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Abstract: This paper describes an accelerating technique for SAT based ATPG (automatic test pattern generation).
The main idea of the proposed algorithm is representing more than one test generation problems as one CNF formula
with introducing control variables, which reduces CNF generation time. Furthermore, learnt clauses of previously
solved problems are effectively shared for other problems solving, so that the SAT solving time is also reduced. Ex-
perimental results show that the proposed algorithm runs more than 3 times faster than the original SAT-based ATPG
algorithm.
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1. Introduction

The idea of formalizing test generation problem as CNF-SAT
problem and using SAT solver was proposed by Larrabee a cou-
ple of decades ago [1]. At that time, however, the algorithm for
SAT solving was not mature enough, and thus SAT based ATPG
techniques were not competitive against the existing structural
ATPG techniques. Currently, the success of development of ef-
ficient SAT solvers such as Chaff [2], [3], GRASP [4] and MIN-
ISAT [5] enables SAT based ATPG more practical. Besides the
performance, SAT based ATPG has an advantage that it is easy to
treat several constraints at once if they are represented in a CNF
formula.

This paper proposes an accelerating technique for SAT based
ATPG. Because nowadays SAT solvers are efficient enough, there
seems no room to improve SAT solving time. So our target is not
SAT solving time itself, but total CPU time. The main idea is to
share a CNF-formula for more than one faults with introducing
control variables, which leads the reduction of CNF generating
time. Also this technique has side effect that learnt clauses of
previously solved problems are utilized for other remaining prob-
lems, which fits to nowadays efficient SAT algorithm very well.
As a results, the proposed algorithm significantly reduce the total
CPU time. The effects are obvious especially for large designs.

The rest of the paper is organized as follows: Section 2 reviews
the existing techniques for SAT based ATPG. In Section 3, pro-
posed techniques are described, and the experimental results are
shown in Section 4. Finally, Section 5 concludes the paper.

2. SAT Based ATPG

This section describes basic definitions and the existing tech-
niques for SAT based ATPG.
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2.1 Basic Definitions
This paper treats combinational circuits. We assume that syn-

chronous sequential circuit can be transformed into combina-
tional circuit with replacing FFs (flip-flops) to scan-type FFs.

A combinational circuit can be viewed as a graph where each
gate corresponds to a vertex and each connection between gates
corresponds to an edge. When there is an edge (u, v) from vertex
u to vertex v, i.e. there is a connection from gate u to gate v, u is
called as fan-in of v. The set of all the fan-ins of v is denoted as
FI(v). Also, v is called as fan-out of u. The set of all the fan-outs
of u is denoted as FO(u)

A sequence of vertices such that there are edges corresponding
to all the adjacent pairs of the sequence is called a path. That is,
if (v0, v1, v2, v3, ..., vn−1, vn) is a path, (v0, v1), (v1, v2), . . . , (vn−1, vn)
must be edges. The first vertex of a path is called the start point,
and the last vertex is called the end point. When there is a path
whose start point is u and whose end point is v, u is called transi-
tive fan-in of v. The set of all the transitive fan-ins of v is denoted
as T FI(v). Also, v is called transitive fan-out of u. The set of all
the transitive fan-outs of u is denoted as T FO(u).

When, any paths from v to the primary outputs contain a ver-
tex s, s is called as a dominator of v. The set of all the dom-
inators of v is denoted as DOM(v). It is obvious from the def-
inition that every dominators of v appear in any path from v to
the primary outputs. Combinational circuit does not have cy-
cles, thus each pair (s, t) ∈ DOM(v) satisfies s ∈ DOM(t) or
t ∈ DOM(s), exclusively. A vertex u such that u ∈ DOM(v) and
∀w ∈ (DOM(v) \ u), u � DOM(w) is called the immediate dom-
inator of v, and is denoted as IDOM(v). There is at most one
immediate dominator for every vertex.

A Maximal fan-out free cone (MFFC in short) is a connected
subgraph induced by a set of vertices having the same RMFFC(v)
value in the following Eq. (1).

RMFFC(v) =

⎧
⎪⎪⎨
⎪⎪⎩

v IDOM(v) = φ
RMFFC(IDOM(v)) otherwise

(1)
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MFFC divides a combinational circuit with no overlap. For
each MFFC, there exists only one vertex v such that RMFFC(v) =
v, v is called the root of the MFFC.

