
ar
X

iv
:1

21
0.

49
37

v2
 [

m
at

h.
L

O
]

 2
0

M
ar

 2
01

3

From Bi-immunity to Absolute Undecidability

Laurent Bienvenu∗, Adam R. Day†, Rupert Hölzl‡

October 16, 2018

Abstract

An infinite binary sequence A is absolutely undecidable if it is impossible to com-
pute A on a set of positions of positive upper density. Absolute undecidability is a
weakening of bi-immunity. Downey, Jockusch and Schupp [2] asked whether, unlike
the case for bi-immunity, there is an absolutely undecidable set in every non-zero Tur-
ing degree. We provide a positive answer to this question by applying techniques from
coding theory. We show how to use Walsh-Hadamard codes to build a truth-table
functional which maps any sequence A to a sequence B, such that given any restriction
of B to a set of positive upper density, one can recover A. This implies that if A is
non-computable, then B is absolutely undecidable. Using a forcing construction, we
show that this result cannot be strengthened in any significant fashion.

1 Introduction

Let A ∈ 2ω be a non-computable infinite binary sequence. How can we gauge the extent
to which A is close to being computable? Many basic concepts in computability theory can
be seen as providing a partial answer to this question. For example, if A is low, ∆0

2, or of
minimal degree, then A could be seen as being close to computable.

In this paper, we will consider a different perspective. Given A and a partial computable
function ϕ we will say A extends ϕ if for all x ∈ dom(ϕ), A(x) = ϕ(x) (where A(n) is
the value of the n-th bit of A). We will measure how close A is to being computable by
considering the size of the domain of any partial computable function that A extends (the
larger the domain, the closer A is to being computable).

A set A is bi-immune if neither A nor its complement contain an infinite c.e. (or, equiv-
alently, computable) subset. It is not difficult to see that A is bi-immune if and only if A

∗This work was done as part of the France-Berkeley project Algorithmic randomness for non-uniform

measures.
†Day was supported by a Miller Research Fellowship in the Department of Mathematics at the University

of California, Berkeley.
‡Hölzl was supported by a Feodor Lynen postdoctoral research fellowship by the Alexander von Humboldt

Foundation.

1

http://arxiv.org/abs/1210.4937v2

does not extend a partial computable function with infinite domain. Hence, from this pa-
per’s perspective, bi-immune sets are as far from computable as possible. Once bi-immune
sets are shown to exist, the property of being bi-immune is clearly not invariant under Tur-
ing equivalence. However, it does make sense to ask whether every non-zero Turing degree
contains a bi-immune set. The answer is no.

Theorem 1 (Jockusch [4]). There exists a non-zero Turing degree such that no element of
this degree is bi-immune.

To determine whether a sequence A is bi-immune, we asked whether A extends a partial
computable function with infinite domain. Essentially, bi-immunity regards the domain of a
partial computable function as large if it is infinite. We can weaken the notion of bi-immunity
by strengthening our concept of largeness.

Definition 2. Let D ⊆ N. The upper density of D is the quantity

ρ(D) := lim sup
n→∞

|D ∩ {0, . . . n− 1}|

n
.

When the upper density of D is zero, we simply say that D has density 0.1

Definition 3 (Myasnikov-Rybalov [6]). We say that A ∈ 2ω is absolutely undecidable if there
is no partial computable function ϕ : N → {0, 1} whose domain has positive upper density
and such that ϕ(n) = A(n) for all n in the domain of ϕ.

The notion of absolute undecidability comes from the study of generic computability [2,
3, 5]. A sequence A ∈ 2ω is generically computable if it can be “computed modulo a set of
density 0”, i.e., if there is a partial computable function ϕ such that ϕ(n) = A(n) for all n in
the domain of ϕ, and ρ(N\dom(ϕ)) = 0. Absolute undecidability is the antithesis of generic
computability; a set is absolutely undecidable if it cannot be computed at all, modulo a set
of positions of density 0.

In Downey, Jockusch and Schupp [2], the following question is asked.

Question 4. Does every non-zero Turing degree contain a set which is absolutely undecid-
able?

In other words, does Theorem 1 fail if we weaken bi-immunity to absolute undecidability?
We give a positive answer to this question in Theorem 5. In fact every non-zero truth-table
degree contains a sequence which is absolutely undecidable.

Theorems 1 and 5 show that an interesting dichotomy exists between bi-immunity and
absolute undecidability. In Section 4, of this paper we investigate what happens between
these two notions.

1Density, defined as above but using lim instead of lim sup, is often denoted by ρ. As density will not
play a significant role in this paper we will simplify notation by using ρ to denote upper density instead of
the more common ρ.

