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This paper proposes an efficient method to analyze the worst case interrup-
tion delay (WCID) of a workload running on modern microprocessors using
a cycle accurate simulator (CAS). Our method is highly accurate because it
simulates all possible cases inserting an interruption just before the retirement
of every instruction executed in a workload. It is also (reasonably) efficient
because it takes O(N log N) time for a workload with N executed instructions,
instead of O(N2) of a straightforward iterative simulation of interrupted execu-
tions. The key idea for the efficiency is that a pair of executions with different
interruption points has a set of durations in which they behave exactly coherent
and thus one of simulations for the durations may be omitted. We implemented
this method modifying the SimpleScalar tool set to prove it finds out WCID
of workloads with five million executed instructions in reasonable time, less
than 30 minutes, which would be 200–300 days by the straightforward method.
Furthermore, our CAS-based analyzer may have a post process to calculate the
WCID for multiple F interrupts with O(FN

√
N log N) time complexity.

1. Introduction

For real-time systems and programming for them, worst case execution time

(WCET) analysis is indispensable to assure a program or a workload completes
its job with a given time constraint. Among many WCET researches (e.g., those
surveyed in Ref. 13)), one of the most challenging themes is to find the upper
bound of the delay caused by one (or more, sometimes) interruption which occurs
in the execution of a program or a workload.

This worst case interruption delay (WCID) is very difficult to analyze because
many factors are involved to determine it. First it is obviously required to know

†1 Kyoto University
†2 PFU Ltd.
†3 Nara Institute of Science and Technology

the WCET of a set of preemptors which are invoked by the interruption. Second
we have to analyze the worst case scheduling of the preemptors and the inter-
rupted process to determine the preemptor set. Finally and most challengingly,
we cannot assume the CPU time consumed by the interrupted process is as same
as that without interrupt because caches and branch predictors are polluted by
preemptors and, from a microscopic viewpoint, instruction pipeline is flushed.

Since modern microprocessors have complicated mechanisms of instruction
scheduling, it is not sufficient to find the interruption point which maximizes
the number of cache misses and/or branch prediction misses. That is, the point
may not be worst because the delay caused by the misses may be hidden by out-
of-order scheduling while the other point with a less number of misses is more
harmful due to tightly dependent instructions executed after it.

The aim of our research is to find a tight and safe upper bound of the delay
caused by one or more interruptions based on the simulation of a workload with a
cycle accurate simulator (CAS). The first step is to find the delay caused by every
possible interruption accurately by a CAS-based analysis equivalent to a huge set
of simulations with all possible cases of interruption points. The most important
contribution of this paper is to give an efficient algorithm of O(N(K+log N)) time
complexity for this single-interrupt analysis, where N is the number of executed
instructions, and K is a large constant for out-of-order scheduling simulation and
is usually dominant over the O(log N) factor for a simple binary tree traversal.
Furthermore, we propose an O(FN

√
N log N) algorithm to find WCID with F

interrupts from the cycle count log obtained from the CAS-based single-interrupt
analyzer.

The rest of paper describes our WCID analyzers as follows. First the key
idea of efficiency of the single-interrupt analyzer, differential simulation 6),11) is
introduced in Section 2. Our experimental results with our implementation based
on SimpleScalar 1) and SPEC CPU95 benchmarks are shown in Section 3. Then
our O(FN

√
N log N) algorithm for WCID analysis with multiple interruptions

is described in Section 4. After a brief discussion of related work in Section 5,
we conclude this paper in Section 6.
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34 A Simulation-Based Analysis for Worst Case Delay of Single and Multiple Interruptions

2. Differential Simulation

This section describes the key idea of our method for single-interrupt WCID
analysis, differential simulation, which is based on the observation that two exe-
cutions with different interruption points have a set of durations in which they
behave coherently. For more formal and detailed discussion of the idea and its
implementation, see Ref. 11).

2.1 Models of Processor and Interruption
Modern microprocessors with caches, branch predictors and an out-of-order

instruction pipeline may considered as a huge but finite state machine consisting
of architectural and microarchitectural states.

The architectural state is usually represented by the combination of architec-
tural registers and a (physical) memory. At any point in the execution of a work-
load, their contents are determined only by the sequence of instructions, i1, . . . ,
in executed until the point and their initial values (e.g., 0 for all). From the view-
point of simulation, the architectural state at the completion of the instruction
in, namely A(n), can be obtained much more easily and quickly than the mi-
croarchitectural state, because it only requires instruction-level simulation which
is usually about one hundred times as fast as out-of-order cycle accurate simu-
lation. Thus the instruction-level simulation is sometimes called fast-forwarding

and is often used for skipping leading instructions before the cycle accurate one
for instructions with which an architect, for example, wants to measure the ma-
chine performance.

Now let us assume the workload execution of N total instructions is interrupted
at in, i.e. just after the instruction in completes, a set of preemptors is executed,
and then the original execution is resumed for remaining in+1, . . . , iN . As far as
the interrupted process concerns, the architectural state A(n) remains unchanged
during the execution of the preemptors �1. Furthermore, for any pair of executions
with different interruption points, namely in and in′ , their architectural states

�1 A part of architectural state referred by preemptors should have been changed, of course,
but this change will not affect the execution of interrupted process unless it interacts with
preemptors. Although interactions among processes and operating system could be handled
easily if necessary, we omit this issue in this paper.

are considered equivalent to A(k) for any k independent from n and n′.
On the other hand, the microarchitectural state at a machine cycle t, namely

M(t), is greatly affected by an interruption and its timing. Before discussing
the effect, we decompose M(t) into a series of (almost) independent states of
instruction pipeline P (t) and cache-like modules (CLM in short) C1(t), . . . , Cm(t)
for caches, TLBs, branch prediction tables, and so on. The pipeline state P (t)
represents instructions which has been fetched but has not retired (or been com-
mitted) yet, the pipeline stage where each instruction resides, the delay of stage
progression of each instruction, and so on.

