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UNEXPECTED IMAGINARIES IN VALUED FIELDS WITH ANALYTIC

STRUCTURE

DEIRDRE HASKELL, EHUD HRUSHOVSKI, AND DUGALD MACPHERSON

Abstract. We give an example of an imaginary defined in certain valued fields with
analytic structure which cannot be coded in the ‘geometric’ sorts which suffice to code all
imaginaries in the corresponding algebraic setting.

1. Introduction

The work of [6] on quantifier elimination for valued fields with analytic functions illustrated
the power of Weierstrass preparation and gave rise to the intuition that restricted analytic
functions do not significantly increase the collection of definable sets beyond those which
are already given by the algebraic structure. This is certainly true for sets in one variable
as, by the work of [20] in the algebraically closed case, of [10] in the p-adically closed case
and of [11] in the real closed case, the theory of the valued field with restricted analytic
functions in the appropriate language is respectively C-minimal, P -minimal or weakly o-
minimal. This intuition gave rise to a belief that the theory of a valued field with restricted
analytic functions should eliminate imaginaries to the same ‘geometric sorts’ which suffice
to eliminate imaginaries in the algebraic situation. In this paper, we show that this belief
is false. We give an example of an imaginary which arises in the analytic setting and which
cannot be coded in the geometric sorts. The example has versions in each of the above three
settings.

Let K be a field, and v : K → Γ ∪ {∞} a valuation map. Let L = (+,−, ., 0, 1, div) be the
language of valued rings, where div is a binary relation symbol interpreted on K by putting
div(x, y) whenever v(x) ≤ v(y). This is a one-sorted language. For an arbitrary valued field
F , we shall write Γ(F ), O(F ), M(F ), and k(F ), for, respectively, the value group, valuation
ring, maximal ideal, and residue field of F .

We also consider the multi-sorted language LG in which ACVF (the theory of algebraically
closed valued fields) was proved in [14] to have elimination of imaginaries. This has sorts Γ
(for the value group) and k (for the residue field), and also, for each n > 0, a sort Sn and a
sort Tn. We view these as sorts for arbitrary valued fields – LG is a general sorted language
for valued fields. The members of Sn are codes for rank n lattices for the valuation ring; that
is, given a valued field F with valuation ring O = O(F ), the members of Sn(F ) are codes
for free rank n O-submodules of Fn. Equivalently, as GLn(F ) acts transitively on the space
of such lattices and the stabiliser of the lattice On is GLn(O), we may view the elements of
Sn(F ) as codes for left cosets of GLn(O) in GLn(F ). If s ∈ Sn(F ) codes the lattice Λ, then
Λ/MΛ has the structure of an n-dimensional vector space over k(F ), and the set Tn consists
of pairs (s, t) where s ∈ Sn(F ) codes some Λ as above, and t codes an element of Λ/MΛ.
Thus there is a canonical surjection πn : Tn(F ) → Sn(F ) such that each fibre is a set of codes
for elements of an n-dimensional k(F )-space. The sort Γ is redundant (but included to follow
the conventions of [14]), since it is naturally identified with S1, identifying γ ∈ Γ with the
lattice γO(F ) := {x ∈ F : v(x) ≥ γ}. Likewise, the sort k is redundant.
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We also often refer to the sort RV . For the valued field F , RV (F ) consists of codes for
elements of the set F ∗/1 + M(F ). However, RV is not formally a sort for LG . One can
identify RV (F ) with an ∅-definable subset of T1(F ): the element b(1+M) in RV is identified
with the open ball b+ bM which is an element of bO/bM. There is a natural map RV → Γ,
also denoted by v.

We first describe the context of algebraically closed valued fields. Let K0 be a complete
algebraically closed valued field of characteristic zero, with value group Γ0, value map v : K0 →
Γ0, valuation ring O0, maximal ideal M0, residue field k0. We consider the rings of separated
power series over K0, as introduced by Lipshitz in [19]. We shall not here describe the full
setting, but for any n,m ≥ 0 there is a ring Sm,n of power series in variables x = (x1, . . . , xm)
ranging through Om

0 and ρ = (ρ1, . . . , ρn) ranging through M
n
0 . In the language Lan

D there
is a function symbol for each element of this ring. In the standard model K0 these function
symbols are interpreted by the corresponding power series functions on Om

0 ×M
n
0 (where they

converge), and they take value 0 on any (a, b) where a = (a1, . . . , am), b = (b1, . . . , bn), and
(a, b) 6∈ Om

0 ×M
n
0 . The language also has two binary functions symbols D0, D1 for truncated

division with range O0 and M0 respectively. Let T an
D be the theory of the valued field in

the language Lan
D , with the above function symbols interpreted in the natural way. Lipshitz

proved in [19, Theorem 3.8.2] that this theory, parsed in a three-sorted language with sorts
for the valuation ring, the maximal ideal and the value group, has quantifier elimination. A
version with two sorts (the field and the value group) is stated in [5] (Theorem 4.5.15).

With F a model of T an
D , we may extend the language Lan

D to a language Lan
D,G by adjoining

the sorts k,Γ, Sn, Tn (for n ≥ 1) from F eq, and expand F correspondingly. Let T an
D,G be the

resulting multi-sorted theory. We prove

Theorem 1.1. The theory T an
D,G does not have elimination of imaginaries.

The basic idea of the proof is to consider the graph of a restriction of the exponential
function, which is definable in Lan. The domain and range are definable in L and so coded in
LG, but the exponential map is not definable in LG . Its graph is a group, and we show that
a generic torsor of this group is not coded in G.

We next consider real closed valued fields with analytic structure. A real closed valued field
F is a real closed field equipped with a valuation arising from a proper non-trivial convex
valuation ring. It may be viewed in the language L< = L∪{<}, where < is a binary relation
symbol interpreted by the ordering. The theory of real closed valued fields is complete, and
has quantifier elimination, by [3]. Furthermore, by [7], its theory is weakly o-minimal: in all
models of the theory, every definable subset of the field is a finite union of convex sets, not
necessarily with endpoints in F ∪ {±∞}. If L<,G is the multi-sorted language with sorts G as
above, then the theory of the expansion of F to L<,G has elimination of imaginaries, by [22].

Now consider any o-minimal expansion R̄ of the real field R, in a language L̄, and let
T = Th(R̄). Assume that exponentiation restricted to [0, 1] is definable in R̄. Assume also
that T is polynomially bounded, that is, for every definable partial function R → R, there are
a ∈ R and d ∈ N such that f(x) ≤ xd for all x > a. By [23], this is equivalent to assuming
that unrestricted exponentiation is not definable in R̄. A familiar example of such a structure
R̄ is Ran, the expansion of the real field by all restricted analytic functions – see for example
[6]. Let F̄ |= T be non-archimedean. Let

V := {x ∈ F : for some n ∈ N>0(|x| < n)},

the subring of F̄ consisting of finite elements. Then V is a convex valuation ring of F̄ with
maximal ideal M, the ideal of infinitesimals. Observe that f(V ) ⊆ V for every continuous
∅-definable function f : V → R. Following [11], let Tcon = Th((F̄ , V )) in a language L̄con

obtained from L̄ by adjoining a unary predicate P interpreted by V .
It is well-known (see e.g. [8, (1.2) p. 94]) that any o-minimal expansion of an ordered

field has elimination of imaginaries. Likewise, as noted above, RCVF has elimination of
imaginaries in the multi-sorted language L<,G , and we had hoped that these two results could
be combined. However, let L̄con,G be the extension of L̄con obtained by adding the sorts
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Sn and Tn (as well as k, Γ) of L<,G . Let Tcon,G be the theory of the natural expansion of
(F̄ , V ) |= Tcon to the language L̄con,G . We prove

Theorem 1.2. The theory Tcon,G does not have elimination of imaginaries.