2

To express this idea precisely, we need to introduce some definitions. For a function
h : N → R

>0, denote by o(h) the set of functions f : N → R such that limn→∞ f(n)/h(n) = 0.
In particular, write o(n) for o(g) when g is the function n 7→ n. Given D ⊆ N, define
κD : n 7→ |D ∩ {0, . . . , n− 1}| and ρD : n 7→ κD(n)/n. Theorem 5 is a uniform version of the
following statement.

Every non-zero truth-table degree contains an element X such that if ϕ is a
partial computable function and X extends ϕ then κdom(ϕ) ∈ o(n).

To determine what happens between bi-immunity and absolute undecidability, we can ask
whether this statement can be strengthened by replacing o(n) with a smaller set of functions.
In particular, is this statement still true if we replace o(n) with o(h) for some computable
function h ∈ o(n) e.g. n/ log logn?

We will show that the statement cannot be strengthened in this manner. If h is a
computable function and h(n) ∈ o(n), then there is a non-zero Turing degree a such that
for all sets X ≤T a, X extends a partial computable function g with κdom(g) 6∈ o(h). In
fact we will construct a single Turing degree that works for all such h. This is the content
of Theorem 11. Hence the threshold where the behavior changes between bi-immunity and
absolute undecidability occurs right at the absolute undecidability end.

Theorem 11 is proved using forcing with computable perfect trees. The structure of
this proof is similar to that of Jockusch’s proof of Theorem 1 [4], but requires some extra
machinery to deal with density.

2 Coding Theory and Absolute Undecidability

Our objective in this section and the following section, is to answer Question 4 by proving
the following theorem.

Theorem 5. There exists a tt-functional Φ such that for every non-computable sequence
A ∈ 2ω, ΦA is absolutely undecidable and ΦA ≡tt A.

Let us present the structure of our proof. We will show how to encode any sequence A
via a tt-reduction Φ into a sequence B in such a way that A can be fully recovered (by
another tt-reduction) given B on a set of positive upper density. If A is non-computable,
then B = ΦA is necessarily absolutely undecidable. Otherwise, B would extend a partial
computable function ϕ with domain a set of positive upper density and thus A could be
computed using ϕ.

Our proof will have an element of non-uniformity. Instead of reproducing the set A exactly
(given B on a set of positive upper density) we will produce a computable tree of bounded
width having A as a path. This is sufficient because any path through a computable tree of
bounded width is itself computable. Theorem 10 shows that this non-uniformity cannot be
avoided, and, in fact, that even any finite number of decoding procedures do not suffice to
decode an arbitrary set A. This is shown to hold for an arbitrary coding scheme, not just
for the specific scheme Φ used in the proof of Theorem 5.

3

The functional Φ is built upon an error correcting code known as a Walsh-Hadamard
code (see, e.g. Arora and Barak [1, Section 19.2.2]). An error correcting code maps finite
strings to finite strings, thus for our purposes we will have to use the Walsh-Hadamard code
iteratively. On input A, for all n, the initial segment (or prefix) of A of length n, which we
denote by A↾n, is encoded into a string σn. The image of A under Φ will be the sequence
B = σ1σ2σ3

Ideally we would like a computable sequence of functions {fn}n∈N, where fn is a function
from binary strings of length n to binary strings of some length kn with the following property.
For any δ > 0, for all sufficiently large n, for all strings σ of length n, any ⌊δ · kn⌋ bits of
f(σ) uniquely determines σ. In coding theory, such an coding is called an erasure code: one
encodes a string σ into τ = f(σ) in such a way that σ can be recovered from any subset τ ′

of the bits of τ of sufficiently large size (think of τ ′ as a version of τ where some of the bits
are missing, say replaced with ‘?’, but those that are given are correct).

If there were such a coding, we could attempt to prove Theorem 5 by defining B to be
equal to

f1(A↾1)f2(A↾2)f4(A↾4)f8(A↾8)

Now if the sequence kn has the property that given B on a set of positive upper density
δ, then for some constant c > 0, for infinitely many n, one must have ⌊δ/c · kn⌋ bits of
fn(A↾n), then we could reconstruct A↾n for these n, and hence recover A itself. While not
all sequences kn have this property, the sequence defined by letting kn = 2n does (as we will
prove in Lemma 8). This is the sequence we will make use of in our proofs.