The state of a CLM Ck(t) may be decomposed further into a series of inde-
pendent substates Ck,1(t), . . . , Ck,s(t) corresponding to, for example, cache sets.
That is, a substate Ck,j(t) for a cache set, for example, represents the tag and
its validity of each way in the set and the recently-used ordering of the ways.
The substates are independent of each other because a memory access, for ex-
ample, affects (at most) only one substate causing a replacement, recently-used
reordering, and so on.

Now we model the effect of an interruption at in on each microarchitectural
component. Since we try to estimate the worst case delay due to the interrupt,
each state at the resumption of in+1 at cycle t is defined as follows regardless of
preemptors.
• Pipeline state P (t) is emptied and thus has no instructions. Therefore, we

have to resume the execution from the instruction fetch for in+1.
• Each CLM state Ck(t) must be set to a value that maximizes the execution

cycles for in+1, . . . , iN . A reasonable approximation for caches, TLBs and
branch target buffers (BTBs) is to invalidate all the substates of them so
that the first (and subsequent a few if set-associative) access causes a miss
(-prediction). The worst case values of a branch direction predictor, which
does not have such apparent ones, can be approximated by an O(N) simple
algorithm presented in Ref. 5).

Note that a pair of executions with different interruption points, namely in and
in′ (n < n′), should have different microarchitectural states at the fetch of in′+1,
because the latter’s has been just flushed while the former has something resulted
from the execution of in+1, . . . , in′ . In general, these two executions may have
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Fig. 1 Straightforward iterative simulation.

different microarchitectural states after the fetch of in+1.
2.2 Straightforward Iterative Simulation
It is easy to estimate single-interrupt WCID in a straightforward manner in

which a workload is simulated iteratively varying interruption point as shown in
Fig. 1. We define an instance of the workload execution of N instructions i1,
. . . , iN interrupted at in as a thread for in and notate it as Tn. We also define
T0 as a special thread without any interruptions. With these definitions, the
straightforward algorithm is outlined as follows.
( 1 ) Do a cycle accurate simulation (CAS) for T0 logging the cycle count from

the beginning, τ (0, j), each time the instruction ij retires (topmost bold
arrow in the figure). Note that τ (0, j + 1)− 1 is the worst case cycle count
for the execution preceding the interruption at ij .

( 2 ) For each thread Tj (1≤ j <N) do the followings. First, obtain the architec-
tural state at its beginning by an architectural fast-forwarding simulation
(thin arrows in the figure). Then set the microarchitectural state to that
defined in Section 2.1 (star marks in the figure), and do CAS for Tj from
ij+1 to iN to have its total cycle count τ (j, N) (second and subsequent bold
arrows in the figure).

( 3 ) The WCET with one interrupt, namely τw, is given by;

τw = max
0≤j<N

{τ (0, j + 1)− 1 + τ (j, N)}

and WCID is given by τw − τ (0, N).
It is obvious that this straightforward algorithm takes O(N2) time. For exam-

ple, even for a tiny workload of N = 106, a CAS of 1 MIPS takes 0.5×106 second
or about six days to simulate 0.5× 1012 instructions.

2.3 Differential Out-of-order Simulation of Thread
The basic idea of the differential simulation is that the executions of adjacent

threads are expected to behave similarly. That is, the simulation for a thread Tj

may be omitted after its microarchitectural state becomes equivalent to that of
Tj−1. Moreover, if the differences between the microarchitectural states of these
threads are only in CLM, i.e., if the pipeline states of the threads are equivalent,
we may omit the simulation for Tj until Tj−1 touches the difference in CLM.

The expectation above is based on the following observations. First, the differ-
ence between the pipeline states of two threads at the fetch of ij+1 is found just in
the fact that Tj−1’s pipeline, namely P j−1 may have ij while Tj ’s pipeline P j has
nothing. Since the existence of ij hardly affects the progress of the instruction
ij+1 and its successors, both pipelines will become equivalent after ij retires.
Even if this hypothesis does not hold, two pipelines should become equivalent
when they have instructions with long latency due to cache and branch predic-
tion misses and then are made sparse. Since the progress of instructions in a
sparse pipeline is hardly affected by preceding instructions in it, the state of the
pipeline tends to be determined by instructions currently residing rather than its
old memory. Moreover, the pipeline becomes almost empty when a branch mis-
prediction occurs, and thus almost completely forgets its old memory. Therefore,
after a certain small number of instructions are executed, the pipeline state of
Tj−1 and Tj should become equivalent. We call that Tj−1 and Tj are coherent

when their pipeline states are equivalent.
On the other hand, a CLM may have longer memory. For example, the in-

struction cache for Tj−1, namely Cj−1
IC , should have the block containing ij after

the fetch of it, while Tj ’s cache Cj
IC will not load the block some long time if

ij+1 and successors reside in different blocks. However, when the both threads
fetch the instruction ij again, for example, the CLM substates for the block of
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Fig. 2 Thread simulation in interval.

both threads should have the block and thus become equivalent. Note that the
pipeline states of both threads should have been equivalent until the second fetch
of ij if the existence of the block in Cj−1

IC is the only difference in their CLM.
Then the pipeline states become unequivalent because the fetch in Tj−1 hits the
cache while Tj misses, but they should become equivalent soon and again by, for
example, a common branch misprediction.