A vertex having more than one fan-outs is called a fanout ver-
tex. Cutting off the entire circuit at each fanout vertex splits the
circuit into a set of subcircuits. Such a subcircuit is called A
fanout free region (FFR in short), and a fan-out vertex is called
the root of the FFR. It is clear that vertices in an FFR except the
root have only one fan-out. It is also clear that an FFR is always
contained in an MFFC (, or an FFR itself becomes an MFFC).

2.2 Test Pattern Generation Problem
Consider a fault f . Generally, the behavior of the circuit with

a fault f (we call such a circuit as the faulty circuit of f or the
faulty circuit when f is obvious) is different from the behavior
of the circuit without any faults (we call such a circuit as good
circuit). The test pattern generation problem for a fault f is a
problem finding an input pattern which differentiates the outputs
of the faulty circuit of f and good circuit. Such an input pattern
is called a test pattern or a test vector, and we say a test pattern
detects the fault f . There may be a case when the behavior of the
faulty circuit and the behavior of the good circuit are the same.
In that case, we can not find test patterns of the fault. Actually,
such a fault does not effect the circuit behavior, and is called as a
redundant fault.

In this paper, the single stuck-at fault model is considered,
which means there is only one fault at once, and faulty behavior
is sticking the value of an input/output to 0 or 1. A fault which
sticks the value to 0 is called a stuck-at-0 fault and a fault which
sticks the value to 1 is called a stuck-at-1 fault. The total number
of faults to be considered is E × 2, where E denotes the number
of edges (connections) of the circuit. Note that there are faults
whose behaviors are the same. When the faulty circuit of a fault
f and the faulty circuit of a fault g are functionally equivalent,
a test pattern for f can detect g and visa versa. For example, a
stuck-at-0 fault of an input of an AND gate and a stuck-at-0 fault
of the output of the gate are equivalent. As the name ‘equivalent’
implies, this relation is equivalent relation, and faults are divided
into equivalent classes. So, we can consider one fault for each
equivalent class. Such a fault is called the representative fault.
However, finding exact equivalent classes for all the faults are
hard problem, so heuristics finding subset of equivalent classes
using structural information are used in the real application.

2.3 SAT Encoding for Test Pattern Generation
The basic approach to solve test pattern generation problem

using SAT solver [1] is described below. At first, we compose a
virtual circuit as shown in Fig. 1, which consists of the good cir-
cuit and the faulty circuit of a fault f . The primary inputs of the
composed circuit connect to the corresponding primary inputs of
the good circuit and the faulty circuit. There are XOR gates cal-
culating the difference of the corresponding outputs of the good
circuit and the faulty circuit. Finally, there is an OR gate whose
fan-ins are XOR gates, and the output of the OR gate is the pri-
mary output of the composed circuit.

If any of the corresponding outputs of the good circuit and the

Fig. 1 The composed circuit for test pattern generation.

faulty circuit differ, the composed circuit outputs ‘1’. So, the test
pattern generation problem can be transformed to the problem
finding an input pattern which makes the output of the composed
circuit ‘1’, which can be solved using SAT solver if we can en-
code the circuit structure into a CNF-formula.

The encoding is rather straightforward.

( 1 ) Assign Boolean variables for every edges (connections).

( 2 ) For each gate, generate a CNF formula representing the re-
lation between the inputs and the output of the gate.

( 3 ) Conjoin all the CNF formula.

There are several methods to generate a CNF formula repre-
senting the relation between the inputs and the output. A simple
method is as follows. Consider 3-AND gate with a, b, and c as
inputs and x as an output. Implications among them are like this:
• If any of a, b, or c is 0, x is 0.
• If a, b, and c are all 1, x is 1.
• If x is 1, a, b and c are all 1.

Let α and β be formulas. A formula representing “α implies β”
is ¬α ∨ β. The above implications are transformed into the next
formulas:
• a ∨ ¬x, b ∨ ¬x, c ∨ ¬x

• ¬a ∨ ¬b ∨ ¬c ∨ x

• ¬x ∨ a, ¬x ∨ b, ¬x ∨ c

Actually, the first one and the last one are the same, because the
original implications are contraposition relation. Like this way,
from the input combinations which makes the output ‘0’ and ‘1’,
we can easily generate a CNF-formula for any types of logic gate.
The size of the CNF formula is O(N), where N is the size of the
circuit.