Finally, we consider the p-adic setting. Here, the structure of interest is Qan
p in the language

Lan
p,D, in the context of [6]. The p-adic field Qp, equipped with the p-adic valuation vp, is

considered in Macintyre’s language Lp with unary predicates Pn (for n > 1), where Pn is
interpreted by the set of nth powers in Qp. The language Lan

p,D has a binary predicate D for

(truncated) division, and a function symbol for each restricted analytic function Qm
p → Qp

(for m ≥ 0) which is defined by a convergent power series on Zm
p (coefficients tending in

valuation to infinity), and takes the value 0 off Zm
p .

Let Lp,G be the extension of Lp with sorts Sn for each n > 0; the Tn are not needed since
elements of the Tn are coded in the other sorts, as the value group is discrete. By [18], the
theory of Qp has elimination of imaginaries in the (semi-algebraic) language Lp,G . This result
was used in [18] to prove rationality results for certain Poincaré series for groups. The p-adic
analytic quantifier elimination was used to prove rationality of Poincaré series for compact
p-adic analytic groups by du Sautoy in [26]. The hope was to extend these results using
analytic elimination of imaginaries. However, we have the following theorem. Let Lan

p,G be
the corresponding extension of Lp,G by the restricted analytic functions. We let T an

p,G be the
theory of Qan

p in the subanalytic language Lan
p,G .

Theorem 1.3. The theory T an
p,G does not have elimination of imaginaries.

We give the proof of Theorem 1.1 in Section 2. We have included proofs of several inter-
mediate lemmas, possibly of wider interest, which may be known but are hard to find in the
literature. The proofs of Theorems 1.2 and 1.3 are similar, and are given in Sections 3 and
4 respectively. Section 5 contains a sketch of an alternative proof of Theorem 1.1 in residue
characteristic 0 which is perhaps slightly shorter (though it rests on some of the lemmas in
Section 2) but may not generalise so well to the o-minimal and p-adic contexts.

Remark 1.4. As mentioned above and referenced later, the theories in Theorems 1.1, 1.2 and
1.3 are, respectively, C-minimal, weakly o-minimal, and P -minimal. It follows immediately
that these theories eliminate the quantifier ∃∞ (in the field sort); that is, for any uniformly
definable family of subsets of the field, there is a finite upper bound on the sizes of the finite
members. This is used without explicit mention.

It may be that in these settings, elimination of imaginaries can be obtained by adding a
few further clearly described sorts. Let us say that an imaginary set Y is coded over A in
sorts S if there is an A-definable embedding from Y into a product of the sorts in S. In this
paper we have shown that in the above three settings, a certain imaginary is not coded in the
geometric sorts. This is seen most cleanly in Section 5, where is is shown that for ACV F an in
residue characteristic 0, if E is the graph of exponentiation and G = Ga ×Gm, then G(O)/E
is not coded in the geometric sorts.

Question 1.5. Is it true that, in the three settings considered in this paper, any imaginary
can be coded in one of the form GLn/H for some definable group H?

Conventions and Notation.
In each of the three settings, we use the symbol U for a large saturated model (without

specifying the sorts of U). Though we use V F for the home sort, the underlying field of U
is denoted by K. The valuation ring of K is denoted by O, its maximal ideal is denoted by
M, the residue field by k, and the value group by Γ. There is a potential confusion between
viewing Γ (or other sort symbols) as a symbol for a sort, or as the value group of K, but since
we never move outside U this should be unproblematic. We often write x ∈ V F , meaning
that x ∈ V F (U), and treat the other sorts similarly. IfM is an elementary submodel of U , we
write V F (M) for the home sort of M , O(M) for the valuation ring of M , and so on. If γ ∈ Γ
we put γO := {x ∈ U : v(x) ≥ γ} and γM := {x ∈ U : v(x) > γ}. Throughout the paper, if
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A is a subset of a model M , then acl(A) denotes the model-theoretic algebraic closure of A
in M , rather than the field-theoretic algebraic closure.

Recall that if G is a group, then a torsor or principal homogeneous space for G is a set X
equipped with a regular (that is, sharply 1-transitive) action of G onX . Let X,Y be torsors of
the groupsG,H respectively, with the actions of G onX andH on Y both denoted by ∗. Then
an affine homomorphism X → Y is a pair (f, c) where c : X → Y is a function, f : G → H
is a group homomorphism (the homogeneous component of (f, c)), and c(g ∗ x)) = f(g) ∗ c(x)
for all g ∈ G and x ∈ X . If (f1, c) and (f2, c) are both affine homomorphisms X → Y then
f1 = f2, so we sometimes denote the affine homomorphism (f, c) just by c. The imaginary
that we exhibit in each case is an affine homomorphism whose homogeneous component is
essentially exponentiation.

If v : F → Γ ∪ {∞} is a valuation on a field F , then, for a ∈ F and γ ∈ Γ ∪ {∞}, an
open ball is a set of the form B>γ(a) := {x ∈ F : v(x − a) > γ}, and a closed ball has form
B≥γ(a) := {x : v(x − a) ≥ γ} (so may be a singleton). We write Bγ(a) if we do not wish to
specify whether the ball is open or closed.

We view definable sets such as balls both as imaginaries and as sets of (field) elements,
viewed in the monster model. For example, a ball B may be viewed as {x ∈ V F : x ∈ B}.
When viewed as an imaginary, we often denote it as pBq.

We shall make heavy use of C-minimality, (weak) o-minimality, and P -minimality, often
without detailed explanation. We assume, for example, that the reader can picture what
kinds of sets are definable in a C-minimal expansion of a valued field. (Formally, they are
Boolean combination of balls, and can be described – canonically – as finite unions of ‘Swiss
cheeses’ in the language of Holly [16, Theorem 3.26].)

If B is a closed ball in some valued field, then the reduction red(B) of B is the collection
of open sub-balls of B of the same radius. This is a set in parameter-definable bijection with
the residue field k. This notation is occasionally extended. If, for example, B has radius δ,
β > δ, and W is the collection of closed (or open) sub-balls of B of radius β, then we may
view W as a closed ball of radius δ whose elements are closed balls of radius β, so W is a
1-torsor in the language of [14, Section 2.3]. We may define red(W ) as above, and red(W ) is
in (pBq, β)-definable bijection with red(B).

2. The algebraically closed case – proof of Theorem 1.1.

As in the introduction, we assume that K0 is a complete algebraically closed valued field
of characteristic 0, with K0 |= T an

D , and let T an
D,G be the extension of T an

D to the multi-sorted
language Lan

D,G .

Recall the notion of a C-minimal theory, introduced in [21] and developed in [12]. A
slightly more restricted notion, which also fits the present context, was developed further in
[17]. The complete theory of an expansion of a valued field is C-minimal if, in any model F ,
any (parameter)-definable subset of the field is a Boolean combination of open or closed balls.

Theorem 2.1. [20] The theory T an
D is C-minimal.

The next lemma is presumably well-known, and yields that algebraic closure defines a
pregeometry on K.

Lemma 2.2. Algebraic closure has the exchange property in every model of T an
D .

Proof. Suppose that this is false. Then by C-minimality and [12, Proposition 6.1], there are
definable infinite subsets U, V of K |= T an

D and a definable surjection f : U → V , such that
f−1(v) is an infinite ball for all v ∈ V . Let X := {(u, f(u)) : u ∈ U} ⊂ K2. Then it follows
from [2, Theorem 6.6] that X has non-empty interior. This is clearly impossible. �

For any parameter set C and tuple ē from V F , we define dim(ē/C) to be the length of a
minimal subtuple ē′ of ē such that ē ∈ acl(C, ē′).

Lemma 2.3. (i) The field k(U) is a strongly minimal set in U , and the ordered abelian group
Γ(U), equipped with the induced structure, is o-minimal.
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(ii) The value group Γ(U) has the structure of a pure divisible ordered abelian group (ex-
panded by constants for elements of a subgroup (Q, <,+)) and is stably embedded.