Based on the observations above, we try to omit the simulation of a thread
during it is coherent with its predecessor as follows. We compare the pipeline
state of a thread with that of its predecessor periodically to examine if the thread
may be made to sleep. More specifically, at the end of every interval of a prede-
fined small number NI of executed instructions, we examine the equivalence of
the pipeline states as shown in Fig. 2. The figure shows the first two intervals, I1

and I2, of four instructions rather than eight in our real implementation. In the
first interval I1, four threads, T0 to T3, are created and simulated in ascending
order. That is, we first simulate T0 and suspend it just after four instructions
have passed the decoding stage of SimpleScalar’s pipeline model, saving its clock
cycle t01, the contents of architectural registers and pipeline state P 0(t01) for the
next interval.

Table 1 Pipeline components of SimpleScalar.

queues depth
inst. fetch queue 4
reg. update unit 16
load/store queue 8
ILP width
instruction fetch 4
decode 4
commit 4
func. units parameters (*1)
int ALU 4 × (1/1)
fp ALU 4 × (1/2)
int mult/div 1 × (mult = 1/3; div = 19/20)
fp mult/div 1 × (mult = 1/4; div = 12/12)
memory ports 2 × (1/c)

(*1) n × (t/l): n = number of units; t = throughput; l = latency
Memory port latency c is determined by cache.

Then, we rollback the architectural state to the beginning of I1 by setting
architectural registers to their initial values. As for the rollback of memory state,
we have a stack into which each store operation executed in T0 pushes its address
and the value before update. Thus on the suspension of T0, the stack is traversed
from its top to bottom restoring saved values to regain the memory state at the
beginning of I1.

Before the simulation of T1, we perform an instruction-level fast-forwarding
simulation of the first instruction i1 to have the architectural state at its com-
pletion. Then the out-of-order simulation takes place and T1 is suspended at
its cycle t11. On the suspension, T1’s pipeline P 1(t11) is compared with P 0(t01).
More specifically, we compare the contents of SimpleScalar’s components shown
in Table 1 in which their default configuration parameters are also shown. The
comparison is fairly simple but we have to pay some attention to absolute timing
values in the components. That is, a pair of timings at which some event will
occur, e.g., the completion of an instruction, has to be compared after converting
each of them into the value relative to own cycle count of each thread, t01 for T0

and t11 for T1.
If the comparison results in that both pipelines are equivalent, the thread T1

sleeps until a CLM substate (e.g., a set of a cache) is touched to break the
coherency with T0 as discussed later. A sleeping thread is called being dominated
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by the thread coherent with it. In the figure, T1 is dominated by T0. Then the
simulation and suspension are repeated for T2 and T3. In the figure, T2 also
sleeps and thus is dominated by T0. On the other hand, T3 is kept active because
its pipeline P 3(t31) has some difference from P 0(t01).

Now we finished the interval I1 in which NI(NI+1)/2 instructions are simulated
in out-of-order manner while NI(NI − 1)/2 are fast-forwarded. Note that these
amounts and number of operations for rollback are constant. Then we proceed
to the second interval I2 in which new four threads, T4 to T7, are created. Before
simulating them, we resume the simulations of active threads T0 and T3. Since
T0 dominates T1 and T2, we have to take care of the possibility that T0 touches
a CLM substate different from those of T1 and T2. The method to check this
coherence breaking is discussed in Section 2.4. The figure shows the case in
which no differences are found in T1’s CLM and thus T1 is kept asleep, but T2 is
activated by a difference and its simulation is resumed from the beginning of I2.
For this resumption, the pipeline state P 2(t21) is replicated from P 0(t01).

Then we simulate T3, T4, . . . , T7 and suspend them to finish the interval I2.
In the figure, T0, T2 and T6 are active at the end of I2 while others are sleeping
and are dominated by active ones.

An important notice on this simulation is that the microarchitectural states of
adjacent threads Tj−1 and Tj must have a constant number of differences at the
creation of Tj . Thus it is strongly expected that the differences in pipeline state
will disappear by the execution of a constant number of instructions and those
in CLM will do as well by a constant number of accesses. If this expectation is
correct, the number of intervals in which Tj is active is bounded to some constant,
and thus the time complexity of our simulation is O(N) as far as the number of
simulated instructions.

2.4 CLM Substate Management
Each thread may have its own CLM substates different from those of its prede-

cessors. When a thread Tj is sleeping, its dominator Tk (k < j) is responsible to
examine if an access to a CLM substate Cj

l,m for Tj gives a result different from
that of Ck

l,m for Tk to break their coherency and thus to activate Tj .
For this examination, each CLM substate is represented in a linked list of nodes

each of which corresponds to the substate value of a thread’s own. For example,

Fig. 3 Accesses to CLM substates.

Fig. 3 (a) shows a small CLM named CX of two substates CX,1 and CX,2 accessed
in an interval I in this order. Threads T0 to T5 may have their own substates
whose values are represented as x/y where x is the current value while y is the
value at the end of the last interval that threads passed. Threads except for T3

have their own substate values of CX,1, and threads T0, T3 and T5 have those of
CX,2. Thus for T3, the value of CX,1 is γ/γ for its predecessor T2. The thread T0

has finished I and is active (represented by black circles), threads T1 and T5 are
also active but have not yet started I (represented by white circles), and other
threads are sleeping and dominated by T1.