Unfortunately, requiring that any ⌊δ · kn⌋ bits of f(σ) uniquely determine σ as described
above, is to much to ask for. There is a theoretical limit to recovering an encoded string
unambiguously from a small fraction of the bits of its encoding.2 For simplicity let us say that
we only want to encode three different strings σ1, σ2, σ3 into codewords τ1, τ2, τ3. Without
loss of generality we can assume that the codewords all have the same length m. For each
position i ≤ m, at least two codewords agree on the bit number i. Thus, by the pigeonhole
principle, there exist two strings among τ1, τ2, τ3 that agree on at least one third of their bits.

This seems to defeat the plan of retrieving the original string from a small fraction of
the bits of its encoding, as the simple example above shows that any fraction smaller that
1/3 is insufficient in general. The solution to this problem is to use another concept from
coding theory: list decoding. In the remainder of this section we will review these concepts
and explain how they can be used to prove Theorem 5. However, we appreciate that some
readers will not have a background in coding theory, so in the following section we will give
a proof of Theorem 5 using basic facts about vector spaces, that assumes no prior knowledge
of coding theory.

A list decodable code is an error correcting coding scheme such that, if the codeword z
for a string x is known without too many errors, one can produce a small list of strings to
which x belongs. Define the (normalized) Hamming distance between two words of equal
length n as dH(x, y) := |{i | x(i) 6= y(i)}|/n. The minimum distance of a coding scheme is
the minimum normalized Hamming distance between two distinct codewords. List decodable

2The same problem occurs for any finite alphabet size.

4

codes ensure that a ball (in Hamming distance) around a potential codeword contains only
a small number of actual codewords. This means that a potential codeword can be decoded
into a small number of possible original strings. In our case this number will be constant,
which will allow us to build a computable tree of bounded width.

The Walsh-Hadamard code, which we define in the next section, maps words of length n
to codewords of length 2n. In [1, Section 19.2.2] it is shown that this is a code with minimum
distance 1/2, i.e., any two codewords x, y disagree on at least half of their bits. Assume we
have a “corrupted” version of a codeword that could either be x or y, where corrupted
means that some bits b have been replaced by 1 − b. Assume that we are guaranteed that
the corruption has only happened on at most a quarter of all bits. Then we can be sure that
fewer than half of the bits where x and y disagree have been corrupted, so we can take a
majority vote on those bits to decide whether the given corrupted codeword came from x
or y. This is completely insufficient for our purposes, of course, since in our construction we
will in general only be guaranteed a much smaller fraction ε ≪ 1/4 of bits of the codeword.
But we can apply the following theorem:

Theorem 6 (Johnson bound (see, e.g., [1])). If E : {0, 1}n → {0, 1}m is an error correcting
code of minimum distance at least 1/2, then for every x ∈ {0, 1}m and δ > 0, there exist at
most l = 1/(2δ2) elements y of {0, 1}n such that dH(x, E(y)) ≤ 1/2− δ.

In other words, if we have a corrupt version z′ of a codeword z = E(y), which is good
enough in the sense that a fraction 1/2 + δ of the bits of z′ coincide with those of z, we can
generate from z′ a list of size 1/(2δ2) of possible candidates for y which will indeed contain y.

In our case, we do not have such a z′, but we have instead a known fraction of bits of z
which we are sure are correct and we know their position in z. As we explained above, what
we need for this situation is an erasure code.

The following argument shows that we can still use the Walsh-Hadamard code in this
context. Imagine we know a fraction 2δ of the bits of a codeword z for the original word y,
together with their respective positions in z. Now fill all the remaining positions with 0’s
to get a potential codeword z0 and with 1’s to get a potential codeword z1. Perform a
list-decoding on both z0 and z1, thus getting two lists of possible candidates of size at most
1/(2δ2). Merge the two lists; the resulting list has size at most 2 · 1/(2δ2) = 1/δ2. Note that
the correct entry is on the list since either z0 or z1 must have a fraction at least 1/2 + δ of
its bits in common with z, so the list contains the original word y.

3 Every truth table degree contains an absolutely un-

decidable set

We hope that the reader who is familiar with coding theory can find in the previous section
sufficient information to prove Theorem 5. In this section, we present our argument in a
self-contained way that assumes no prior knowledge of coding theory. Besides, the direct
analysis of the Walsh-Hadamard code for our purposes will give a better bound on the list
of candidates than the one we gave in the previous section (1/δ instead of 1/δ2).