There are couple of existing techniques for efficiency. First one
is sharing with the good circuit and the faulty circuit. Consider
a fault is in gate v, the effect of the fault can be propagated only
through the transitive fan-outs of v, that means the values of other
gates of the faulty circuit are equal to the corresponding the gates
of the good circuit. So, only gates in T FO(v) are necessary. The
values of other gates are taken from the corresponding gates of
the good circuit. Second one is reduction of the entire circuit. As
described above, the fault effect is propagated only through the
gates in T FO(v). So, gates which do not affect the values of the
gates in T FO(v) are also not necessary even for the good circuit.
That is, only gates in T FI(T FO(v)) are necessary to be consid-
ered.

Larrabee proposed another technique to speed up SAT based
ATPG, which is called ‘D-chain’ constraint [1]. D-chain is a con-
straint that guarantees the existence of fault propagation paths.
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For that purpose, a new variable for each gate is introduced. Let
Dx be the D-chain variable for gate x, and Gx and Fx are the vari-
ables representing the output values of the good circuit and the
faulty circuit of x, respectively. A necessary condition that gate x

can propagate the fault effect to any of the primary outputs is that
the value of the good circuit and the value of the faulty circuit are
different. This condition is represented in the following formula.

(¬Dx ∨Gx ∨ Fx)(¬Dx ∨ ¬Gx ∨ ¬Fx) (2)

Suppose y and z are the fanouts of x. Another necessary condi-
tion is that y or z can also propagate the fault effect to any of the
primary outputs, which is represented in the following formula.

(¬Dx ∨ Dy ∨ Dz) (3)

2.4 Heuristics in Modern SAT Algorithms
Modern SAT solvers such as Chaff [2], [3], GRASP [4] and

MINISAT [5] employs a couple of heuristics for efficient search-
ing. Some of them which are related to the proposed method are
described here.

One is called ‘conflict driven learning’. Suppose the following
set of formulas ϕ

C1 = ¬x1 ∨ x2

C2 = ¬x1 ∨ x3 ∨ x5

C3 = ¬x2 ∨ x4

C4 = ¬x3 ∨ ¬x4

With assigning x5 ← 0 and x1 ← 1, we have the following impli-
cations.

x1 = 1
C1−−→ x2 = 1

x1 = 1 ∧ x5 = 0
C2−−→ x3 = 1

x3 = 1
C4−−→ x4 = 0

x4 = 0
C3−−→ x2 = 0

The last implication x2 = 0 conflicts with x2 = 1. As a result, we
know that x5 = 0 and x1 = 1 are conflicting assignments for ϕ.
Conflict driven learning generates a clause (¬x1∨x5) representing
the essential cause of the conflict from the above implications au-
tomatically. With this newly added clause (called ‘learnt clause’),
x1 = 1 directly implies x5 = 1, which avoids the above conflict.

The other is called ‘variable state independent decaying
sum(VSIDS)’, which is a variable selecting heuristic on decision
making. The idea behind of this heuristic is that a variable related
to many conflicts is relevant to good decision and thus should be
selected in the early stage of the decision tree. Each variable is
given ‘activity’, which is initiated to 0 at first. Every time a con-
flict occurs, activities of variables which is related to the conflict

clauses are increased by a constant value. A variable which has
the highest activity is selected as the next decision variable. After
a decision is made, activities of all the variables are decreased by
a constant factor. With this heuristic, variables related to recent
conflicts have higher activities, and are likely to be chosen.

Both of those heuristics change the SAT solver’s internal state.
After backtracking from conflict or decision making, the SAT

solver accumulates the information of the cause of conflicts. So,
the SAT solver performs better in the second execution than in
the first run.

3. The Proposed Method

Using modern SAT solver, ATPG problem can be efficiently
solved, especially for “hard-to-prove” redundant faults. However,
existing methods takes hundreds of seconds for completing ATPG
for large ITC99 benchmarks. This section proposes further accel-
erating technique, which scales well for large designs.