Now we start the simulation for T1 in the interval I. First it performs an access
to CX,1 which hits if the substate value is δ. First T1 examines its own substate
and finds it results in a miss. Thus the current value of the substate is changed
to δ but its old value remains unchanged. Then T1 traverses all substate values,
γ/γ and δ/δ, for threads dominated by it. Although the value γ/γ for T2 (and
T3) is different from β/β for T1, the access results affected to pipeline, e.g., the
amount of miss-penalty, may be equivalent as we assume in this explanation.
Thus the substate for T2 is changed to δ/γ but T2 (and T3) is not activated. The
substate δ/δ for T4, however, has a different story because the hitting access to it
should give a result different from the missing access to β/β. Therefore, we now
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find that the coherence of T1 and T4 is broken, and T4 becomes the candidate

of activation as indicated by a triangle shown in Fig. 3 (b) which also shows the
changes of substates.

Then T1 accesses CX,2 referring to its predecessor’s substate ζ/ζ. Since the
access hits to ζ, the substate remains unchanged �1. Then it examines η/η for
T3 to find that coherence is broken again. Thus T3 becomes the new activation
candidate as shown in Fig. 3 (c).

Finally, when we finish T1’s simulation of the interval I, each accessed substate
is traversed again. First, those of CX,1 are traversed to perform the following;
T1’s substate δ/β is changed to δ/δ because δ is now the old value for the next
interval I + 1; T2’s substate δ/γ is removed because it is now equivalent to T1’s;
T2 itself is also removed because its microarchitectural state including CLM state
is now equivalent to T1’s; T3’s substate γ/γ is newly created and inserted copying
T2’s old value γ, because T3 must start from the beginning of I; and finally δ/δ

for T4 remains unchanged because it has not been modified �2. Then we traverse
substate values of CX,2 but no operations are performed because they have not
been modified. Now T3 is ready to be simulated from the beginning of I with its
own substate values γ/γ and η/η.

As explained above, a thread simulation in an interval needs to traverse substate
values for all threads dominated by the thread. Although the number of sleeping
threads is hardly bounded to a constant, it is strongly expected that the number
of traversed substate values are bounded to a constant in practical workloads. For
example, let us assume a substate of 2-way set-associative cache is accessed with
addresses α and β in this order and their tag parts are different from each other.
For all threads which started before this access sequence, the substate should have
β→α where → represents recently-used precedence. For other threads invoked
after the access with α, the value will be β→⊥ or ⊥→⊥ where ⊥ means an
invalid block. Therefore, by the substate comparison and removal at the end
of each interval, the number of substate values should be kept to three or less

�1 If the access makes the substate changed to, say κ, a new node κ/ζ would be inserted just
below ζ/ζ for T0 so that T1 has its own substate.

�2 If it has been modified, we restore its old value into the current value to make it δ/δ.

Table 2 CLM of SimpleScalar.

caches /TLBs parameters (*1)
L1 cache separated / unified / none

i = 32 × 1 × 512, d = 32 × 4 × 128

L2 cache separated / unified / none
64 × 4 × 1024

TLB separated / unified / none
i = 4096 × 4 × 16, d = 4096 × 4 × 32

predictors parameters (*2)
BTB 4 × 512
ret addr stack 8 × 1
dir predictor not-taken / taken / perfect /

bimodal / gselect / gshare / combined
2 × 2048

(*1) b × w × s: b = block/page size in byte; w = associativity; s = # of sets (substates)
(*2) x × s: x = associativity/stack depth/counter width s = # of entries (substates)

effectively �3.
Table 2 shows all kinds of CLM which SimpleScalar supports and thus we

implemented as well. Underlined configurations are SimpleScalar’s defaults and
are chosen for our experiment discussed in Section 3.

2.5 Maintenance of Cycle Counts of Sleeping Threads
We have to not only simulate threads but also count cycles of thread executions

to find WCID. Counting cycles of an active thread is of course obvious, but doing
it for sleeping threads has a problem. The counting operation itself is fairly easy
because we know the cycle when a thread went to sleep and the cycles spent by its
dominator. However, since the number of sleeping threads might not be bounded
by a constant but could be proportional to N , it could make the time complexity
of our analysis O(N2) if we simply add the cycles spent by a dominator to the
cycles of threads dominated by it each time the dominator finishes its simulation
for an interval.

Thus we devised an O(log N) algorithm for the cycle maintenance of sleep-
ing threads using a simple binary tree. As shown in Fig. 4 (a), cycle counts
of threads, except for T0, are kept in a binary tree whose nodes correspond to

�3 If we may ignore the effect of false path execution caused by branch mispredictions. This
issue is discussed in Section 3.3.
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(a) before addition

(b) after addition

Fig. 4 Maintenance of thread cycles using binary tree.

threads in a differential manner. Let nj be the node for the thread Tj whose
cycle count is denoted as tj , and p(j) be the thread index of the parent node
of nj . For example, p(5) is 6, p(6) is 4, and so on. The root node, n16 in the
figure, has the absolute value of the cycle t16 for the corresponding thread T16.
A non-root node nj , however, has the difference of cycles between its own and its
parent’s, namely tj − tp(j). Thus the absolute cycle of Tj is calculated by adding
the values of its own and its ancestors up to the root paying O(log N) cost. For
example, t6 is obtained by adding the values of n6, n4, n8 and n16 to result in
−14 + 15 + 15 + 42 = 58.

Now suppose T6 dominates threads T7 to T19 and it finishes the simulation
of an interval spending 7 cycles. Thus δ = 7 must be added to t6, t7, . . . ,
t19. This addition is performed by the following operations to the nodes on the

upward paths, bold branches in the Fig. 4 (b), from the left child of n6, namely
n5, and n19 that has no children, up to their common ancestor, namely n16. In
the following explanation, we denote the series of nodes corresponding to the
threads in problem as S, being 〈n6, n7, . . . , n19〉 in our example. We also assume
that the root has a virtual parent (super-root), n32 in our example.
(1) If nj ∈ S but np(j) /∈ S, increment nj ’s value by δ to make it (tj +δ)− tp(j).

