
ar
X

iv
:1

20
2.

25
60

v1
 [

m
at

h.
L

O
]

 1
2

Fe
b

20
12

NONEXISTENCE OF MINIMAL PAIRS FOR GENERIC

COMPUTABILITY

GREGORY IGUSA

Abstract. A generic computation of a subset A of N consists of a
a computation that correctly computes most of the bits of A, and
which never incorrectly computes any bits of A, but which does
not necessarily give an answer for every input. The motivation
for this concept comes from group theory and complexity theory,
but the purely recursion theoretic analysis proves to be interesting,
and often counterintuitive. The primary result of this paper is that
there are no minimal pairs for generic computability, answering a
question of Jockusch and Schupp.

1. Introduction

In a recent paper, Jockusch and Schupp [1] introduce and analyze a
number of notions of almost computability. Following their notation,
we make the following definitions:

Definition 1.1. Let A be a subset of the natural numbers. Then A
has density 1 if the limit of the densities of its initial segments is 1, or

in other words, if limn→∞
|A↾n|
n

= 1. In this case we will frequently say
that A is density-1.

In this paper, a subset of the natural numbers is often referred to as
a real. Note that the intersection of two reals is density-1 if and only if
each of the reals is density-1. Binary branching trees and other count-
able sets will sometimes be referred to as reals, although the density
of a real will never be mentioned unless it is explicitly described as a
subset of N.

Definition 1.2. A real A is generically computable if there exists a
partial recursive function ϕ whose domain has density 1 such that if
ϕ(n) = 1 then n ∈ A, and if ϕ(n) = 0 then n /∈ A.

Definition 1.3. For reals A and B, A is generically B-computable if
A is generically computable using B as an oracle. In this case, we
frequently say B generically computes A.

1

http://arxiv.org/abs/1202.2560v1

2 GREGORY IGUSA

Note that this notion of computation yields a binary relation on reals
which is highly nontransitive, and which should not be confused by the
transitive relation, generic reducibility, in which only an enumerably
presented density-1 subset of the information in the oracle can be used.
(Generic reducibility will be defined and discussed in more detail in
Section 3.)
In fact, generic computation is so far from being transitive that any

countable reflexive binary relation embeds in the reals under this rela-
tion. To prove this, we first make three observations:

Observation 1.4. There exists a recursive reflexive binary relation
R on N such that for any reflexive binary relation R′ with countable
domain, R′ is isomorphic to R restricted to some subset of N.

The relation R is simply the Fraisse limit of the finite reflexive binary
relations. We also present a direct construction of R:

Proof. We build our relation R in stages. At the end of any stage, R
will be defined on a finite initial segment of N.
At stage 0, the domain of R is {0}, and 〈0, 0〉 ∈ R
At stage s + 1, we extend R to be defined on the next 4n many

elements of N, where n is the domain of R at the end of stage s. For
every possible way to extend R ↾ n by one element, we take one of the
new elements and define R on on that element via the chosen extension.
Every new element is related to itself (to maintain reflexivitiy), and no
new element is related to any other new element. (Note that since the
relationship is not symmetric, we need 4n many new elements. For
every old element a, we must choose whether a new element b satisfies
aRb and also whether it satisfies bRa.)
This construction can clearly be carried out recursively. Any count-

able reflexive binary relation R′ embeds in it by picking a counting 〈ai〉
of the domain of R′, and mapping inductively each ai to an element
that was added to the domain of R at stage i. (By the construction of
R, when the embedding has been defined on a0, ..., an, there is exists
a way to extend the embedding to map an+1 to an element added at
stage n + 1.) �

Observation 1.5. For any real A, there is another real R(A) such
that A generically computes R(A) and A can be computed from any
generic description of R(A).

There are many different constructions of R(A), any of which will
suffice for the purposes of this proposition. An example would be
coding the entries of A into the columns of R(A), ie n ∈ R(A) ↔

MINIMAL PAIRS 3

m ∈ A, where 2m is the largest power of 2 dividing n. A more thorough
proof will be presented in Section 3, where the specifics of the definition
of R(A) will become more important.

Observation 1.6. There exists a countable sequence of reals 〈Xi〉 such
that for each i, Xi cannot be computed by the recursive join of the rest
of the Xj.

This is satisfied by the columns of any arithmetically Cohen generic
subset of N× N.

With these three observations, we prove:

Proposition 1.7. For any reflexive binary relation R, there exists a
subset S of R such that 〈N, R〉 is isomorphic to S paired with relative
generic computation.