Most of all existing SAT based ATPG algorithms generate one
CNF-formula for one fault. In the case of SAT based ATPG, CPU
time for generating a CNF formula is comparable to CPU time
for solving the SAT problem. For example, the total CPU time
for generating CNF formulas for all the faults of C7552 of IS-
CAS85 benchmark is about 2.40 second on some machine. On
the other hand, the total CPU time for solving SAT problems for
all the fault of C7552 is 0.98 second on the same machine. That
means ATPG is relatively easy problem for SAT solver, however,
that also means accelerating techniques for general SAT solvers
may not effective. So other approaches are needed for further
acceleration.

One relevant feature of ATPG problem is that even for differ-
ent faults, the good circuit is the same. So, roughly speaking, we
are solving similar problems many times. One idea utilizing this
feature is to share a CNF-formula for more than one faults. Of
course, problems for different faults are also different, so we need
some techniques to handle them with one CNF formula. Before
treating a general case, consider more easy case. The simplest
case is that treats faults of the same location. Let f0 and f1 be the
stuck-at-0 fault and the stack-at-1 fault of edge (connection) f .
Obviously, the conditions that the fault effects propagate to any
of the POs are the same. Only the fault activation condition is
different ( f = 1 for f0, and f = 0 for f1). In this case, we can
easily treat those two ATPG problems with one CNF formula.
This formula (say ϕ) is very similar to the CNF formula derived
from Fig. 1. In the modified formula ϕ, however, the fault value
is not fixed. Let v f be the variable in ϕ representing the value of
f in the faulty circuit. Solving the satisfiability of ϕ with v f = 0
derives the test pattern for f0, and solving the satisfiability of ϕ
with v f = 1 derives the test pattern for f1. An important point
is that SAT solver does need to change CNF formula with single
variable assignments. So we can use the same CNF formula for
those two faults.

A slightly complex case is that treats faults in the same FFR.
The condition that the fault effect propagates to the root of the
FFR is that values of all the side inputs are set to the non-
controlling value. And the condition that the fault effect at the
root of an FFR propagates to any of the POs is the same for all
faults in the same FFR. So, we construct a CNF formula which
detects the fault propagation condition from the root of an FFR.
The fault propagation condition inside FFR and the fault activa-
tion condition is simply represented with single variables assign-
ments. So, we can also use the same CNF formula for faults in
the same FFR.

More general case, we cannot treat multiple faults with one

c© 2017 Information Processing Society of Japan 41



IPSJ Transactions on System LSI Design Methodology Vol.10 39–44 (Feb. 2017)

Fig. 2 Fault injection circuit.

simple CNF formula. So, we introduce “fault injection” variables
to switch the ATPG problem from one fault to another fault. Let
f1, f2, . . . , fk be the faults to be handled. We introduce variables
e f1 , e f2 , . . . , e fk to control the fault injection situation. e f1 = 1
means the fault f1 is the subject of detection. For that purpose, a
fault injection circuit (Fig. 2) is inserted at each fault site. If e = 0,
the output of the fault injection circuit f ′ is equal to the input of
the circuit f . On the other hand,if e = 1, f ′ is inverted against
f . With this modification, we can generate one CNF-formula for
any set of faults. Solving SAT problem with e f1 = 1 (other fault
injection variables are all 0) derives a test pattern for the fault f1.

This technique is very general and has no restrictions on the
fault set. However, increasing the size of a fault set has negative
effect for SAT solving, since the number of variables and clauses
also increase. So we choose faults in the same MFFC (maximal
fanout free cone) as a fault set for CNF generation. From MFFC’s
definition, it is obvious that the fault effect of any faults in the
same MFFC must pass through the root of the MFFC, and the
fault propagation conditions after the root of any faults are exactly
the same. This leads the CNF sharing efficient. Of course, this
is just a heuristic, so there might be another heuristic of grouping
fault set for CNF generation.

The CNF sharing technique for faults in the same FFR and the
above one is mutually dependent, so those two techniques can be
used simultaneously. Rough sketch of the CNF sharing algorithm
is as follows:

input : a MFFCM
R← set of FFRs in the MFFCM;

Insert fault injection circuit at each output of r ∈ R;

Generate CNF formula ϕ for the composed circuit;

for r ∈ R do
Fr ← set of faults in the FFR r;

for f ∈ Fv do
α← fault activation condition for f ;

β← fault propagation condition for f ;

Solve ϕ with α ∧ β ∧ ev = 1;
end

end

Algorithm 1: CNF sharing algorithm

Consider a fragment of a circuit shown in Fig. 3. This circuit
itself forms a MFFC, since m is the dominator for all vertices.
Subcircuits surrounded by dotted lines are FFRs. For this circuit,
fault injection circuits are inserted at g and m, which are both
root vertices of FFRs. When deriving a test pattern for stuck-at-0
fault at e, the fault activation condition is e = 1, and the fault
propagation condition is f = 0. Let eg(em) be the fault injection
variable for g(m). The assumption (set of assignments) for de-
tecting the stuck-at-0 at e is e = 1 ∧ f = 0 ∧ eg = 1 ∧ em = 0.

