THE THEORY OF TRACIAL VON NEUMANN ALGEBRAS DOES NOT HAVE A MODEL COMPANION

ISAAC GOLDBRING, BRADD HART, THOMAS SINCLAIR

Abstract

In this note, we show that the theory of tracial von Neumann algebras does not have a model companion. This will follow from the fact that the theory of any locally universal, $\mathrm{McDuff} \mathrm{II}_{1}$ factor does not have quantifier elimination. We also show how a positive solution to the Connes Embedding Problem implies that there can be no modelcomplete theory of II_{1} factors.

1. Introduction

The model theoretic study of operator algebras is at a relatively young stage in its development (although many interesting results have already been proven, see [7, [8, [9) and thus there are many foundational questions that need to be answered. In this note, we study the question that appears in the title: does the theory of tracial von Neumann algebras have a model companion? (Recall that a theory is said to be model-complete if every embedding between models of the theory is elementary and a model-complete theory T^{\prime} is a model companion of a theory T if every model of T embeds into a model of T^{\prime} and vice-versa.) We show that the answer to this question is: no! Indeed, we prove that a locally universal, McDuff II_{1} factor cannot have quantifier elimination. (See below for the definitions of locally universal and McDuff.) Since a model companion of the theory of tracial von Neumann algebras will have to be a model completion as well as the theory of a locally universal, McDuff II_{1} factor, the result follows.

We then pose a weaker question: can there exist a model-complete theory of I_{1} factors? Here, we show that a positive solution to the Connes Embedding Problem implies that the answer is once again: no!

Another motivation for this work came from considering independence relations in II_{1} factors. Although all I_{1} factors are unstable (see [7), it is still possible that there are other reasonably well-behaved independence relations to consider. Indeed, the independence relation stemming from conditional expectation is a natural candidate. In the end of this note, we show how the failure of quantifier elimination seems to pose serious hurdles in showing that conditional expectation yields a strict independence relation in the sense of [1.

[^0]We thank Dima Shlyakhtenko for patiently explaining Brown's work when we posed the question to him of the existence of non-extendable embeddings of pairs $\mathcal{M} \subset \mathcal{N}$ into \mathcal{R}^{ω}. (See the proof of Theorem 2.1 below.)

Throughout, \mathcal{L} denotes the signature for tracial von Neumann algebras and \mathcal{R} denotes the hyperfinite I_{1} factor. We recall that \mathcal{R} embeds into any II_{1} factor. We will say that a von Neumann algebra is \mathcal{R}^{ω}-embeddable if it embeds into $\mathcal{R}^{\mathcal{U}}$ for some $\mathcal{U} \in \beta \mathbb{N} \backslash \mathbb{N}$. If M is \mathcal{R}^{ω} embeddable, then M embeds into $\mathcal{R}^{\mathcal{U}}$ for all $\mathcal{U} \in \beta \mathbb{N} \backslash \mathbb{N}$; see Corollary 4.15 of [8]. For this reason, we fix $\mathcal{U} \in \beta \mathbb{N} \backslash \mathbb{N}$ throughout this note.

2. Model Companions

In the proof of our first theorem, we use the crossed product construction for von Neumann algebras; a good reference is [4, Chapter 4].

Theorem 2.1. $\operatorname{Th}(\mathcal{R})$ does not have quantifier elimination.
Proof. It is enough to find separable, \mathcal{R}^{ω}-embeddable tracial von Neumann algebras $M \subset N$ and an embedding $\pi: M \rightarrow \mathcal{R}^{\mathcal{U}}$ that does not extend to an embedding $N \rightarrow \mathcal{R}^{\mathcal{U}}$. Indeed, if this is so, let N_{1} be a separable model of $\operatorname{Th}(\mathcal{R})$ containing N. Then π does not extend to an embedding $N_{1} \rightarrow \mathcal{R}^{\mathcal{U}}$; since $\mathcal{R}^{\mathcal{U}}$ is \aleph_{1}-saturated, this shows that $\operatorname{Th}(\mathcal{R})$ does not have QE.