Proof. By Observarion 1.4, it suffices to prove the proposition for re-
cursive relations.
To prove this, we first define the asymmetric join of two reals in

the following way. Fix any recursive partition of N into two parts, a
density-0 part, S, and an infinite density-1 part, L. In particular, let
S be the powers of 2 and L be the numbers that are not powers of 2.
Then the asymmetric join of A and B is equal to R(A) on L, and has
B coded in to S (2n is in the asymmetric join of A and B iff n ∈ B).
Note then that the asymmetric join of A and B has the same Turing

degree as the usual join (it computes B, and it computes a density-
1 subset of R(A)). However, the ability to generically compute this
asymmetric join is equivalent to the ability to compute of A. This is
because a a density-1 subset of the bits of the generic join must in-
clude a density-1 subset of the bits of R(A), and A can be computed
from any density-1 subset of the bits of R(A). Conversely, if one could
compute A, then one could compute R(A), and therefore one could
compute the bits of the asymmetric join on all of L, yielding a generic
computation of the asymmetric join of A and B.

To conclude the proof, fix a recursive relation R. Choose 〈Xi〉 as
in Observation 1.6, and for each i, define Yi to be the recursive join
of the set of Xj such that R(i, j). (More precisely Yi = {〈n, j〉|n ∈
Xj ∧ R(i, j)}.) Let Zi be the asymmetric join of Xi and Yi.
If R(i, j) then Yi ≥T Xj, so Zi ≥T Xj, so in particular we have that

Zi generically computes Zj. Likewise, if ¬R(i, j) then Zi is computable
from the join of the Xk with k 6= j, so in particular, Zi �T Xj, so Zi

does not generically compute Zj.

4 GREGORY IGUSA

�

2. No Minimal Pair

Despite this fact, however, generic computation admits a worthwhile
analysis in terms of what can be computed from a real. Certainly, if
X ≥T Y , then the set of things that X generically computes contains
the set of things Y generically computes, but the lack of transitivity
does not allow one to draw the obvious conclusions one would like to
draw. Indeed, it turns out that the reals have the recursion theoretically
counterintuitive property that there are no minimal pairs for generic
computation:

Theorem 2.1. For any nonrecursive reals A and B (and thus for any
non-generically-computable reals A and B), there exists a real C such
that C is not generically computable, but such that C is both generically
A-computable and generically B-computable.

The method for proving this statement will be to prove that for any
nonrecursive reals A and B, there are density-1 subsets of N recursive
in A and B such that the union of the two subsets has no density-1
r.e. subset. Then C will be the union of those two subsets. This will
suffice by the following lemma:

Lemma 2.2. Let X be a density-1 subset of N. Then for any real A, A
can generically compute X if and only if A can enumerate a density-1
subset of X.

Proof. If A can enumerate a density-1 subset Y ofX , then A generically
computes X via the partial function ϕ(n) = 1 iff n ∈ Y . The domain
of this function is Y , which has density 1, and all the information it
gives about X is correct.
Conversely, if A generically computes X , choose ϕ such that ϕA is

a generic computation of X . Then let Y = {n | ϕA(n) = 1}. Y is
clearly enumerable from A. Also, Y is a subset of X because a generic
computation is not allowed to give incorrect answers. Finally Y is
density-1, because it is the intersection of two density-1 sets (X , and
the domain of ϕA). �

The proof of Theorem 2.1 will be comprised of three parts:
First, we prove Proposition 2.5, that if neither A nor B is ∆0

2, then
A and B do not form a minimal pair for generic computability. Then,
with the help of a technical lemma, we generalize this proof to prove
Propositions 2.7 and 2.8, the corresponding results for when one, or
both of them are ∆0

2. Proposition 2.8 is already proved in a paper of

MINIMAL PAIRS 5

Downey, Jockusch, and Schupp, but the technical lemma that we use
to prove Proposition 2.7 proves Proposition 2.8 as well.

