to a path given by Ramsey’s Theorem for Pairs, and since we
may choose the path given by Ramsey’s Theoremlow2 in Λ (see [4]), it follows thatΛ∗

can be chosenΣ2 in Λ. ⊣

A complete analysis of the proof-theoretic strength of Kruskal’s Theorem was given
by Rathjen and Weiermann [11];Σ2-LPP0 is close to (but not exactly) tight, at least
with respect to proof-theoretic strength.

§6. The Arithmetic Relative Leftmost Path Principle. In this section we prove the
following:

THEOREM 6.1. For everyn > 0, Πn+2(Π
1
1
)-TI0 provesΣn-LPP.

Throughout this section, fix a treeT and a well-ordering≺. We writeTσ for {τ ∈
T | σ ⊑ τ}.

All definitions in this section are assumed to be given inACA0.
Before launching into the rather technical proof, we outline the main ideas of the

argument. We will construct a treêTn(T )
+

with the property that any path through

this tree computes a leftmost path throughT . Roughly speaking, elements of̂Tn(T )
+

consist of a distinguished finite sequence inT , viewed as a guess at a leftmost path
throughT , together with “guesses” at the truth values of finitely manysentencesΣn

in the path throughT , and also together with explicit witnesses showing that certain
Σn formulas fail to define a path further to the left. An infinite path through this tree
will have to correctly predict the value of everyΣn sentence, and produce witnesses
showing that noΣn formula defines a path further to the left; failure to do so will lead
to the path being cut off.
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If T̂n(T )
+

is ill-founded, we will have the desired leftmost path. If̂Tn(T )
+

is well-
founded, we will have to show thatT is well-founded as well; the key idea is that

becausêTn(T )
+

is well-founded, we may apply transfinite induction along it, though it
will take some work to define the right formula to perform transfinite induction with.

We now set about our construction.̂Tn(T )
+

will be the last in a tower of trees.

DEFINITION 6.2. LetL be the language of first-order arithmetic, including a pairing
function(·, ·) and the corresponding projectionsp1, p2, with a new function symbolF
and a new predicate symbol̂T . We define therank n formulasand thebasic rankn
formulasinductively by:

• F (i) = j wherei, j are terms is a basic rank0 formula,
• All other atomic formulas are (non-basic) rank0 formulas,
• If φ is a rankn formula then∃xφ and∀xφ are basic rankn+ 1 formula,
• The rankn formulas contain the basic rankn formulas and are closed under
∧,∨,¬,→.

We writeFn for the collection of basic formulas of rankn and writerk(φ) for the
leastn such thatφ is a formula of rankn.

Whens is a set ofL-formulas, we definês = s∪{T̂ (n) | n ∈ T }∪{¬T̂ (n) | n 6∈ T }.
We take⊢ to be the usual deduction relation for first-order logic.

We now define the treesTn(T ). An initial segment ofTn(T ) combines a sequence
from T with a guess at the values of the formulasΣn in a path extending this sequence.

DEFINITION 6.3. For eachn, defineTn(T ) to consist of those finite setss of L-
formulas such that:

• If φ ∈ s thenφ is a closed basic formula of rank≤ n,
• ŝ is consistent,
• If F (i) = k ∈ s andi′ < i then there is aj′ such thatF (i′) = j′ ∈ s,
• If F (i) = j ∈ s then the sequence〈F (0), . . . , F (i)〉 ∈ T ,
• If ∃xφ(x) ∈ s then there is somei such that̂s ∩ Frk(φ) ⊢ φ(i).

We says decidesF (i) = j if there is somej′ such thatF (i) = j′ ∈ s; we says
decides∃xφ if either∃xφ ∈ s or ∀x¬φ ∈ s.

If i is largest such that for somej, F (i) = j ∈ s, we writeσs for 〈F (0), . . . , F (i)〉.
If m ≤ n, defineπn

m : Tn(T ) → Tm(T ) by πn
m(s) = {φ ∈ s | rk(φ) ≤ m}.

If m < n, t ∈ Tm(T ), s ∈ Tn(T ), we writet ≺+1 s if there is a formula∀xφ ∈ s
with rk(φ) = n such that̂t ⊢ ∃x¬φ.

Note that the construction ofTn(T ) requires arithmetic comprehension. (We could
probably, at significant additional labor, reduce this to computable comprehension, since
we are really only concerned with fairly direct proofs.)

When we writet ≺+1 s, we are usually interested in the case wheret ⊇ πn+1
n (s). In

other words, just looking atπn+1
n (s), we had not yet found a witness to the formula¬φ,

but t is a way of extendingπn+1
n (s) so that¬φ must be true. This induces a different

elementt′ ∈ Tn(T ) with πn+1
n (t′) = t ⊇ πn+1

n (s). We think oft′ as being to the left of
s (as the notation≺+1 implies); this means that witnessed existential statements belong
to the left of universal statements, and therefore that a leftmost path throughTn(T ) is
exactly a path in which we guessΣn formulas correctly.
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LEMMA 6.4 (ACA0). If s ∈ Tn+1(T ), t ∈ Tn(T ), t ⊇ πn+1
n (s) andt 6≺+1 s then

t ∪ s ∈ Tn+1(T ).

PROOF. We need only check that̂t ∪ s is consistent. Suppose not. Sincet is consis-
tent,t̂ ⊢ ¬φ for someφ ∈ s of rankn+1. It cannot be thatφ is universal, since then we
would havet ≺+1 s, soφ must be existential. But ifφ is existential thenπn+1

n (s) ⊢ φ,
and sincet is consistent and extendsπn+1

n (s), we cannot havêt ⊢ ¬φ. ⊣

DEFINITION 6.5. For eachn, we define propertiesWF ′
n ⊆ Tn(T ) andWFn ⊆

Tn(T ) inductively as follows.

• WF ′
0(t) holds if:
Suppose that for everyτ ≺ σt, Tτ is well-founded. ThenTσt

is well-
founded.

• WF ′
n+1(t) holds if:
Suppose that for alls ⊇ πn+1

n (t) such thats ≺+1 t, WFn(s); then for
all s ⊇ πn+1

n (t),WFn(s).
• WFn(t) holds if for everys ⊇ t in Tn,WF ′

n(s).

We have statedWF ′
0 andWF0 to emphasize the similarity withWF ′

n andWFn,
howeverWF ′

0(t) actually immediately impliesWF0(t): if WF ′
0(t) holds,s ⊇ t, and

for everyτ ≺ σs, Tτ is well-founded, then also for everyτ ≺ σt, Tτ is well-founded,
and thereforeTσt

is well-founded, which implies thatTσs
is well-founded. This means

thatWF0 is (equivalent to) a Boolean combination ofΠ0(Π
1
1) formulas, and so for each

n > 0,WFn is (equivalent to) aΠn+1(Π
1
1) formula.