Proof. (i) By Theorem 2.1, T an
D is C-minimal. The claims follow immediately from C-

minimality, and the fact that k(U) is infinite.
(ii) The quantifier elimination for T an

D given in [19] takes place in a 3-sorted language,
with sorts for the valuation ring, the maximal ideal and the value group. Thus, it suffices to
observe that if an atomic formula φ(x) defines a subset of Γn, then there is a quantifier-free
formula ψ(x) in the language of ordered abelian groups which defines the same set, and if φ
is over ∅, so is ψ. This is immediate. �

Lemma 2.4. Let U |= T an
D,G, and let f : X → K be a definable map from a geometric sort

other than K. Then f has finite image.

Proof. We give the proof where X is the sort Sn for some n. The argument for the Tn-sorts is

similar, and as noted above, the sorts Γ and k are redundant. Let Y ⊂ Kn2

be the set of free
bases of O-lattices coded in Sn(K); that is, if y = (y1, ..., yn) where yi ∈ Kn for all i, then
y ∈ Y if and only if there is an O-lattice of the form Oy1 ⊕ . . .⊕Oyn, coded in Sn. Thus, Y
is just the set of linearly independent n-tuples from Kn. There is a map g : Y → K given by
g(y) = f(Oy1 ⊕ . . .⊕Oyn).

If y = (y1, . . . , yn) ∈ Y , then it is easily checked that there is γ ∈ Γ>0 so that the following
holds: if (w1, . . . , wn) ∈ Y with yi = (yi1, . . . , yin) and wi = (wi1, . . . , win) for each i, and
v(yij − wij) > γ for each i, j, then Oy1 ⊕ . . .⊕Oyn = Ow1 ⊕ . . .⊕Own; that is, the map g
is locally constant. Thus, the proof reduces to the following claim.

Claim. For any m > 0 and any W ⊆ Km, any locally constant definable g : W → K has
finite image.

Proof of Claim. We use induction on m. The case m = 1 follows immediately from
Lemma 2.2. For the inductive step, assume the result holds for m′ < m, and that m > 1, and
let π1 : Km → Km−1 be the projection to the firstm−1 coordinates. For any ā ∈ π1(W ) there
is an induced locally constant partial map gā : K → K given by gā(y) = g(ā, y). By the m = 1
case, Im(gā) is a finite set, of bounded size (as ā varies) by compactness, and we may suppose
that |Im(gā)| = t for all ā ∈ π1(W ). For each ā ∈ π1(W ), let Im(gā) = {l1(ā), . . . , lt(ā)}.
For each i = 1, . . . , t there is bi with g(ā, bi) = li(ā), and there is an open neighbourhood Ni

of (ā, bi) such that g is constant on Ni. Hence, for any ā′ ∈ π1(Ni), li(ā) ∈ Im(gā′). Put
N(ā) = π1(N1) ∩ . . . ∩ π1(Nt). Then Im(gā′) = Im(gā) = {l1(ā), . . . , lt(ā)} for all ā′ ∈ N(ā).
By elimination of finite imaginaries for fields, Im(gā) is coded by a finite tuple of field elements
h(ā) of length t′, say. Write h(ā) = (h1(ā), . . . , ht′(ā)). Then each hi is constant on N(ā).
Thus, the hi are locally constant on π1(W ) ⊆ Km−1, so by induction have finite image. Thus
Im(g) is finite. �

Proposition 2.5. The value group Γ and the residue field k are orthogonal, in the following
sense: if α ∈ k and γ ∈ Γ, then for any model M , Γ(acl(Mα)) = Γ(M) and k(acl(Mγ)) =
k(M).

Proof. Suppose for a contradiction that δ ∈ Γ(acl(Mα)) \ Γ(M), for some α ∈ k. Then there
is an M -definable function f : k → Γ with infinite range such that f(α) = δ. Since k is
strongly minimal, the fibres of f are finite, and a total ordering is induced by Im(f) ⊂ Γ on
the set of fibres. This contradicts strong minimality of k.

Similarly, suppose there is β ∈ k(acl(Mγ)) \ k(M), where γ ∈ Γ. Using coding of finite
sets in the residue field, there is an M -definable function g : Γ → k with infinite range X . By
definable choice in Γ, there is a definable injective function h : X → Γ such that g(h(x)) = x
for all x ∈ X . Thus, the ordering on Γ induces an ordering on X , which is incompatible with
the strong minimality of k. �

Recall that, given a parameter set C, an element e ∈ K is said to be generic over C in the
C-definable ball s, or in the chain s =

⋂
(si : i ∈ I) (ordered by inclusion) of C-definable balls,

if e lies in s and there is no acl(C)-definable proper sub-ball of s containing e; this follows
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[14, Definition 2.5.1] and [17, Definition 3.4]. By C-minimality (see e.g. [14, Section 2.5] or,
expressed more generally, [17, Section 3]), under the assumptions of the following lemma, for
any such s there is a unique Aut(U/C)-invariant type ps over U such that: for any C′ with
C ⊂ C′ ⊂ U , ps|C′ is the type of elements generic in s over C′. This notion of genericity
extends to 1-torsors (where a ball is a collection of sub-balls of given radius, in the sense of
Section 1).

Lemma 2.6. Let C be a parameter set, s a C-definable closed ball, and let a ∈ K be a generic
element of s over C. Then Γ(C) = Γ(Ca).

Proof. The proof of Lemma 2.5.5 (i) ⇒ (ii) of [14] just uses C-minimality in the sense of [17],
so goes through to the current context. See also [17, Lemma 3.19]. �

Lemma 2.7. Let C = acl(C) be a set of parameters, and let e ∈ K. Then either there is no
α ∈ k(Ce) \ k(C), or there is no γ ∈ Γ(Ce) \ Γ(C).

Proof. We use arguments which are developed in [14, Section 2.5] (see Lemma 2.5.5) in the
context of ACVF, and in a more general C-minimal context in [17].

Suppose that e realises the generic type ps|C of a C-definable open ball s or chain of C-
definable balls with no least element. By [17, Lemma 3.19], ps is orthogonal to the generic
type of the closed ball O. That is, if a is generic in O over C, it is generic in O over Ce.
However, if α ∈ k(Ce) \ k(C), then α = res(a) for some a, so a is not generic in O over Ce,
but is generic in O over C, which is a contradiction.

On the other hand, if e realises the generic type of a closed C-definable ball, then Γ(Ce) =
Γ(C) by Lemma 2.6. �

We use the following notation to move between an imaginary and the corresponding subset
of the field. If α ∈ k(U), then α codes a coset Aα = a + M(U) of U for some a ∈ O(U).
Likewise, if r ∈ RV (U), then r codes a coset Br = b(1 +M(U)) of 1 +M(U).

Proposition 2.8. Fix an algebraically closed set C of parameters.
(i) Let r ∈ RV with v(r) 6∈ Γ(C). Then Br realises a unique type in V F over C, hence

over Cr.
(ii) Let α ∈ k \ acl(C). Then Aα realises a unique type in V F over C, and hence over Cα.

Proof. These follow from C-minimality of T an
D . �

Proof of Theorem 1.1. We give a proof below in (0, 0)-characteristic. For the small
adaptation to mixed characteristic (0, p), see Remark 2.9.

First, observe that there is an ∅-definable isomorphism exp : (M,+) → (1 +M, .). This is
given by the function symbol which is interpreted in the ‘standard’ model K0 by the usual
power series function f(X) = Σi≥0X

i/i!. (Since the variable X here ranges through the
maximal ideal M rather than O, so would be denoted by ρ rather than X in [19], there is
indeed such a function symbol in Lan

D .) We shall denote the inverse function 1 + M → M,
which is also ∅-definable, by log.

Assume that M is a small elementary submodel of U , and let m ∈ V F (M) with β :=
v(m) > 0. DefineW := O/βM, a definable set in Ueq. For w ∈W let Aw be the corresponding
coset of βM. For any parameter set C, we shall say that w is generic in W over C if there is
no acl(C)-definable proper sub-ball B of O with Aw ⊆ B. This agrees with the terminology
of [14, Definition 2.3.4] for 1-torsors. For any γ ∈ Γ, let Uγ := {r ∈ RV : v(r) = γ}. Let
E : (βM,+) → (1 +M, .) be the group isomorphism E(x) = exp(m−1x).