We begin by introducing some terminology that will be used for the
proofs. Let Pi = {n ∈ N | 2i ≤ n < 2i+1}. Note then that N is the
disjoint union of the Pi together with {0}. For X ⊆ N, we say that X
has a gap of size 2−e at Pi if the last 2i−e many elements of Pi are not
elements of X . Note then the following lemma:

Lemma 2.3. If the only elements missing from X are from gaps of the
form just described, then X is density-1 if and only if for every e, X
has only finitely many gaps of size 2−e

Proof. If X has a gap of size 2−e at Pi then
|X↾2i|
2i

≤ 1 − 2−e−1, so in
particular, if X has infinitely many gaps of size 2−e, it does not have
density 1.
Conversely, if there is some i such that after Pi, all of the gaps in X

have size ≤ 2−e, then for n ≥ 2i+1, the density of X ↾ n will always be
≥ 1 − 2−e+1. (Note that since the gaps appear at the ends of the Pi,
the local minima of the density of X always occur at the end of a Pi.)
If for every e, there exists such an i, then the limiting density of X will
be 1. �

Before proving any of the propositions, we prove a result that is a
direct corollary of the main theorem, and that also will not be used in
the proof of the theorem. The proof is short though, and the methods
generalize to prove Propositions 2.5, 2.7, and 2.8.

Proposition 2.4. For any nonrecursive real A, there is a density-1 set
ϕA that is recursive in A such that ϕA has no density-1 r.e. subset.

First, a brief overview: we will define a total Turing functional ϕ on
2ω. For each e, there will be a strategy that diagonalizes against We

being a density-1 subset of ϕX for any real X . In doing so, the eth
strategy will cause at most one real Xe to have the property that ϕXe

is not density-1. Xe will be the leftmost path through a recursive tree
Te, so repeating the same argument with rightmost paths gives a pair
of functionals ϕ and ψ such that for any nonrecursive X either ϕX or
ψX is density-1.

Proof. Over the course of the construction, after stage s, ϕX ↾ 2s will
be defined for every X , using at most the first s bits of X . This will
be useful in verifying that the strategies work as they are supposed to.

The eth strategy acts as follows:

6 GREGORY IGUSA

Define Te as the tree whose infinite paths consist of the reals X such
thatWe ⊆ ϕX . Note that Te is a recursive tree, since we can determine
the lth level of Te in the following way. Run the enumeration of We

for the first l steps. For every n less than 2l, if We has enumerated n,
remove any σ of length l such that ϕσ(n) = 0. As long as l is less than
the stage s of the construction, this can be accomplished recursively.
Let Te,s be the tree consisting of all extensions of the (s− 1)th level of
Te.
At stage s, if s < e, do nothing. Also, if Te,s is finite, do nothing.

Else, place a marker ps on the leftmost infinite path of Te,s, at the
shortest σ on that path such that σ has no marker. Then define ϕX ↾ Ps

for all X by placing a gap of size 2−e into ϕX at Ps if σ ≺ X , and by
not placing such a gap if σ ⊀ X .
The idea here is that the marker ps signifies the existence of a trap

at Ps: We must either avoid enumerating any of the elements of the
gap at Ps, thereby creating another instance of its density dropping
below 1 − 2e+1, or it must enumerate some of those elements, thereby
removing all extensions of σ from the tree Te.
Note then that if Te is finite, then for every X , ϕX has only finitely

many gaps of size 2−e. Furthermore, in this case, the strategy has
guaranteed that We * ϕX for any X . (After the stage at which the
tree is seen to be finite, the eth strategy stops acting. This stage is
precisely the point at which, for everyX ,We has enumerated something
not in ϕX .)
On the other hand, if Te is infinite, then the leftmost path, Xe, of

Te has infinitely many markers on it, so ϕXe has infinitely many gaps
of size 2−e so in particular, We is not density-1. (We ⊂ ϕX for every
infinite path X through Te. This is because of how Te is defined.)
Furthermore, if X 6= Xe then X has only finitely many markers on it,
so ϕX has only finitely many gaps of size 2−e (If X 6= Xe then there is
some stage s and some σ ≺ X such that after stage s, σ never looks
like it might be an initial segment of the leftmost path of Te, so after
that stage s, X can only get at most |σ| many markers placed on it)
Finally, note that the strategies have no need to interact: they ignore

each other’s markers and trees, and at state s, at most s + 1 many
strategies are eligible to act, and ϕX gets defined on Ps for every X by
just defining ϕ(X) to be the intersection of the sets that each strategy
wants ϕX to be. By Lemma 2.3, a real X will have the property that
ϕX is not density-1 if and only if some specific strategy causes ϕ(X) to
not be density-1. Thus, the only reals X such that ϕX is not density-1
are the Xe.