In order to achieve the goal of the above paragraph, we claim that it is enough to find a countable discrete group Γ such that $L(\Gamma)$ is \mathcal{R}^{ω}-embeddable, an embedding $\pi: L(\Gamma) \rightarrow \mathcal{R}^{\mathcal{U}}$, and $\alpha \in \operatorname{Aut}(L(\Gamma))$ such that there exists no unitary $u \in \mathcal{R}^{\mathcal{U}}$ satisfying $(\pi \circ \alpha)(x)=u \pi(x) u^{*}$ for all $x \in L(\Gamma)$. (We should remark that we are using the usual trace on $L(\Gamma)$ and that $\operatorname{Aut}(L(\Gamma))$ refers to the group of $*$-automorphisms preserving this trace.) First, we abuse notation and also use α to denote the homomorphism $\mathbb{Z} \rightarrow \operatorname{Aut}(L(\Gamma))$ which sends the generator of \mathbb{Z} to the aforementioned α. Set $\mathcal{M}=L(\Gamma)$ and $\mathcal{N}=\mathcal{M} \rtimes_{\alpha} \mathbb{Z}$. Then N is a tracial von Neumann algebra. Moreover, we have that \mathcal{N} is \mathcal{R}^{ω}-embeddable if and only if \mathcal{M} is-in fact, this is true for any crossed product algebra $\mathcal{M} \rtimes_{\alpha} G$ where G is amenable [2, Prop. 3.4(2)]. Now suppose, towards a contradiction, that π were to extend to an embed$\operatorname{ding} \widetilde{\pi}: \mathcal{N} \rightarrow \mathcal{R}^{\mathcal{U}}$. If $u \in L(\mathbb{Z}) \subset \mathcal{M} \rtimes_{\alpha} \mathbb{Z}$ is the generator of \mathbb{Z}, then setting $\tilde{u}=\tilde{\pi}(u) \in \mathcal{R}^{\mathcal{U}}$, we would have that $\tilde{u} \pi(x) \tilde{u}^{*}=\pi\left(u x u^{*}\right)=\pi(\alpha(x))$ for all $x \in \mathcal{M}$, contradicting the fact that $\pi \circ \alpha$ is not unitarily conjugate to the embedding π in $\mathcal{R}^{\mathcal{U}}$.

An explicit construction of Γ, π and α as above has already appeared in the work of N. P. Brown [6]. Indeed, by Corollary 6.11 of [6], we may choose $\Gamma=\operatorname{SL}(3, \mathbb{Z}) * \mathbb{Z}$ and $\alpha=\operatorname{id} * \theta$ for any nontrivial $\theta \in \operatorname{Aut}(L(\mathbb{Z}))$.

We say that a separable II_{1} factor \mathcal{S} is locally universal if every separable II_{1} factor embeds into $\mathcal{S}^{\mathcal{U}}$. (By [8, Corollary 4.15], this notion is independent of \mathcal{U}.) In [9], it is shown that a locally universal II_{1} factor exists. The Connes Embedding Problems (CEP) asks whether \mathcal{R} is locally universal.

We say that a separable II_{1} factor M is $M c D u f f$ if $M \otimes \mathcal{R} \cong M$. For example, \mathcal{R} is McDuff as is $M \otimes \mathcal{R}$ for any separable II_{1} factor M. By examining Brown's argument in [6], we see that the only properties of \mathcal{R} that are used (other than it being finite) is that $L(\Gamma)$ (for Γ as in the previous proof) is \mathcal{R}^{ω}-embeddable and that \mathcal{R} is McDuff . We thus have:

Corollary 2.2. If \mathcal{S} is a locally universal, $M c D u f f ~ I I_{1}$ factor, then $\operatorname{Th}(\mathcal{S})$ does not have $Q E$.