Fig. 3 A circuit example.

Similarly, the assumption for detecting the stuck-at-1 at h is
h = 0 ∧ i = 1 ∧ l = 0 ∧ eg = 0 ∧ em = 1.

With this algorithm, generating one CNF formula is required
for a set of faults in the same MFFC, which obviously reduce
the CNF generation time. Furthermore, this algorithm has an-
other side effect that previously generated learnt clauses acceler-
ate the remaining problems. When using MFFC as a criteria of
fault grouping, the fault propagation conditions after the root of
the MFFC are the same. That means learnt clauses related to the
fault propagation conditions for one fault f are also useful for an-
other fault g, since the fault propagation conditions after the root
of the MFFC are the same.

Modern SAT solvers utilize VSIDS (Variable State Indepen-
dent Decaying Sum) heuristics for decision making, which is also
effective with CNF sharing because of the similar reason. A good
variable for one fault f is likely a good variable for another fault
g in the same MFFC.

Without CNF sharing, we have to discard the learnt clauses
and have to forget activities of variables, since CNFs for different
faults are different even though they are very similar.

4. The Experimental Results

To evaluate the proposed algorithms, experiments using bench-
mark circuits have been done. The following algorithms are com-
pared:
single: Choose a fault at a time, do ATPG using basic algo-

rithm described in Section 2.
mffc: Choose faults in the same MFFC as one group, do CNF

sharing described in Section 3.
For all the experiments, ATPG for all the representative faults
were solved. No fault dropping using fault simulation were used.

Benchmark circuits are taken from ISCAS85, ISCAS89, and
ITC99. The results of some of the circuits are omitted because
the CPU time is too small. CPU is Intel Core i7-2600 (3.40 GHz,
16 GB memory) running FreeBSD 10.3-RELEASE-p3. Compiler
is clang-3.4. The program is single thread and does not use multi-
cores. The original hand-made SAT solver is used *1. Table 1
shows the results. The first column (‘circuit’) denotes the circuit’s
name. The second and the third columns (‘#MFFC’ and ‘#FFR’)
denote the number of MFFCs and FFRs, respectively. The fourth
to the sixth columns (‘all’, ‘det.’, and ‘red.’) denote the number
of all faults, detected faults, and redundant faults, respectively.
The rest of the columns denote the total CPU time in seconds.
The numbers in brace denote the speed-up ratio against single.

*1 The algorithm is very similar to MINISAT-2.2.
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Table 1 The comparison among the algorithms.