MINIMAL PAIRS 7

As mentioned in the overview, repeating the same construction again
with rightmost paths will finish the proof, since if X is the leftmost
path of one recursive tree and the rightmost path of another, then X is
recursive. If this is not the case, then for one of the two constructions,
the set computed from X is density-1 and has no density-1 r.e. subset.

�

Next, we proceed to prove Proposition 2.5. The proof is effectively
the same as the proof of Proposition 2.4, with the only major modifica-
tion being that we define two functionals simultaneously, and replace
Te with a 4-ary branching tree whose paths correspond to pairs of reals
〈X, Y 〉 such that ϕX ∪ ψY ⊂We.

Proposition 2.5. If A and B form a minimal pair for generic com-
putability, then either A or B is ∆0

2.

Proof. Again, we describe how the eth strategy acts at stage s:
If s < e, do nothing. Otherwise define Te,s as the set of pairs 〈σ, τ〉

such that |σ| = |τ | and such that We,s ↾ 2s−1 ⊂ ϕX
s−1 ∪ ψY

s−1 for some
X ≻ σ, and some Y ≻ τ . Note that this will be recursive, since we
define ϕ and ψ applied to Ps by the end of stage s.
Then, if Te,s is finite, do nothing. Otherwise put a marker ps on the

leftmost infinite path of Te,s, at the shortest pair 〈σ, τ〉 on that path
such that 〈σ, τ〉 has no marker. Then define ϕX

s ↾ Ps and ψY
s ↾ Ps for

all X and Y by placing a gap of size 2−e into ϕX
s at Ps if σ ≺ X , and

by not placing such a gap if σ ⊀ X , and likewise placing a gap of size
2−e into ψY

s at Ps if and only if τ ≺ Y .
Note, as before, that only one path Te gets infinitely many markers

on it, so in particular only finitely many markers are placed on nodes
that are not on that path. That path corresponds to a pair of reals
〈Xe, Ye〉, and if X 6= Xe then ϕX will have only finitely many gaps
of size 2−e. Note also that the leftmost path of Te computes both Xe

and Ye, so in particular, both are ∆0
2, but it is not true that either is

necessarily the leftmost path of a recursive tree, so we are unable to
use the previous trick to get them to be recursive.
Again, the strategies do not interfere with each other, and so if A is

different from all of the Xe and B is different from all of the Ye then ϕ
A

is density-1, ψB is density-1, and ϕA ∪ψB has no density-1 r.e. subset.
By the comment after the statement of Theorem 2.1, this suffices.

�

Now we prove our technical lemma, which states that the “leftmost
path” in the above construction can be replaced by any uniformly cho-
sen ∆0

2 infinite path through Te.

8 GREGORY IGUSA

Lemma 2.6. Let F be any function from reals to reals such that for a
4-ary branching tree T , if T is infinite, then F(T) is an infinite path
through T , and such that F(T) is uniformly recursive in T ′. Then for
any reals A and B, one of the following three things holds.
1: A and B do not form a minimal pair for generic computability.
2: There exists a recursive tree T such that F(T) ≥T A.
3: There exists a recursive tree T such that F(T) ≥T B.

So, for example, letting F be the function corresponding to the con-
struction in the proof of the low basis theorem, we could prove that if
A and B form a minimal pair for generic computability, then either A
or B must be low.

Proof. We modify the proof of Proposition 2.5 by, for each e, choosing
a ∆0

2 index for F(Te). This can be done uniformly by the fixed point
theorem, since we can uniformly compute the trees Te from the graphs
of ϕ and ψ, and since F is assumed to be uniform. (By the fixed
point theorem, we may assume we have a fixed index for the graphs
of the Turing functionals ϕ, ψ that we build.The graphs are recursive,
as at stage s, ϕX(n), ψY (m) are defined for all X and Y and for all
n,m ≤ 2s.)
Having chosen a ∆0

2 index for each F(Te), at each stage, instead of
placing a marker on the shortest unmarked node of the leftmost infinite
path of Te, the eth strategy places a marker on the shortest unmarked
node of the current approximation to F(Te). We then proceed to place
the corresponding gaps in ϕ and ψ in the usual way. The eth strategy
does nothing if Te,s is finite.
Then, as before, if Te,s is infinite, then the only path that gets infin-

itely many markers is F(Te). This is because for any n, after the first
n bits of F(Te) have stabilized to their final configuration, all future
markers will be on extensions of F(Te) ↾ n. In this case, We is not
density-1, so the eth strategy succeeds. If Te,s is finite, then for any X
and for any Y , ϕX ∪ ψY *We as before.
Then, for each e, define Xe and Ye as before, note that F(Te) com-

putes either of them, and note that ϕX and ψY are both generic com-
putations of the same non-generically computable real, as long as for
every e, X 6= Xe and Y 6= Ye.