In our example, n6, n16 (with super-root assumption) and n18 satisfy this
condition and thus δ = 7 is added to their values.

(2) If nj /∈ S but np(j) ∈ S, decrement nj ’s value by δ to make it tj−(tp(j)+δ).
In our example, n4, n5 and n24 satisfy this condition and thus δ = 7 is
subtracted from their values.

(3) Otherwise, i.e., if nj ∈ S ↔ np(j) ∈ S holds, keep nj ’s value unchanged
because the difference between the values of nj and np(j) is not affected by
the increment. In our example, n8 (n8, n16 ∈ S), n19 (n19, n18 ∈ S) and
n20 (n20, n24 /∈ S) satisfy this condition.

The correctness of the algorithm shown above, i.e., the assurance that it keeps
the invariant that each node nj has tj − tp(j), is proved by a few deductions from
the property of binary trees showing that nk ∈ S ↔ np(k) ∈ S holds for all nk

excluded from the upward path to the common ancestor (see Ref. 10) for a formal
proof). It is clear that the algorithm takes O(log N) time. Since we maintain
the cycle tree at each end of a thread simulation for an interval, the total cost
of the maintenance is O(N log N) providing that the number of active threads
at an interval is bounded by a constant. The calculation of the absolute cycle
count is performed when a thread is activated paying O(log N) cost, and thus
the total cost for the calculation is O(N log N) again with the same hypothesis.
Thus with the cycle maintenance algorithm described above, the time complexity
of our WCID analysis is expected to be O(N log N) if our differential simulation
successfully bounds the number of active threads in an interval to a constant.

Note that growing the tree upward adding new root and its right subtree is easy
because the threads corresponding to added nodes are newly created and thus
their absolute cycle counts are zero. For example, when T32 is newly created, we
simply add n32 as the new root and n33 to n63 as its right subtree setting node
values to zero. Since t16− tp(16) = t16− t32 = t16− 0 = t16, the value of n16 may
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remain unchanged.

3. Experiment

3.1 Environment and Workload
We implemented our single-interrupt WCID analyzer using SimpleScalar-3.0

as its base. The program is written in C as SimpleScalar is and is compiled by
gcc 2.95.3 to run on an x86-based PC with Linux kernel 2.4.22. The performance
is mesured using a 3 GHz Pentium-4 based PC with 1GB memory. The target
microarchitecture is SimpleScalar’s default whose configuration parameters were
shown in Tables 1 and 2 in the previous section.

The workloads are all 18 programs in SPEC CPU95, compiled targeting Simple-
Scalar’s PISA instruction set, with “test” data set. The workloads, except for
ijpeg, are not for realtime systems but their wide range of behavioral spectrum
will be helpful to examine the applicability of our analysis method. Although our
analysis is expected to be reasonably efficient, completely executing them would
take too long time. In fact it should be significantly longer than ten days because
the analysis speed is at least 4.5 times as slow as SimpleScalar’s sim-outorder

with our setting of the interval length NI to 8, and sim-outorder takes about 2.5
days on our experimental environment. Thus we extracted five million instruc-
tions of the midst durations of their executions, except for two small workloads,
m88ksim and compress, whose 3.8 and 3.5 million instructions are completely
simulated.

3.2 WCID Analysis Result
As the first result, WCID of each program is shown in Fig. 5 in (a) absolute

cycles and (b) ratio to the whole execution cycles. These graphs also show average
interruption delays by white portions of bars. As easily expected, absolute and
relative WCID vary in a wide range, from 1,411 (applu) to 80,292 cycle (gcc)
and from 0.03% (applu) to 2.98% (compress), reflecting the characteristics of
workloads.

Although it is hard to evaluate whether the WCID values are significant or not,
the remarkable result of compress exhibits the importance of detailed analyses.
That is, its average delay is at the same level as other programs while its worst-
case delay is significantly larger than others in terms of the ratio to its whole

(a) absolute delay [cycle]

(b) ratio to total cycle [%]

Fig. 5 Average and worst case interruption delays.

cycles. Thus, if we estimated the worst-case value from its medial and/or repre-
sentative behavior, we could heavily underestimate the value resulting in a too
optimistic estimation. In fact, as shown in Fig. 6 in which the maximum delay
caused by interruptions in each duration of 65,536 instructions are illustrated, its
interruption delay strongly depends on the interruption timing and thus it should
be difficult to estimate the worst-case delay by a run-through investigation.
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Fig. 6 Maximum delay caused by interruptions in each 64K-instruction duration of
compress.

Fig. 7 Overall execution time, simulated intervals and traversed CLM substates.

3.3 Simulation Time and Related Performance Numbers
Since the most important expected feature of our WCID analyzer is its effi-

ciency achieved by the differential simulation, measuring the performance num-
bers of its execution time is essential. First we show basic overall numbers in
Fig. 7 in which wall-clock execution times (white bars) are illustrated together
with two important indicators which determine efficiency; average number of in-
tervals in which a thread is simulated actively (black bars); and average number
of CLM substate values which are traversed in an access (gray bars).

The numbers are quite satisfactory. First, the execution times ranged from
608 second (swim) to 1814 second (hydro2d) are short enough for practical use
which cannot be achieved by the straightforward O(N2) method. For example,

sim-outorder which runs on our environment with 0.5 to 0.7 MIPS should take
up to about 300 days to analyze one workload executing 12.5×1012 instructions.
Even if we did the analysis with a real machine of 1 GIPS, it would take 25,000
second or about 7 hours for 25× 1012 instructions.