5

The core of the proof resides in a combinatorial argument about vector spaces. Before
giving the argument let us illustrate it with an example. Define f3 : {0, 1}3 → {0, 1}7 as
follows. If a, b, c ∈ {0, 1} then

f3(abc) = abc(a + b)(b+ c)(a+ c)(a+ b+ c),

where addition is performed modulo 2 (caveat: the right-hand side is a concatenation of bits,
not a product modulo 2). In other words, f3(abc) is obtained by concatenating together the
output from all linear functionals from {0, 1}3 to {0, 1} with argument abc. (Note that we
do not include the zero functional in this example.) Given any a, b, c ∈ {0, 1} assume we are
given 3 bits of f3(abc), e.g. the zeroth bit is 1, the fourth bit is 0 and sixth bit is 1. The
zeroth bit tells us that a = 1, the fourth bit tells us that b+ c = 0, the sixth bit is redundant
information because we already know that a + b + c = 1 from the zeroth and fourth bit.
Nevertheless, we can determine that abc ∈ {100, 111} i.e. we know that abc is one of two
possibilities. Further, no matter which 3 bits we are given, we are always guaranteed at least
two ‘independent’ pieces of information and hence if we cannot determine abc, we can always
show that there are only two possible values it could take.

What is remarkable is how this example scales. If we define fn in a similar manner for
all n, then for any string σ of length n, given 1/4 of the bits of fn(σ) we can find a set of size
at most two that σ must belong to. Crucially, the maximum size of the set does not depend
on n, but only the fraction of the bits we have access to, in this case 1/4.

Let V be a vector space of dimension n over a finite field F of cardinality q. Note that in
this paper we are only concerned with the case that q = 2, but we will present the argument
in its general form. Denote by V ∗ the dual space of V , i.e., the set of linear functionals
from V to F. In the example above, we were given the values of some bits of fn(a, b, c).
Each bit told us two things, the position of the bit told us the linear functional used, and
the value of the bit told us the value of the linear functional on the argument abc. We can
represent this information as a subset S of pairs in (ϕ, z) ∈ V ∗ × F. For any x ∈ V , let
Cx = {(ϕ, ϕ(x)) ∈ V ∗ × F | ϕ ∈ V ∗}. The set Cx simply records the values x takes on each
linear functional in V ∗. Now if S ⊆ Cx, then for all (ϕ, z) ∈ S, we have that ϕ(x) = z i.e.
the values that x takes on the linear functionals in V ∗ is consistent with the information
provided by S.

Proposition 7. Let V , n, F, q, V ∗ and Cx be defined as above. For any finite set S of pairs
(ϕ, z) ∈ V ∗ × F, the set AS = {x | S ⊆ Cx} has cardinality at most qn/|S|.

Proof. Fix a finite set S of pairs (ϕ, z) ∈ V ∗ × F. If AS = ∅ then the result holds trivially
so let us assume that As is not empty and fix some element x0 ∈ AS. If some ψ appears in
two different pairs (ψ, z1) and (ψ, z2) of S, then it is clear that AS = ∅; so we may assume
that any ϕ appears at most once in the pairs of S. Call the domain of S (written dom(S))
those ϕ that are the first coordinate of some element of S and let H be the subspace of V ∗

generated by dom(S). Since |H| ≥ |S| we have dim(H) = logq(|H|) ≥ logq(|S|), where the
equality is due to the linear independence of vectors in a basis.

If y ∈ AS, this means that for all ϕ ∈ dom(S), ϕ(x0) = ϕ(y), and therefore by linearity,
that ϕ(x0) = ϕ(y) for all ϕ ∈ H , which again by linearity can be re-written as ϕ(x0− y) = 0

6

for all ϕ ∈ H . In other words, x0 − y belongs to the annihilator H◦ of H . Of course, the
converse holds, i.e. if x0 − y belongs to H◦, then ϕ(x0) = ϕ(y) for all ϕ ∈ dom(S) and
therefore y ∈ AS. This shows that AS, provided it contains at least one element x0, is the
affine space x0 +H◦ and therefore has the same dimension as H◦. Now, using the classical
expression of the dimension of the annihilator, dim(AS) = dim(H◦) = dim(V ∗)− dim(H) =
n− dim(H) ≤ n− logq(|S|). This implies that |AS| ≤ qn/|S|.

We will also need the following two easy lemmas about density.

Lemma 8. For all integers n let In = {2n, . . . , 2n+1 − 1} (note that the In form a partition
of N \ {0}). If a set D ⊆ N has positive upper density greater than δ, then for infinitely
many n, the density of D inside In (that is, the quantity |D ∩ In|/|In|) is at least δ/2.