Choose r in RV with γ := v(r) infinite with respect to M , and choose w ∈ W generic over
M ∪ {r}. Write w̄ for res(x) where x ∈ Aw, and for α ∈ k, let Wα := {w ∈W : w̄ = α}.

For a ∈ Aw and b ∈ Br, define the affine homomorphism h = ha,b : Aw → Br, with
homogeneous component E, by

h(x) = bE(x− a) = b exp(m−1(x− a)).
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To prove the theorem, it suffices to show that phq is not coded in Lan
D,G . First observe that

phq 6∈ acl(M,w, r). For w, r belong respectively to the strongly minimal sets red(a + βO)
and Uγ , and by C-minimality arguments all elements of red(a + βO) × Uγ realise the same
type over M . Hence, by C-minimality again, if b, b′ ∈ Br are distinct then tp(a, b/M,w, r) =
tp(a, b′/M,w, r), whilst h = ha,b 6= ha,b′ .

Suppose for a contradiction that there is a finite tuple in G which is a code for phq over
M . Since w, r ∈ dcl(phq), we may suppose this code includes w and r, so we can write it as
(w, r, ē), where ē is a tuple in G. Let ē = (ē1, ē2) where ē1 is a tuple from V F and ē2 is a
tuple from the geometric sorts other than V F .

Claim 1. (i) ē2 ∈ acl(M,w, r, ē1).
(ii) dim(ē1/M) = 1.

Proof of Claim. (i) Suppose that ē2 6∈ acl(M,w, r, ē1).
Let C′ ⊂ K with M ⊂ C′ and w, r ∈ dcl(C′), such that there is an affine homomorphism

g : Aw → Br, also with homogeneous component E, defined over C′. Using an automorphism
over M,w, r if necessary, we may suppose that phq 6∈ acl(C′). Now g(x) = b′ expm−1(x− a′)
for some a′ ∈ Aw, b

′ ∈ Br. Then the function log(g/h) : Aw → M is defined, and by properties
of the exponential and logarithmic functions it satisfies

log(g/h)(x) = log(b′/b) +m−1(a− a′) = d ∈ M.

Hence, as pgq ∈ dcl(C′) and g(x) = h(x) exp(d), the element phq is coded over C′ by the field
element d. In particular, d 6∈ acl(C′).

We may choose C′ as above so that in addition ē2 6∈ acl(C′, ē1). Now phq is interdefinable
over C′ with both ē and d, so we find d ∈ dcl(C′, ē1, ē2) \ acl(C′, ē1). That is, there is
a definable map from a product of sorts other than V F to V F , with infinite range. This
contradicts Lemma 2.4.

(ii) We may choose C′ as in (i) so that dim(ē1/M,w, r) = dim(ē1/C
′). Thus, as ē1 ∈

dcl(C′, d), we have dim(ē1/M,w, r) = 1. The result now follows from Lemma 2.4.

We may now choose e ∈ ē1 so that ē1 is algebraic overM ∪{e}. The argument breaks into
two cases.

Case 1. w̄ 6∈ acl(M, e). Now by orthogonality of k and Γ, w̄ 6∈ acl(M, e, v(r)).
Claim 2. Then w 6∈ acl(M, e, r).
Proof of Claim. Suppose for a contradiction that w ∈ acl(M, e, r). Suppose that φ(x, y)

is an Lan,eq-formula over M ∪ {e} such that φ(w, r) holds and φ(W, r) is finite. By an easy
C-minimality argument, there is nφ such that for any y ∈ Uγ , if φ(W, y) is finite then it has
at most nφ elements. Let φ∗(x, y) be the formula φ(x, y)∧|φ(W, y)| ≤ nφ. Similarly, there are
formulas φ̄∗(z, y) and φ̄(z, y) (with z ranging over the residue field k, and y over RV ) such
that φ̄(k, r) is finite and contains w̄, and φ̄∗(w̄, r) holds, and such that φ̄∗(z, y) expresses that
z ∈ k is algebraic over M, e, y via φ̄. As k and Uγ are strongly minimal and w̄ 6∈ acl(M, e, γ),
there are finitely many r′ ∈ Uγ such that φ̄∗(w̄, r′). For α ∈ k, let

Sα := {x ∈ W : ∃y(φ∗(x, y) ∧ res(x) = α ∧ φ̄∗(α, y))}.

Then Sw̄ is a finite non-empty subset of the infinite set Ww̄ which is definable overM, e, γ, w̄.
Since w̄ 6∈ acl(M, e, γ),

⋃
α∈k Sα is a definable subset ofW which is not a boolean combination

of balls, contrary to C-minimality.

Case 2. w̄ ∈ acl(M, e).
Claim 3. Then r 6∈ acl(M, e,w).
Proof of Claim. By Lemma 2.7, γ 6∈ acl(M, e), and indeed, Γ(M, e) = Γ(M). Thus, we may

suppose w 6∈ acl(M, e), as otherwise the claim follows immediately; for if r ∈ acl(M, e,w) =
acl(M, e) then γ = v(r) ∈ acl(M, e). We shall show that γ 6∈ acl(M, e,w), which implies that
r 6∈ acl(M, e,w). So suppose that γ ∈ acl(M, e,w), so as Γ is totally ordered there is an
acl(M, e)-definable function f with f(w) = γ.

Let B be the intersection of the closed U-definable balls in O containing f−1(γ). By o-
minimality of Γ, B is a ball, of radius δ, say, and is closed. Also, γ is infinite with respect to
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Γ(M, e) = Γ(M), but δ is bounded above in Γ(M) by β. By Lemma 2.3, Γ has the structure of
a divisible ordered abelian group, and is stably embedded. Hence definable functions Γ → Γ
are piecewise linear, so as δ ∈ acl(M, e, γ), we have δ ∈ acl(M, e). Also, pBq ∈ acl(M, e, γ).

Suppose first that f−1(γ) meets some element s of red(B) in a non-empty set which is not
generic in s over M, e, γ, s. Then let B′ be the smallest closed ball containing f−1(γ) ∩ s,
and replace B by B′. Note that B′ is still algebraic over M, e, γ, as there can be only finitely
many such s ∈ red(B), by C-minimality. This process must terminate after finitely many
steps (again by C-minimality, and definability of f−1(γ)), so for convenience we may suppose
that for all s ∈ red(B), f−1(γ) ∩ s is empty or generic in s over M, e, γ, s.

If pBq ∈ acl(M, e), then as γ /∈ acl(M, e), f−1(γ) meets just finitely many elements of
red(B), including some non-algebraic element. For each s ∈ red(B), define F (s) to be the
(fixed) value of f on generic elements of s. We obtain a definable function F : red(B) → Γ
with infinite range, which contradicts Lemma 2.5.

Thus we may assume that pBq /∈ acl(M, e). For any set S and value ǫ, write S/ǫ for the
set of closed sub-balls of S of radius ǫ. It follows from C-minimality that there is a ball
B′′ containing B and of radius δ′′ < δ, such that all elements of B′′/δ have the same type.
If f−1(γ) meets infinitely many elements of red(B), then f−1(γ) is a generic subset of B
(abusing notation – we here view B as a subset of W ), and we have an induced function
F : B′′/δ → Γ with F (B) = γ. Pick δ′ ∈ Γ with δ′′ < δ′ < δ. For each B′ ∈ B′′/δ′, let

S(B′) = {F (B∗) : B∗ ∈ B′/δ}.

The sets S(B′) form a family of infinite uniformly definable pairwise disjoint subsets of Γ,
which contradicts the o-minimality of Γ.

Thus we may also assume that f−1(γ) meets only finitely many elements of red(B), and
meets each in a generic set. As B /∈ acl(M, e), all elements of red(B) are generic so have the
same type over acl(M, e, pBq). It follows that there is a definable function g : red(B) → Γ,
where g(s) is the generic value of f on s. Now g has infinite range. As red(B) is in definable
bijection with k, this contradicts Lemma 2.5.