The number of intervals, varying in the range from 1.55 (swim) to 2.28 (li), is
also good because it means each thread only executes about 16 instructions on
average, 8 in the interval of its creation and another 8 in some other interval
mainly because of the activation by its dominator. The number of CLM substate
traversals varies in the range from 1.05 (hydro2d) to 2.14 (compress). This means
that almost only one additional access is required at most to a dominator to
check the coherency of its dominating threads.

Although the overall numbers are good, this result does not assure that our
algorithm works O(N) simulation time and O(N log N) cycle maintenance time.
Thus we measured three performance numbers discussed above for each of up
to 625,000 intervals to observe differential behavior. The results are shown in
Fig. 8. The execution times shown in Fig. 8 (a) almost stably lie in the range from
1 ms to 3 ms but occasionally raise up to form the peaks of m88ksim, li and wave5

and a plateau of hydro2d. These peaks and plateau, however, look reflecting the
computation phase shifts, because these unusual slowdowns disappear after one
million instructions are executed.

This hypothesis that a program phase shift makes our analyzer slower only
transiently is supported by the ratio of the number of active threads to created
shown in Fig. 8 (b) to (f), and substate traversals shown in (g). Figure 8 (b)
illustrates the active thread ratio of workloads other than four which show peaks/
plateaus, from which fairly stable behaviors are observed. As for hydro2d shown
in (c), two plateaus are observed and the first one reflects that of execution time
in (a). However, although other three shown in (d) to (f) exhibit periodical phase
shifts, they hardly explain the peaks of execution time in (a). On the other hand,
the number of substate traversals shown in Fig. 8 (g) matches and thus clearly
explains the peaks in Fig. 8 (a). A possibly bad news that Fig. 8 (g) tells us is
that the number in compress looks steadily growing, but this may simply show
the first portion of a long but transient phase shift which could appear clearly if
compress had much more instructions executed.
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(a) execution time (b) active thread ratio (excluding four workloads)

(c) active thread ratio of hydro2d (d) active thread ratio of wave5

(e) active thread ratio of m88ksim (f) active thread ratio of li

(g) Traversed CLM substate ratio

Fig. 8 Execution time, active thread ratio and traversied CLM substate ratio in each
interval.

Fig. 9 Number of sleeping threads in each interval.

Finally, we measured the number of sleeping threads in each interval, which is
shown in Fig. 9. The figure clearly shows that the number is proportional to N at
least in three workloads li, perl and tomcatv. This means that the analysis would
take O(N2) time if we had executed threads whose machine states disagree with
others or had maintained the cycle counts of sleeping threads in a straightforward
manner proportional to the number of them.

These results also reveal that our implementation needs O(N) memory space
not only for maintaining thread cycle counts using the binary tree discussed
in Section 2.5 but also for keeping the contexts of sleeping threads. However,
although a context is significantly larger than a node of the tree, 68 byte versus
8 byte in our implementation, the small ratio to N , about 2.7% even for li, softens
the impact from the size of contexts.

The other concern arisen from the results should be that the O(N) number
of sleeping threads means that the total number of CLM substate values in the
linked lists discussed in Section 2.4 should be also O(N). In fact, we observed
the numbers for three benchmarks discussed above are proportional to N , about
3.2% of N for li and perl. Since a sleeping thread should have at least one
CLM substate value of its own, this observation looks unsurprising. The impact
to the memory requirement is heavier than that from the context due to, for
example, 28w + 28 byte consumption by a set of w-way set associative cache in

IPSJ Transactions on System LSI Design Methodology Vol. 1 33–47 (Aug. 2008) c© 2008 Information Processing Society of Japan



43 A Simulation-Based Analysis for Worst Case Delay of Single and Multiple Interruptions

our implementation, but still acceptable because 3.2% ratio and w = 4 gives us
an expected value of 4.5 byte per thread.

However, it contradicts the discussion in Section 2.4 where we stated that the
number of thread-own values of a CLM substate should be bounded to a constant
because a value node for a thread is removed when it becomes equivalent with
its predecessor. This contradiction can be explained by the effect of branch
mispredictions and the execution of false paths caused by the mispredictions.
Let us assume a workload and a loop in it. Also let us assume the conditional
branch for the loop termination is mispredicted on the first execution after an
interruption occurring in the loop execution. Since the behavior of the pipeline
on the misprediction should depend on the number of instructions on-the-fly in
the pipeline, the behavior could also depend on the distance from the interruption
point to the branch.

For example, if the interruption point is near to the branch, the misprediction
will be recognized quickly in the back-end of the pipeline and thus only one
block on the false path is loaded to instruction cache. On the other hand, in
the case of large distance, two blocks are loaded because the execution of the
branch is delayed by other preceding instructions. Thus now we have two groups
of threads; one is far group whose members have loaded two blocks from the
false path to instruction cache, while the other near ones have done only one
block. Since both blocks will not be accessed again until the loop termination,
the second block in instruction cache is the far group’s own and stays in cache if it
is large enough. Then if the loop iterates many times enough, we will have a large
number of alternating thread groups of far and near and each group disagree with
its predecessor group with the second cache block causing a list of CLM substate
values whose length is proportional to the number of the loop iterations.

Note that the scenario above does not contradict our observation that the
number of substate traversals per access is constant. Of course the long list will
be traversed after the loop termination, but the traversal should shrink the list
because the second cache block for every thread becomes having the instructions
following the loop commonly.