Let T_{0} be the theory of tracial von Neumann algebras in the signature \mathcal{L}. T_{0} is a universal theory; see [8]. Let T be the theory of II_{1} factors, a $\forall \exists$-theory by [8]. Moreover, since every tracial von Neumann algebra is contained in a II_{1} factor, we see that $T_{0}=T_{\forall}$. Thus, an existentially closed model of T_{0} is a model of T.

By [9, Proposition 3.9], there is a set Σ of $\forall \exists$-sentences in the language of tracial von Neumann algebras such that M is McDuff if and only if $M \models \Sigma$. Since every II_{1} factor is contained in a $\mathrm{McDuff} \mathrm{II}_{1}$ factor (as $M \subseteq M \otimes \mathcal{R}$), it follows that an existentially closed II_{1} factor is McDuff .

We can now prove our main result:
Theorem 2.3. T_{0} does not have a model companion.
Proof. Suppose that T is a model companion for T_{0}. Since T_{0} is univerally axiomatizable and has the amalgamation property (see [4, Chapter 4]), we have that T has QE.

Fix a separable model \mathcal{S} of T. Then \mathcal{S} is a locally universal II_{1} factor. Indeed, given an arbitrary separable II_{1} factor M, we have a separable model $\mathcal{S}_{1} \models T$ containing M. Since $\mathcal{S}^{\mathcal{U}}$ is \aleph_{1}-saturated, we have that \mathcal{S}_{1} embeds into $\mathcal{S}^{\mathcal{U}}$, yielding an embedding of M into $\mathcal{S}^{\mathcal{U}}$. Meanwhile, since T is the theory of existentially closed models of T_{0}, we see that \mathcal{S} is McDuff. Thus, by Corollary $2.2, T$ does not have QE, a contradiction.

3. Model Complete II_{1} Factors

While we have proven that the theory of tracial von Neumann algebras does not have a model companion, at this point it is still possible that there is a model complete theory of II_{1} factors. In this section, we show that a positive solution to the CEP implies that there is no model-complete theory of II_{1} factors.

We begin by observing the following:
Lemma 3.1. Every embedding $\mathcal{R} \rightarrow \mathcal{R}^{\omega}$ is elementary.
Proof. This follows from the fact that every embedding $\mathcal{R} \rightarrow \mathcal{R}^{\omega}$ is unitarily equivalent to the diagonal embedding; see [10].

Remark. The previous lemma shows that \mathcal{R} is the unique prime model of its theory. Indeed, to show that \mathcal{R} is a prime model of its theory, by Downward

Löwenheim-Skolem (DLS), it is enough to show that whenever $M \equiv \mathcal{R}$ is separable, then \mathcal{R} elementarily embeds into M. Well, since $\mathcal{R}^{\mathcal{U}}$ is \aleph_{1}-saturated, we have that M elementarily embeds into $\mathcal{R}^{\mathcal{U}}$. Composing an embedding $\mathcal{R} \rightarrow M$ with the elementary embedding $M \rightarrow \mathcal{R}^{\mathcal{U}}$ and applying Lemma 3.1, we see that the embedding $\mathcal{R} \rightarrow M$ is elementary.

Proposition 3.2. Suppose that M is an \mathcal{R}^{ω}-embeddable I_{1} factor such that $\operatorname{Th}(M)$ is model-complete. Then $M \equiv \mathcal{R}$.

Proof. Without loss of generality, we may assume that M is separable. Fix embeddings $\mathcal{R} \rightarrow M$ and $M \rightarrow \mathcal{R}^{\mathcal{U}}$. By Lemma 3.1, the composition

$$
\mathcal{R} \rightarrow M \rightarrow \mathcal{R}^{\mathcal{U}}
$$

is elementary. By DLS, we can take a separable elementary substructure \mathcal{R}_{1} of $\mathcal{R}^{\mathcal{U}}$ such that M embeds in \mathcal{R}_{1}; observe that the composition $\mathcal{R} \rightarrow M \rightarrow$ \mathcal{R}_{1} is elementary. By DLS again, take a separable elementary substructure M_{1} of $M^{\mathcal{U}}$ such that \mathcal{R}_{1} embeds in M_{1}. We now repeat this process with M_{1} : embed M_{1} in $\mathcal{R}^{\mathcal{U}}$, take separable elementary substructure \mathcal{R}_{2} of $\mathcal{R}^{\mathcal{U}}$ such that M_{1} embeds in \mathcal{R}_{2} and then embed \mathcal{R}_{2} in a separable elementary substructure M_{2} of $M^{\mathcal{U}}$. Iterate this construction countably many times, obtaining