WF ′
0 (and thereforeWF0) captures the notion of “not being an initial segment of

the leftmost path”:WF0(t) holds if either the tree abovet is well-founded, or if some
path to the left is ill-founded. Thus the only elements failingWF0(t) are the initial
segments of the leftmost path itself.WF ′

n+1 extends this to the higher order trees; we
view t ∈ Tn(T ) as consisting of two components:πn+1

n (t), which is the lower order
content which should be addressed by lower order trees, and the remainder.WF ′

n+1

will be defined so that whenWF ′
n+1(t) fails to hold, it must be that not only does

WFn(π
n+1
n (t)) fail, essentially saying thatπn+1

n (t) is an initial segment of a leftmost
path, but thatt is correct about truth values along this leftmost path. Equivalently,
WF ′

n+1(t) holds if either somes ≺+1 t belongs to the leftmost path throughTn(T ), or
if no extension ofπn+1

n (t) which is compatible witht belongs to such a path.

LEMMA 6.6 (ACA0). If WFn(s) ands ⊆ t thenWFn(t).

PROOF. Immediate, since the definition is monotonic. ⊣

LEMMA 6.7 (ACA0). If WFn(π
n+1
n (t)) thenWFn+1(t).

PROOF. AssumingWFn(π
n+1
n (t)), for everys ⊇ πn+1

n (t), WFn(s). This implies
WFn+1(t). ⊣

LEMMA 6.8 (Π1(Π
1
1
)-TI0). Let φ be a basic rank0 formula, lets ∈ T0(T ), and

suppose that for everyt ⊇ s such thatt decidesφ,WF0(t). ThenWF0(s).

PROOF. φ has the formF (i) = j for somej. By main induction onr, we show that

Whenevert ⊇ s with |σt| = i+ 1− r,WF0(t).
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If r = 0, any sucht decidesF (i) = j, and therefore by assumption,WF0(t).
Suppose the claim holds forr and lett ⊇ s be given with|σt| = i + 1 − (r +

1) = i − r. If there is aτ ≺ σt such thatTτ is ill-founded then we immediately
haveWF0(t). So assume that for everyτ ≺ σt, Tτ is well-founded. For eachk, let
tk = t∪{F (|σt|) = k}. By side induction onk along≺, we will show thatTσtk

is well-
founded. Suppose that for allk′ ≺ k with tk′ ∈ T0(T ), Tσt

k′

is well-founded. Since
|σtk | = |σt|+ 1 = i+ 1− r, we haveWF0(tk). If τ ≺ σtk andτ ∈ T , we either have
τ ≺ σt, in which case we have assumedTτ is well-founded, orτ = σ⌢

t 〈k′〉 = σtk′

for somek′ ≺ k, in which case we have thatTτ is well-founded by side IH. Therefore,
by WF0(tk), Tσtk

is well-founded. SinceTσtk
= Tσ⌢

t 〈k〉 is well-founded whenever
σ⌢
t 〈k〉 ∈ T , it follows thatTσt

is well-founded, as desired.
Since|σs| = i+ 1− r for somer, the statement holds in particular fors. ⊣

LEMMA 6.9 (ACA0). Letφ be a basic rankn + 1 formula, lets ∈ Tn+1(T ), and
suppose that for everyt ⊇ s such thatt decidesφ,WFn+1(t). ThenWFn+1(s).

PROOF. Without loss of generality, we may assumeφ is the formula∃xψ. It suffices
to show that whenever the assumption holds ofs, WF ′

n+1(s). If s decidesφ we have
WFn+1(s) by assumption, so assumes does not decideφ. Assumes satisfies the
premise ofWF ′

n+1(s): whenevert ⊇ πn+1
n (s) andt ≺+1 s,WFn(t).

First, consider anys+ ⊇ s such that(s+ \ s) ∩ Fn+1 = {φ}, so s+ decidesφ.
Supposet ⊇ πn+1

n (s+) andt ≺+1 s+. Then there is a formula∀xψ′ ∈ s+ and ak such
that t̂ ⊢ ¬ψ′(k). We must have∀xψ′ ∈ s and thereforet ≺+1 s, soWFn(t). Since
WFn+1(s+) holds, it follows that whenevert ⊇ πn+1

n (s+),WFn(t).
Now let s− = s ∪ {∀x¬ψ} and supposet ⊇ πn+1

n (s−) andt ≺+1 s−. As before,
there is a formula∀xψ′ ∈ s− and ak such thatt ⊢ ψ′(k). If ψ′ 6= ¬ψ, again we
haveWFn(t) sincet ≺+1 s. Otherwise, sets+ = t ∪ s ∪ {φ}; thenπn+1

n (s+) = t,
and thereforeWFn(t) by the preceding paragraph. So for anyt ⊇ πn+1

n (s−) with
t ≺+1 s−, WFn(t). Sinces− decidesφ, we haveWFn+1(s−), and therefore for
all t ⊇ πn+1

n (s−), WFn(t). Sinceπn+1
n (s−) = πn+1

n (s), it follows that whenever
t ⊇ πn+1

n (s),WFn(t), and thereforeWF ′
n+1(s). ⊣

We wish the previous lemma to hold even whenrk(φ) < n. To do this we prove the
following inductive step.

LEMMA 6.10 (ACA0). Let φ be a basic rankm formula, letn ≥ m, and suppose
that:

Whenevers ∈ Tn(T ) and for everyt ⊇ s such thatt decidesφ, WFn(t),
thenWFn(s).

Then:

Whenevers ∈ Tn+1(T ) and for everyt ⊇ s such thatt decidesφ,WFn+1(t),
thenWFn+1(s).

PROOF. Let s ∈ Tn+1(T ) be given, and suppose that for everyt ⊇ s such thatt
decidesφ, WFn+1(t). Again, it suffices to show thatWF ′

n+1(s). Suppose that when-
evert ⊇ πn+1

n (s) andt ≺+1 s, WFn(t). Let t ⊇ πn+1
n (s) be arbitrary; we will show

WFn(t). To do this, it suffices to show that whenevert′ ⊇ t decidesφ,WFn(t
′).

So supposet′ ⊇ t is given such thatt′ decidesφ. If t′ ≺+1 s thenWFn(t
′) by

assumption. Otherwise, sets′ = t′∪s. Sinces′ decidesφ,WFn+1(s
′) holds. Whenever
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t′′ ⊇ πn+1
n (s′) = t′ with t′′ ≺+1 s′, alsot′′ ≺+1 s, and thereforeWFn(t

′′). Therefore
for anyt′′ ⊇ πn+1

n (s′) = t′,WFn(t
′′), and in particularWFn(t

′).
⊣

LEMMA 6.11 (ACA0). If WFn+1(∅) thenWFn(∅).

PROOF. If WFn+1(∅) then, in particular,WF ′
n+1(∅). If t ⊇ πn+1

n (∅) then we can-
not havet ≺+1 ∅, so the premise ofWF ′

n+1(∅) is trivially satisfied, and therefore
whenevert ∈ Tn(T ), t ⊇ πn+1

n (∅) = ∅, soWFn(t). In particular,WFn(∅). ⊣

DEFINITION 6.12. Givens ∈ Tn(T ) and a formulaφ(x, y) with only the displayed
free variables, we define a sequenceσs,φ recursively:∅ ⊆ σs,φ, and if τ ⊑ σs,φ and
there is exactly onei such that̂s ⊢ φ(|τ |, i) thenτ⌢〈i〉 ⊑ σs,φ.