circuit #MFFC #FFR all det. red. single mffc
C432 95 96 524 520 4 0.07 0.03 (2.33)
C499 91 91 758 750 8 0.17 0.05 (3.40)
C880 121 151 942 942 0 0.09 0.04 (2.25)
C1355 91 291 1,574 1,566 8 0.54 0.17 (3.18)
C1908 193 410 1,879 1,870 9 0.71 0.28 (2.54)
C2670 284 594 2,747 2,630 117 0.88 0.38 (2.32)
C3540 398 601 3,428 3,291 137 2.56 1.08 (2.37)
C5315 502 929 5,350 5,291 59 1.89 0.77 (2.45)
C6288 1,488 1,488 7,744 7,710 34 30.85 12.01 (2.57)
C7552 623 1,408 7,550 7,419 131 3.61 1.7 (2.12)
ave. (iscas85) (2.55)
S1196 180 187 1,242 1,242 0 0.17 0.08 (2.13)
S1238 189 197 1,355 1,286 69 0.20 0.09 (2.22)
S1423 246 259 1,515 1,501 14 0.25 0.11 (2.27)
S1488 101 101 1,486 1,486 0 0.11 0.07 (1.57)
S1494 101 101 1,506 1,494 12 0.11 0.07 (1.56)
S5378 780 1,057 4,551 4,511 40 0.72 0.35 (2.06)
S9234 820 1,263 6,927 6,475 452 2.53 1.00 (2.53)
S13207 1,648 1,676 9,815 9,664 151 2.67 0.89 (3.00)
S15850 1,731 2,202 11,725 11,336 389 5.98 2.08 (2.95)
S35932 4,121 7,343 39,094 35,110 3,984 5.4 1.51 (3.58)
S38417 4,384 6,311 31,180 31,015 165 10.14 3.31 (3.06)
S38584 4,689 5,676 36,303 34,797 1,506 7.04 2.08 (3.38)
ave. (iscas89) (2.53)
b14 2,129 2,708 22,802 22,646 156 42.03 17.04 (2.47)
b15 2,645 2,872 21,988 21,261 727 69.45 37.70 (1.84)
b17 8,897 9,657 76,625 74,667 1,958 225.49 65.48 (3.45)
b18 31,237 34,387 264,267 262,607 1,660 1,317.90 426.22 (3.09)
b19 63,606 69,723 533,588 529,919 3,669 2,996.89 912.20 (3.29)
b20 4,188 5,157 45,459 45,140 319 137.45 152.58 (2.61)
b21 4,143 5,125 46,154 45,776 378 141.51 51.37 (2.75)
b22 6,347 7,633 67,536 67,192 f 344 202.75 74.40 (2.73)
ave. (itc99) (2.78)
ave. (total) (2.60)

Through the experiments, all the ATPG problem was completely
solved, i.e. no aborted faults. The number of generated patterns
is exactly the same as the number of detected faults, and thus
omitted.

CNF sharing algorithm works well for all the circuits. ‘mffc’
is almost always 2.5 times faster than ‘single’. Speed-up ratio is
almost the same for all the benchmarks. This is because that the
average MFFC size is similar through the circuits (5 – 10 faults
per one MFFC).

Table 2 shows the breakdown of CPU time. The second and
third columns (‘CNF gen.’) denote total CPU time for CNF gen-
eration in ‘single’ and ‘mffc’ mode. The fourth to sixth columns
(‘SAT’) denote total CPU time for SAT solving in ‘single’ mode
and ‘mffc’ mode *2. The program used for the sixth column
(‘mffc(no-learn)’) is slightly modified. In this modified program,
all the learnt clauses previously generated by other invocations
of SAT solving are discarded before each new invocation of SAT
solving. Also, variable activities for VSIDS are cleared. From the
results of Table 2, it is obvious that CNF sharing is effective not
only for reducing the CNF generation time but also for reducing
the SAT solving time significantly. Especially for large circuits,
the effect of learnt clauses reusing is obvious. It is worth noting
that ‘mffc(no-learn)’ is almost always larger than ‘single’, since
the number of variables and the number of clauses of the CNF for-
mula of the same fault is always larger than ‘single’ mode. With
learning mechanism, however, the CPU time becomes equal or

*2 The rest of the CPU time is mainly spent by generating test vectors from
SAT results.

Table 2 The breakdown of CPU time.

CNF gen. SAT
circuit single mffc single mffc mffc (no-learn)
C432 0.05 0.01 0.01 0.02 0.03
C499 0.09 0.01 0.08 0.03 0.07
C880 0.06 0.01 0.02 0.02 0.03
C1355 0.38 0.02 0.13 0.12 0.18
C1908 0.49 0.07 0.15 0.18 0.36
C2670 0.58 0.05 0.21 0.26 0.66
C3540 1.70 0.25 0.57 0.67 1.34
C5315 1.20 0.15 0.49 0.49 0.86
C6288 7.12 1.50 22.72 9.98 25.71
C7552 2.40 0.34 0.98 1.11 2.44
S1196 0.12 0.02 0.04 0.03 0.04
S1238 0.13 0.03 0.04 0.03 0.05
S1423 0.19 0.04 0.06 0.05 0.08
S1488 0.07 0.02 0.03 0.03 0.06
S1494 0.07 0.02 0.03 0.03 0.05
S5378 0.50 0.12 0.12 0.16 0.21
S9234 1.68 0.29 0.57 0.50 0.83
S13207 1.84 0.31 0.52 0.39 0.66
S15850 4.20 0.72 1.10 0.95 1.66
S35932 4.38 0.49 0.53 0.72 1.21
S38417 7.69 1.38 1.52 1.37 2.37
S38584 5.54 0.96 0.85 0.69 1.08
b14 24.59 4.40 13.17 10.32 40.65
b15 37.70 5.74 25.57 11.05 24.62
b17 127.14 20.54 77.33 34.58 64.47
b18 619.09 102.11 590.25 274.62 695.87
b19 1,661.70 258.28 1,077.54 538.29 1,214.18
b20 76.87 12.32 46.79 33.48 106.57
b21 81.02 12.49 46.12 31.86 115.76
b22 116.76 18.70 66.10 45.86 118.49