$$
\mathcal{R} \rightarrow M \rightarrow \mathcal{R}_{1} \rightarrow M_{1} \rightarrow \mathcal{R}_{2} \rightarrow M_{2} \rightarrow \cdots,
$$

where each \mathcal{R}_{n} is a separable elementary substructure of $\mathcal{R}^{\mathcal{U}}$ and each M_{i} is a separable elementary substructure of $M^{\mathcal{U}}$. Set $\mathcal{R}_{\omega}=\bigcup_{n} \mathcal{R}_{n}=\bigcup_{n} M_{n}$. Then \mathcal{R} is an elementary substructure of \mathcal{R}_{ω} since $\mathcal{R} \rightarrow \mathcal{R}_{1}$ is elementary and $\mathcal{R}_{n} \rightarrow \mathcal{R}_{n+1}$ is elementary for each $n \geq 1$. Meanwhile, observe that $M_{n} \equiv M$ for each n, so by model-completeness of $\operatorname{Th}(M)$, we have that the M_{n} 's form an elementary chain, whence M is an elementary substructure of \mathcal{R}_{ω}. Consequently, $\mathcal{R} \equiv M$.

Remark 3.3. Proposition 3.2 provides immediate examples of non-model complete theories of II_{1} factors. Indeed, for $m \geq 2$, the von Neumann group algebra of the free group on m generators, $L\left(\mathbb{F}_{m}\right)$, is \mathcal{R}^{ω}-embeddable but not elementarily equivalent to \mathcal{R} (see 3.2.2 in [9]), whence $\operatorname{Th}\left(L\left(\mathbb{F}_{m}\right)\right.$) is not model-complete. It is an outstanding problem in operator algebras whether or not $L\left(\mathbb{F}_{m}\right) \cong L\left(\mathbb{F}_{n}\right)$ for all $m, n \geq 2$. A weaker, but still seemingly difficult, question is whether or $\operatorname{not} L\left(\mathbb{F}_{m}\right) \equiv L\left(\mathbb{F}_{n}\right)$ for all $m, n \geq 2$. (An equivalent formulation of this question is whether or not there is $\mathcal{U} \in \beta \mathbb{N} \backslash \mathbb{N}$ such that $\left.L\left(\mathbb{F}_{m}\right)^{\mathcal{U}} \cong L\left(\mathbb{F}_{n}\right)^{\mathcal{U}}\right)$?) Suppose this latter question has an affirmative answer. Then we see that the theory of free group von Neumann algebras is not model-complete, mirroring the corresponding fact that the theory of free groups is not model-complete. However, the natural embeddings $\mathbb{F}_{m} \rightarrow \mathbb{F}_{n}$, for $m<n$, are elementary. Assuming $L\left(\mathbb{F}_{m}\right) \equiv L\left(\mathbb{F}_{n}\right)$, are the natural embeddings $L\left(\mathbb{F}_{m}\right) \rightarrow L\left(\mathbb{F}_{n}\right)$, for $m<n$, elementary?

Corollary 3.4. Assume that the CEP has a positive solution. Then there is no model-complete theory of $I I_{1}$ factors.

Proof. Suppose that T is a model-complete theory of II_{1} factors. By the positive solution to the CEP and Proposition 3.2, $T=\operatorname{Th}(\mathcal{R})$. Meanwhile, a positive solution to the CEP implies that $T_{\forall}=T_{0}$, whence T is a model companion for T_{0}, contradicting Theorem [2.3.