Proof. Suppose for the sake of contradiction that |D∩In|/|In| < δ/2 for almost all n. Without
loss of generality, we may assume that this even holds for all n (by removing finitely many
elements from D, which does not change the upper density). For any given k, let n = n(k)
be such that k ∈ In = {2n, . . . , 2n+1 − 1}. Then

|D ∩ {0, . . . , k}| ≤
∑

j≤n

|D ∩ Ij | ≤
∑

j≤n

(δ/2) · 2j ≤ (δ/2) · 2n+1 ≤ (δ/2) · 2k ≤ δk.

This contradicts the fact that the upper density of D is greater than δ.

Lemma 9. If D ⊆ N has upper density δ and E ⊆ N has density 0 then D \ E has upper
density δ.

Proof. For all n, |(D \ E) ∩ {0, . . . , n− 1}| ≥ |D ∩ {0, . . . , n− 1}| − |E ∩ {0, . . . , n− 1}| ≥
|D ∩ {0, . . . , n − 1}| − o(n). Thus lim supn |(D \ E) ∩ {0, . . . , n − 1}|/n = lim supn |D ∩
{0, . . . , n− 1}|/n

We are now ready to prove Theorem 5.

Proof of Theorem 5. We construct Φ block by block. On input A, for all n, the initial
segment A↾n is mapped to a string σn of length 2n, and the image of A under Φ is the
sequence B = σ1σ2σ3 For all n, σn is constructed as follows:

• Identify {0, 1}n with the vector space Vn of dimension n over F2, and let x be the
element of Vn corresponding to A↾n.

• Order the elements of V ∗
n in some canonical way (say lexicographically, as V ∗

n can also
be identified with {0, 1}n): V ∗

n = {ϕ1, ϕ2, . . . , ϕ2n}.

• Define σn to be the string ϕ1(x)ϕ2(x) . . . ϕ2n(x).

7

Let us show that if B = σ1σ2σ3 . . . is not absolutely undecidable, then A is computable.
Assuming B is not absolutely undecidable, let f be a partial computable function whose
domain D has upper density greater than some rational δ > 0 and such that f(k) = B(k)
for all k ∈ D. By Lemma 8, there are infinitely many n such that the density of D in In is
at least δ/2. Since D is c.e. and δ rational, the set of such n is c.e. and therefore contains
a computable set {n0 < n1 < n2 < n3 < . . .}. Note that B↾In = σn, so by Lemma 8, for
all ni, we can compute a fraction δ/2 of the values of the bits of σni

(taking the values of
f on elements in Ini

). By the construction of σni
, this means that we can compute a subset

of {(ϕ, ϕ(x)) | ϕ ∈ V ∗
ni
} (where x is the element of Vni

corresponding to A↾ni) of size at
least (δ/2) · 2ni, which, by Proposition 7, allows us to compute a finite set Ai of size at most

2ni

(δ/2)2ni
= 2/δ containing A↾ni. Thus, A belongs to the Π0

1 class

{X ∈ 2ω | ∀i (X↾ni) ∈ Ai}.

This Π0
1 class contains at most 2/δ elements as all Ai have size at most 2/δ. Thus all elements

of this Π0
1 class are computable, and therefore A is computable.

It is clear that A ≤tt Φ(A), as we only need the first 2n+1−1 bits of Φ(A) to recover A↾n.

The proof of Theorem 5 constructs a single functional Φ that uniformly encodes any
sequence A ∈ 2ω to ΦA. On the other hand, the reader might notice that the decoding
procedure given for recovering A given ΦA on a set of positive upper density is not uniform.
Indeed, finding a path in a computable tree which only has finitely many paths cannot be
done uniformly in general. And even with a known bound on the number of paths, one cannot
effectively compute a finite list of sequences which contains all paths. We shall formally prove
that this cannot be avoided, not only for the Walsh-Hadamard coding we use, but for any
other coding scheme as well. By analogy to the terminology used above, the next theorem
can be informally stated as follows: infinitary erasure codes with finite list decoding do not
exist.

In this section we will freely identify 2ω with the powerset of N. Fix a tt-functional Γ. A
Turing functional Ψ correctly decodes X on D, if Ψ can compute X given access to the bits
of ΓX in D, along with D itself, i.e. if X = Ψ(D⊕ (ΓX ∩D)). The following theorem shows
that for a fixed δ, there does not exist a tt-functional Γ, together with a finite number of
functionals Ψ1, . . . ,Ψk such that for any X , and any D such that ρ(D) ≥ δ, X belongs to
the set {Ψi(D ⊕ (ΓX ∩D)) | i ≤ k}.

Theorem 10. Fix k. Let Γ be a tt-functional, Ψ1,Ψ2, . . . ,Ψk a list of Turing functionals
and σ, τ finite strings. There exist computable X and D with σ � X and τ � D such that:

(i) ρ(D) ≥ 1/3.