From those results shown in Figs. 8 and 9 and discussions above, we may con-
clude that our analyzer efficiently works in O(N(K + log N)) time where K is

a significantly large constant hiding the effect of O(log N) factor, owing to our
differential simulation and cycle count maintenance using binary tree. As of
the spatial complexity, we need O(N) space but the proportionality constant is
acceptably small, ten or so byte per instruction executed in a workload.

4. WCID Analysis with Multiple Interrupts

This section describes an algorithm to calculate WCID with F interrupts from
the output of the single-interrupt CAS-based analyzer. Before discussing our
O(FN

√
N log N) algorithm, a simple O(FN2) one is shown as the base.

Let τ (j, k) (j < k) be the cycle count at the retirement of the instruction ik
in the thread Tj which starts from the interruption at ij . If the execution of the
thread Tj is interrupted again at ik, i.e. after the retirement of ik and before
that of ik+1, the WCET between these two interrupts should be τ (j, k + 1)− 1.
Therefore, the WCET with F interrupts, namely W (F ), for a workload with N

executed instructions is given by the following equation.

W (j, f)=max

{
f∑

l=0

τ (kl, kl+1+1)−1

∣∣∣∣∣ k0 =j, kf+1 =N−1, ki≤ki+1

}
(1)

W (F ) = W (0, F ) + 1 (2)

Similar to the formulation in Ref. 8), the equation (1) can be rewritten as follows
because τ (kl, kl+1 + 1) is independent from any other τ (kl ′ , kl ′+1 + 1).

W (j, 0) = τ (j, N)− 1
W (j, f) = max

j≤k<N
{τ (j, k + 1)− 1 + W (k, f − 1)} (3)

From the recurrence (3) above, we have the following O(FN2) algorithm based
on dynamic programming technique.

for j = 0 to N do W [j ][0]← τ (j ,N )− 1;
for f = 1 to F do begin
for j = 0 to N − 1 do begin
w ← 0;
for k = j to N − 1 do w ← max(w , τ (j ,k+1)−1+W [k ][f−1]);
W [j ][f ]← w ;

end
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end
Our single-interrupt WCID analyzer outputs the cycle count of each thread Tj not
only at the end of the simulation (i.e., τ (j, N)), but also each time an instruction
is retired during the thread is actively simulated (i.e., τ (j, k) for each k s.t. ik
is in an active interval of Tj) �1. Thus if it is allowed to store τ (j, k) in a two-
dimensional array paying O(N2) spatial complexity cost, the array is easily filled
with the cycle count log interpolating τ (j′, k′) for the thread Tj′ which slept in the
interval of ik′ by the count of its dominator. Otherwise, i.e., O(N2) is too large �2,
the log should be repeatedly scanned and τ (j′, k′) for a sleeping thread should
be dynamically calculated by the algorithm discussed in Section 2.5 resulting in
O(FN2 log N) temporal complexity.

Anyway, O(FN2) or O(FN2 log N) temporal complexity is too large and thus
should be significantly reduced. The key idea for the complexity reduction is that
a part of the equation (3) for a sleeping thread Tj′ may be calculated from that
for the other thread. More specifically, if Tj′ sleeps in a duration for instructions
in {ik | l < k ≤ l′} and is dominated by Tj , the following equation holds for each
k such that l < k ≤ l′.

τ (j′, k) = τ (j, k) + (τ (j′, l)− τ (j, l))
Therefore the corresponding part of the equation (3) may be rewritten as follows.

W (j′, f, l, l′) = max
l≤k<l′

{τ (j′, k + 1)− 1 + W (k, f − 1)}
= max

l≤k<l′
{τ (j, k + 1)− 1 + (τ (j′, l)− τ (j, l)) + W (k, f − 1)}

= max
l≤k<l′

{τ (j, k + 1)− 1 + W (k, f − 1)}+ (τ (j′, l)− τ (j, l))

= W (j, f, l, l′) + (τ (j′, l)− τ (j, l)) (4)

The equation (4) above means that we may skip the part of the innermost loop,
from k = l to k = l′ − 1, to calculate W (j′, f) of the O(FN2) algorithm, if Tj′

slept in this duration and we have known the value for Tj , i.e., W (j, f, l, l′). To ac-
complish the complexity reduction by this calculation skipping, we decompose N

�1 The execution time discussed in Section 3 includes the cost for this per-instruction cycle
count logging.

�2 It should be too large because even our small workload with 5 × 106 instructions needs a
huge array of 12.5×1012 element or 50TB if each element is represented in a 4-byte integer.

instructions into n segments of a fixed number m of instructions, (0, m], (m, 2m],
. . . , ((n− 1)m, nm] where nm = N . Then we calculate W (j, f, lm, (l + 1)m) for
each l such that 0 ≤ l < n using the equation (4) to obtain W (j, f) as follows.

W ′(j, f, lm, (l + 1)m) = W (j − 1, f, lm, (l + 1)m) +
(τ (j, lm)− τ (j − 1, lm))

W ′′(j, f, lm, (l + 1)m) = max
lm≤k<(l+1)m

{τ (j, k + 1)− 1 + W (k, f − 1)}

W (j, f, lm, (l + 1)m) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if j ≥ (l + 1)m
W ′(j, f, lm, (l + 1)m)

if Tj slept in the duration
for {ik | lm < k ≤ (l + 1)m}

W ′′(j, f, lm, (l + 1)m)
otherwise

(5)

W (j, f) = max
0≤l<n

{W (j, f, lm, (l + 1)m)} (6)

Our evaluation shown in Section 3.3 assures that threads sleep almost always
and are active only in a small constant number of intervals, about two intervals
or 16 instructions. Therefore, it is strongly expected that the calculation of the
third case of the equation (5) is required only for a small constant times and
thus W (j, f) is obtained in O(n + m) time for each j. Under the condition of
N = nm, the time complexity O(n + m) is minimized by setting n = c