DEFINITION 6.13. Letn be a successor‡. We defineT̂n(T ) to consist of pairs(s, U)
such that:

• s ∈ Tn(T )
• U is a partial functions whose domain is a finite set of basic formulas of rank
≤ n of the form∃zφ(x, y, z) with only the displayed free variables such that
σs,φ ≺ σs, and whose range is{0, 1}

• If U(φ) is defined thenU(φ) = 1 iff one of the followingexcluding conditions
holds:

– There arem, i, j with i 6= j such that∃zφ(m, i, z) ∈ s and∃zφ(m, j, z) ∈ s,
– There is anm such that∀u¬φ(m, p1(u), p2(u)) ∈ s, or
– σs,φ 6∈ T .

We say(s, U) decidesU(φ) if U(φ) is defined. We say(s, U) ⊇ (t, V ) if s ⊇ t,
dom(U) ⊇ dom(V ), andU ↾ dom(V ) = V .

We definêπ : T̂n(T ) → Tn(T ) by π̂(s, U) = s.

If t ∈ Tn(T ) and (s, U) ∈ T̂n(T ), we sayt ≺+1 (s, U) if there is aφ such that
U(φ) = 0 but t satisfies one of the above excluding conditions forφ.

ŴF
′

n(s, U) holds if

Suppose that for allt ⊇ s such thatt ≺+1 (s, U), WFn(t); then for all
t ⊇ π̂(s, U),WFn(t).

ŴFn(t, V ) holds if for all (s, U) ⊇ (t, V ), ŴF
′

n(s, U) holds.

These definitions are very similar to then + 1 cases above; in place of existential
formulas, we have “witnesses thatφ fails to define a path to the left of the official path”.

As above, we have

LEMMA 6.14 (ACA0). If n is a successor,

1. If ŴFn(t, V ) holds and(s, U) ⊇ (t, V ) thenŴFn(s, U) holds.
2. If WFn(s) holds thenŴFn(s, U) holds.
3. If ŴFn(∅, ∅) thenWFn(∅).

‡By a successor, we meann > 0. In the remainder of this section, we will refer to numbers> 0

as “successors” in definitions or theorems which will apply unchanged when we generalize to infinite well
orderings.



PARTIAL IMPREDICATIVITY IN REVERSE MATHEMATICS 19

LEMMA 6.15 (ACA0). Letn be a successor. Letφ be a formula and suppose that
whenever(t, V ) ⊇ (s, U) and(t, V ) decidesU(φ), ŴFn(t, V ). ThenŴFn(s, U).

PROOF. The proof is similar to that of Lemma 6.9. It suffices to show thatŴF
′

n(s, U).

Suppose the premise of̂WF
′

n(s, U) holds, so that whenevers′ ⊇ s ands′ ≺+1 (s, U),
WFn(s

′).
First, if s satisfies one of the excluding conditions forφ then (s, U ∪ {(φ, 1)}) ∈

T̂n(T ), and thereforêWFn(s, U ∪ {(φ, 1)}). Sinceπ̂(s, U ∪ {(φ, 1)}) = π̂(s, U), we
haveŴFn(s, U).

Otherwise, let(t, V ) extend(s, U) such thatV (φ) = 1 anddom(V ) \ dom(U) =
{φ}, and lett′ ⊇ t with t′ ≺+1 (t, V ). Then there is aψ such thatt′ satisfies one
of the excluding conditions forψ but V (ψ) = 0. ThereforeU(ψ) = 0 as well, so
t′ ≺+1 (s, U), and thereforeWFn(t

′). SinceŴFn(t, V ) holds, it follows that for all
t′ ⊇ π̂(t, V ), we haveWFn(t

′).
Now setV = U∪{(φ, 0)}, so(s, V ) decidesφ, and lett ⊇ swith t ≺+1 (s, V ). Then

there is aψ such thatt satisfies one of the excluding conditions forψ but V (ψ) = 0.
If ψ 6= φ thent ≺+1 (s, U), and thereforeWFn(t). If ψ = φ then(t, U ∪ {(φ, 1)})
also decidesφ, and so we have shown in previous paragraph that againWFn(t). Since
ŴFn(s, V ), it follows that whenevert ⊇ s,WFn(s), as desired. ⊣

LEMMA 6.16 (ACA0). Letφ be a formula and suppose that whenevers ∈ Tn and
for everyt ⊇ s such thatt decidesφ,WFn(t), thenWFn(s). Then whenever(s, U) ∈

T̂n(T ) is such that for every(t, V ) ⊇ (s, U) such that(t, V ) decidesφ, ŴFn(t, V ),
thenŴFn(s, U).

PROOF. The proof is similar to that of Lemma 6.10. It will suffice to showŴF
′

n(s, U).

Suppose the premise of̂WF
′

n(s, U) holds, so whenevert ⊇ s andt ≺+1 s,WFn(t).
Let t ⊇ s be given. By assumption, it suffices to show that whenevert′ ⊇ t andt′

decidesφ,WFn(t
′). So let somet′ ⊇ t be given such thatt′ decidesφ. If t′ ≺+1 (s, U)

thenWFn(t
′). Otherwise(t′, U) ⊇ (s, U) and decidesφ, soŴFn(t

′, U). Moreover,
whenevert′′ ⊇ t′ andt′′ ≺+1 (t′, U), t′′ ≺+1 (s, U), and thereforeWFn(t

′′). So we
haveWFn(t

′), as desired. ⊣

By a decision of rankn, we mean either a formulaφ of rankn, or U(φ) whereφ
is a basic formula of rank≤ n in the form∃zφ(x, y, z) with only the displayed free
variables. Note that ifs decidesφ orU(φ) andt ⊇ s thent decidesφ orU(φ) as well;
therefore we may say an infinite path decidesφ or U(φ) if any finite initial segment
does.

The following lemma is a modification of the usual statement that whenS is a well-

founded subset of̂Tn(T ) we can carry out transfinite induction alongS.

LEMMA 6.17 (Πm(Π1
1)-TI0). Letm be a successor. LetS ⊆ T̂n(T ), and suppose

that there is no infinite path throughS deciding every decision of rankn. LetA be a
formula inΠm(Π1

1) and suppose the following principle holds:

For any (s, U) ∈ S, if there is a decisiond such that whenever(t, V ) ⊇
(s, U), (t, V ) ∈ S, and(t, V ) decidesd, A(t, V ) holds, thenA(s, U) holds.

Then for every(s, U) ∈ S, A(s, U) holds.
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Despite the complicated statement, this lemma actually just reformulates transfinite
induction in a convenient form. Transfinite induction is usually stated for trees which
are genuinely well-founded; equivalently, there are no paths satisfying aΠ1 property
(namely, having elements at every level). Here we restrict ourselves to those paths
satisfying aΠ2 property—deciding every decision. The fact that these are equivalent is
essentially a consequence of the well-known fact that statements of the form∀X∃y∀zφ
(for φ quantifier-free) are equivalent to statements of the form∀X∃yφ′.