To complete the proof of the theorem, suppose first that Case 1 holds. Choose c′ ∈ Br

generic over acl(M, e, r, w). Then by Claim 2, w 6∈ acl(M, e, r, c′). Hence Aw realises a single 1-
type over acl(M, e, r, w, c′) by Proposition 2.8 (ii), and in particular Aw∩acl(M, e, r, w, c′) = ∅.
But as phq ∈ acl(M, e, r, w), h−1(c′) ∈ acl(M, e, r, w, c′) ∩ Aw, which is a contradiction.

If Case 2 holds, we argue as in Case 1, with r and w reversed. Choose c generic in Aw over
acl(M, e,w, r). Then by Claim 3, r 6∈ acl(M, e,w, c), so the elements of Br all have the same
type over acl(M, e,w, r, c) by Proposition 2.8 (i), so Br ∩ acl(M, e,w, r, c) = ∅. This however
is impossible, as phq ∈ acl(M, e,w, r), and h(c) ∈ Br. ✷

Remark 2.9. For the case when K0 has mixed characteristic (0, p), that is, char(k) = p,
a slight adaptation of the definition of the exponential function is needed. First, suppose

p > 2. Then the power series f(X) = Σi≥0
pi

i!X
i is defined on O and is a power series in

the valuation ring sort in the ring of separated power series in the sense of Lipshitz. This
gives a definable isomorphism exp : (pO,+) → (1 + pO, .), given by exp(px) = f(x). The
argument now proceeds as above, with β > 1 = v(p). In the case p = 2, the function f has

form f(X) = Σi≥0
p2i

i! X
i, and defines an isomorphism exp : (p2O,+) → (1 + p2O, .) given by

exp(p2x) = f(x).

3. The real closed case.

As in the Introduction, we let R̄ denote a polynomially bounded o-minimal expansion of
the real field, in a language L̄, in which restricted exponentiation is definable. Let T = Th(R̄),
F̄ a non-archimedean model of T , V the convex subring of F̄ consisting of the finite elements,
and µ its ideal of infinitesimals. We view (F̄ , V ) as a structure (a model of Tcon) in the
language L̄con = L̄ ∪ {P}, where P is a unary predicate interpreted here by V . It is shown
in [11] that Tcon is weakly o-minimal; in fact, weak o-minimality follows from [1], where it is
shown that any expansion of an o-minimal structure by a predicate for a convex subset has
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weakly o-minimal theory. Furthermore, by [11, (3.10)], if T has quantifier elimination and is
universally axiomatised, then Tcon has quantifier elimination.

As in Section 2, U denotes a large saturated model of Tcon, whose underlying field has
domain K. Now exponentiation is defined in R̄, and hence in F̄ , on any set of form [−n, n]
for n ∈ N>0. Furthermore, if x ∈ µ then exp(x) ∈ 1 + µ, so in U , exp(M) ⊆ 1 +M. In fact,
the restriction exp |M : M → 1 +M is bijective, with inverse the map log |1+M.

The proof of Theorem 1.1, with the same imaginary phq, yields also a proof of Theo-
rem 1.2, and below we only pay attention to points of difference. First, we give an analogue
of Lemma 2.2.

Lemma 3.1. (i) Let C ⊂ U |= Tcon, and b ∈ acl(C). Then b is algebraic over C in the reduct
of U to L̄.

(ii) Algebraic closure has the exchange property in models of Tcon.

Proof. (i) First observe that T , being the theory of an o-minimal expansion of an ordered
field, has definable Skolem functions. Hence, by extending the language L̄ by definitions, we
may suppose that T is universally axiomatised and has quantifier elimination. Thus, by [11,
3.10], Tcon has quantifier elimination, and so, there is a quantifier-free formula φ(x, ȳ) over
L̄con, and ā ∈ Cl(ȳ), such that φ(U , ā) is finite and contains b. We may suppose that φ(x, ȳ) is
a conjunction of atomic and negated atomic formulas, and in particular that it has the form

ψ(x, ȳ) ∧
s∧

i=1

(ti(x, ȳ) ∈ O) ∧
s′∧

i=1

(t′i(x, ȳ) 6∈ O),

where ψ(x, ȳ) is a quantifier-free L̄-formula and the ti, t
′
i are terms. We may also suppose

that ψ(U , ā) is infinite, and indeed that ψ(U , ā) is an open interval, and that the ti(x, ā)
and t′i(x, ā) are continuous at b (since the points of discontinuity will be algebraic over ā in
the reduct to L̄, by o-minimality). However, it is now impossible that φ(U , ā) is finite, by
continuity of the ti, t

′
i.

(ii) This follows immediately from (i), as algebraic closure has the exchange property in
o-minimal theories. �

Lemma 2.4 and Proposition 2.8 go through unchanged in the current setting. Our analogue
of Lemma 2.3 is the following.

Lemma 3.2. In any model of Tcon, the following hold.
(i) The residue field, equipped with the induced ∅-definable relations of Tcon, is an o-minimal

structure and is stably embedded.
(ii) The value group Γ, equipped with the induced ∅-definable relations of Tcon, is an o-

minimal structure and is stably embedded, and has the structure of an ordered vector space
over an archimedean ordered field, its ‘field of exponents’.

Proof. By [9, Theorem A, Corollary 1.12], the structure induced on the residue field is o-
minimal (and elementarily equivalent to R̄). For the o-minimality of the value group, see [11,
4.5]. For the description of its structure, see Theorem B and (3.1) of [9].

In both cases, stable embeddedness follows from [15, Theorem 2], or from the main theorem
of [24]. �

Lemma 3.3. In any model of Tcon, the residue field and value group are orthogonal in the
sense of Proposition 2.5.

Proof. This follows from [9, Proposition 5.8]. �

Lemma 3.4. Let C = acl(C)∩K, and suppose there is c ∈ C with v(c) 6= 0. Then C |= Tcon.

Proof. Since T has definable Skolem functions, the reduct C|L̄ of C to L̄ is a model of T .
By [11, 3.13], the theory of expansions of models of T by a predicate for a proper convex
valuation ring closed under ∅-definable continuous functions is complete. It follows that
(C|L̄,O ∩C) |= Tcon. �
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We now give analogues of Lemmas 2.6 and 2.7.

Lemma 3.5. Let C be a parameter set, s a C-definable closed ball, and let a ∈ K be an
element of s which is not in any C-definable proper sub-ball of s. Then Γ(C) = Γ(C, a).

Proof. Suppose γ ∈ Γ(C, a) \Γ(C), so there is a C-definable function f with f(a) = γ. Write
red(s) for the set of open sub-balls of s of the same radius as s. Let u be the element of red(s)
containing a. Then Tu := {f(x) : x ∈ u} is a finite union of points and open intervals in Γ.
There is a boundary point of Tu lying in Γ(C, puq) \ Γ(C), contradicting Lemma 3.3. �

Lemma 3.6. Let C = acl(C) be a set of field parameters containing an element with non-
zero value, and let e ∈ K. Then either there is no α ∈ k(C, e) \ k(C), or there is no
γ ∈ Γ(C, e) \ Γ(C).

Proof. Suppose α, γ ∈ acl(C, e) \ acl(C), with α ∈ k and γ ∈ Γ. Then by Lemma 3.4, there
is a field element e′ ∈ acl(C, e) with residue α. By Lemma 3.1(ii), as e′ 6∈ acl(C), we have
e ∈ acl(C, e′), so γ ∈ dcl(C, e′). Hence there is a C-definable function f : K → Γ such that
f(e′) = γ. Let ∆ := {f(x) : x ∈ Aα}, where, as in Section 2, Aα := a + M(U) for some a
with residue α. Then ∆ is an infinite subset of Γ, since otherwise there is a definable function
k → Γ with infinite range, contrary to Lemma 3.3. However, as k and Γ are orthogonal, and ∆
is coded by a tuple from Γ, ∆ is C-definable. It follows that if δ ∈ ∆, then f−1(δ) contains a
proper non-empty subset of infinitely many residue classes, contrary to weak-o-minimality. �

Proof of Theorem 1.2. The proof of Theorem 1.2 proceeds as in Section 2. We choose
w, r, a, b and define ha,b as before, using the same notation, and aim for a contradiction from
the assumption that ha,b is coded in the geometric sorts. The only substantial change is
in Case 2 (in Case 1, the use of strong minimality is easily replaced by an o-minimality
argument). We describe this case in some detail, and leave the rest of the proof to the reader.
For any subset S of K and value ǫ ∈ Γ, write (S/ǫ)o for the set of open sub-balls of S of
radius ǫ, and (S/ǫ)c for the closed ones.