√
N and

m = (1/c)
√

N with some constant c to result in O(
√

N) complexity. Thus we
have the following algorithm to calculate WCID with F interrupts.

n ← c
√

N ; m ← N /n;
for j = 0 to N do W [j ][0]← τ (j ,N )− 1;
for f = 1 to F do begin
for j = 0 to N do W [j ][f ]← 0;
for l = 0 to n − 1 do begin
for j = 0 to (l + 1)m − 1 do begin
if Tj sleeps in the duration for {ik | lm < k ≤ (l + 1)m} then
w ← w + (τ (j , lm)− τ (j − 1, lm));

else begin
w ← 0;
for k = max(lm, j ) to (l + 1)m − 1 do
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w ← max(w , τ (j , k + 1)− 1 + W [k ][f − 1]);
end
W [j ][f ]← max(W [j ][f ],w);

end
end

end
WCID ←W [0][F ] + 1− τ (0,N );

The algorithm above works in O(FN
√

N) time if each τ (j, k) referred in the
algorithm is obtained in a constant time. This is accomplished by a preprocessing
of the cycle count log from the single-interrupt WCID analyzer to store the values
of required τ (j, k) in a two-dimensional array of N × n which is partially three-
dimensional for the reference from the most inner k loop. However, the spatial
complexity O(N

√
N) may be still too large because N = 5×106 and c = 1 result

in about 1.1× 1010 elements or 45 GB with a 4-byte integer for each element.
Therefore, it will be necessary to scan the log repeatedly for each f and to

calculate required τ (j, k) also repeatedly by the algorithm in Section 2.5 for the
duration in which Tj slept. This means we have to pay O(log N) cost for each l

and thus the time complexity of the algorithm is O(FN
√

N log N).
The implementation of the O(FN

√
N log N) algorithm is on the way and thus

our urgent future work. This work includes finding the optimal setting of c and
the evaluation of WCID and the performance of the algorithm.

5. Related Work

Although most of traditional researches of WCET 13) aim at static analysis of
program to find, for example, input data set to maximize its execution time,
we can find several proposals using (cycle accurate) simulators to obtain a tight
bound of WCET. For example, Engblom and Ermedahl proposed a combination
of Implicit Path Enumeration Technique and a trace driven microarchitecture
simulator for a detailed analysis including instruction pipeline behavior across
basic blocks 4). Another example is found in the work of Burns, et al. 3) which
models instruction execution timing using a Petri-Net based simulation for su-
perscalar processors.

On the other hand, our target WCID (or WCPD: Worst-Case Preemption

Delay) problem had been attacked from the view point of the schedulability of
interrupted/preempted processes (e.g., Ref. 2)). Then Lee, et al. 7) pointed out
the importance of the effect on caches, and proposed an analytical method to
bound cache miss penalty due to interruptions. This approach was extended in
two directions; to incorporate the cache pollution by preemptors 12),14); and to
analyze more accurately using memory access trace obtained from the simulation
or instrumented execution of a workload 8).

Although each of those work above has its own good feature, e.g., applicable
without running 3),4), efficiently handling multiple interruptions and/or preemp-
tors 7),8),12),14), they commonly have the problem on accuracy. That is, simulation
based modeling inherently has a limitation to analyze real behavior of microar-
chitectural components, while cache-related delay analyses may underestimate
the delay because they usually assume some constant miss penalties.

Our analyzer, on the other hand, only has two sources of inaccuracy; microar-
chitectural model of SimpleScalar itself; and our assumption of interruption effect
on CLM, completely flushing, which causes some overestimation. Although the
later inaccuracy is harder than the former to remove or reduce because of a huge
space of possible pollution patterns, idea in previous work could be applicable to
shrink the search space of the worst-case pollution.

Another problem of our work could be found in the efficiency issue especially for
the multiple interruption analysis. That is the time complexity O(FN

√
N log N)

of our algorithm is significantly larger than that of cache-related delay analyses,
e.g., O(FN) in Ref. 9) and Ref. 5). This is mainly due to that our algorithm takes
care of each sleeping thread each time it processed m (or

√
N/c) instructions,

while the second case of the equation (6) holds throughout the sequence of seg-
ments in which the thread continuously sleeps. Therefore, our algorithms could
be improved further if we find a more sophisticated means to skip the calculation
of W (j, f, lm, (l + 1)m).

6. Conclusions

This paper describes an accurate and efficient algorithm to analyze WCID for
one interrupt which occurs in a workload using a cycle accurate simulator. The
accuracy is assured because our analyzer performs simulation equivalent to that
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inserting interruption into all possible timings. The efficiency is achieved by our
differential simulation technique by which a thread simulation takes place only
in short durations in which its behavior is different from other thread. We also
devised an efficient O(log N) algorithm to increment the cycle counts of sleeping
threads using a binary tree of N threads.

Our performance evaluation with SPEC CPU95 benchmarks proves the effec-
tiveness of our differential simulation resulting in fairly short execution time,
30 minutes or less, to analyze workloads of 5 million instructions which would
cost up to 300 days without the technique. It is also confirmed that our algo-
rithm works in O(N(K + log N)) time assuring applicability to a wide range of
applications.

As for the WCID analysis with multiple interruptions, we proposed an algo-
rithm of O(FN

√
N log N) time complexity. The implementation, evaluation and

complexity reduction of the algorithm are our most important and urgent future
work. We also plan to attack the problem of selective pollution by preemptors.
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