smaller, since the fault propagation conditions for faults within
the same MFFC are almost the same except the conditions inside
the MFFC. That results support the MFFC grouping heuristic.
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Table 3 Comparison with the existing methods.

circuit ours SPIRIT TIGUAN PASSAT TG
C1908 0.01 0.23 0.95 0.64 0.01
C2670 0.04 0.42 2.60 0.91 0.11
C3540 0.06 0.20 5.17 3.83 0.02
C5315 0.03 0.20 3.65 1.44 0.01
C6288 0.06 0.36 7.61 6.57 0.01
C7552 0.12 0.58 5.83 3.31 0.53
s9234 0.21 1.05 6.47 3.53 0.61
s13207 0.25 2.78 6.99 3.64 0.21
s15850 0.34 4.13 12.68 9.18 0.93
s35932 0.25 5.25 17.28 2.96 2.95
s38417 0.63 10.98 23.16 4.21 2.28
s38584 0.46 14.75 22.23 4.84 1.76
b14 3.00 7.34 23.10 19.00 2.68
b15 6.03 52.03 66.82 24.00 27.00
b17 24.10 262.30 252.40 142.00 248.79
b18 110.33 1,555.74 706.92 1,350.00 920.01
b20 6.60 24.52 70.60 56.00 9.93
b21 7.90 39.66 73.46 59.00 8.01
b22 9.32 156.00 90.97 95.00 18.56

The next experiments were done for real setting comparing ex-
isting methods. In this experiments, the following flow was used:

( 1 ) Do fault simulation with randomly generated patterns. The
simulation loop ends if successive 4 loops (64 patterns per
loop, so 64 × 4 = 256 patterns) do not find any faults.

( 2 ) Do mffc for remaining faults. Every time a new test pat-
tern is found, Fault simulation with the pattern is invoked.
Detected faults are excluded from the fault list.

We compare the results with the following existing methods:
SPIRIT [6]: Structural based ATPG
TIGUAN [7]: Thread parallel ATPG
PASSAT [8], [9]: SAT based ATPG
TG [10]: Hybrid (Structural and SAT based) ATPG
The CPU times for the existing methods are taken from [10]. Ta-
ble 3 shows the results. All the numbers are CPU times in second.

Since CPU times of existing methods are taken from litera-
ture, the background conditions (CPU, OS, compiler, etc.) are
not equal. Our results, however, outperform for almost all the
circuits *3. The difference is significant especially for large cir-
cuits (s35932, s38417, s38584, b15, b17, b18, b20, b21, b22).
These results show that our method is very effective for large
designs, and also show that a pure SAT based ATPG approach
(not using structural implication techniques) achieves good per-
formance. SAT based ATPG techniques are easily extendable
with adding extra constraints provided they are represented by
a CNF formula. So, these results are very encouraging for devel-
oping more complicated ATPG algorithms regarding extra con-
straints.

5. Conclusion

This paper proposes an accelerating technique for SAT based
ATPG, which is called ‘CNF sharing’. The main idea behind this
technique is representing more than one test generation problems
as one CNF formula with introducing control variables. CNF
sharing reduces not only CNF generation time but also SAT solv-

*3 For example, our results of larger circuits (b17, b18) are over 10 times
faster than others. This gap is far beyond the difference of nowadays
machine performance.

ing time significantly. Experimental results show that the pro-
posed algorithm runs faster than the existing one more than 3
times faster. The proposed algorithm fits to modern efficient SAT
algorithms very well, and can be a good base algorithm for more
complicated ATPG problem such as a problem for transition fault
with signal transition activity constraints.
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