As in the algebraically closed case (Case 2), working under the assumption that w̄ ∈
acl(M, e), we shall show γ 6∈ dcl(M, e,w). Notice that Γ(M, e) = Γ(M), by Lemma 3.6, so in
particular γ is infinite with respect to Γ(M, e). So suppose for a contradiction that there is
an acl(M, e)-definable function f :W → Γ with f(w) = γ.

Observe that there is a natural ordering, induced by the field ordering and also denoted
<, on W . By weak o-minimality of M , the set f−1(γ) is a finite union of maximal convex
subsets D1, . . . , Dt of (W,<), with D1 < . . . < Dt. First suppose that all of the Di are finite
(so by density are singletons), and let B be the closed ball of radius β containing D1. Then
f defines a function from (B/β)o to Γ with infinite range, contradicting Lemma 3.3.

Thus we may assume some Di, say D1, is infinite. Put D := D1. We sometimes abuse
notation and identify D with the union of the balls (elements of W ) in D, viewed as a subset
of K. Let B be the intersection of the U-definable closed sub-balls of O containing D. By
o-minimality of Γ, B is itself a ball, of radius δ, say; also, B is closed. As usual, let red(B)
be the set of open sub-balls of B of the same radius as B. Observe that red(B) is o-minimal,
by Lemma 3.2, since it is in definable bijection with k.

We have δ ∈ dcl(M, e, γ), and δ ≤ β ∈ Γ(M). However, γ is infinite with respect to
Γ(M). Since Γ is stably embedded and has the structure of an ordered vector space over an
archimedean ordered field (see Lemma 3.2), it follows that δ ∈ dcl(M, e).

Suppose first that pBq ∈ acl(M, e). If D contains an element s ∈ red(B) not in acl(M, e),
then Γ(M, e, s) = Γ(M, e) by Lemma 3.5. As γ ∈ Γ(M, e, s), we then find γ ∈ Γ(M, e), a
contradiction. Thus, D meets just finitely many elements of red(B), say s1, . . . , sn, and these
are algebraic overM, e, γ and hence overM, e. As D is convex and red(B) is densely ordered,
this forces n = 1. Also, D meets s1 in an initial or final segment of s1 (with possibly D = s1).
Now as γ is the initial or final value of f on s1, and s1 ∈ acl(M, e), we find γ ∈ acl(M, e),
again a contradiction.
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Thus, pBq 6∈ acl(M, e), so by weak o-minimality, red(B) is a complete type over acl(M, e, pBq).
From this, the definition of B, and weak o-minimality it follows easily that for each s ∈ red(B),
D contains (s/β)o or is disjoint from (s/β)o. We claim that D = B or D ∈ red(B). For if
not, then using the fibres of f we can partition red(B) into a uniformly definable family of
infinite disjoint convex sets. As red(B) is in definable bijection with k, this contradicts the
o-minimality of k.

If D ∈ red(B) then f induces a definable function f̄ : red(B) → Γ with infinite range,
contrary to Lemma 3.3. Thus, D = B. Since pBq 6∈ acl(M, e), there is an interval I of (O/δ)c

containing B in its interior such that all elements of I have the same type over acl(M, e).
Pick B1, B2 ∈ I with B1 < B < B2, and bi ∈ Bi, and put δ′′ := v(b1 − b2). Let B′′ be the
open ball of radius δ′′ containing B, so (B′′/δ)c ⊂ I.

For each B0 ∈ (B′′/δ)c, f takes constant value, F (B0), say, on (B0/β)
o. Now all elements

of (B′′/δ)c have the same type over acl(M, e). It follows that F : (B′′/δ)c → Γ is injective. Let
δ′ ∈ Γ with δ′′ < δ′ < δ. For B′ ∈ (B′′/δ′)o, define S(B′) := {F (B0) : B0 ∈ (B′/δ)c}. Then
the sets S(B′) (for B′ ∈ (B′′/δ′)o), form an infinite uniformly definable family of pairwise
disjoint subsets of Γ, contrary to the o-minimality of Γ. ✷

4. The p-adic case.

Fix a prime p. We shall assume below that p > 2 to ensure that p-adic exponentiation
converges on pZp – see Remark 4.6 for the remaining case. We shall work with the language
Lan
p and theory T an

p , as in the Introduction. Let U |= T an
p be sufficiently saturated. Observe

first that the power series G(X) = Σ∞
i=0

pnXn

n! which defines the exponential map corresponds

to a function symbol of Lan
p , since vp(p

n/n!) → ∞ as n → ∞. We have exp(x) = G(xp−1)
for x ∈ pZp. The exponential map induces (in the standard model Qan

p ) a group isomorphism
from (pZp,+) to (1 + pZp, .) with inverse the natural logarithm. Indeed, there is a power

series H(X) = Σ∞
i=1

(−1)n+1pnXn

n
, given by an Lan

p -symbol, such that for x = 1+ py ∈ 1+ pZp

we have log(x) = log(1 + py) = H(y).
We summarise some facts about T an

p used below. Following [13], we shall say that an
expansion M of a model of Th(Qp) is P -minimal if, for every N ≡ M , every parameter-
definable subset of the field (in one variable) is quantifier-free definable in Macintyre’s language
Lp, so is semi-algebraic.

Proposition 4.1. (i) T an
p is P -minimal.

(ii) Algebraic closure has the exchange property in models of T an
p .

(iii) T an
p has definable Skolem functions.

(iv) Let U |= T an
p , and let f : X → K be a definable map from a geometric sort other than

K to K. Then f has finite image.
(v) The value group Γ, equipped with ∅-definable induced structure, is a model of Presburger

arithmetic expanded by constants, and is stably embedded.

Proof. (i) This is the main theorem (Theorem A) of [10].
(ii) By [13, Theorem 6.2], algebraic closure in any P -minimal theory has the exchange

property, so this follows from (i).
(iii) See [6, 3.6].
(iv) The proof of Lemma 2.4 applies here.
(v) This follows from (i) above in combination with Theorems 5 and 6 of [4]. �

We shall work over an ω-saturated model M of T an
p , inside the sufficiently saturated model

U .
Let O(M) be the valuation ring of M , and fix β ∈ Γ(M) which is infinite in the sense

that for all n ∈ N, β > nv(p). Let W = O(M)/βO(M). For w ∈ W , let Aw denote the
corresponding additive coset of βO(U). For γ ∈ Γ let Vγ be the annulus {x : v(x) = γ}, and
for r ∈ RV let Br denote the corresponding multiplicative coset of 1+M (viewed as a subset
of U). Clearly, for any base C with β ∈ C, if w is a non-algebraic element of W , then the
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subset Aw of V F has no C-algebraic points; and similarly if γ ∈ Γ \ acl(C) then the annulus
Vγ has no C-algebraic points.

There is an Aut(U/M)-invariant partial type q of elements of Γ determined by the formulas
x > γ for all γ ∈ Γ(U). Note also that the map v : RV → Γ is finite-to-one.

Lemma 4.2. Let U be an infinite definable subset of W . Then there is an infinite subset U ′

of U and a ball B such that U ′ := {w ∈W : Aw ⊂ B}.