(ii) X 6∈ {Ψi(D ⊕ (ΓX ∩D)) | i ≤ k}.

Proof. The proof proceeds by induction on k. For k = 0, there is nothing to prove. For k+1,
let Γ be a tt-functional, Ψ1,Ψ2, . . . ,Ψk+1 a list of Turing functionals and σ, τ finite strings.

8

Find a finite string σ′ � σ such that |Γσ′

| ≥ |τ |. Let X1, X2, X3 be three distinct computable
infinite binary sequences extending σ′ and let Yi = ΓXi for i ≤ 3. By the discussion of page 4,
for all n, there are 1 ≤ i < j ≤ 3 such that Yi↾n and Yj↾n coincide on at least one third
of their bits. Thus there are 1 ≤ i < j ≤ 3 such that Yi↾n and Yj↾n coincide on at least
one third of their bits for infinitely many n. Without loss of generality, assume this holds
for the pair (Y1, Y2). The set D of positions n such that Y1(n) = Y2(n) has upper density
at least 1/3. Further as Y1 and Y2 must agree on the first |τ | bits, we can adjust D so that
τ � D without affecting the upper density of D or the fact that for all n ∈ D, Y1(n) = Y2(n).

If X1 6∈ {Ψi(D ⊕ (Y1 ∩D)) | i ≤ k + 1}, then X1 and D witness that the theorem holds
for Γ, Ψ1,Ψ2, . . . ,Ψk+1, σ and τ . Otherwise, we can assume without loss of generality that
X1 = Ψk+1(D⊕(Y1∩D)). Observe that there is some m such that X1(m) 6= X2(m). Further
as Y1 ∩ D = Y2 ∩ D, and Ψk+1(D ⊕ (Y2 ∩ D)) = X1, there exists τ̂ � D and σ̂ � X2 such
that |σ̂| ≥ m+ 1, and

Ψk+1(τ̂ ⊕ (Γσ̂ ∩ τ̂)) � X1↾(m+ 1).

By our induction hypothesis for Γ, Ψ1,Ψ2, . . . ,Ψk, σ̂ and τ̂ , there is X̂ , D̂ such that σ̂ � X̂,
τ̂ � D̂, and X̂ 6∈ {Ψi(D̂ ⊕ (ΓX̂ ∩ D̂)) | i ≤ k}. Observe that Ψk+1(D̂ ⊕ (ΓX̂ ∩ D̂)) �

X1↾(m+ 1) 6= X̂↾(m+ 1) so in this case X̂ and D̂ witness that the theorem holds.

4 Between bi-immunity and absolute undecidability

Theorem 5 shows that in every non-trivial tt-degree (and thus Turing degree) there is an
absolutely undecidable set. In other words, in every such degree there is a set such that
we are unable to infinitely often correctly guess a constant percentage of its bits. We show
that the statement of the theorem is tight. Indeed, Theorem 11 below shows that there
exists a sequence X such that every Y Turing below X is “close” to not being absolutely
undecidable.

In the rest of this paper, (ϕe)e and (Φe)e denote respectively a standard enumeration
of partial computable functions from N to N and a standard enumeration of partial Turing
functionals from 2ω to 2ω. We say that a Turing degree d is computably dominated if for any
function f ≤T d, there is a computable function g such that for all n, g(n) ≥ f(n).

Theorem 11. There is a non-computable set X such that for all Y ≤T X, and any com-
putable function h ∈ o(n), there exists a partial computable function ϕ such that:

1. Y extends ϕ (i.e., Y (n) = ϕ(n) for all n ∈ dom(ϕ)).

2. κdom(ϕ) 6∈ o(h).

Theorem 11 is proved using forcing with computable perfect trees. A tree T ⊆ 2<ω is
perfect if for all σ ∈ T there is some τ � σ such that both τ0 and τ1 are in T . Given a tree
T ⊆ 2<ω, define [T] to be the set of paths through [T], i.e. [T] = {X ∈ 2ω | ∀nX↾n ∈ T}.

9

We define a partial order P on the set of computable perfect trees in 2<ω by T0 ≤ T1 if
[T0] ⊆ [T1]. For any computable A ∈ 2ω, the set

DA = {T ∈ P | (∀X ∈ [T])(X 6= A)}

is dense in P. For every Turing functional Φe, the set

Ee = {T ∈ P | ((∀X ∈ [T])(ΦX
e is not total)) ∨ ((∀X ∈ [T])(ΦX

e is total))}

is also dense in P. Hence if {Ti}i∈N is a descending sequence in P that meets all such dense
sets, then any element of

⋂
i∈N[Ti] is a non-computable set of computably dominated degree.