PROOF. Fix a surjective functionρ from N to the set of decisions, and consider the
treeS ′ of increasing sequencesσ from S such that for eachi, if ρ(i) is a decision of
rank≤ n thenσ(i) decidesρ(i). Clearly any infinite path throughS ′ gives an infinite
path throughS deciding all formulas, soS ′ is well-founded.

Let A′(σ) hold if A(σ(|σ| − 1)) holds, soA′ is aΠm(Π1
1) formula. We claimA′

is progressive: letσ be given with(s, U) its final element, and suppose that for all
(t, V ) such thatσ⌢〈(t, V )〉 ∈ S ′, A′(σ⌢〈(t, V )〉). Then whenever(t, V ) ⊇ (s, U)
and(t, V ) decidesρ(|σ|), A′(σ⌢〈(t, V )〉), and thereforeA(t, V ). ThereforeA(s, U),
and soA′(σ).

So by transfinite induction onS ′, A′ holds of allσ, and in particular,A(s, U) for all
(s, U) ∈ S. ⊣

DEFINITION 6.18.

T̂n(T )
+
= {(s, U) ∈ T̂n(T ) | U(φ) = 1 wheneverU(φ) is defined}.

The following lemma is stated with premises we have already shown to be true so
that it can easily be adapted to the case wheren is replaced by an infinite well-ordering
later.

THEOREM 6.19 (Πn+2(Π
1
1
)-TI0). Letn be a successor. Suppose that:

• WheneverWF0(π
n
0 (s)), ŴFn(s, U),

• If ŴFn(∅, ∅) thenWF0(∅),

• There is no infinite path througĥTn(T )
+

deciding every decision.

ThenT is well-founded.

PROOF. We first show that̂WFn(s, U) holds for all(s, U) ∈ T̂n(T ) \ T̂n(T )
+

. Let
(s, U) be given withU(φ) = 0 for someφ. If Tσs,φ

is ill-founded thenσs,φ ≺ σs

witnessesWF0(π
n
0 (s)), and thereforêWFn(s, U). Otherwise, for eachτ ∈ Tσs,φ

, let

Sτ = {(t, V ) ⊇ (s, U) | σt,φ = τ}.

We proceed by induction onτ ∈ Tσs,φ
showing that for every(t, V ) ∈ Sτ , ŴFn(t, V ).

Let (t, V ) ∈ Sτ be given and suppose that for everyk such thatσt,φ⌢〈k〉 ∈ T

and every(t′, V ′) ⊇ (s, U) with σt′,φ = σt,φ
⌢〈k〉, ŴFn(t

′, V ′). Let (t′, V ′) be
any extension of(t, V ) deciding∃kφ(|σt|, k) (note that, pairing variables and using the
fact thatn is a successor, this has the same rank asφ). Then sinceV ′(φ) = V (φ) =
U(φ) = 0, it must be that there is such ak, and thereforet′ ⊢ φ(|σt|, k) for somek and
σt′,φ ∈ T , soŴFn(t

′, V ′). SoŴFn(t
′, V ′) holds for any(t′, V ′) ⊇ (t, V ) deciding

∃kφ(|σt|, k), and thereforêWFn(t, V ) holds.
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By induction, for anyτ ∈ Tσs,φ
, any(t, V ) ∈ Sτ satisfiesŴFn(t, V ). In particular,

ŴFn(s, U).

Now we show that̂WFn(s, U) holds forT̂n(T )
+

using the modified induction given

by the previous lemma. Suppose that(s, U) ∈ T̂n(T )
+

andψ is a decision such that

whenever(t, V ) ⊇ (s, U), (t, V ) ∈ T̂n(T )
+

, and(t, V ) decidesψ, ŴFn(t, V ). Then

for any(t, V ) ⊇ (S,U) decidingψ, either(t, V ) ∈ T̂n(T )
+

, in which casêWFn(t, V )

by assumption, or(t, V ) 6∈ T̂n(T )
+

, in which case we have just shown that̂WFn(t, V ).

Therefore, by the previous lemma, for every(s, U) ∈ T̂n(T )
+

, ŴFn(s, U).
It follows in particular thatŴFn(∅, ∅), and thereforeWF0(∅). Since there are no

σ ∈ T with σ ≺ ∅, it follows thatT∅ = T is well-founded. ⊣

DEFINITION 6.20. Letφ be a closed formula ofL. Thenφ̂(X,Y ) is the formula of
second-order arithmetic which interprets the function symbolF byX and the predicate
symbolT̂ by Y .

LEMMA 6.21 (ACA0). Let Λ be a path throughTn(T ) deciding all formulas of
rank≤ n and letσΛ be the corresponding sequence throughT given byσΛ(i) = j iff
F (i) = j ∈ Λ(m) for some (and therefore cofinitely many)m.

Then wheneverφ is a closed formula of rank≤ n, the following are equivalent:

1. There is anm such thatΛ(m) ⊢ φ,
2. φ̂(σΛ, T ).

PROOF. We proceed by induction on formulas. Whenφ is atomic, the equivalence
follows immediately from the definitions.

Suppose the claim holds forφ andψ. The claim for¬φ follows from the equivalence
for φ and the fact thatΛ decides all formulas of rank≤ n, including¬φ. Similarly for
other propositional combinations ofφ andψ.

Suppose that for everyk, the claim holds forφ(k). If ∃xφ ∈ Λ(m) then there is some
k such thatΛ(m) ⊢ φ(k), and by IH,φ̂(k)(σΛ, T ), and thereforê∃xφ(σΛ, T ). If ∀xφ ∈

Λ(m) then there are nom′, k such thatΛ(m′) ⊢ ¬φ(k), and thereforê¬φ(k)(σΛ, T )
never holds, sô∀xφ(σΛ, T ) holds. The other direction follows since either̂∃xφ(σΛ, T )

or ∀̂x¬φ(σΛ, T ) must hold, and there is somem such that either∃xφ ∈ Λ(m) or
∀x¬φ ∈ Λ(m). ⊣

THEOREM 6.22. For any finiten > 0, Πn+2(Π
1
1
)-TI0 impliesΣn-LPP.

PROOF. LetT be a tree of finite sequences and let≺ be a well-founded partial order.
Suppose that for every pathΛ throughT , there is aΛ′ which is Σn in T ⊕ Λ with
Λ′ ≺ Λ.