Proof. This is an easy consequence of P -minimality. Indeed, by P -minimality the set V F (U) :=⋃
w∈U Aw is a finite union of sets of the form

D = {x ∈ V F : γ1✷1v(x − a)✷2γ2 &Pn(λ(x − a))},

where ✷1,✷2 ∈ {<,≤}, a ∈ V F , γ1, γ2 ∈ Γ ∪ {−∞,∞}, and λ is chosen from a fixed set of
coset representatives of Pn in K∗. We may suppose that V F (U) is exactly this set D. If there
is no ball B as in the lemma, then there is β′ < β such that β−β′ is finite and the set V F (U)
is a union of a set of maximal subballs of V F (U) which are pairwise disjoint and have radius
between β′ and β. However, this is impossible, for if the set D is a union of infinitely many
disjoint maximal balls, then they must have infinitely many different radii. This can be seen
for example from the following standard lemma, proved in [13, Lemma 2.3]. �

Lemma 4.3. [13, Lemma 2.3] Let x, x′, a, λ ∈ Qp with λ 6= 0, and let n > 1 be an integer. If
Pn(λ(x − a)) holds, and v(x − x′) > 2v(n) + v(x − a), then Pn(λ(x

′ − a)) holds.

Lemma 4.4. Let ρ : Γ′ → Γ be a definable finite cover of Γ, so Γ′ is a definable set and ρ a
definable function with fibres of sizes uniformly bounded by t ∈ N. Then there is no definable
partial function Γ′ →W with infinite range.

Proof. Suppose that Γ0 ⊂ Γ is infinite, and that there is f : Γ′
0 := ρ−1(Γ0) →W with infinite

range. Put U := ran(f). Replacing Γ′
0 by an infinite definable subset if necessary, we may

by Lemma 4.2 suppose that there is a ball B of radius δ < β (with β − δ infinite) such
that U = {u ∈ W : Au ⊂ B}. Choose j least such that pj > t, and put β′ := β − t. Let
W ′ := O/β′O.

Claim. We may suppose that for each u ∈ U , ρ(f−1(u)) has a least element.
Proof of Claim. By P -minimality, there is N ∈ N such that any definable subset of Γ is a

Boolean combination of intervals and cosets of finite index subgroups nΓ where n ∈ N with
0 < n < N . Since the sets ρ(f−1(u)) form an infinite uniformly definable family of subsets of
Γ such that any intersection of any t + 1 members of the family is empty, we may (reducing
U if necessary) suppose these sets are all bounded below in Γ. As Γ is a Z-group (a model of
Presburger arithmetic), it is clear that any definable subset of Γ which is bounded below has
a least member, yielding the claim.

For each u ∈ U , let g(u) := Min ρ(f−1(u)), so g : U → Γ is a definable function with fibres
of size at most t. For u, u′ ∈ U , put u ∼ u′ if there is w′ ∈ W ′ such that Au ∪ Au′ ⊆ Aw′ ;
so ∼ is an equivalence relation with classes of size pj > t. Finally, say that u ∈ U is good
if g(u) ≤ g(u′) for all u′ ∈ U such that u ∼ u′. Then each ∼-class of U has some good
elements and some elements which are not good. It follows that {u ∈ U : u is good} is
an infinite definable subset of W which does not satisfy the conclusion of Lemma 4.2, a
contradiction. �

We choose w ∈ W \ acl(M), and an element r of RV with v(r) |= q|acl(M,w). Put
γ := v(r). By the description of 1-variable definable sets and Lemma 4.3, all elements of Aw

realise the same type over M .

Lemma 4.5. Let e be a field element.
(i) If w 6∈ acl(M, e), then w 6∈ acl(M, e, r).
(ii) If w ∈ acl(M, e), then γ 6∈ acl(M, e,w).

Proof. (i) Since r ∈ acl(γ), it suffices to show w 6∈ acl(M, e, γ). So suppose that w ∈
acl(M, e, γ). Then for any e′ ∈ V F with v(e′) = γ, w ∈ acl(M, e, e′), so, by the existence of
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definable Skolem functions, w ∈ dcl(M, e, e′), with say w = f(m̄, e, e′), where m̄ is a tuple of
field elements of M . Define an equivalence relation ≡ on an appropriate definable subset X
of K, putting x ≡ y if and only if v(x) = v(y) and f(m̄, e, x) = f(m̄, e, y). Then X/ ≡ is a
definable finite cover of a subset of Γ, and f induces a definable function f̄ : X/ ≡→W with
infinite range. This contradicts Lemma 4.4.

(ii) Suppose γ ∈ acl(M, e,w). As w ∈ acl(M, e), we have γ ∈ acl(M, e), so there is an
M -definable function f : K → Γ with f(e) = γ. As w ∈ acl(M, e), which is a model, there is
a field element e′ ∈ w inter-algebraic with e over M , so we may suppose e ∈ w.

We consider the set f−1(γ). Suppose first that f−1(γ) ⊆ w. Then Aw is a union of fibres
of f .

If f−1(γ) is infinite, choose infinite β′ ∈ Γ with β′ < β and v(β − β′) infinite. For any
ball B write f(B) := {f(x) : x ∈ B}. By Lemma 4.2 (and with appropriate choice of β′),
there is an infinite definable set S of balls B ∈ O/β′O such that the set {f(B) : B ∈ S} is a
uniformly definable infinite family of infinite definable pairwise disjoint subsets of Γ. This is
impossible, by Proposition 4.1(v) and quantifier elimination in Presburger arithmetic.

On the other hand, if f−1(γ) is a finite subset of w, then f(w) is an infinite subset of Γ,
and by taking a family of translates of w (inside a larger ball) and applying f , we obtain
again an infinite uniform family of infinite disjoint definable subsets of Γ.

Suppose now that f−1(γ) 6⊆ w. By P -minimality (Proposition 4.1(i)), we may write f−1(γ)
as a finite unions of ‘1-cells’ C1, . . . , Ct say. Here, the Ci as before have the form

{x ∈ V F : γ1✷1v(x− a)✷2γ2 &Pnλ(x− a)},

where ✷1,✷2 ∈ {<,≤}, a ∈ V F , λ is chosen from a fixed set of coset representatives of Pn in
K∗, and γ1, γ2 ∈ Γ ∪ {−∞,∞}.

Let B be the smallest ball containing f−1(γ). (Note here that the intersection of the balls
containing f−1(γ) is a ball, since any non-empty definable subset of Γ which is bounded
above has a greatest element – see e.g. [13, Lemma 4.4].) Let δ be the radius of B. Now
δ < β ∈ Γ(M) and γ > Γ(M). As Γ carries the structure of Presburger arithmetic, all
definable functions Γ → Γ are piecewise linear over Q(see also [4, Proposition 2]. Hence, as
δ ∈ dcl(M,γ), we have δ ∈ dcl(M). We claim that pBq ∈ acl(M). Indeed, otherwise δ > n
for all n ∈ N and we may argue as above (with w replaced by B) to obtain a contradiction.

By Lemma 4.3, considering the form of the Ci, there is a ball B′ with s ⊂ f−1(γ) such
that B′ is at finite distance from B in the natural tree structure on the set of all balls. (This
is the graph whose vertex set is the set of all balls, with two balls B1, B2 adjacent if B1 ⊂ B2

or B2 ⊂ B1 and there is no other ball strictly between them.) Thus pB′
q ∈ acl(M, pBq). As

f takes constant value γ on s, it follows that γ ∈ acl(M, pBq) = acl(M), a contradiction. �

Proof of Theorem 1.3. To define the imaginary which cannot be coded in G, choose
a ∈ Aw and b ∈ Br, and let c ∈ V F (M) with v(c) = β. There is a definable homomorphism
E : (βO,+) → (1 + M, .) given by E(x) = exp(pc−1x). Define the affine homomorphism
h(a, b) : Aw → Br, with homogeneous component E, by ha,b(x) = bexp(pc−1(x − a)) =
bE(x − a). As usual, we argue by contradiction from the assumption that h is coded in the
geometric sorts.

As before (using Proposition 4.1(iv)), if C′ ⊃M is a larger base containing w, r, chosen so
that some affine homomorphism g : Aw → Br with homogeneous component E is definable
over C′, then h is coded over C′ by a fixed field element d. Again as before, h is coded over
M by (w, r, ē) where ē is a tuple of field elements of dimension 1 over M . By the existence of
Skolem functions, we may suppose that ē is a single field element, say e. Thus, by Lemma 4.5,
either w 6∈ acl(M, e, r), or w ∈ acl(M, e), and v(r) realises q|acl(M, e,w), so r 6∈ acl(M, e,w).