�

We now can prove Proposition 2.7 as a direct corollary of this lemma

Proposition 2.7. If A is ∆0
2 and B is not ∆0

2 then A and B do not
form a minimal pair for generic computability.

MINIMAL PAIRS 9

Proof. For any infinite recursive tree T , and any nonrecursive ∆0
2 set

A, 0′ can uniformly (in indices for T and A) compute an infinite path
Z ∈ [T] such that Z �T A.
Apply Lemma 2.6 using the F representing this computation, and

note then that for any T , F(T) � A by construction. Also, F(T) � B
because B is not ∆0

2, and F(T) is. Therefore, A and B do not form a
minimal pair for generic computability.

�

Note that this same proof can be modified to prove Proposition 2.8,
by simultaneously avoiding the cones above both A and B.

Proposition 2.8. (Downey, Jockusch, and Schupp) If A and B are
both ∆0

2 then A and B do not form a minimal pair for generic com-
putability.

3. Generic Reducibility

Given the wildly nontransitive nature of generic computation, it
seems natural to attempt to generalize it to some transitive notion
of reducibility with the same basic properties. The most important
properties that one might expect of it would be to preserve the defi-
nition of the generically computable sets, and in particular a generic
reduction using a generically computable oracle should be the same as
a generic computation. In this section, we introduce four notions of
generic reducibility, prove that two of them are equivalent, and prove
that at least two of them are distinct. We then analyze the implications
of Theorem 2.1 towards these notions of generic reducibility.

Definition 3.1. A generic description of a real A is a set S of ordered
pairs 〈n, x〉, with n ∈ N, x ∈ {0, 1}, such that:
if 〈n, 0〉 ∈ S then n /∈ A,
if 〈n, 1〉 ∈ S then n ∈ A,
and {n | ∃x〈n, x〉 ∈ S} is density-1.

It should be mentioned that this notation conflicts slightly with the
notation of Jockusch and Schupp, in that they define a generic descrip-
tion as a partial function, and this would be the graph of a generic
description, by their definition. For the purposes of generic reduction
though, it is more useful to have “generic description” be defined as a
set, since the output of a generic computation is a generic description,
and so the input of a generic reduction should be a generic description.
It is interesting to notice, though, that the output of a generic compu-
tation of A is more than just a generic description of A, in that it is an
enumeration of a generic description of A. For this reason, we define:

10 GREGORY IGUSA

Definition 3.2. A time-dependent generic description of a real A is
a set S of ordered triples 〈n, x, l〉, with n, l ∈ N, x ∈ {0, 1}, such that
{〈n, x〉 | ∃l〈n, x, l〉 ∈ S} is a generic description of A.

Then, B generically computes A if and only if B can enumerate a
generic description of A, which is true if and only if B can compute a
time-dependent generic description of A.
Jockusch and Schupp define generic reducibility via enumeration op-

erators. The relation is basically the one that one might intuitively
construct, using only densely much information from the oracle, A,
to deduce a generic computation of B. For those familiar with the
notation, the definition is as follows:

Definition 3.3. A generic reduction of B from A is an enumeration
operator which, given any generic description of A as input, outputs a
generic description of B. B is generically reducible to A if there exists
a generic reduction of B from A. In this case, we write A ≥G B.

For those unfamiliar with the notation,

Definition 3.4. An enumeration operator is an r.e. set W of codes for
pairs 〈n,D〉 where n ∈ N and D is a code for a finite subset of N. It
is thought of as a function, sending a real A to the set {n | ∃D[D ⊆
A ∧ 〈n,D〉 ∈ W]}.

It should be noted that generic reduction has the following features:
The computation of B from A must be uniform in the generic descrip-
tion of A, and the computation is only allowed to reference which sets
are contained in the graph of the input set when computing a generic
description for the output set (so in particular, giving less information
about A never results in more information about B, and information
is not allowed to be deduced from the rate/order of enumeration of the
graph of A).
With these comments in mind, we make the following definitions:

Definition 3.5. A time-dependent generic reduction of B from A is a
Turing functional which, given any time-dependent generic description
of A as input, outputs a time-dependent generic description of B. B
is time-dependently generically reducible to A if there exists a time-
dependent generic reduction of B from A.