Further such a sequence is computable by ∅′′.
Since a Turing reduction to a set of computably dominated degree is always equivalent

to a truth-table reduction it is enough to continue working with the latter class of reductions
in the remainder of the proof.

In order to prove Theorem 11 we will show that if h ∈ o(n) is a computable function
and Φ is a truth-table functional, then the set

{T ∈ P | (∃e)(∀X ∈ [T])(ΦX extends ϕe ∧ κdom(ϕe) 6∈ o(h)} (1)

is dense in P.
Fix a computable perfect tree T , a truth-table functional Φ and a computable function h

such that h ∈ o(n). For all σ ∈ T we will define two partial computable functions fσ : 2<ω →
T and gσ : N → {0, 1} such that if fσ is total then the downward closure of the range of fσ is
a computable perfect subtree of T . Further if fσ is total then gσ will witness that the range
of fσ is in (1).

First let fσ(λ) = σ (where λ is the empty string). Now assume that fσ has been defined
on all strings of length less than or equal to n and let {σ1, . . . , σ2n} = {fσ(τ) | |τ | = n}. We
search the tree T for some m > n, a set of nodes {ξ1, . . . , ξ2n} ⊆ T and D ⊆ {0, . . . , m− 1}
such that:

(i) ∀i ∈ {1, . . . , 2n}, ξi � σi.

(ii) ∀x ∈ D, Φξ1(x) = Φξ2(x) = . . . = Φξ2n (x).

(iii) |D| > h(m).

If the search succeeds, then for all x ∈ D we define gσ(x) to be the common value (i.e.
gσ(x) = Φξ1(x)). We set f(σi0) to be one immediate successor of ξi in T and f(σi1) to be
the other immediate successor of ξi in T .

We claim that there exists some σ ∈ T such that the function fσ is total. To prove this,
we will define a condition ⋆ such that if ⋆ holds for σ then fσ is total. Further if ⋆ does not
hold for any σ then fλ is total (and though we will not need this, in fact fσ will be total for
any σ ∈ T).

Condition ⋆ holds for σ ∈ T if there exists D ⊆ N of positive upper density such
that for all X, Y ∈ [T] ∩ [σ], the set {x ∈ D | ΦX(x) 6= ΦY (x)} has density zero.

10

As this condition is the central new idea in the proof of Theorem 11, we will attempt
to explain the underlying intuition. Essentially, the functional Φ can behave in one of two
ways with respect to [T]∩ [σ]. Firstly, for some large set D, any two elements of Φ([T]∩ [σ])
agree on “almost all” n ∈ D. Secondly, given any large set D, there are two elements in
Φ([T]∩ [σ]) which disagree on a significant amount of D. Our approach for refining T differs
under these two cases. In the first case, that is, if condition ⋆ holds on σ, the refinement of T
is simple because no matter which paths we take in [T]∩ [σ], their Φ-images will always agree
on “almost all” of D. This approach is pursued in Lemma 12. For the second case, consider
a situation in which we have a finite number of paths {X0, . . . , Xn} in [T] that agree under
Φ on a fixed large set D, that is, if i, j ∈ {0, . . . , n}, m ∈ D then ΦXi(m) = ΦXj (m). If we
take two paths in [T] ∩ [σ] whose Φ-images disagree on a significant amount D, then one of
those paths must agree with paths in {X0, . . . , Xn} on a significant amount of D under Φ.
In Lemma 13 we will use this idea to build a suitable refinement of T .

Lemma 12. If condition ⋆ holds for σ then fσ is total.

Proof. Let D be a set of positive upper density that witnesses that condition ⋆ holds for σ.
Assume that level n of fσ has been defined and that this level is equal to {σ1, . . . , σ2n}. For
all i ∈ {1, . . . , 2n}, let Xi be the left-most path of T above σi.

For i ∈ {2, 3, . . . , 2n} define Si = {x ∈ D | ΦX1(x) 6= ΦXi(x)}. According to condition ⋆,
for each i, the set Si has density 0. Thus if we let D̂ = D \ (S2 ∪ S3 ∪ . . . ∪ S2n) we have
that D̂ is a set of positive upper density by repeated application of Lemma 9. Further for
all x ∈ D̂,

ΦX1(x) = ΦX2(x) = . . . = ΦX2n (x).