Each case is eliminated as in the algebraically closed case, the first as in Case 1, the second
as in Case 2. ✷

Remark 4.6. For the case p = 2, the exponential map converges on p2Zp and induces an
isomorphism (p2Zp,+) → (1 + p2Zp, .). The argument above can easily be adjusted to give a
proof of Theorem 1.3 in this case too. See also Remark 2.9.
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5. Alternative poof of theorem 1.1.

In this final section we sketch a slightly different proof of Theorem 1.1, at least in residue
characteristic 0, with a rather simpler imaginary. The proof that it cannot be eliminated is
more stability-theoretic, and takes place mainly in the residue field. It is not immediately
clear whether the proof can be adapted to yield Theorems 1.2 and 1.3. The argument given
below uses parts of the proof in Section 2.

As in Section 2, let K |= T an
D be sufficiently saturated, of residue characteristic 0. For F a

field, let Ga(F ) and Gm(F ) denote respectively the additive and multiplicative groups of F ,
and put G := Ga(K)×Gm(K). By G(O) we shall mean the group of O-rational points of G.
Also let π : G(O) → G(k) be the residue map. Observe, using strong minimality of k, that

(1) any infinite definable subgroup of G(k) contains Ga(k)× {1} or {0} ×Gm(k).
Indeed, otherwise there would be an isogeny Ga(k) → Gm(k), which is impossible (consider
torsion in the two groups).

For α ∈ G(k), put Gα := {g ∈ G(O) : π(g) = α}. For i = 1, 2 let πi denote the projection
from G(O) to the ith coordinate. Let E < G denote the graph of the exponential map
exp : (M,+) → (1 + M, .). We aim to show that a generic coset of E in G(O) (an affine
homomorphism of torsors with homogeneous component exp, whose graph is a subset of Gα

for some generic α ∈ G(k)), is not coded in G.
As in the first proof of Theorem 1.1, we shall work over a small elementary submodel M

of U . Fix α ∈ G(k) and choose C′ ⊂ K such that M ⊂ C′, α ∈ dcl(C′), and some g ∈ Gα

lies in dcl(C′). Thus, gE ∈ dcl(C′), and is the graph of an affine homomorphism, denoted g′,
from π1(Gα) to π2(Gα). (For ease of notation we do not distinguish between gE and pgEq.)
For g1, g2 ∈ Gα, write g1 ∼ g2 if g1, g2 determine the same affine homomorphism, that is,
g1E = g2E. As in the proof of Claim 1(i) in the proof of Theorem 1.1, for any other affine
homomorphism h′ : π1(Gα) → π2(Gα) with homogeneous component exp, there is d ∈ M

such that g′(x) = h′(x) exp(d) for all x ∈ π1(Gα). Hence,
(2) there is a C′-definable injection j : (Gα/ ∼) → K.
If h ∈ Gα and hE ∈ acl(M,k) then, using elimination of finite imaginaries in ACF (applied

to K), j yields a definable map from a power of k to K. Hence, by Lemma 2.4, we have
(3) If h ∈ Gα and hE ∈ acl(M,k), then the image under j of tp(hE/M,α) is finite.

Lemma 5.1. Let A = acl(A) ⊇ M be any base set, let α ∈ G(k) and h ∈ Gα, and assume
that the coset hE is acl(A ∪ {α})-definable. Then α ∈ A.

Proof. Let P be the set of realisations in U of tp(h/A), and put π(P ) := {π(h) : h ∈ P}.
Thus π(P ) is the set of realisations of a type in G(k) over A, so has Morley rank 0,1, or 2. It
suffices to rule out the last two cases.

Claim 1. (i) If γ ∈ k∗ and β ∈ Ga(k) is generic over A ∪ {γ} then (β, γ) 6∈ π(P ).
(ii) If β ∈ k and γ ∈ Gm(k) is generic over A ∪ {β} then (β, γ) 6∈ π(P ).
Proof of Claim. We prove (i) and omit the similar proof of (ii). So suppose γ ∈ k∗,

and β1, β2 ∈ Ga(k) are generic and independent over A ∪ {γ}. If (i) is false then there are
(b1, c), (b2, c) ∈ P with (βi, γ) = π(bi, c) for i = 1, 2. By the assumption in the lemma, (bi, c)E
is acl(A∪{βi, γ})-definable for each i. Thus, working over acl(A, β1, β2, γ), there are definable
affine homomorphisms βi +M → c(1 +M) with homogeneous component exp. Composing
one with the inverse of the other, we have an acl(A, β1, β2, γ)-definable bijection between two
cosets of M in O which are generic over A. However, there is no such bijection: indeed, the
product of these two cosets realises a unique type in V F × V F over A ∪ k.

Claim 2. RM(α/A) ≤ 1.
Proof of Claim. Suppose RM(α/A) = 2. Then π(P ) is a generic type of G(k), which

contradicts Claim 1.
Claim 3. Suppose γ1, γ2 ∈ π(P ) and γ3 = γ1γ

−1
2 . Then RM(γ3/A) ≤ 1.

Proof of Claim. Let γi = π(gi) with gi ∈ P for i = 1, 2. Put g3 := g1g
−1
2 . By the

assumption of the lemma, giE and hence g−1
i E are acl(A, γi)-definable for each i. Thus,

g3E = g1g
−1
2 E is acl(A, γ1, γ2)-definable. Hence g3E is acl(A, γ3)-definable by (3) above.
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Since this was the assumption (on h, α) which yielded Claim 2, it follows by Claim 2 that
tp(γ3/A) has Morley rank at most 1.

Suppose now for a contradiction that RM(α) = RM(π(P )) = 1. Let S be the Zilber
stabiliser of π(P ) in the Morley rank 2 group G(k). That is, if p is the global non-forking
extension (over U) of the stationary type tp(π(h)/A), then S = {g ∈ G(k) : g(p) = p}.
Then by ω-stability of k, S is a definable subgroup of G(k). Also, by [25, Lemme 2.3],
RM(S) ≤ RM(p), and if there is equality then S is connected and p is a translate of the
generic type of S. Let g1, g2 |= p with g1 |⌣U

g2, and put g3 := g1g
−1
2 . Then

1 = RM(g−1
2 /A, g1) = RM(g1g

−1
2 /A, g1) = RM(g3/A, g1) ≤ RM(g3/A) = 1

(by Claim 3), so g3 |⌣U
g1, and as g−1

3 g1 = g2, g3 ∈ S. Thus, RM(S) = RM(p) = 1, and

so p is the generic type of a coset of S in G(k). By (1) above, and as S is connected,
S = ({0} ×Gm)(k) or S = (Ga × {1})(k). Either of these gives a contradiction to Claim 1,
so yields the lemma. �

Proof of Theorem 1.1. Let A = acl(A) ⊇ M . Let h ∈ G(O) such that RM(π(h)/A) = 2.
We argue by contradiction, so suppose that phEq is coded in the geometric sorts. Now as in
Claim 1 in our first proof of Theorem 1.1, there is t ∈ K such that hE ∈ acl(A, π(h), t). By
Lemma 5.1 applied overA(t), it follows that π(h) ∈ acl(A, t). However, since RM(π(h)/A) = 2
and t is a single field element, it follows easily from C-minimality arguments (see e.g. Section
3 of [17]) that RM(π(h)/acl(A, t)) ≥ 1. This gives a contradiction. ✷

Remark 5.2. We have shown that the elements of the interpretable set G(O)/E are not
coded over any parameter set A ⊃ M , in the sense that for any such A, there is no A-
definable injection from G(O)/E to any product of geometric sorts. It follows that for any
definable group F > G(O) and any b ∈ F , the elements of bG/E are not coded over any set;
for if the elements of bG were coded over Ab, then the elements of G/E would be coded over
Ab ∪ {b}.
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