Definition 3.6. B is non-uniformly generically reducible to A if for
every generic description of A, there is an enumeration operator which
outputs a generic description of B using the given generic description
of A as input.

MINIMAL PAIRS 11

Definition 3.7. B is non-uniformly time-dependently generically re-
ducible to A if every time-dependent generic description of A, can com-
pute a time-dependent generic description of B.

Again, we mention that the ability to compute a time-dependent
generic description of a set is equivalent to the ability to enumerate a
generic description of the set, and so the difference between the time-
dependent and non-time-dependent reductions is entirely a difference
in terms of what the input of the reduction is. The outputs are phrased
differently just to make transitivity obvious, and also to make it easier
to work with any given form of reduction on its own. Also for the
remainder of this paper, whenever a non-time-dependent generic de-
scription is used as an oracle, only positive information about elements
in the description will be used for the computation.
From the definitions, we may immediately conclude the following

implications.

Observation 3.8. The existence of a uniform reduction of either type
implies the existence of a non-uniform reduction of the corresponding
type.

Observation 3.9. The existence of a non-time-dependent reduction of
either type implies the existence of a time-dependent reduction of either
type.

Observation 3.8 is trivially true. Observation 3.9 is true since from
any time-dependent generic description, one can enumerate a generic
description, and then simply ignore the order in which the elements
were enumerated. The rules of enumeration operators do not allow for
an obvious converse to this, although the first proposition that we prove
is that the converse of does hold for the uniform generic reductions, and
so in particular, the two uniform reductions are equivalent.

Proposition 3.10. A ≥G B if and only if the following holds:
There is a Turing functional ϕ such that for any time-dependent

generic description X of A, ϕX is a generic computation of B.

By Observation 3.9, we need only prove that the second implies the
first.

Proof. Assume that from every time-dependent generic description X
of A, ϕX is a generic computation of B. Then in particular, there
are no time-dependent generic descriptions X such that ϕX gives false
information about B. So to generically reduce B to A, one needs only
to enumerate everything that ϕ would enumerate, given any ordering
of the generic description.

12 GREGORY IGUSA

In other words, let W be the set of all 〈a,D〉 such that a codes an
ordered pair 〈x, y〉, D is a finite set of ordered pairs 〈ni, mi〉, i ≤ c, and
such that there exists a sequence 〈li | i ≤ c〉 where ϕX gives output y
on input x for some X extending {〈〈ni, mi〉, li〉 | i ≤ c}.
Then, for any generic description of A, the output of W will be the

union of all outputs of ϕX for any time-dependent versions of that
generic description, and in particular, will be a generic description of
B. �

Next, we show that neither of the nonuniform reductions is equivalent
to the uniform reduction. To prove this, we introduce some notation.
Recall from Section 1, the definition of R(X):

Definition 3.11. For any real X , n ∈ R(X) ↔ m ∈ X , where 2m is
the largest power of 2 dividing n.

Note now the following strengthening of Observation 1.5, proved by
Jockusch and Schupp [1], but with a proof included for completeness:

Observation 3.12. For any real X, X computes R(X) uniformly and
X can be computed uniformly from any generic description of R(X).
Therefore, the map sending X 7→ R(X) induces an embedding from the
Turing degrees to the generic degrees.

Proof. X computesR(X) uniformly, and so generically computesR(X)
uniformly.
Conversely, to compute the mth bit of X from a generic description

ofR(X), search for any n such that 2m is the largest power of 2 dividing
n and such that the generic description of R(X) has a value for the nth
bit of R(X). Use that as the value for the mth bit of X . There must
be such an n because the set of numbers divisible by 2m and not by
2m+1 has positive density (in fact, has density 1

2m+1), and the generic
description has values for density-1 many bits of R(X).
The proof of the embedding follows directly: If X computes Y then

any generic description of R(X) can be used uniformly to compute X
and therefore Y and therefore R(Y). Likewise, if R(X) ≥G R(Y),
then X can compute R(X), which can generically compute R(Y). Y
can then be recovered from this generic description. �

Note that this observation and proof hold for any of the forms of
generic reduction.
We now introduce an alternate definition, which would have sufficed

for the purposes of Observation 1.5, but with the property that one

cannot uniformly recover X from a generic description of R̃(X).