As h(n) ∈ o(n), there exists some m > n such that ρD̂(m) > h(m)/m. For each i, let ξi ∈ T
be a sufficiently long initial segment of Xi such that Φξi(x) ↓ for all x ≤ m. This means that
m, {ξ1, ξ2, . . . , ξ2n} and D̂∩{0, . . . , m− 1} meet the conditions to define the next level of fσ
and hence the search must end successfully at some point.

Lemma 13. If condition ⋆ does not holds for any σ ∈ T then fλ is total.

Proof. Assume that the n-th level of fλ has been defined and that this level is equal to
{σ1, . . . , σ2n}. We argue by induction; let D1 = N and let X1 be the left-most path above σ1.

For the induction step assume that for some i < 2n, we have defined Di and X1 ≻
σ1, . . . , Xi ≻ σi such that Di is a set of positive upper density and for all x ∈ Di

ΦX1(x) = ΦX2(x) = . . . = ΦXi(x).

The set Di has positive upper density; and since condition ⋆ fails above all σ ∈ T , it
fails in particular above σi+1. Therefore there exist Y, Z ∈ [T] ∩ [σi+1] such that the set
E = {x ∈ Di | ΦY (x) 6= ΦZ(x)} does not have density zero i.e. E has positive upper
density. Now we can partition E into the sets: E1 = {x ∈ E | ΦY (x) = ΦX1(x)} and
E2 = {x ∈ E | ΦZ(x) = ΦX1(x)}. At least one of these sets has positive upper density by
Lemma 9. If E1 has positive upper density we let Di+1 = E1 and Xi+1 = Y . Otherwise we
let Di+1 = E2 and Xi+1 = Z.

11

Hence the set D2n has positive upper density and for all x ∈ D2n we have

ΦX1(x) = ΦX2(x) = . . . = ΦX2n (x).

As argued in the previous lemma, this is sufficient to show that the construction of fλ can
continue.

Proof of Theorem 11. We will show that if Φ is a truth-table functional and h is a computable
function such that h ∈ o(n), then the set (1) is dense in P. Take any T ∈ P. Consider the
construction of the functions fσ and gσ with respect to T , Φ and h. By Lemmas 12 and 13
for some σ ∈ T the function fσ is total. Let T̂ be the downward closure of the range of fσ.
T̂ is a computable perfect tree and T̂ ≤ T . Now for all X ∈ [T̂], ΦX extends gσ. Further
κdom(gσ) 6∈ o(h) because when fσ is defined on all strings of length n, for some m > n the
construction ensures that κ(domgσ)(m) > h(m).

Let {Ti}i∈N be a descending sequence in P that meets all of the sets of the form (1) as
well as those dense sets that ensure non-computability and being of computably dominated
degree. If X ∈

⋂
i[Ti], then X is non-computable. Now if Y ≤T X then because X is of

computably dominated degree Y = ΦX for some truth-table functional Φ. Hence for any
computable function h ∈ o(n), there is a partial computable function g such that Y extends g
and κdom(g) 6∈ o(h).

One should notice that in the above proof, while the condition ⋆ is Σ1
2, the construction

can be carried out using ∅′′ because it is not necessary to determine if ⋆ holds. All that is
required is to find a string σ such that fσ is total.

Acknowledgements. We would like to thank Alexander Shen for pointing out to us
the notion of list decoding, which we only implicitly used in earlier presentations of our
results. Thanks also go to Carl Jockusch and the anonymous referee for useful comments
and suggestions.

References

[1] Sanjeev Arora and Boaz Barak. Computational complexity. Cambridge University Press,
Cambridge, 2009. A modern approach.

[2] Rodney Downey, Carl G. Jockusch, and Paul Schupp. Asymptotic density and com-
putably enumerable sets. In preparation.

[3] Carl G. Jockusch and Paul Schupp. Generic computability, Turing degrees, and asymp-
totic density. J. London Math. Soc., 85(2):472–490, 2012.

[4] Carl G. Jockusch, Jr. The degrees of bi-immune sets. Z. Math. Logik Grundlagen Math.,
15:135–140, 1969.

12

[5] Ilya Kapovich, Alexei Myasnikov, Paul Schupp, and Vladimir Shpilrain. Generic-case
complexity, decision problems in group theory, and random walks. J. Algebra, 264(2):665–
694, 2003.

[6] Alexei G. Myasnikov and Alexander N. Rybalov. Generic complexity of undecidable
problems. J. Symbolic Logic, 73(2):656–673, 2008.

13

	1 Introduction
	2 Coding Theory and Absolute Undecidability
	3 Every truth table degree contains an absolutely undecidable set
	4 Between bi-immunity and absolute undecidability