Suppose there were an infinite pathΛ throughT̂n(T )
+

deciding every decision of
rank≤ n. For eachi, there is a uniqueσΛ(i) such thatF (i) = σΛ(i) ∈ π̂(Λ(j))
for somej (and therefore cofinitely manyj). The functionσΛ must be a path through
T . SupposeΛ′ ≺ σΛ and there is aΣn formula φ such that∃zφ(i, j, z, T, σΛ) iff
Λ′(i) = j. By the previous lemma, we have∃zφ(i, j, z) ∈ Λ(m) for somem iff
Λ′(i) = j. SinceΛ′ is a path throughT , none of the excluding conditions forφ can
ever hold, so wheneverΛ(j) = (s, U) andU(φ) is defined,U(φ) = 0. But this would
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contradict the fact thatΛ is a path througĥTn(T )
+

. So there is no infinite pathΛ

throughT̂n(T )
+

deciding every decision.
Observe that the first two conditions in Theorem 6.19 all holdin Πn+2(Π

1
1)-TI0

(sincen is finite), so we obtain the conclusion thatT is well-founded. ⊣

§7. The Nash-Williams Theorem and Menger’s Theorem.
7.1. The Nash-Williams Theorem.In what follows, we will use the letterb (and

variantsb′ and so on) to represent finite sequences which are intended tobe increasing
(and specifically, members of a barrier). We briefly define thekey notions needed to
state and prove the Nash-Williams Theorem; a more careful exposition is found in [8].

DEFINITION 7.1. A sequenceb is increasingif wheneveri < j, b(i) < b(j).
LetB be a set of finite increasing sequences. We writebase(B) for the set ofn such

that for someb ∈ B and somei ∈ dom(b), b(i) = n.
A barrier is a setB of finite increasing sequences such that:

• base(B) is infinite,
• If Λ is an infinite increasing sequence frombase(B), there is ab ∈ B such that
b ⊏ Λ,

• If b, b′ ∈ B andb 6= b′ thenrng(b) 6⊆ rng(b′)

If b is a non-empty sequence, we writeb− for the sequence with|b−| = |b| − 1 given
by b−(i) = b(i+ 1) (andb−(i) is undefined ifb(i+ 1) is).

If b, b′ are sequences, we writeb ⊳ b′ if there is ab∗ such thatb ⊑ b∗ andb′ ⊑ (b∗)−.
LetQ be a partial order. IfB is a barrier,B′ ⊆ B (whereB′ is finite or infinite), and

f : B′ → Q, f is good if for someb, b′ ∈ B′ with b ⊳ b′, f(b) �Q f(b′). If f is not
good,f is bad. If for everyb, b′ ∈ B′ with b ⊳ b′, f(b) �Q f(b′) thenf is perfect.

If B is a barrier,Q is aB-better-quasi-order(B-bqo) if for every barrierB′ ⊆ B and
everyf : B′ → Q, f is good.Q is abetter-quasi-order(bqo) if for every barrierB, Q
is aB-bqo.

B is a barrier iff{b | ∀b′ ∈ B b′ 6⊑ b} is well-founded as a tree frombase(B).

DEFINITION 7.2. GivenQ, Q̃ is the class of all pairs(α, f) whereα is a well-order
andf : α → Q. If (α, f), (β, g) ∈ Q̃, we say(α, f)�̃Q(β, g) if there is a strictly
increasing functionπ : α → β such that for allγ ∈ α, f(γ) �Q g(π(γ)).
NWT, the Nash-Williams Theorem, is the statement that for ifQ is a bqo theñQ is

bqo.§

GHT, the Generalized Higman’s Theorem, is the statement that ifQ is aB-bqo then
Q<ω is aB-bqo.¶

Marcone [8] has shown:

THEOREM 7.3. 1. In ATR0, NWT is equivalent toGHT.
2. Π1

1
-CA0 impliesGHT.

§Note that even though̃Q is not a set, we can still formulate the statement thatQ̃ is bqo in second order
arithmetic.

¶Our statement ofGHT differs slightly from Marcone’s: Marcone takesGHT to be the statement that
if Q is aB-bqo for all barriersB thenQ<ω is aB-bqo for all barriersB, which is aΠ1

3
statement, and

mentions this version ofGHT as an intermediate step.



PARTIAL IMPREDICATIVITY IN REVERSE MATHEMATICS 23

SinceGHT is aΠ1
2 sentence, it is not possible forGHT be equivalent toΠ1

1
-CA0.

We will now show that Marcone’s proof goes through essentially unchanged inTMPP0.‖

DEFINITION 7.4. If B is a barrier andX ⊆ N, we writeB ↾ X for {b ∈ B |
rng(b) ⊆ X}.

LEMMA 7.5 (RCA0). If X is an infinite subset ofbase(B) thenB ↾ X is a barrier.

PROOF. Clearlybase(B ↾ X) ⊆ X . SupposeΛ is an infinite increasing sequence
from X . Then sinceX ⊆ base(B), there is ab ∈ B such thatb ⊏ Λ, and therefore
b ∈ B ↾ X . Thereforebase(B ↾ X) = X and every infinite sequence throughX has
an initial segment inB ↾ X . The other two conditions are immediate sinceB ↾ X ⊆
B. ⊣

LEMMA 7.6 (RCA0). If B′ ⊆ B is a barrier thenB′ = B ↾ base(B′).

PROOF. Supposeb ∈ B ↾ base(B′). LetΛ be an infinite increasing sequence from
base(B′) such thatb ⊏ Λ. Then there is ab′ ∈ B′ ⊆ B such thatb′ ⊏ Λ. If b′ 6= b then
we have eitherrng(b) ⊆ rng(b′) or rng(b′) ⊆ rng(b), contradicting the fact thatB is a
barrier. ⊣

DEFINITION 7.7. A sequenceσ fromB × Q, σ = 〈(b0, q0), . . . , (bk, qk)〉 is abad
partial array if:

• Wheni < j, max bi ≤ max bj,
• If bi ⊳ bj , qi 6�Q qj ,
• If b ∈ B ↾ base({b0, . . . , bk}) andmax b < max bk then there is ani < k such

thatb = bi.

If σ is a bad partial array, we define a partial functionfσ : B → Q by setting
fσ(b) = q iff there is ani such thatσ(i) = (b, q). If Λ is an infinite path through the
tree of bad partial arrays, we definefΛ similarly.

LEMMA 7.8 (RCA0). f is a bad function from a barrierB′ ⊆ B to Q iff there is
an infinite pathΛ through the tree of bad partial arrays such thatf = fΛ.

PROOF. SupposeB′ ⊆ B is a barrier andf : B′ → Q is bad. Fix an enumeration
of B′, B′ = {b0, b1, . . . } such that ifi < j thenmax bi ≤ max bj . DefineΛ(i) =
(bi, f(bi)). Clearlyf = fΛ. We must check that ifσ ⊏ Λ thenσ is a bad partial array;
the first two conditions are immediate from the enumeration of B′ and the fact thatf is
bad. Ifb ∈ B ↾ base({b0, . . . , bk}) andmax b < max bk thenb ∈ B ↾ base(B′) = B′,
so there is ani < k such thatb = bi.