4. Concluding Remarks

Theorem 2.1 presents a major hurdle in trying to understand the model theory of II_{1} factors. In particular, it places a major roadblock in trying to understand potential independence relations in theories of I_{1} factors. Indeed, although any II_{1} factor is unstable (see [7]), one might wonder whether the natural notion of independence stemming from noncommutative probability theory might show that some II_{1} factor is (real) rosy (see [1] for the definition of rosy theory). More precisely, fix some "large" II_{1} factor M and consider the relation \downarrow on "small" subsets of M given by $A \downarrow_{C} B$ if and only if, for all $a \in\langle A C\rangle, E_{\langle C\rangle}(a)=E_{\langle B C\rangle}(a)$. Here, $\langle *\rangle$ denotes the von Neumann subalgebra generated by $*$ and $E_{\langle *\rangle}$ is the conditional expectation (or orthogonal projection) map $E_{\langle *\rangle}: L^{2} M \rightarrow L^{2}\langle *\rangle$. In trying to verify some of the natural axioms for an independence relation (see [1]), one runs into trouble when trying to verify the extension axiom: If $B \subseteq C \subseteq D$ and $A \downarrow_{B} C$, can we find A^{\prime} realizing the same type as A over C such that $A^{\prime} \downarrow_{B} D$? If $M=\mathcal{R}^{\mathcal{U}}$ and "small" means "countable," then it seems quite likely that one could find an A^{\prime} with the same quantifier-free type as A over C that is independent from D over B as quantifier-free types are determined by moments. Without quantifier-elimination, it seems quite difficult to prove the extension property for this purported notion of independence. (The question of whether or not the independence relation arising from conditional expectation yields a strict independence relation was also discussed in [5].)

References

[1] H. Adler, A Geometric Introduction to Forking and Thorn-Forking, Jour. of Math. Logic, 9 (2009), 1-20.
[2] C. Anantharaman-Delaroche, Amenable correspondences and approximation properties for von Neumann algebras, Pacific J. Math. 171 (1995), no. 2, 309-341.
[3] N. Brown, K. Dykema, K. Jung, Free entropy in amalgamated free products, Proc. London Math. Soc. 97 (2008), 339-367.
[4] N. Brown, N. Ozawa C^{*}-algebras and finite-dimensional approximations, Graduate Studies in Mathematics 88, American Mathematical Society, Providence, RI, 2008.
[5] I. Ben Yaacov, C.W. Henson, M. Junge, Y. Raynaud, Report on non-commutative probabilities and von Neumann algebras, http://www.aimath.org/WWN/continuouslogic/ncpreport.pdf
[6] N. Brown, Topological dynamical systems associated to $I I_{1}$ factors, Adv. Math. 227 (2011), 1665-1699.
[7] I. Farah, B. Hart, D. Sherman, Model Theory of Operator Algebras I: Stability, to appear in the Bulletin of the London Mathematical Society.
[8] I. Farah, B. Hart, D. Sherman, Model Theory of Operator Algebras II: Model Theory, preprint.
[9] I. Farah, B. Hart, D. Sherman, Model Theory of Operator Algebras III: Elementary equivalence and $I I_{1}$ factors, preprint.
[10] K. Jung, Amenability, Tubularity, and embeddings into R^{ω}, Math. Ann 338 (2007), 241-248.

Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Science and Engineering Offices M/C 249, 851 S . Morgan St., Chicago, IL, 60607-7045

E-mail address: isaac@math.uic.edu
URL: http://www.math.uic.edu/~isaac
Department of Mathematics and Statistics, McMaster University, 1280 Main Street W., Hamilton, Ontario, Canada L8S 4K1

E-mail address: hartb@mcmaster.ca
URL: http://www.math.mcmaster.ca/~bradd
Department of Mathematics, University of California, Los Angeles, 520 Portola Plaza, Box 951555, Los Angeles, CA, 90095-1555

E-mail address: thomas.sinclair@math.ucla.edu
URL: http://www.math.ucla.edu/~ thomas.sinclair

[^0]: Goldbring's work was partially supported by NSF grant DMS-1007144.