MINIMAL PAIRS 13

Definition 3.13. For any real X , n ∈ R̃(X) ↔ m ∈ X , where 2m is
the largest power of 2 less than n.

The key distinction here is that R(X) codes each of the entries of
X into a positive density set, and so any generic description of R(X)

must be able to recover all the entries of X , while n ∈ R̃(X) ↔ m ∈ X
codes the entries of X into progressively larger sets, each finite, and so

any generic description of n ∈ R̃(X) ↔ m ∈ X must be able to recover
all but finitely many of the entries of X .

Proposition 3.14. Let A be a real such that one cannot uniformly
compute A from an arbitrary cofinite subset of the entries of A. Then

R(A) is non-uniformly generically equivalent to R̃(A) (and therefore

non-uniformly time-dependently generically equivalent), but R̃(A) �G

R(A). Therefore, neither of the non-uniform notions of generic re-
ducibility is equivalent to the uniform notion.

Note that there exists reals satisfying the hypothesis of the propo-
sition, for example any 1-random real, or any arithmetically Cohen
generic real.

Proof. First of all, any generic description of R(A) can be used uni-
formly to recover A by Observation 3.12. It can therefore compute
R̃(A). Likewise, from any generic description of R̃(A), one can uni-
formly compute all but finitely many bits of A. From this, one can
non-uniformly compute A, and therefore compute R(A). However,
this cannot be done uniformly, as follows:
Any cofinite subset of the entries of A can be used to uniformly

compute a generic description of R̃(A). Any generic description of
R(A) can be used to uniformly compute A. Thus, since there is no
uniform way to compute A from a cofinite subset of its entries, there is
no uniform way to go from a generic description of R̃(A) to a generic
description of R(A). �

As yet, however, there do not appear to be any theorems that have
been proved for one form of generic reduction that have not also been
proved for every other form. Indeed, for the remainder of this paper
generic reduction will refer to any of the definitions.
Theorem 2.1 sheds very little light on the question of the existence

of a minimal pair in the generic degrees. It does, however, strengthen
a previous result of Jockusch and Schupp. Borrowing a term from the
study of enumeration reducibility, we make the following definition:

14 GREGORY IGUSA

Definition 3.15. A generic degree a is quasi-minimal if a is nonzero,
and if for every nonrecursive real X , the generic degree of R(X) is not
below a.

Then, while proving that the embedding from the Turing degrees
to the generic degrees is not surjective, Jockusch and Schupp [1] actu-
ally prove the stronger result that there exists a quasi-minimal generic
degree. Theorem 2.1 allows us to strengthen this result:

Proposition 3.16. For every nonzero generic degree a, there is a
quasi-minimal generic degree b such that a ≥G b .

Proof. Let a be a nonzero generic degree. If a is quasi-minimal, then
we are done. Else, choose A nonrecursive, so that the generic degree of
R(A) is below a. In the Turing degrees, every nonzero degree is half of
a minimal pair, so choose B such that A and B form a minimal pair for
Turing reducibility. By Theorem 2.1, choose some C, not generically
computable, such that A and B can both generically compute C.
Then C generically reduces to bothR(A), andR(B), and the generic

degree of C must be quasi-minimal, since if there were someD such that
C ≥G R(D), then we would have R(A) ≥G R(D) and also R(B) ≥G

R(D), and therefore A ≥T D and also B ≥T D, and so D would have
to be recursive, since A and B form a minimal pair. Let b be the
generic degree of C. �

Unfortunately, it seems very difficult to generalize the methods of
this paper to prove the lack of a minimal pair for generic reducibility,
since if there is such a pair, then at least one of the two degrees in
the pair would have to be quasi-minimal, and the construction in the
proof of Theorem 2.1 involves each of A and B actually computing
something which is a generic description of C, but the quasi-minimal
generic degrees are unable to use a generic reduction to completely
compute any nonrecursive real. However, Proposition 3.16 gives some
hope of a different construction, since it ensures that if there exists
a minimal pair for generic reducibility, then there exists one in which
both halves of the minimal pair are quasi-minimal.
Working in the other direction, it would also be interesting to know

whether two quasi-minimal generic degrees can join to a generic degree
that is not quasi-minimal.

References

[1] Carl Jockusch and Paul Schupp, Generic computability, Turing degrees, and

asymptotic density, to appear in Journal of the London Mathematical Society.

	1. Introduction
	2. No Minimal Pair
	3. Generic Reducibility
	References