SupposeΛ is an infinite path through the tree of bad partial arrays. Then fΛ is clearly
bad, and we must check thatdom(fΛ) is a barrier. Ifb ∈ B ↾ base(dom(fΛ)) then
there must be somen such thatb ∈ base(dom(fΛ↾n)) andmax b < base(dom(fΛ↾n)),
which implies thatb ∈ dom(fΛ↾n). ⊣

‖Marcone’s proof uses the “locally minimal bad array lemma”,which is a principle similar, and equivalent,
to the minimal path principle. This lemma is essentially an encapsulation of the particular application of the
minimal path principle we use below. Another family of relative principles—the relatively locally minimal
bad array lemma and so on—could be defined, but since they would be minor combinatorial variants on the
principles we have given, we do not do so.
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We use the following uniformly effective version of the clopen Ramsey Theorem (the
proof of the clopen Ramsey Theorem inATR0 is carried out in [6], with another proof
given in [1]; the effective bounds for the complexity are given in [5]).

THEOREM 7.9 (ATR0). For each barrierB, there is an ordinalα such that when-
everB′ ⊆ B is a barrier andc : B′ → {0, 1}, there is an infiniteS ⊆ base(B) such
thatS isΣα in c⊕B′ andc is constant onB ↾ S.

We may adapt colorings ofB to colorings of pairs fromB:

LEMMA 7.10 (ATR0). For each barrierB, there is an ordinalα such that whenever
B′ ⊆ B is a barrier andc : {b, b′ ∈ B′ | b ⊳ b′} → {0, 1}, there is an infinite
S ⊆ base(B) such thatS is Σα in c⊕B′ andc is constant on{b, b′ ∈ B ↾ S | b ⊳ b′}.

PROOF. Wheneverb, b′ ∈ B with b⊳b′, writeb∪b′ for the unique increasing sequence
suchrng(b ∪ b′) = rng(b) ∪ rng(b′). DefineB∗ = {b∪ b′ | b, b′ ∈ B andb ⊳ b′}. Note
thatB∗ is a barrier onbase(B): if Λ is an infinite increasing sequence frombase(B),
we may find someb ∈ B such thatb ⊏ Λ. We may also find someb′ ∈ B such that
b′ ⊑ Λ−. Then we haveb ⊳ b′, and thereforeb ∪ b′ ⊑ Λ− andb ∪ b′ ∈ B∗. Let α
be such that given any coloring of a subbarrier ofB∗, there is an infinite homogeneous
subbarrierΣα in c⊕ B∗.

Now letB′ ⊆ B be given and letc be a coloring of{b, b′ ∈ B′ | b ⊳ b′}. We may
define a coloringc∗ on (B′)∗ ⊆ B∗ by c∗(b ∪ b′) = c(b, b′). Let S ⊆ base(B′) be
given such thatc∗ restricted to(B′)∗ ↾ S is constant. Thenc restricted toB′ ↾ S is
constant. ⊣

THEOREM 7.11 (TLPP0). GHT holds.

PROOF. LetB be a barrier, and supposeQ is aB-bqo. We set(b, σ) ≺ (b′, σ′) if
|σ| < |σ′|; clearly≺ is a well-order onB×Q<ω. SupposeQ<ω is not aB-bqo; then let
Λ be a relatively minimal infinite sequence through the tree ofbad partial arrays from
B toQ<ω.

Clearly fΛ(b) 6= 〈〉 for all b, so we may writefΛ(b) = g(b)⌢〈q(b)〉 for all b ∈
dom(fΛ). For b ⊳ b′, definec(b, b′) = 0 iff q(b) �Q q(b′) andc(b, b′) = 1 otherwise.
By the previous lemma, there is an infiniteS ⊆ dom(fΛ) ⊆ B such thatc is constant
onB ↾ S—that is,q restricted toS is either bad or perfect. SinceQ is aB-bqo,c must
be constantly0, soq ↾ (B ↾ S) is perfect.

For eachn, write Λ(n) = (bn, σn). Letn be least such thatbn ∈ B ↾ S, and define
B∗ = B ↾ (S ∪ base({bi}i<n)). If bi ∈ B ↾ S, defineΛ′

0(i) = (bi, g(bi)), and
if bi ∈ B∗ \ (B ↾ S), defineΛ′

0(i) = (bi, f(bi)); if neither of these apply,Λ′
0(i) is

undefined. LetΛ′ be the infinite sequence defined recursively byΛ′(i) = Λ′
0(j) where

j is least such thatΛ′
0(j) is defined and there is noi′ < i with Λ′(i′) = Λ′

0(j).
Observe that fori < n, Λ′(i) = Λ(i) (since by construction, fori < n, bi ∈

B∗ \ (B ↾ S)), and thatΛ′(n) ≺ Λ(n) (sinceΛ′(n) = (bn, g(bn)) while Λ(n) =
(bn, g(bn)

⌢〈q(bn)〉)).
We now show thatΛ′ is an infinite path through the tree of bad sequences. Since

dom(fΛ′

) = B∗ is a barrier, we need only show thatfΛ′

is bad. SupposeΛ′(i) =
(b, σ), Λ′(j) = (b′, σ′), andb ⊳ b′.

We consider three cases. Ifb ∈ B ↾ S and b′ ∈ B ↾ S thenσ = g(b), σ′ =
g(b′). Sinceq ↾ (B ↾ S) is perfect,q(b) �Q q(B′), and sinceg(b)⌢〈q(b)〉 6�<ω

Q

g(b′)⌢〈q(b′)〉, we must haveg(b) 6�<ω
Q g(b′).
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If b ∈ B∗ \ (B ↾ S) andb′ ∈ B∗ \ (B ↾ S) thenσ = f(b), σ′ = f(b′), and we have
f(b) 6�<ω

Q f(b′).
Observe that for anyb ∈ B ↾ S, max(base(B∗) \ S) < max b. In particular, this

means that it is not possible to haveb ∈ B ↾ S but b′ ∈ B∗ \ (B ↾ S). The remaining
case is thatb ∈ B∗ \ (B ↾ S) while b′ ∈ B ↾ S. In this case we haveσ = f(b) while
σ′ = g(b′). Sinceg(b′) �<ω

Q f(b′) andf(b) 6�<ω
Q f(b′), we havef(b) 6�<ω

Q g(b′).
ThereforeΛ′ is an infinite sequence through the tree of bad partial arraysandΛ′ ≺ Λ.
It remains to check that the proof just given goes through inTLPP0. It suffices to

show that for eachB, there is anα such thatΛ′ is Σα in Λ. SinceΛ′ is computable
from the setS, this follows from the fact that the coloringc is computable fromΛ and
there is anα such thatS is alwaysΣα in c. ⊣

COROLLARY 7.12. NWT holds inTLPP0.

7.2. Menger’s Theorem. In this subsection, we discuss a theorem about graphs.
WhenG is a graph, we writeV (G) for the set of vertices andE(G) for the set of edges.

DEFINITION 7.13. IfG is a graph andA ⊆ V (G), B ⊆ V (G), anA-B path is a
finite sequences of verticesv0, . . . , vn such thatv0 ∈ A, vn ∈ B, and for eachi < n,
(vi, vi+1) ∈ E(G).

An A-B separatoris a setC ⊆ V (G) such that everyA-B path inG contains an
element ofC.

Menger’s Theorem for countable graphs is:

THEOREM 7.14. For anyG and anyA,B ⊆ V (G), there is a setM of disjointA-B
paths and anA-B separatorC such thatC consists of exactly one vertex from each
path inM .

The proof uses the following notions:

DEFINITION 7.15. Awarp in (G,A,B) is a subgraphW of G such that:

• A ⊆ V (W ),
• W is a union of disjoint paths beginning inA.

If W is a warp in(G,A,B), ter(W ) is the set of vertices inV (W ) which are the
terminal elements of paths beginning inA.

A warpW is awaveif ter(W ) is anA-B separator.
We order waves byW ≤ Y if W is a subgraph ofY .

It will be convenient to assume that our warps and waves do notcontain elements of
A except as the first element of a path.

Shafer [13] shows that Menger’s Theorem for countable graphs is provable inΠ1
1-CA0,

and our treatment of Menger’s Theorem follows his paper. We will show

THEOREM 7.16 (TLPP0). Menger’s Theorem for countable graphs holds.

His proof is split into two parts:

LEMMA 7.17 (Π1
1
-CA0). For any graphG and setsA,B ⊆ V (G), there is a count-

ably codedω-modelM ofΣ1
1
-DC0 containingG,A,B such thatM believes there is a

maximal (with respect to≤) waveW .
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LEMMA 7.18 (ACA0). If M is a countably codedω-model ofΣ1
1
-DC0 containing

G,A,B andM believes there is a maximal waveW then the conclusion of Menger’s
Theorem holds forG,A,B.

It suffices to show that the first lemma can be proven inTLPP0; by 4.6, we need
only show the following:

LEMMA 7.19 (ACA0). LetG,A,B be given. There is an ill-founded treeT , a well-
ordering≺, and a computable bijectionπ between waves and paths throughT such that
wheneverW ≤W ′, π(W ′) � π(W ).

PROOF. Fix an enumerationV (G) = {g0, g1, . . . } and an enumeration{p0, p1, . . . }
of all A-B paths inG. We defineT to consist of sequences〈δ0, . . . , δn〉 such that:

• If k = 2i then eitherδk = (0, 0) or δk = (1, qi) whereqi is a path beginning with
A and ending withgi,

• If k = 2k + 1 thenδk = (i+ 2, Si) whereSi is a non-empty subset ofV (pi),
• If qi intersectsqj then eitherqi is an end-extension ofqj or qj is an end-extension

of qi,
• If gi appears inqj thenδ2i 6= (0, 0),
• If gi ∈ A thenδ2i 6= (0, 0),
• If gi ∈ Sj thenδ2i 6= (0, 0),
• There is somegi ∈ Sj such that no pathqk is a proper end-extension ofqi.

Given an infinite pathΛ, we define a warpW = π−1(Λ) =
⋃

i qi. If gi ∈ A thenqi
witnesses thatgi ∈ V (W ). W is, by definition, a union of paths beginning inA, and the
third condition ensures that distinct paths are disjoint. To see thatW is a wave, observe
that for anyA-B pathpi, some element inSi must be the final element of a path.

Conversely, given a waveW , we define a pathπ(W ) through this tree as follows:

• If gi ∈ V (W ) thenπ(W )(2i) = (1, qi) whereqi is the (unique) path inW
beginning inA and ending withgi,

• If gi 6∈ V (W ) thenπ(W )(2i) = (0, 0),
• π(W )(2i + 1) = (i + 2, V (pi) ∩ V (W )).

SinceW is a wave,π(W ) is a path throughT .
We define≺ by:

• (1, q) ≺ (0, 0),
• (i + 2, S) ≺ (i+ 2, S′) if S′ ( S.

To see that this is well-founded, note in(i+ 2, S), |S| ≤ |V (pi)| is finite.
We must check that ifW < W ′ thenπ(W ′) ≺ π(W ). SinceW < W ′, there

must be somegi ∈ V (W ) \ V (W ′); we may assumegi is the least such. Clearly
π(W ′)(2i) ≺ π(W )(2i), so we need only check that forj < i, π(W ′)(j) � π(W )(j).
For j even, by construction and the fact thati was chosen least,π(W )(j) = π(W ′)(j).
For j odd, sinceV (W ′) ⊆ V (W ), we must haveπ(W )(j) � π(W ′)(j) as desired.

To see thatT is ill-founded, observe that there is a waveW (specifically,V (W ) = A
andE(W ) = ∅), and thereforeπ(W ) is an infinite path throughT . ⊣

§8. The Relative Leftmost Path Principle. In this section we prove:

THEOREM 8.1 (ATR0). If α is well-ordered and a successor then anyω-model sat-
isfyingΠα+2(Π

1
1)-TI0 also satisfiesΣα-LPP.
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We have covered the case whereα is finite above, and in the case whereα ≥ ω, we
actually only needΠα+1(Π

1
1
)-TI0.

Fix α and assumeWO(α), and fix a modelM satisfyingΠα+1(Π
1
1)-TI0. The argu-

ments below are carried out in the external model (ofATR0) concerning the internal
model. We writeδ, γ for arbitrary elements offield(α) andλ for limits in field(α). We
also fix a treeT and an ordering≺ belonging toM such thatM |= WF (≺). We will
import as many definitions as possible from Section 6, since for successor levels our
definitions are unchanged.

DEFINITION 8.2. We defineLα to be the languageL from above, together with, for
each limitλ ∈ field(α + 1), a new predicateVλ. For eachγ ∈ field(α + 1), we define
therankγ formulasand thebasic rankγ formulasinductively by:

• F (i) = j wherei, j are terms is a basic rank0 formula,
• All other atomic formulas are rank0 formulas,
• If φ is a rankγ formula then∃xφ and∀xφ are basic rankγ + 1 formula,
• For any limitλ ∈ field(α+ 1) and anyn, Vλ(n) is a basic rankλ formula,
• The rankγ formulas contain the basic rankγ formulas and are closed under
∧,∨,¬,→.

We writeFγ for the collection of basic formulas of rankγ, F<γ for
⋃

δ<γ Fδ, and
write rk(φ) for the leastγ such thatφ is a formula of rankγ.

Fix a Gödel coding⌈·⌉ of Lα. We define⊢ onLα by adding two additional clauses
to usual deduction relation for first-order logic:

• s ⊢ Vλ(⌈φ⌉) iff rk(φ) < λ ands ⊢ φ.
• If rk(φ) ≥ λ thens ⊢ ¬Vλ(⌈φ⌉).

DEFINITION 8.3. Letα be a well-ordering. For eachγ ∈ field(α+1), defineTγ(T )
to be the set of consistent, finite setss of closed basic formulas of rank≤ γ such that:

• If F (i) = k ∈ s andi′ < i then there is aj′ such thatF (i′) = j′ ∈ s,
• Let i be largest such that for somej, the formulaF (i) = j ∈ s; then the sequence
〈F (0), . . . , F (i)〉 ∈ T ,

• If ∃xφ(x) ∈ s then there is somei such thats ∩ Frk(φ) ⊢ φ(i),
• If Vλ(⌈φ⌉) ∈ s thenrk(φ) < λ ands ∩ F≤rk(φ) ⊢ φ.

If s ∈ Fλ, we writerk(s) = max{rk(φ) | φ ∈ s ∩ F<λ}.
We says decidesVλ(⌈φ⌉) if Vλ(⌈φ⌉) ∈ s, Vλ(⌈¬φ⌉) ∈ s, or rk(φ) ≥ λ.
If δ ≤ γ, defineπγ

δ : Tγ(T ) → Tδ(T ) by πγ
δ (s) = {φ ∈ s | rk(φ) ≤ δ}.

If δ < λ, t ∈ Tδ(T ), s ∈ Tλ(T ), we writet ≺+1 s if there is a formulaVλ(⌈φ⌉) ∈ s
such thatt ⊢ ¬φ.

DEFINITION 8.4. We extend the definition ofWF ′
γ ⊆ Tγ(T ) by adding a definition

for limits:

• WF ′
λ(t) holds ifWF ′

rk(t)(π
λ
rk(t)(t)).

Note that, as above, eachWFλ is aΠλ(Π
1
1) formula.

LEMMA 8.5. If WFγ(s) ands ⊆ t thenWFγ(t).

LEMMA 8.6. Let δ ≤ γ ≤ α. Then:

1. If WFδ(π
γ
δ (s)) thenWFγ(s), and

2. If t ∈ Tγ(T ) ∩ Tδ(T ) andWFγ(t) thenWFδ(t).
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PROOF. We prove these by simultaneous induction onδ, γ. (This is necessarily an
aboutM carried out externally toM . Note that the statements of these two parts are of
the form∀x(φ(x) → ψ(x)) whereφ, ψ areΠγ(Π

1
1) orΠδ(Π

1
1) with δ ≤ γ ≤ α, so the

statement of the theorem isΠγ+1(Π
1
1), and so at worstΠα+1(Π

1
1).) Suppose the claim

holds for all pairsδ′ ≤ γ′ with eitherδ′ < δ or γ′ < γ.
If γ = δ, this is immediate. Supposeδ < γ andγ = β + 1. If WFδ(π

β+1
δ (s)) then

by IH,WFβ(π
β+1
β (s)), and therefore by Lemma 6.7,WFβ+1(s).

If t ∈ Tβ+1(T ) ∩ Tδ(T ) = Tδ(T ) andWFβ+1(t) thent contains no formula of rank
β + 1, and so there are nos ⊇ πβ+1

β (t) = t such thats ≺+1 t, so we must have
WFβ(t), and therefore by IH,WFδ(t).

Supposeγ = λ is a limit. If WFδ(π
λ
δ (s)), we consider two cases. Ifrk(s) ≥ δ then

we haveWFrk(s)(π
λ
rk(s)(s)) by applying the first part of IH toδ, rk(s), and therefore

WFλ(s). If rk(s) < δ then we haveπλ
δ (s) = πλ

rk(s)(s), so by applying the second part
of IH to rk(s), δ, we haveWFrk(s)(s).

Supposet ∈ Tλ(T ) ∩ Tδ(T ) andWFλ(t). Then sincerk(t) ≤ δ, we may apply the
first part of IH tork(t), δ to obtainWFδ(t). ⊣

LEMMA 8.7. Let δ ≤ γ ≤ α, let φ be a basic rankδ formula, lets ∈ Tγ(T ), and
suppose that for everyt ⊇ s such thatt decidesφ,WFγ(t). ThenWFγ(s).

PROOF. By main induction onδ and side induction onγ. (Note that for a givenγ
the statement isΠγ+1(Π

1
1), so the statement isΠα+1(Π

1
1).) The case whereδ = γ = 0

is handled by Lemma 6.8. The case whereδ = γ andγ is a successor is handled by
Lemma 6.9. The case whereδ < γ andγ is a successor is handled by Lemma 6.10.

So supposeγ is a limit. It suffices to show that if for everyt ⊇ s such thatt decides
φ, WFγ(t), thenWF ′

γ(s). If δ = γ thenφ = Vγ(⌈ψ′⌉); in this case, we setψ = ∃xψ′

for some variablex not appearing inψ; otherwiseδ < γ and we setψ = ψ′. Set
β = max{rk(s), rk(ψ)} < γ.

Supposet ⊇ πγ
β(s) andt decidesψ. Set

t′ =





t ∪ s if δ < γ
t ∪ s ∪ {V (⌈ψ′⌉)} if δ = γ andt ⊢ ψ
t ∪ s ∪ {V (⌈¬ψ′⌉)} if δ = γ andt ⊢ ¬ψ

Then for anyρ, t′ ⊢ ρ iff t ⊢ ρ, so t′ is consistent. Also,t′ ⊇ s andt′ decidesφ, so
WFγ(t

′). Sincerk(t′) = β andπγ
β(t

′) = t, we haveWFβ(t). SinceWFβ(t) holds
for all t ⊇ πγ

β(s) decidingψ, it follows from IH thatWFβ(π
γ
β(s)) holds. Therefore

WFγ(s) holds. ⊣

LEMMA 8.8. If WFγ(∅) thenWF0(∅).

PROOF. By induction onγ. If γ is a successor, this follows immediately from IH and
Lemma 6.11. Ifγ is a limit then sincerk(∅) = 0, we immediately haveWFγ(∅). ⊣

The definition ofT̂γ+1 given above forγ a successor is unchanged. In particular, we
obtain:

THEOREM 8.9. Assumeα is a successor. Suppose there is no infinite path (inM )

throughT̂α(T )
+

deciding all decisions of rank≤ α. ThenT is well-founded (inM ).
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PROOF. We apply Theorem 6.19. The first two assumptions are given byLemmas
8.8 and 8.7. Note that Lemma 6.17 is identical forΠα+1(Π

1
1) formulas. ⊣

DEFINITION 8.10. Letφ be a closed formula ofLα. Thenφ̂(X,Y ) is the formula
of second-order arithmetic which interprets the function symbolF byX , the predicate
symbolT by Y , andVλ(⌈φ⌉) by ∀Y (Hθ(λ, Y ) → (⌈φ⌉, rk(φ)) ∈ Y ) for a suitable
formulaθ.

LEMMA 8.11. LetΛ be a path (inM ) throughTα(T ) deciding all formulas of rank
≤ α and letσΛ be the corresponding path throughT given byσΛ(i) = j iff F (i) = j ∈
Λ(m) for some (and therefore cofinitely many)m.

Then wheneverφ is a closed formula of rank≤ α, the following are equivalent:

1. There is anm such thatφ ∈ Λ(m),
2. φ̂(σΛ, T ).

PROOF. We proceed by induction on formulas. The only new case is when φ =
V (⌈ψ⌉); this is easily covered by the inductive hypothesis. ⊣

The proof of Theorem 6.22 goes through unchanged, showing that the modelM
satisfyingΠα+1(Π

1
1
)-TI0 contains a path satisfyingΣα-LPP, which completes the

proof of Theorem 8.1.
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